Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Guenter Roeck | 1748 | 89.69% | 12 | 70.59% |
Erik Rosen | 187 | 9.59% | 1 | 5.88% |
Stephen Kitt | 10 | 0.51% | 1 | 5.88% |
Thomas Gleixner | 2 | 0.10% | 1 | 5.88% |
Uwe Kleine-König | 1 | 0.05% | 1 | 5.88% |
Axel Lin | 1 | 0.05% | 1 | 5.88% |
Total | 1949 | 17 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * Hardware monitoring driver for ZL6100 and compatibles * * Copyright (c) 2011 Ericsson AB. * Copyright (c) 2012 Guenter Roeck */ #include <linux/bitops.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/init.h> #include <linux/err.h> #include <linux/slab.h> #include <linux/i2c.h> #include <linux/ktime.h> #include <linux/delay.h> #include "pmbus.h" enum chips { zl2004, zl2005, zl2006, zl2008, zl2105, zl2106, zl6100, zl6105, zl8802, zl9101, zl9117, zls1003, zls4009 }; struct zl6100_data { int id; ktime_t access; /* chip access time */ int delay; /* Delay between chip accesses in uS */ struct pmbus_driver_info info; }; #define to_zl6100_data(x) container_of(x, struct zl6100_data, info) #define ZL6100_MFR_CONFIG 0xd0 #define ZL6100_DEVICE_ID 0xe4 #define ZL6100_MFR_XTEMP_ENABLE BIT(7) #define ZL8802_MFR_USER_GLOBAL_CONFIG 0xe9 #define ZL8802_MFR_TMON_ENABLE BIT(12) #define ZL8802_MFR_USER_CONFIG 0xd1 #define ZL8802_MFR_XTEMP_ENABLE_2 BIT(1) #define ZL8802_MFR_DDC_CONFIG 0xd3 #define ZL8802_MFR_PHASES_MASK 0x0007 #define MFR_VMON_OV_FAULT_LIMIT 0xf5 #define MFR_VMON_UV_FAULT_LIMIT 0xf6 #define MFR_READ_VMON 0xf7 #define VMON_UV_WARNING BIT(5) #define VMON_OV_WARNING BIT(4) #define VMON_UV_FAULT BIT(1) #define VMON_OV_FAULT BIT(0) #define ZL6100_WAIT_TIME 1000 /* uS */ static ushort delay = ZL6100_WAIT_TIME; module_param(delay, ushort, 0644); MODULE_PARM_DESC(delay, "Delay between chip accesses in uS"); /* Convert linear sensor value to milli-units */ static long zl6100_l2d(s16 l) { s16 exponent; s32 mantissa; long val; exponent = l >> 11; mantissa = ((s16)((l & 0x7ff) << 5)) >> 5; val = mantissa; /* scale result to milli-units */ val = val * 1000L; if (exponent >= 0) val <<= exponent; else val >>= -exponent; return val; } #define MAX_MANTISSA (1023 * 1000) #define MIN_MANTISSA (511 * 1000) static u16 zl6100_d2l(long val) { s16 exponent = 0, mantissa; bool negative = false; /* simple case */ if (val == 0) return 0; if (val < 0) { negative = true; val = -val; } /* Reduce large mantissa until it fits into 10 bit */ while (val >= MAX_MANTISSA && exponent < 15) { exponent++; val >>= 1; } /* Increase small mantissa to improve precision */ while (val < MIN_MANTISSA && exponent > -15) { exponent--; val <<= 1; } /* Convert mantissa from milli-units to units */ mantissa = DIV_ROUND_CLOSEST(val, 1000); /* Ensure that resulting number is within range */ if (mantissa > 0x3ff) mantissa = 0x3ff; /* restore sign */ if (negative) mantissa = -mantissa; /* Convert to 5 bit exponent, 11 bit mantissa */ return (mantissa & 0x7ff) | ((exponent << 11) & 0xf800); } /* Some chips need a delay between accesses */ static inline void zl6100_wait(const struct zl6100_data *data) { if (data->delay) { s64 delta = ktime_us_delta(ktime_get(), data->access); if (delta < data->delay) udelay(data->delay - delta); } } static int zl6100_read_word_data(struct i2c_client *client, int page, int phase, int reg) { const struct pmbus_driver_info *info = pmbus_get_driver_info(client); struct zl6100_data *data = to_zl6100_data(info); int ret, vreg; if (page >= info->pages) return -ENXIO; if (data->id == zl2005) { /* * Limit register detection is not reliable on ZL2005. * Make sure registers are not erroneously detected. */ switch (reg) { case PMBUS_VOUT_OV_WARN_LIMIT: case PMBUS_VOUT_UV_WARN_LIMIT: case PMBUS_IOUT_OC_WARN_LIMIT: return -ENXIO; } } switch (reg) { case PMBUS_VIRT_READ_VMON: vreg = MFR_READ_VMON; break; case PMBUS_VIRT_VMON_OV_WARN_LIMIT: case PMBUS_VIRT_VMON_OV_FAULT_LIMIT: vreg = MFR_VMON_OV_FAULT_LIMIT; break; case PMBUS_VIRT_VMON_UV_WARN_LIMIT: case PMBUS_VIRT_VMON_UV_FAULT_LIMIT: vreg = MFR_VMON_UV_FAULT_LIMIT; break; default: if (reg >= PMBUS_VIRT_BASE) return -ENXIO; vreg = reg; break; } zl6100_wait(data); ret = pmbus_read_word_data(client, page, phase, vreg); data->access = ktime_get(); if (ret < 0) return ret; switch (reg) { case PMBUS_VIRT_VMON_OV_WARN_LIMIT: ret = zl6100_d2l(DIV_ROUND_CLOSEST(zl6100_l2d(ret) * 9, 10)); break; case PMBUS_VIRT_VMON_UV_WARN_LIMIT: ret = zl6100_d2l(DIV_ROUND_CLOSEST(zl6100_l2d(ret) * 11, 10)); break; } return ret; } static int zl6100_read_byte_data(struct i2c_client *client, int page, int reg) { const struct pmbus_driver_info *info = pmbus_get_driver_info(client); struct zl6100_data *data = to_zl6100_data(info); int ret, status; if (page >= info->pages) return -ENXIO; zl6100_wait(data); switch (reg) { case PMBUS_VIRT_STATUS_VMON: ret = pmbus_read_byte_data(client, 0, PMBUS_STATUS_MFR_SPECIFIC); if (ret < 0) break; status = 0; if (ret & VMON_UV_WARNING) status |= PB_VOLTAGE_UV_WARNING; if (ret & VMON_OV_WARNING) status |= PB_VOLTAGE_OV_WARNING; if (ret & VMON_UV_FAULT) status |= PB_VOLTAGE_UV_FAULT; if (ret & VMON_OV_FAULT) status |= PB_VOLTAGE_OV_FAULT; ret = status; break; default: ret = pmbus_read_byte_data(client, page, reg); break; } data->access = ktime_get(); return ret; } static int zl6100_write_word_data(struct i2c_client *client, int page, int reg, u16 word) { const struct pmbus_driver_info *info = pmbus_get_driver_info(client); struct zl6100_data *data = to_zl6100_data(info); int ret, vreg; if (page >= info->pages) return -ENXIO; switch (reg) { case PMBUS_VIRT_VMON_OV_WARN_LIMIT: word = zl6100_d2l(DIV_ROUND_CLOSEST(zl6100_l2d(word) * 10, 9)); vreg = MFR_VMON_OV_FAULT_LIMIT; pmbus_clear_cache(client); break; case PMBUS_VIRT_VMON_OV_FAULT_LIMIT: vreg = MFR_VMON_OV_FAULT_LIMIT; pmbus_clear_cache(client); break; case PMBUS_VIRT_VMON_UV_WARN_LIMIT: word = zl6100_d2l(DIV_ROUND_CLOSEST(zl6100_l2d(word) * 10, 11)); vreg = MFR_VMON_UV_FAULT_LIMIT; pmbus_clear_cache(client); break; case PMBUS_VIRT_VMON_UV_FAULT_LIMIT: vreg = MFR_VMON_UV_FAULT_LIMIT; pmbus_clear_cache(client); break; default: if (reg >= PMBUS_VIRT_BASE) return -ENXIO; vreg = reg; } zl6100_wait(data); ret = pmbus_write_word_data(client, page, vreg, word); data->access = ktime_get(); return ret; } static int zl6100_write_byte(struct i2c_client *client, int page, u8 value) { const struct pmbus_driver_info *info = pmbus_get_driver_info(client); struct zl6100_data *data = to_zl6100_data(info); int ret; if (page >= info->pages) return -ENXIO; zl6100_wait(data); ret = pmbus_write_byte(client, page, value); data->access = ktime_get(); return ret; } static const struct i2c_device_id zl6100_id[] = { {"bmr450", zl2005}, {"bmr451", zl2005}, {"bmr462", zl2008}, {"bmr463", zl2008}, {"bmr464", zl2008}, {"bmr465", zls4009}, {"bmr466", zls1003}, {"bmr467", zls4009}, {"bmr469", zl8802}, {"zl2004", zl2004}, {"zl2005", zl2005}, {"zl2006", zl2006}, {"zl2008", zl2008}, {"zl2105", zl2105}, {"zl2106", zl2106}, {"zl6100", zl6100}, {"zl6105", zl6105}, {"zl8802", zl8802}, {"zl9101", zl9101}, {"zl9117", zl9117}, {"zls1003", zls1003}, {"zls4009", zls4009}, { } }; MODULE_DEVICE_TABLE(i2c, zl6100_id); static int zl6100_probe(struct i2c_client *client) { int ret, i; struct zl6100_data *data; struct pmbus_driver_info *info; u8 device_id[I2C_SMBUS_BLOCK_MAX + 1]; const struct i2c_device_id *mid; if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_READ_WORD_DATA | I2C_FUNC_SMBUS_READ_BLOCK_DATA)) return -ENODEV; ret = i2c_smbus_read_block_data(client, ZL6100_DEVICE_ID, device_id); if (ret < 0) { dev_err(&client->dev, "Failed to read device ID\n"); return ret; } device_id[ret] = '\0'; dev_info(&client->dev, "Device ID %s\n", device_id); mid = NULL; for (mid = zl6100_id; mid->name[0]; mid++) { if (!strncasecmp(mid->name, device_id, strlen(mid->name))) break; } if (!mid->name[0]) { dev_err(&client->dev, "Unsupported device\n"); return -ENODEV; } if (strcmp(client->name, mid->name) != 0) dev_notice(&client->dev, "Device mismatch: Configured %s, detected %s\n", client->name, mid->name); data = devm_kzalloc(&client->dev, sizeof(struct zl6100_data), GFP_KERNEL); if (!data) return -ENOMEM; data->id = mid->driver_data; /* * According to information from the chip vendor, all currently * supported chips are known to require a wait time between I2C * accesses. */ data->delay = delay; /* * Since there was a direct I2C device access above, wait before * accessing the chip again. */ data->access = ktime_get(); zl6100_wait(data); info = &data->info; info->pages = 1; info->func[0] = PMBUS_HAVE_VIN | PMBUS_HAVE_STATUS_INPUT | PMBUS_HAVE_VOUT | PMBUS_HAVE_STATUS_VOUT | PMBUS_HAVE_IOUT | PMBUS_HAVE_STATUS_IOUT | PMBUS_HAVE_TEMP | PMBUS_HAVE_STATUS_TEMP; /* * ZL2004, ZL8802, ZL9101M, ZL9117M and ZLS4009 support monitoring * an extra voltage (VMON for ZL2004, ZL8802 and ZLS4009, * VDRV for ZL9101M and ZL9117M). Report it as vmon. */ if (data->id == zl2004 || data->id == zl8802 || data->id == zl9101 || data->id == zl9117 || data->id == zls4009) info->func[0] |= PMBUS_HAVE_VMON | PMBUS_HAVE_STATUS_VMON; /* * ZL8802 has two outputs that can be used either independently or in * a current sharing configuration. The driver uses the DDC_CONFIG * register to check if the module is running with independent or * shared outputs. If the module is in shared output mode, only one * output voltage will be reported. */ if (data->id == zl8802) { info->pages = 2; info->func[0] |= PMBUS_HAVE_IIN; ret = i2c_smbus_read_word_data(client, ZL8802_MFR_DDC_CONFIG); if (ret < 0) return ret; data->access = ktime_get(); zl6100_wait(data); if (ret & ZL8802_MFR_PHASES_MASK) info->func[1] |= PMBUS_HAVE_IOUT | PMBUS_HAVE_STATUS_IOUT; else info->func[1] = PMBUS_HAVE_VOUT | PMBUS_HAVE_STATUS_VOUT | PMBUS_HAVE_IOUT | PMBUS_HAVE_STATUS_IOUT; for (i = 0; i < 2; i++) { ret = i2c_smbus_write_byte_data(client, PMBUS_PAGE, i); if (ret < 0) return ret; data->access = ktime_get(); zl6100_wait(data); ret = i2c_smbus_read_word_data(client, ZL8802_MFR_USER_CONFIG); if (ret < 0) return ret; if (ret & ZL8802_MFR_XTEMP_ENABLE_2) info->func[i] |= PMBUS_HAVE_TEMP2; data->access = ktime_get(); zl6100_wait(data); } ret = i2c_smbus_read_word_data(client, ZL8802_MFR_USER_GLOBAL_CONFIG); if (ret < 0) return ret; if (ret & ZL8802_MFR_TMON_ENABLE) info->func[0] |= PMBUS_HAVE_TEMP3; } else { ret = i2c_smbus_read_word_data(client, ZL6100_MFR_CONFIG); if (ret < 0) return ret; if (ret & ZL6100_MFR_XTEMP_ENABLE) info->func[0] |= PMBUS_HAVE_TEMP2; } data->access = ktime_get(); zl6100_wait(data); info->read_word_data = zl6100_read_word_data; info->read_byte_data = zl6100_read_byte_data; info->write_word_data = zl6100_write_word_data; info->write_byte = zl6100_write_byte; return pmbus_do_probe(client, info); } static struct i2c_driver zl6100_driver = { .driver = { .name = "zl6100", }, .probe = zl6100_probe, .id_table = zl6100_id, }; module_i2c_driver(zl6100_driver); MODULE_AUTHOR("Guenter Roeck"); MODULE_DESCRIPTION("PMBus driver for ZL6100 and compatibles"); MODULE_LICENSE("GPL"); MODULE_IMPORT_NS(PMBUS);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1