Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Guenter Roeck | 3267 | 99.88% | 1 | 20.00% |
Krzysztof Kozlowski | 1 | 0.03% | 1 | 20.00% |
Rob Herring | 1 | 0.03% | 1 | 20.00% |
Mark Brown | 1 | 0.03% | 1 | 20.00% |
Uwe Kleine-König | 1 | 0.03% | 1 | 20.00% |
Total | 3271 | 5 |
// SPDX-License-Identifier: GPL-2.0-or-later /* Driver for the Texas Instruments TMP464 SMBus temperature sensor IC. * Supported models: TMP464, TMP468 * Copyright (C) 2022 Agathe Porte <agathe.porte@nokia.com> * Preliminary support by: * Lionel Pouliquen <lionel.lp.pouliquen@nokia.com> */ #include <linux/err.h> #include <linux/hwmon.h> #include <linux/i2c.h> #include <linux/init.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/of.h> #include <linux/regmap.h> #include <linux/slab.h> /* Addresses to scan */ static const unsigned short normal_i2c[] = { 0x48, 0x49, 0x4a, 0x4b, I2C_CLIENT_END }; #define TMP464_NUM_CHANNELS 5 /* chan 0 is internal, 1-4 are remote */ #define TMP468_NUM_CHANNELS 9 /* chan 0 is internal, 1-8 are remote */ #define MAX_CHANNELS 9 #define TMP464_TEMP_REG(channel) (channel) #define TMP464_TEMP_OFFSET_REG(channel) (0x40 + ((channel) - 1) * 8) #define TMP464_N_FACTOR_REG(channel) (0x41 + ((channel) - 1) * 8) static const u8 TMP464_THERM_LIMIT[MAX_CHANNELS] = { 0x39, 0x42, 0x4A, 0x52, 0x5A, 0x62, 0x6a, 0x72, 0x7a }; static const u8 TMP464_THERM2_LIMIT[MAX_CHANNELS] = { 0x3A, 0x43, 0x4B, 0x53, 0x5B, 0x63, 0x6b, 0x73, 0x7b }; #define TMP464_THERM_STATUS_REG 0x21 #define TMP464_THERM2_STATUS_REG 0x22 #define TMP464_REMOTE_OPEN_REG 0x23 #define TMP464_CONFIG_REG 0x30 #define TMP464_TEMP_HYST_REG 0x38 #define TMP464_LOCK_REG 0xc4 /* Identification */ #define TMP464_MANUFACTURER_ID_REG 0xFE #define TMP464_DEVICE_ID_REG 0xFF /* Flags */ #define TMP464_CONFIG_SHUTDOWN BIT(5) #define TMP464_CONFIG_RANGE 0x04 #define TMP464_CONFIG_REG_REN(x) (BIT(7 + (x))) #define TMP464_CONFIG_REG_REN_MASK GENMASK(15, 7) #define TMP464_CONFIG_CONVERSION_RATE_B0 2 #define TMP464_CONFIG_CONVERSION_RATE_B2 4 #define TMP464_CONFIG_CONVERSION_RATE_MASK GENMASK(TMP464_CONFIG_CONVERSION_RATE_B2, \ TMP464_CONFIG_CONVERSION_RATE_B0) #define TMP464_UNLOCK_VAL 0xeb19 #define TMP464_LOCK_VAL 0x5ca6 #define TMP464_LOCKED 0x8000 /* Manufacturer / Device ID's */ #define TMP464_MANUFACTURER_ID 0x5449 #define TMP464_DEVICE_ID 0x1468 #define TMP468_DEVICE_ID 0x0468 static const struct i2c_device_id tmp464_id[] = { { "tmp464", TMP464_NUM_CHANNELS }, { "tmp468", TMP468_NUM_CHANNELS }, { } }; MODULE_DEVICE_TABLE(i2c, tmp464_id); static const struct of_device_id __maybe_unused tmp464_of_match[] = { { .compatible = "ti,tmp464", .data = (void *)TMP464_NUM_CHANNELS }, { .compatible = "ti,tmp468", .data = (void *)TMP468_NUM_CHANNELS }, {}, }; MODULE_DEVICE_TABLE(of, tmp464_of_match); struct tmp464_channel { const char *label; bool enabled; }; struct tmp464_data { struct regmap *regmap; struct mutex update_lock; int channels; s16 config_orig; u16 open_reg; unsigned long last_updated; bool valid; int update_interval; struct tmp464_channel channel[MAX_CHANNELS]; }; static int temp_from_reg(s16 reg) { return DIV_ROUND_CLOSEST((reg >> 3) * 625, 10); } static s16 temp_to_limit_reg(long temp) { return DIV_ROUND_CLOSEST(temp, 500) << 6; } static s16 temp_to_offset_reg(long temp) { return DIV_ROUND_CLOSEST(temp * 10, 625) << 3; } static int tmp464_enable_channels(struct tmp464_data *data) { struct regmap *regmap = data->regmap; u16 enable = 0; int i; for (i = 0; i < data->channels; i++) if (data->channel[i].enabled) enable |= TMP464_CONFIG_REG_REN(i); return regmap_update_bits(regmap, TMP464_CONFIG_REG, TMP464_CONFIG_REG_REN_MASK, enable); } static int tmp464_chip_read(struct device *dev, u32 attr, int channel, long *val) { struct tmp464_data *data = dev_get_drvdata(dev); switch (attr) { case hwmon_chip_update_interval: *val = data->update_interval; return 0; default: return -EOPNOTSUPP; } } static int tmp464_temp_read(struct device *dev, u32 attr, int channel, long *val) { struct tmp464_data *data = dev_get_drvdata(dev); struct regmap *regmap = data->regmap; unsigned int regval, regval2; int err = 0; mutex_lock(&data->update_lock); switch (attr) { case hwmon_temp_max_alarm: err = regmap_read(regmap, TMP464_THERM_STATUS_REG, ®val); if (err < 0) break; *val = !!(regval & BIT(channel + 7)); break; case hwmon_temp_crit_alarm: err = regmap_read(regmap, TMP464_THERM2_STATUS_REG, ®val); if (err < 0) break; *val = !!(regval & BIT(channel + 7)); break; case hwmon_temp_fault: /* * The chip clears TMP464_REMOTE_OPEN_REG after it is read * and only updates it after the next measurement cycle is * complete. That means we have to cache the value internally * for one measurement cycle and report the cached value. */ if (!data->valid || time_after(jiffies, data->last_updated + msecs_to_jiffies(data->update_interval))) { err = regmap_read(regmap, TMP464_REMOTE_OPEN_REG, ®val); if (err < 0) break; data->open_reg = regval; data->last_updated = jiffies; data->valid = true; } *val = !!(data->open_reg & BIT(channel + 7)); break; case hwmon_temp_max_hyst: err = regmap_read(regmap, TMP464_THERM_LIMIT[channel], ®val); if (err < 0) break; err = regmap_read(regmap, TMP464_TEMP_HYST_REG, ®val2); if (err < 0) break; regval -= regval2; *val = temp_from_reg(regval); break; case hwmon_temp_max: err = regmap_read(regmap, TMP464_THERM_LIMIT[channel], ®val); if (err < 0) break; *val = temp_from_reg(regval); break; case hwmon_temp_crit_hyst: err = regmap_read(regmap, TMP464_THERM2_LIMIT[channel], ®val); if (err < 0) break; err = regmap_read(regmap, TMP464_TEMP_HYST_REG, ®val2); if (err < 0) break; regval -= regval2; *val = temp_from_reg(regval); break; case hwmon_temp_crit: err = regmap_read(regmap, TMP464_THERM2_LIMIT[channel], ®val); if (err < 0) break; *val = temp_from_reg(regval); break; case hwmon_temp_offset: err = regmap_read(regmap, TMP464_TEMP_OFFSET_REG(channel), ®val); if (err < 0) break; *val = temp_from_reg(regval); break; case hwmon_temp_input: if (!data->channel[channel].enabled) { err = -ENODATA; break; } err = regmap_read(regmap, TMP464_TEMP_REG(channel), ®val); if (err < 0) break; *val = temp_from_reg(regval); break; case hwmon_temp_enable: *val = data->channel[channel].enabled; break; default: err = -EOPNOTSUPP; break; } mutex_unlock(&data->update_lock); return err; } static int tmp464_read(struct device *dev, enum hwmon_sensor_types type, u32 attr, int channel, long *val) { switch (type) { case hwmon_chip: return tmp464_chip_read(dev, attr, channel, val); case hwmon_temp: return tmp464_temp_read(dev, attr, channel, val); default: return -EOPNOTSUPP; } } static int tmp464_read_string(struct device *dev, enum hwmon_sensor_types type, u32 attr, int channel, const char **str) { struct tmp464_data *data = dev_get_drvdata(dev); *str = data->channel[channel].label; return 0; } static int tmp464_set_convrate(struct tmp464_data *data, long interval) { int rate; /* * For valid rates, interval in milli-seconds can be calculated as * interval = 125 << (7 - rate); * or * interval = (1 << (7 - rate)) * 125; * The rate is therefore * rate = 7 - __fls(interval / 125); * and the rounded rate is * rate = 7 - __fls(interval * 4 / (125 * 3)); * Use clamp_val() to avoid overflows, and to ensure valid input * for __fls. */ interval = clamp_val(interval, 125, 16000); rate = 7 - __fls(interval * 4 / (125 * 3)); data->update_interval = 125 << (7 - rate); return regmap_update_bits(data->regmap, TMP464_CONFIG_REG, TMP464_CONFIG_CONVERSION_RATE_MASK, rate << TMP464_CONFIG_CONVERSION_RATE_B0); } static int tmp464_chip_write(struct tmp464_data *data, u32 attr, int channel, long val) { switch (attr) { case hwmon_chip_update_interval: return tmp464_set_convrate(data, val); default: return -EOPNOTSUPP; } } static int tmp464_temp_write(struct tmp464_data *data, u32 attr, int channel, long val) { struct regmap *regmap = data->regmap; unsigned int regval; int err = 0; switch (attr) { case hwmon_temp_max_hyst: err = regmap_read(regmap, TMP464_THERM_LIMIT[0], ®val); if (err < 0) break; val = clamp_val(val, -256000, 256000); /* prevent overflow/underflow */ val = clamp_val(temp_from_reg(regval) - val, 0, 255000); err = regmap_write(regmap, TMP464_TEMP_HYST_REG, DIV_ROUND_CLOSEST(val, 1000) << 7); break; case hwmon_temp_max: val = temp_to_limit_reg(clamp_val(val, -255000, 255500)); err = regmap_write(regmap, TMP464_THERM_LIMIT[channel], val); break; case hwmon_temp_crit: val = temp_to_limit_reg(clamp_val(val, -255000, 255500)); err = regmap_write(regmap, TMP464_THERM2_LIMIT[channel], val); break; case hwmon_temp_offset: val = temp_to_offset_reg(clamp_val(val, -128000, 127937)); err = regmap_write(regmap, TMP464_TEMP_OFFSET_REG(channel), val); break; case hwmon_temp_enable: data->channel[channel].enabled = !!val; err = tmp464_enable_channels(data); break; default: err = -EOPNOTSUPP; break; } return err; } static int tmp464_write(struct device *dev, enum hwmon_sensor_types type, u32 attr, int channel, long val) { struct tmp464_data *data = dev_get_drvdata(dev); int err; mutex_lock(&data->update_lock); switch (type) { case hwmon_chip: err = tmp464_chip_write(data, attr, channel, val); break; case hwmon_temp: err = tmp464_temp_write(data, attr, channel, val); break; default: err = -EOPNOTSUPP; break; } mutex_unlock(&data->update_lock); return err; } static umode_t tmp464_is_visible(const void *_data, enum hwmon_sensor_types type, u32 attr, int channel) { const struct tmp464_data *data = _data; if (channel >= data->channels) return 0; if (type == hwmon_chip) { if (attr == hwmon_chip_update_interval) return 0644; return 0; } switch (attr) { case hwmon_temp_input: case hwmon_temp_max_alarm: case hwmon_temp_crit_alarm: case hwmon_temp_crit_hyst: return 0444; case hwmon_temp_enable: case hwmon_temp_max: case hwmon_temp_crit: return 0644; case hwmon_temp_max_hyst: if (!channel) return 0644; return 0444; case hwmon_temp_label: if (data->channel[channel].label) return 0444; return 0; case hwmon_temp_fault: if (channel) return 0444; return 0; case hwmon_temp_offset: if (channel) return 0644; return 0; default: return 0; } } static void tmp464_restore_lock(void *regmap) { regmap_write(regmap, TMP464_LOCK_REG, TMP464_LOCK_VAL); } static void tmp464_restore_config(void *_data) { struct tmp464_data *data = _data; regmap_write(data->regmap, TMP464_CONFIG_REG, data->config_orig); } static int tmp464_init_client(struct device *dev, struct tmp464_data *data) { struct regmap *regmap = data->regmap; unsigned int regval; int err; err = regmap_read(regmap, TMP464_LOCK_REG, ®val); if (err) return err; if (regval == TMP464_LOCKED) { /* Explicitly unlock chip if it is locked */ err = regmap_write(regmap, TMP464_LOCK_REG, TMP464_UNLOCK_VAL); if (err) return err; /* and lock it again when unloading the driver */ err = devm_add_action_or_reset(dev, tmp464_restore_lock, regmap); if (err) return err; } err = regmap_read(regmap, TMP464_CONFIG_REG, ®val); if (err) return err; data->config_orig = regval; err = devm_add_action_or_reset(dev, tmp464_restore_config, data); if (err) return err; /* Default to 500 ms update interval */ err = regmap_update_bits(regmap, TMP464_CONFIG_REG, TMP464_CONFIG_CONVERSION_RATE_MASK | TMP464_CONFIG_SHUTDOWN, BIT(TMP464_CONFIG_CONVERSION_RATE_B0) | BIT(TMP464_CONFIG_CONVERSION_RATE_B2)); if (err) return err; data->update_interval = 500; return tmp464_enable_channels(data); } static int tmp464_detect(struct i2c_client *client, struct i2c_board_info *info) { struct i2c_adapter *adapter = client->adapter; char *name, *chip; int reg; if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_WORD_DATA)) return -ENODEV; reg = i2c_smbus_read_word_swapped(client, TMP464_MANUFACTURER_ID_REG); if (reg < 0) return reg; if (reg != TMP464_MANUFACTURER_ID) return -ENODEV; /* Check for "always return zero" bits */ reg = i2c_smbus_read_word_swapped(client, TMP464_THERM_STATUS_REG); if (reg < 0) return reg; if (reg & 0x1f) return -ENODEV; reg = i2c_smbus_read_word_swapped(client, TMP464_THERM2_STATUS_REG); if (reg < 0) return reg; if (reg & 0x1f) return -ENODEV; reg = i2c_smbus_read_word_swapped(client, TMP464_DEVICE_ID_REG); if (reg < 0) return reg; switch (reg) { case TMP464_DEVICE_ID: name = "tmp464"; chip = "TMP464"; break; case TMP468_DEVICE_ID: name = "tmp468"; chip = "TMP468"; break; default: return -ENODEV; } strscpy(info->type, name, I2C_NAME_SIZE); dev_info(&adapter->dev, "Detected TI %s chip at 0x%02x\n", chip, client->addr); return 0; } static int tmp464_probe_child_from_dt(struct device *dev, struct device_node *child, struct tmp464_data *data) { struct regmap *regmap = data->regmap; u32 channel; s32 nfactor; int err; err = of_property_read_u32(child, "reg", &channel); if (err) { dev_err(dev, "missing reg property of %pOFn\n", child); return err; } if (channel >= data->channels) { dev_err(dev, "invalid reg %d of %pOFn\n", channel, child); return -EINVAL; } of_property_read_string(child, "label", &data->channel[channel].label); data->channel[channel].enabled = of_device_is_available(child); err = of_property_read_s32(child, "ti,n-factor", &nfactor); if (err && err != -EINVAL) return err; if (!err) { if (channel == 0) { dev_err(dev, "n-factor can't be set for internal channel\n"); return -EINVAL; } if (nfactor > 127 || nfactor < -128) { dev_err(dev, "n-factor for channel %d invalid (%d)\n", channel, nfactor); return -EINVAL; } err = regmap_write(regmap, TMP464_N_FACTOR_REG(channel), (nfactor << 8) & 0xff00); if (err) return err; } return 0; } static int tmp464_probe_from_dt(struct device *dev, struct tmp464_data *data) { const struct device_node *np = dev->of_node; struct device_node *child; int err; for_each_child_of_node(np, child) { if (strcmp(child->name, "channel")) continue; err = tmp464_probe_child_from_dt(dev, child, data); if (err) { of_node_put(child); return err; } } return 0; } static const struct hwmon_ops tmp464_ops = { .is_visible = tmp464_is_visible, .read = tmp464_read, .read_string = tmp464_read_string, .write = tmp464_write, }; static const struct hwmon_channel_info * const tmp464_info[] = { HWMON_CHANNEL_INFO(chip, HWMON_C_UPDATE_INTERVAL), HWMON_CHANNEL_INFO(temp, HWMON_T_INPUT | HWMON_T_MAX | HWMON_T_MAX_HYST | HWMON_T_CRIT | HWMON_T_CRIT_HYST | HWMON_T_MAX_ALARM | HWMON_T_CRIT_ALARM | HWMON_T_LABEL | HWMON_T_ENABLE, HWMON_T_INPUT | HWMON_T_OFFSET | HWMON_T_MAX | HWMON_T_MAX_HYST | HWMON_T_CRIT | HWMON_T_CRIT_HYST | HWMON_T_MAX_ALARM | HWMON_T_CRIT_ALARM | HWMON_T_FAULT | HWMON_T_LABEL | HWMON_T_ENABLE, HWMON_T_INPUT | HWMON_T_OFFSET | HWMON_T_MAX | HWMON_T_MAX_HYST | HWMON_T_CRIT | HWMON_T_CRIT_HYST | HWMON_T_MAX_ALARM | HWMON_T_CRIT_ALARM | HWMON_T_FAULT | HWMON_T_LABEL | HWMON_T_ENABLE, HWMON_T_INPUT | HWMON_T_OFFSET | HWMON_T_MAX | HWMON_T_MAX_HYST | HWMON_T_CRIT | HWMON_T_CRIT_HYST | HWMON_T_MAX_ALARM | HWMON_T_CRIT_ALARM | HWMON_T_FAULT | HWMON_T_LABEL | HWMON_T_ENABLE, HWMON_T_INPUT | HWMON_T_OFFSET | HWMON_T_MAX | HWMON_T_MAX_HYST | HWMON_T_CRIT | HWMON_T_CRIT_HYST | HWMON_T_MAX_ALARM | HWMON_T_CRIT_ALARM | HWMON_T_FAULT | HWMON_T_LABEL | HWMON_T_ENABLE, HWMON_T_INPUT | HWMON_T_OFFSET | HWMON_T_MAX | HWMON_T_MAX_HYST | HWMON_T_CRIT | HWMON_T_CRIT_HYST | HWMON_T_MAX_ALARM | HWMON_T_CRIT_ALARM | HWMON_T_FAULT | HWMON_T_LABEL | HWMON_T_ENABLE, HWMON_T_INPUT | HWMON_T_OFFSET | HWMON_T_MAX | HWMON_T_MAX_HYST | HWMON_T_CRIT | HWMON_T_CRIT_HYST | HWMON_T_MAX_ALARM | HWMON_T_CRIT_ALARM | HWMON_T_FAULT | HWMON_T_LABEL | HWMON_T_ENABLE, HWMON_T_INPUT | HWMON_T_OFFSET | HWMON_T_MAX | HWMON_T_MAX_HYST | HWMON_T_CRIT | HWMON_T_CRIT_HYST | HWMON_T_MAX_ALARM | HWMON_T_CRIT_ALARM | HWMON_T_FAULT | HWMON_T_LABEL | HWMON_T_ENABLE, HWMON_T_INPUT | HWMON_T_OFFSET | HWMON_T_MAX | HWMON_T_MAX_HYST | HWMON_T_CRIT | HWMON_T_CRIT_HYST | HWMON_T_MAX_ALARM | HWMON_T_CRIT_ALARM | HWMON_T_FAULT | HWMON_T_LABEL | HWMON_T_ENABLE), NULL }; static const struct hwmon_chip_info tmp464_chip_info = { .ops = &tmp464_ops, .info = tmp464_info, }; /* regmap */ static bool tmp464_is_volatile_reg(struct device *dev, unsigned int reg) { return (reg < TMP464_TEMP_REG(TMP468_NUM_CHANNELS) || reg == TMP464_THERM_STATUS_REG || reg == TMP464_THERM2_STATUS_REG || reg == TMP464_REMOTE_OPEN_REG); } static const struct regmap_config tmp464_regmap_config = { .reg_bits = 8, .val_bits = 16, .max_register = TMP464_DEVICE_ID_REG, .volatile_reg = tmp464_is_volatile_reg, .val_format_endian = REGMAP_ENDIAN_BIG, .cache_type = REGCACHE_MAPLE, .use_single_read = true, .use_single_write = true, }; static int tmp464_probe(struct i2c_client *client) { struct device *dev = &client->dev; struct device *hwmon_dev; struct tmp464_data *data; int i, err; if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_WORD_DATA)) { dev_err(&client->dev, "i2c functionality check failed\n"); return -ENODEV; } data = devm_kzalloc(dev, sizeof(struct tmp464_data), GFP_KERNEL); if (!data) return -ENOMEM; mutex_init(&data->update_lock); if (dev->of_node) data->channels = (int)(unsigned long)of_device_get_match_data(&client->dev); else data->channels = i2c_match_id(tmp464_id, client)->driver_data; data->regmap = devm_regmap_init_i2c(client, &tmp464_regmap_config); if (IS_ERR(data->regmap)) return PTR_ERR(data->regmap); for (i = 0; i < data->channels; i++) data->channel[i].enabled = true; err = tmp464_init_client(dev, data); if (err) return err; if (dev->of_node) { err = tmp464_probe_from_dt(dev, data); if (err) return err; } hwmon_dev = devm_hwmon_device_register_with_info(dev, client->name, data, &tmp464_chip_info, NULL); return PTR_ERR_OR_ZERO(hwmon_dev); } static struct i2c_driver tmp464_driver = { .class = I2C_CLASS_HWMON, .driver = { .name = "tmp464", .of_match_table = of_match_ptr(tmp464_of_match), }, .probe = tmp464_probe, .id_table = tmp464_id, .detect = tmp464_detect, .address_list = normal_i2c, }; module_i2c_driver(tmp464_driver); MODULE_AUTHOR("Agathe Porte <agathe.porte@nokia.com>"); MODULE_DESCRIPTION("Texas Instruments TMP464 temperature sensor driver"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1