Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Mark M. Hoffman | 3582 | 75.46% | 6 | 12.00% |
Jean Delvare | 805 | 16.96% | 19 | 38.00% |
Guenter Roeck | 141 | 2.97% | 4 | 8.00% |
Yani Ioannou | 65 | 1.37% | 1 | 2.00% |
Greg Kroah-Hartman | 45 | 0.95% | 2 | 4.00% |
Wolfram Sang | 27 | 0.57% | 2 | 4.00% |
Ingo Molnar | 19 | 0.40% | 1 | 2.00% |
Julia Lawall | 13 | 0.27% | 1 | 2.00% |
Axel Lin | 11 | 0.23% | 2 | 4.00% |
Joe Perches | 9 | 0.19% | 1 | 2.00% |
Tony Jones | 6 | 0.13% | 1 | 2.00% |
Rudolf Marek | 5 | 0.11% | 2 | 4.00% |
Laurent Riffard | 5 | 0.11% | 1 | 2.00% |
Uwe Kleine-König | 3 | 0.06% | 2 | 4.00% |
Paul Fertser | 3 | 0.06% | 1 | 2.00% |
Dominik Hackl | 3 | 0.06% | 1 | 2.00% |
Thomas Gleixner | 2 | 0.04% | 1 | 2.00% |
Alexey Dobriyan | 2 | 0.04% | 1 | 2.00% |
Christian Hohnstaedt | 1 | 0.02% | 1 | 2.00% |
Total | 4747 | 50 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * asb100.c - Part of lm_sensors, Linux kernel modules for hardware * monitoring * * Copyright (C) 2004 Mark M. Hoffman <mhoffman@lightlink.com> * * (derived from w83781d.c) * * Copyright (C) 1998 - 2003 Frodo Looijaard <frodol@dds.nl>, * Philip Edelbrock <phil@netroedge.com>, and * Mark Studebaker <mdsxyz123@yahoo.com> */ /* * This driver supports the hardware sensor chips: Asus ASB100 and * ASB100-A "BACH". * * ASB100-A supports pwm1, while plain ASB100 does not. There is no known * way for the driver to tell which one is there. * * Chip #vin #fanin #pwm #temp wchipid vendid i2c ISA * asb100 7 3 1 4 0x31 0x0694 yes no */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/module.h> #include <linux/slab.h> #include <linux/i2c.h> #include <linux/hwmon.h> #include <linux/hwmon-sysfs.h> #include <linux/hwmon-vid.h> #include <linux/err.h> #include <linux/init.h> #include <linux/jiffies.h> #include <linux/mutex.h> #include "lm75.h" /* I2C addresses to scan */ static const unsigned short normal_i2c[] = { 0x2d, I2C_CLIENT_END }; static unsigned short force_subclients[4]; module_param_array(force_subclients, short, NULL, 0); MODULE_PARM_DESC(force_subclients, "List of subclient addresses: {bus, clientaddr, subclientaddr1, subclientaddr2}"); /* Voltage IN registers 0-6 */ #define ASB100_REG_IN(nr) (0x20 + (nr)) #define ASB100_REG_IN_MAX(nr) (0x2b + (nr * 2)) #define ASB100_REG_IN_MIN(nr) (0x2c + (nr * 2)) /* FAN IN registers 1-3 */ #define ASB100_REG_FAN(nr) (0x28 + (nr)) #define ASB100_REG_FAN_MIN(nr) (0x3b + (nr)) /* TEMPERATURE registers 1-4 */ static const u16 asb100_reg_temp[] = {0, 0x27, 0x150, 0x250, 0x17}; static const u16 asb100_reg_temp_max[] = {0, 0x39, 0x155, 0x255, 0x18}; static const u16 asb100_reg_temp_hyst[] = {0, 0x3a, 0x153, 0x253, 0x19}; #define ASB100_REG_TEMP(nr) (asb100_reg_temp[nr]) #define ASB100_REG_TEMP_MAX(nr) (asb100_reg_temp_max[nr]) #define ASB100_REG_TEMP_HYST(nr) (asb100_reg_temp_hyst[nr]) #define ASB100_REG_TEMP2_CONFIG 0x0152 #define ASB100_REG_TEMP3_CONFIG 0x0252 #define ASB100_REG_CONFIG 0x40 #define ASB100_REG_ALARM1 0x41 #define ASB100_REG_ALARM2 0x42 #define ASB100_REG_SMIM1 0x43 #define ASB100_REG_SMIM2 0x44 #define ASB100_REG_VID_FANDIV 0x47 #define ASB100_REG_I2C_ADDR 0x48 #define ASB100_REG_CHIPID 0x49 #define ASB100_REG_I2C_SUBADDR 0x4a #define ASB100_REG_PIN 0x4b #define ASB100_REG_IRQ 0x4c #define ASB100_REG_BANK 0x4e #define ASB100_REG_CHIPMAN 0x4f #define ASB100_REG_WCHIPID 0x58 /* bit 7 -> enable, bits 0-3 -> duty cycle */ #define ASB100_REG_PWM1 0x59 /* * CONVERSIONS * Rounding and limit checking is only done on the TO_REG variants. */ /* These constants are a guess, consistent w/ w83781d */ #define ASB100_IN_MIN 0 #define ASB100_IN_MAX 4080 /* * IN: 1/1000 V (0V to 4.08V) * REG: 16mV/bit */ static u8 IN_TO_REG(unsigned val) { unsigned nval = clamp_val(val, ASB100_IN_MIN, ASB100_IN_MAX); return (nval + 8) / 16; } static unsigned IN_FROM_REG(u8 reg) { return reg * 16; } static u8 FAN_TO_REG(long rpm, int div) { if (rpm == -1) return 0; if (rpm == 0) return 255; rpm = clamp_val(rpm, 1, 1000000); return clamp_val((1350000 + rpm * div / 2) / (rpm * div), 1, 254); } static int FAN_FROM_REG(u8 val, int div) { return val == 0 ? -1 : val == 255 ? 0 : 1350000 / (val * div); } /* These constants are a guess, consistent w/ w83781d */ #define ASB100_TEMP_MIN -128000 #define ASB100_TEMP_MAX 127000 /* * TEMP: 0.001C/bit (-128C to +127C) * REG: 1C/bit, two's complement */ static u8 TEMP_TO_REG(long temp) { int ntemp = clamp_val(temp, ASB100_TEMP_MIN, ASB100_TEMP_MAX); ntemp += (ntemp < 0 ? -500 : 500); return (u8)(ntemp / 1000); } static int TEMP_FROM_REG(u8 reg) { return (s8)reg * 1000; } /* * PWM: 0 - 255 per sensors documentation * REG: (6.25% duty cycle per bit) */ static u8 ASB100_PWM_TO_REG(int pwm) { pwm = clamp_val(pwm, 0, 255); return (u8)(pwm / 16); } static int ASB100_PWM_FROM_REG(u8 reg) { return reg * 16; } #define DIV_FROM_REG(val) (1 << (val)) /* * FAN DIV: 1, 2, 4, or 8 (defaults to 2) * REG: 0, 1, 2, or 3 (respectively) (defaults to 1) */ static u8 DIV_TO_REG(long val) { return val == 8 ? 3 : val == 4 ? 2 : val == 1 ? 0 : 1; } /* * For each registered client, we need to keep some data in memory. That * data is pointed to by client->data. The structure itself is * dynamically allocated, at the same time the client itself is allocated. */ struct asb100_data { struct device *hwmon_dev; struct mutex lock; struct mutex update_lock; unsigned long last_updated; /* In jiffies */ /* array of 2 pointers to subclients */ struct i2c_client *lm75[2]; bool valid; /* true if following fields are valid */ u8 in[7]; /* Register value */ u8 in_max[7]; /* Register value */ u8 in_min[7]; /* Register value */ u8 fan[3]; /* Register value */ u8 fan_min[3]; /* Register value */ u16 temp[4]; /* Register value (0 and 3 are u8 only) */ u16 temp_max[4]; /* Register value (0 and 3 are u8 only) */ u16 temp_hyst[4]; /* Register value (0 and 3 are u8 only) */ u8 fan_div[3]; /* Register encoding, right justified */ u8 pwm; /* Register encoding */ u8 vid; /* Register encoding, combined */ u32 alarms; /* Register encoding, combined */ u8 vrm; }; static int asb100_read_value(struct i2c_client *client, u16 reg); static void asb100_write_value(struct i2c_client *client, u16 reg, u16 val); static int asb100_probe(struct i2c_client *client); static int asb100_detect(struct i2c_client *client, struct i2c_board_info *info); static void asb100_remove(struct i2c_client *client); static struct asb100_data *asb100_update_device(struct device *dev); static void asb100_init_client(struct i2c_client *client); static const struct i2c_device_id asb100_id[] = { { "asb100", 0 }, { } }; MODULE_DEVICE_TABLE(i2c, asb100_id); static struct i2c_driver asb100_driver = { .class = I2C_CLASS_HWMON, .driver = { .name = "asb100", }, .probe = asb100_probe, .remove = asb100_remove, .id_table = asb100_id, .detect = asb100_detect, .address_list = normal_i2c, }; /* 7 Voltages */ #define show_in_reg(reg) \ static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \ char *buf) \ { \ int nr = to_sensor_dev_attr(attr)->index; \ struct asb100_data *data = asb100_update_device(dev); \ return sprintf(buf, "%d\n", IN_FROM_REG(data->reg[nr])); \ } show_in_reg(in) show_in_reg(in_min) show_in_reg(in_max) #define set_in_reg(REG, reg) \ static ssize_t set_in_##reg(struct device *dev, struct device_attribute *attr, \ const char *buf, size_t count) \ { \ int nr = to_sensor_dev_attr(attr)->index; \ struct i2c_client *client = to_i2c_client(dev); \ struct asb100_data *data = i2c_get_clientdata(client); \ unsigned long val; \ int err = kstrtoul(buf, 10, &val); \ if (err) \ return err; \ mutex_lock(&data->update_lock); \ data->in_##reg[nr] = IN_TO_REG(val); \ asb100_write_value(client, ASB100_REG_IN_##REG(nr), \ data->in_##reg[nr]); \ mutex_unlock(&data->update_lock); \ return count; \ } set_in_reg(MIN, min) set_in_reg(MAX, max) #define sysfs_in(offset) \ static SENSOR_DEVICE_ATTR(in##offset##_input, S_IRUGO, \ show_in, NULL, offset); \ static SENSOR_DEVICE_ATTR(in##offset##_min, S_IRUGO | S_IWUSR, \ show_in_min, set_in_min, offset); \ static SENSOR_DEVICE_ATTR(in##offset##_max, S_IRUGO | S_IWUSR, \ show_in_max, set_in_max, offset) sysfs_in(0); sysfs_in(1); sysfs_in(2); sysfs_in(3); sysfs_in(4); sysfs_in(5); sysfs_in(6); /* 3 Fans */ static ssize_t show_fan(struct device *dev, struct device_attribute *attr, char *buf) { int nr = to_sensor_dev_attr(attr)->index; struct asb100_data *data = asb100_update_device(dev); return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr], DIV_FROM_REG(data->fan_div[nr]))); } static ssize_t show_fan_min(struct device *dev, struct device_attribute *attr, char *buf) { int nr = to_sensor_dev_attr(attr)->index; struct asb100_data *data = asb100_update_device(dev); return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[nr], DIV_FROM_REG(data->fan_div[nr]))); } static ssize_t show_fan_div(struct device *dev, struct device_attribute *attr, char *buf) { int nr = to_sensor_dev_attr(attr)->index; struct asb100_data *data = asb100_update_device(dev); return sprintf(buf, "%d\n", DIV_FROM_REG(data->fan_div[nr])); } static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int nr = to_sensor_dev_attr(attr)->index; struct i2c_client *client = to_i2c_client(dev); struct asb100_data *data = i2c_get_clientdata(client); unsigned long val; int err; err = kstrtoul(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); data->fan_min[nr] = FAN_TO_REG(val, DIV_FROM_REG(data->fan_div[nr])); asb100_write_value(client, ASB100_REG_FAN_MIN(nr), data->fan_min[nr]); mutex_unlock(&data->update_lock); return count; } /* * Note: we save and restore the fan minimum here, because its value is * determined in part by the fan divisor. This follows the principle of * least surprise; the user doesn't expect the fan minimum to change just * because the divisor changed. */ static ssize_t set_fan_div(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int nr = to_sensor_dev_attr(attr)->index; struct i2c_client *client = to_i2c_client(dev); struct asb100_data *data = i2c_get_clientdata(client); unsigned long min; int reg; unsigned long val; int err; err = kstrtoul(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); min = FAN_FROM_REG(data->fan_min[nr], DIV_FROM_REG(data->fan_div[nr])); data->fan_div[nr] = DIV_TO_REG(val); switch (nr) { case 0: /* fan 1 */ reg = asb100_read_value(client, ASB100_REG_VID_FANDIV); reg = (reg & 0xcf) | (data->fan_div[0] << 4); asb100_write_value(client, ASB100_REG_VID_FANDIV, reg); break; case 1: /* fan 2 */ reg = asb100_read_value(client, ASB100_REG_VID_FANDIV); reg = (reg & 0x3f) | (data->fan_div[1] << 6); asb100_write_value(client, ASB100_REG_VID_FANDIV, reg); break; case 2: /* fan 3 */ reg = asb100_read_value(client, ASB100_REG_PIN); reg = (reg & 0x3f) | (data->fan_div[2] << 6); asb100_write_value(client, ASB100_REG_PIN, reg); break; } data->fan_min[nr] = FAN_TO_REG(min, DIV_FROM_REG(data->fan_div[nr])); asb100_write_value(client, ASB100_REG_FAN_MIN(nr), data->fan_min[nr]); mutex_unlock(&data->update_lock); return count; } #define sysfs_fan(offset) \ static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO, \ show_fan, NULL, offset - 1); \ static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR, \ show_fan_min, set_fan_min, offset - 1); \ static SENSOR_DEVICE_ATTR(fan##offset##_div, S_IRUGO | S_IWUSR, \ show_fan_div, set_fan_div, offset - 1) sysfs_fan(1); sysfs_fan(2); sysfs_fan(3); /* 4 Temp. Sensors */ static int sprintf_temp_from_reg(u16 reg, char *buf, int nr) { int ret = 0; switch (nr) { case 1: case 2: ret = sprintf(buf, "%d\n", LM75_TEMP_FROM_REG(reg)); break; case 0: case 3: default: ret = sprintf(buf, "%d\n", TEMP_FROM_REG(reg)); break; } return ret; } #define show_temp_reg(reg) \ static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \ char *buf) \ { \ int nr = to_sensor_dev_attr(attr)->index; \ struct asb100_data *data = asb100_update_device(dev); \ return sprintf_temp_from_reg(data->reg[nr], buf, nr); \ } show_temp_reg(temp); show_temp_reg(temp_max); show_temp_reg(temp_hyst); #define set_temp_reg(REG, reg) \ static ssize_t set_##reg(struct device *dev, struct device_attribute *attr, \ const char *buf, size_t count) \ { \ int nr = to_sensor_dev_attr(attr)->index; \ struct i2c_client *client = to_i2c_client(dev); \ struct asb100_data *data = i2c_get_clientdata(client); \ long val; \ int err = kstrtol(buf, 10, &val); \ if (err) \ return err; \ mutex_lock(&data->update_lock); \ switch (nr) { \ case 1: case 2: \ data->reg[nr] = LM75_TEMP_TO_REG(val); \ break; \ case 0: case 3: default: \ data->reg[nr] = TEMP_TO_REG(val); \ break; \ } \ asb100_write_value(client, ASB100_REG_TEMP_##REG(nr+1), \ data->reg[nr]); \ mutex_unlock(&data->update_lock); \ return count; \ } set_temp_reg(MAX, temp_max); set_temp_reg(HYST, temp_hyst); #define sysfs_temp(num) \ static SENSOR_DEVICE_ATTR(temp##num##_input, S_IRUGO, \ show_temp, NULL, num - 1); \ static SENSOR_DEVICE_ATTR(temp##num##_max, S_IRUGO | S_IWUSR, \ show_temp_max, set_temp_max, num - 1); \ static SENSOR_DEVICE_ATTR(temp##num##_max_hyst, S_IRUGO | S_IWUSR, \ show_temp_hyst, set_temp_hyst, num - 1) sysfs_temp(1); sysfs_temp(2); sysfs_temp(3); sysfs_temp(4); /* VID */ static ssize_t cpu0_vid_show(struct device *dev, struct device_attribute *attr, char *buf) { struct asb100_data *data = asb100_update_device(dev); return sprintf(buf, "%d\n", vid_from_reg(data->vid, data->vrm)); } static DEVICE_ATTR_RO(cpu0_vid); /* VRM */ static ssize_t vrm_show(struct device *dev, struct device_attribute *attr, char *buf) { struct asb100_data *data = dev_get_drvdata(dev); return sprintf(buf, "%d\n", data->vrm); } static ssize_t vrm_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct asb100_data *data = dev_get_drvdata(dev); unsigned long val; int err; err = kstrtoul(buf, 10, &val); if (err) return err; if (val > 255) return -EINVAL; data->vrm = val; return count; } /* Alarms */ static DEVICE_ATTR_RW(vrm); static ssize_t alarms_show(struct device *dev, struct device_attribute *attr, char *buf) { struct asb100_data *data = asb100_update_device(dev); return sprintf(buf, "%u\n", data->alarms); } static DEVICE_ATTR_RO(alarms); static ssize_t show_alarm(struct device *dev, struct device_attribute *attr, char *buf) { int bitnr = to_sensor_dev_attr(attr)->index; struct asb100_data *data = asb100_update_device(dev); return sprintf(buf, "%u\n", (data->alarms >> bitnr) & 1); } static SENSOR_DEVICE_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0); static SENSOR_DEVICE_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1); static SENSOR_DEVICE_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2); static SENSOR_DEVICE_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3); static SENSOR_DEVICE_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8); static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 6); static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 7); static SENSOR_DEVICE_ATTR(fan3_alarm, S_IRUGO, show_alarm, NULL, 11); static SENSOR_DEVICE_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 4); static SENSOR_DEVICE_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 5); static SENSOR_DEVICE_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL, 13); /* 1 PWM */ static ssize_t pwm1_show(struct device *dev, struct device_attribute *attr, char *buf) { struct asb100_data *data = asb100_update_device(dev); return sprintf(buf, "%d\n", ASB100_PWM_FROM_REG(data->pwm & 0x0f)); } static ssize_t pwm1_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct i2c_client *client = to_i2c_client(dev); struct asb100_data *data = i2c_get_clientdata(client); unsigned long val; int err; err = kstrtoul(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); data->pwm &= 0x80; /* keep the enable bit */ data->pwm |= (0x0f & ASB100_PWM_TO_REG(val)); asb100_write_value(client, ASB100_REG_PWM1, data->pwm); mutex_unlock(&data->update_lock); return count; } static ssize_t pwm1_enable_show(struct device *dev, struct device_attribute *attr, char *buf) { struct asb100_data *data = asb100_update_device(dev); return sprintf(buf, "%d\n", (data->pwm & 0x80) ? 1 : 0); } static ssize_t pwm1_enable_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct i2c_client *client = to_i2c_client(dev); struct asb100_data *data = i2c_get_clientdata(client); unsigned long val; int err; err = kstrtoul(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); data->pwm &= 0x0f; /* keep the duty cycle bits */ data->pwm |= (val ? 0x80 : 0x00); asb100_write_value(client, ASB100_REG_PWM1, data->pwm); mutex_unlock(&data->update_lock); return count; } static DEVICE_ATTR_RW(pwm1); static DEVICE_ATTR_RW(pwm1_enable); static struct attribute *asb100_attributes[] = { &sensor_dev_attr_in0_input.dev_attr.attr, &sensor_dev_attr_in0_min.dev_attr.attr, &sensor_dev_attr_in0_max.dev_attr.attr, &sensor_dev_attr_in1_input.dev_attr.attr, &sensor_dev_attr_in1_min.dev_attr.attr, &sensor_dev_attr_in1_max.dev_attr.attr, &sensor_dev_attr_in2_input.dev_attr.attr, &sensor_dev_attr_in2_min.dev_attr.attr, &sensor_dev_attr_in2_max.dev_attr.attr, &sensor_dev_attr_in3_input.dev_attr.attr, &sensor_dev_attr_in3_min.dev_attr.attr, &sensor_dev_attr_in3_max.dev_attr.attr, &sensor_dev_attr_in4_input.dev_attr.attr, &sensor_dev_attr_in4_min.dev_attr.attr, &sensor_dev_attr_in4_max.dev_attr.attr, &sensor_dev_attr_in5_input.dev_attr.attr, &sensor_dev_attr_in5_min.dev_attr.attr, &sensor_dev_attr_in5_max.dev_attr.attr, &sensor_dev_attr_in6_input.dev_attr.attr, &sensor_dev_attr_in6_min.dev_attr.attr, &sensor_dev_attr_in6_max.dev_attr.attr, &sensor_dev_attr_fan1_input.dev_attr.attr, &sensor_dev_attr_fan1_min.dev_attr.attr, &sensor_dev_attr_fan1_div.dev_attr.attr, &sensor_dev_attr_fan2_input.dev_attr.attr, &sensor_dev_attr_fan2_min.dev_attr.attr, &sensor_dev_attr_fan2_div.dev_attr.attr, &sensor_dev_attr_fan3_input.dev_attr.attr, &sensor_dev_attr_fan3_min.dev_attr.attr, &sensor_dev_attr_fan3_div.dev_attr.attr, &sensor_dev_attr_temp1_input.dev_attr.attr, &sensor_dev_attr_temp1_max.dev_attr.attr, &sensor_dev_attr_temp1_max_hyst.dev_attr.attr, &sensor_dev_attr_temp2_input.dev_attr.attr, &sensor_dev_attr_temp2_max.dev_attr.attr, &sensor_dev_attr_temp2_max_hyst.dev_attr.attr, &sensor_dev_attr_temp3_input.dev_attr.attr, &sensor_dev_attr_temp3_max.dev_attr.attr, &sensor_dev_attr_temp3_max_hyst.dev_attr.attr, &sensor_dev_attr_temp4_input.dev_attr.attr, &sensor_dev_attr_temp4_max.dev_attr.attr, &sensor_dev_attr_temp4_max_hyst.dev_attr.attr, &sensor_dev_attr_in0_alarm.dev_attr.attr, &sensor_dev_attr_in1_alarm.dev_attr.attr, &sensor_dev_attr_in2_alarm.dev_attr.attr, &sensor_dev_attr_in3_alarm.dev_attr.attr, &sensor_dev_attr_in4_alarm.dev_attr.attr, &sensor_dev_attr_fan1_alarm.dev_attr.attr, &sensor_dev_attr_fan2_alarm.dev_attr.attr, &sensor_dev_attr_fan3_alarm.dev_attr.attr, &sensor_dev_attr_temp1_alarm.dev_attr.attr, &sensor_dev_attr_temp2_alarm.dev_attr.attr, &sensor_dev_attr_temp3_alarm.dev_attr.attr, &dev_attr_cpu0_vid.attr, &dev_attr_vrm.attr, &dev_attr_alarms.attr, &dev_attr_pwm1.attr, &dev_attr_pwm1_enable.attr, NULL }; static const struct attribute_group asb100_group = { .attrs = asb100_attributes, }; static int asb100_detect_subclients(struct i2c_client *client) { int i, id, err; int address = client->addr; unsigned short sc_addr[2]; struct asb100_data *data = i2c_get_clientdata(client); struct i2c_adapter *adapter = client->adapter; id = i2c_adapter_id(adapter); if (force_subclients[0] == id && force_subclients[1] == address) { for (i = 2; i <= 3; i++) { if (force_subclients[i] < 0x48 || force_subclients[i] > 0x4f) { dev_err(&client->dev, "invalid subclient address %d; must be 0x48-0x4f\n", force_subclients[i]); err = -ENODEV; goto ERROR_SC_2; } } asb100_write_value(client, ASB100_REG_I2C_SUBADDR, (force_subclients[2] & 0x07) | ((force_subclients[3] & 0x07) << 4)); sc_addr[0] = force_subclients[2]; sc_addr[1] = force_subclients[3]; } else { int val = asb100_read_value(client, ASB100_REG_I2C_SUBADDR); sc_addr[0] = 0x48 + (val & 0x07); sc_addr[1] = 0x48 + ((val >> 4) & 0x07); } if (sc_addr[0] == sc_addr[1]) { dev_err(&client->dev, "duplicate addresses 0x%x for subclients\n", sc_addr[0]); err = -ENODEV; goto ERROR_SC_2; } data->lm75[0] = i2c_new_dummy_device(adapter, sc_addr[0]); if (IS_ERR(data->lm75[0])) { dev_err(&client->dev, "subclient %d registration at address 0x%x failed.\n", 1, sc_addr[0]); err = PTR_ERR(data->lm75[0]); goto ERROR_SC_2; } data->lm75[1] = i2c_new_dummy_device(adapter, sc_addr[1]); if (IS_ERR(data->lm75[1])) { dev_err(&client->dev, "subclient %d registration at address 0x%x failed.\n", 2, sc_addr[1]); err = PTR_ERR(data->lm75[1]); goto ERROR_SC_3; } return 0; /* Undo inits in case of errors */ ERROR_SC_3: i2c_unregister_device(data->lm75[0]); ERROR_SC_2: return err; } /* Return 0 if detection is successful, -ENODEV otherwise */ static int asb100_detect(struct i2c_client *client, struct i2c_board_info *info) { struct i2c_adapter *adapter = client->adapter; int val1, val2; if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) { pr_debug("detect failed, smbus byte data not supported!\n"); return -ENODEV; } val1 = i2c_smbus_read_byte_data(client, ASB100_REG_BANK); val2 = i2c_smbus_read_byte_data(client, ASB100_REG_CHIPMAN); /* If we're in bank 0 */ if ((!(val1 & 0x07)) && /* Check for ASB100 ID (low byte) */ (((!(val1 & 0x80)) && (val2 != 0x94)) || /* Check for ASB100 ID (high byte ) */ ((val1 & 0x80) && (val2 != 0x06)))) { pr_debug("detect failed, bad chip id 0x%02x!\n", val2); return -ENODEV; } /* Put it now into bank 0 and Vendor ID High Byte */ i2c_smbus_write_byte_data(client, ASB100_REG_BANK, (i2c_smbus_read_byte_data(client, ASB100_REG_BANK) & 0x78) | 0x80); /* Determine the chip type. */ val1 = i2c_smbus_read_byte_data(client, ASB100_REG_WCHIPID); val2 = i2c_smbus_read_byte_data(client, ASB100_REG_CHIPMAN); if (val1 != 0x31 || val2 != 0x06) return -ENODEV; strscpy(info->type, "asb100", I2C_NAME_SIZE); return 0; } static int asb100_probe(struct i2c_client *client) { int err; struct asb100_data *data; data = devm_kzalloc(&client->dev, sizeof(struct asb100_data), GFP_KERNEL); if (!data) return -ENOMEM; i2c_set_clientdata(client, data); mutex_init(&data->lock); mutex_init(&data->update_lock); /* Attach secondary lm75 clients */ err = asb100_detect_subclients(client); if (err) return err; /* Initialize the chip */ asb100_init_client(client); /* A few vars need to be filled upon startup */ data->fan_min[0] = asb100_read_value(client, ASB100_REG_FAN_MIN(0)); data->fan_min[1] = asb100_read_value(client, ASB100_REG_FAN_MIN(1)); data->fan_min[2] = asb100_read_value(client, ASB100_REG_FAN_MIN(2)); /* Register sysfs hooks */ err = sysfs_create_group(&client->dev.kobj, &asb100_group); if (err) goto ERROR3; data->hwmon_dev = hwmon_device_register(&client->dev); if (IS_ERR(data->hwmon_dev)) { err = PTR_ERR(data->hwmon_dev); goto ERROR4; } return 0; ERROR4: sysfs_remove_group(&client->dev.kobj, &asb100_group); ERROR3: i2c_unregister_device(data->lm75[1]); i2c_unregister_device(data->lm75[0]); return err; } static void asb100_remove(struct i2c_client *client) { struct asb100_data *data = i2c_get_clientdata(client); hwmon_device_unregister(data->hwmon_dev); sysfs_remove_group(&client->dev.kobj, &asb100_group); i2c_unregister_device(data->lm75[1]); i2c_unregister_device(data->lm75[0]); } /* * The SMBus locks itself, usually, but nothing may access the chip between * bank switches. */ static int asb100_read_value(struct i2c_client *client, u16 reg) { struct asb100_data *data = i2c_get_clientdata(client); struct i2c_client *cl; int res, bank; mutex_lock(&data->lock); bank = (reg >> 8) & 0x0f; if (bank > 2) /* switch banks */ i2c_smbus_write_byte_data(client, ASB100_REG_BANK, bank); if (bank == 0 || bank > 2) { res = i2c_smbus_read_byte_data(client, reg & 0xff); } else { /* switch to subclient */ cl = data->lm75[bank - 1]; /* convert from ISA to LM75 I2C addresses */ switch (reg & 0xff) { case 0x50: /* TEMP */ res = i2c_smbus_read_word_swapped(cl, 0); break; case 0x52: /* CONFIG */ res = i2c_smbus_read_byte_data(cl, 1); break; case 0x53: /* HYST */ res = i2c_smbus_read_word_swapped(cl, 2); break; case 0x55: /* MAX */ default: res = i2c_smbus_read_word_swapped(cl, 3); break; } } if (bank > 2) i2c_smbus_write_byte_data(client, ASB100_REG_BANK, 0); mutex_unlock(&data->lock); return res; } static void asb100_write_value(struct i2c_client *client, u16 reg, u16 value) { struct asb100_data *data = i2c_get_clientdata(client); struct i2c_client *cl; int bank; mutex_lock(&data->lock); bank = (reg >> 8) & 0x0f; if (bank > 2) /* switch banks */ i2c_smbus_write_byte_data(client, ASB100_REG_BANK, bank); if (bank == 0 || bank > 2) { i2c_smbus_write_byte_data(client, reg & 0xff, value & 0xff); } else { /* switch to subclient */ cl = data->lm75[bank - 1]; /* convert from ISA to LM75 I2C addresses */ switch (reg & 0xff) { case 0x52: /* CONFIG */ i2c_smbus_write_byte_data(cl, 1, value & 0xff); break; case 0x53: /* HYST */ i2c_smbus_write_word_swapped(cl, 2, value); break; case 0x55: /* MAX */ i2c_smbus_write_word_swapped(cl, 3, value); break; } } if (bank > 2) i2c_smbus_write_byte_data(client, ASB100_REG_BANK, 0); mutex_unlock(&data->lock); } static void asb100_init_client(struct i2c_client *client) { struct asb100_data *data = i2c_get_clientdata(client); data->vrm = vid_which_vrm(); /* Start monitoring */ asb100_write_value(client, ASB100_REG_CONFIG, (asb100_read_value(client, ASB100_REG_CONFIG) & 0xf7) | 0x01); } static struct asb100_data *asb100_update_device(struct device *dev) { struct i2c_client *client = to_i2c_client(dev); struct asb100_data *data = i2c_get_clientdata(client); int i; mutex_lock(&data->update_lock); if (time_after(jiffies, data->last_updated + HZ + HZ / 2) || !data->valid) { dev_dbg(&client->dev, "starting device update...\n"); /* 7 voltage inputs */ for (i = 0; i < 7; i++) { data->in[i] = asb100_read_value(client, ASB100_REG_IN(i)); data->in_min[i] = asb100_read_value(client, ASB100_REG_IN_MIN(i)); data->in_max[i] = asb100_read_value(client, ASB100_REG_IN_MAX(i)); } /* 3 fan inputs */ for (i = 0; i < 3; i++) { data->fan[i] = asb100_read_value(client, ASB100_REG_FAN(i)); data->fan_min[i] = asb100_read_value(client, ASB100_REG_FAN_MIN(i)); } /* 4 temperature inputs */ for (i = 1; i <= 4; i++) { data->temp[i-1] = asb100_read_value(client, ASB100_REG_TEMP(i)); data->temp_max[i-1] = asb100_read_value(client, ASB100_REG_TEMP_MAX(i)); data->temp_hyst[i-1] = asb100_read_value(client, ASB100_REG_TEMP_HYST(i)); } /* VID and fan divisors */ i = asb100_read_value(client, ASB100_REG_VID_FANDIV); data->vid = i & 0x0f; data->vid |= (asb100_read_value(client, ASB100_REG_CHIPID) & 0x01) << 4; data->fan_div[0] = (i >> 4) & 0x03; data->fan_div[1] = (i >> 6) & 0x03; data->fan_div[2] = (asb100_read_value(client, ASB100_REG_PIN) >> 6) & 0x03; /* PWM */ data->pwm = asb100_read_value(client, ASB100_REG_PWM1); /* alarms */ data->alarms = asb100_read_value(client, ASB100_REG_ALARM1) + (asb100_read_value(client, ASB100_REG_ALARM2) << 8); data->last_updated = jiffies; data->valid = true; dev_dbg(&client->dev, "... device update complete\n"); } mutex_unlock(&data->update_lock); return data; } module_i2c_driver(asb100_driver); MODULE_AUTHOR("Mark M. Hoffman <mhoffman@lightlink.com>"); MODULE_DESCRIPTION("ASB100 Bach driver"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1