Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Eric Tremblay | 2824 | 97.85% | 1 | 11.11% |
Biju Das | 56 | 1.94% | 2 | 22.22% |
Krzysztof Kozlowski | 2 | 0.07% | 2 | 22.22% |
Stephen Kitt | 1 | 0.03% | 1 | 11.11% |
Alexander A. Klimov | 1 | 0.03% | 1 | 11.11% |
Wang Qing | 1 | 0.03% | 1 | 11.11% |
Uwe Kleine-König | 1 | 0.03% | 1 | 11.11% |
Total | 2886 | 9 |
// SPDX-License-Identifier: GPL-2.0 /* * Driver for Texas Instruments TMP512, TMP513 power monitor chips * * TMP513: * Thermal/Power Management with Triple Remote and * Local Temperature Sensor and Current Shunt Monitor * Datasheet: https://www.ti.com/lit/gpn/tmp513 * * TMP512: * Thermal/Power Management with Dual Remote * and Local Temperature Sensor and Current Shunt Monitor * Datasheet: https://www.ti.com/lit/gpn/tmp512 * * Copyright (C) 2019 Eric Tremblay <etremblay@distech-controls.com> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. */ #include <linux/err.h> #include <linux/hwmon.h> #include <linux/i2c.h> #include <linux/init.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/regmap.h> #include <linux/slab.h> #include <linux/util_macros.h> // Common register definition #define TMP51X_SHUNT_CONFIG 0x00 #define TMP51X_TEMP_CONFIG 0x01 #define TMP51X_STATUS 0x02 #define TMP51X_SMBUS_ALERT 0x03 #define TMP51X_SHUNT_CURRENT_RESULT 0x04 #define TMP51X_BUS_VOLTAGE_RESULT 0x05 #define TMP51X_POWER_RESULT 0x06 #define TMP51X_BUS_CURRENT_RESULT 0x07 #define TMP51X_LOCAL_TEMP_RESULT 0x08 #define TMP51X_REMOTE_TEMP_RESULT_1 0x09 #define TMP51X_REMOTE_TEMP_RESULT_2 0x0A #define TMP51X_SHUNT_CURRENT_H_LIMIT 0x0C #define TMP51X_SHUNT_CURRENT_L_LIMIT 0x0D #define TMP51X_BUS_VOLTAGE_H_LIMIT 0x0E #define TMP51X_BUS_VOLTAGE_L_LIMIT 0x0F #define TMP51X_POWER_LIMIT 0x10 #define TMP51X_LOCAL_TEMP_LIMIT 0x11 #define TMP51X_REMOTE_TEMP_LIMIT_1 0x12 #define TMP51X_REMOTE_TEMP_LIMIT_2 0x13 #define TMP51X_SHUNT_CALIBRATION 0x15 #define TMP51X_N_FACTOR_AND_HYST_1 0x16 #define TMP51X_N_FACTOR_2 0x17 #define TMP51X_MAN_ID_REG 0xFE #define TMP51X_DEVICE_ID_REG 0xFF // TMP513 specific register definition #define TMP513_REMOTE_TEMP_RESULT_3 0x0B #define TMP513_REMOTE_TEMP_LIMIT_3 0x14 #define TMP513_N_FACTOR_3 0x18 // Common attrs, and NULL #define TMP51X_MANUFACTURER_ID 0x55FF #define TMP512_DEVICE_ID 0x22FF #define TMP513_DEVICE_ID 0x23FF // Default config #define TMP51X_SHUNT_CONFIG_DEFAULT 0x399F #define TMP51X_SHUNT_VALUE_DEFAULT 1000 #define TMP51X_VBUS_RANGE_DEFAULT TMP51X_VBUS_RANGE_32V #define TMP51X_PGA_DEFAULT 8 #define TMP51X_MAX_REGISTER_ADDR 0xFF // Mask and shift #define CURRENT_SENSE_VOLTAGE_320_MASK 0x1800 #define CURRENT_SENSE_VOLTAGE_160_MASK 0x1000 #define CURRENT_SENSE_VOLTAGE_80_MASK 0x0800 #define CURRENT_SENSE_VOLTAGE_40_MASK 0 #define TMP51X_BUS_VOLTAGE_MASK 0x2000 #define TMP51X_NFACTOR_MASK 0xFF00 #define TMP51X_HYST_MASK 0x00FF #define TMP51X_BUS_VOLTAGE_SHIFT 3 #define TMP51X_TEMP_SHIFT 3 // Alarms #define TMP51X_SHUNT_CURRENT_H_LIMIT_POS 15 #define TMP51X_SHUNT_CURRENT_L_LIMIT_POS 14 #define TMP51X_BUS_VOLTAGE_H_LIMIT_POS 13 #define TMP51X_BUS_VOLTAGE_L_LIMIT_POS 12 #define TMP51X_POWER_LIMIT_POS 11 #define TMP51X_LOCAL_TEMP_LIMIT_POS 10 #define TMP51X_REMOTE_TEMP_LIMIT_1_POS 9 #define TMP51X_REMOTE_TEMP_LIMIT_2_POS 8 #define TMP513_REMOTE_TEMP_LIMIT_3_POS 7 #define TMP51X_VBUS_RANGE_32V 32000000 #define TMP51X_VBUS_RANGE_16V 16000000 // Max and Min value #define MAX_BUS_VOLTAGE_32_LIMIT 32764 #define MAX_BUS_VOLTAGE_16_LIMIT 16382 // Max possible value is -256 to +256 but datasheet indicated -40 to 125. #define MAX_TEMP_LIMIT 125000 #define MIN_TEMP_LIMIT -40000 #define MAX_TEMP_HYST 127500 #define TMP512_MAX_CHANNELS 3 #define TMP513_MAX_CHANNELS 4 #define TMP51X_TEMP_CONFIG_CONV_RATE GENMASK(9, 7) #define TMP51X_TEMP_CONFIG_RC BIT(10) #define TMP51X_TEMP_CHANNEL_MASK(n) (GENMASK((n) - 1, 0) << 11) #define TMP51X_TEMP_CONFIG_CONT BIT(15) #define TMP51X_TEMP_CONFIG_DEFAULT(n) \ (TMP51X_TEMP_CHANNEL_MASK(n) | TMP51X_TEMP_CONFIG_CONT | \ TMP51X_TEMP_CONFIG_CONV_RATE | TMP51X_TEMP_CONFIG_RC) static const u8 TMP51X_TEMP_INPUT[4] = { TMP51X_LOCAL_TEMP_RESULT, TMP51X_REMOTE_TEMP_RESULT_1, TMP51X_REMOTE_TEMP_RESULT_2, TMP513_REMOTE_TEMP_RESULT_3 }; static const u8 TMP51X_TEMP_CRIT[4] = { TMP51X_LOCAL_TEMP_LIMIT, TMP51X_REMOTE_TEMP_LIMIT_1, TMP51X_REMOTE_TEMP_LIMIT_2, TMP513_REMOTE_TEMP_LIMIT_3 }; static const u8 TMP51X_TEMP_CRIT_ALARM[4] = { TMP51X_LOCAL_TEMP_LIMIT_POS, TMP51X_REMOTE_TEMP_LIMIT_1_POS, TMP51X_REMOTE_TEMP_LIMIT_2_POS, TMP513_REMOTE_TEMP_LIMIT_3_POS }; static const u8 TMP51X_TEMP_CRIT_HYST[4] = { TMP51X_N_FACTOR_AND_HYST_1, TMP51X_N_FACTOR_AND_HYST_1, TMP51X_N_FACTOR_AND_HYST_1, TMP51X_N_FACTOR_AND_HYST_1 }; static const u8 TMP51X_CURR_INPUT[2] = { TMP51X_SHUNT_CURRENT_RESULT, TMP51X_BUS_CURRENT_RESULT }; static struct regmap_config tmp51x_regmap_config = { .reg_bits = 8, .val_bits = 16, .max_register = TMP51X_MAX_REGISTER_ADDR, }; struct tmp51x_data { u16 shunt_config; u16 pga_gain; u32 vbus_range_uvolt; u16 temp_config; u32 nfactor[3]; u32 shunt_uohms; u32 curr_lsb_ua; u32 pwr_lsb_uw; u8 max_channels; struct regmap *regmap; }; // Set the shift based on the gain 8=4, 4=3, 2=2, 1=1 static inline u8 tmp51x_get_pga_shift(struct tmp51x_data *data) { return 5 - ffs(data->pga_gain); } static int tmp51x_get_value(struct tmp51x_data *data, u8 reg, u8 pos, unsigned int regval, long *val) { switch (reg) { case TMP51X_STATUS: *val = (regval >> pos) & 1; break; case TMP51X_SHUNT_CURRENT_RESULT: case TMP51X_SHUNT_CURRENT_H_LIMIT: case TMP51X_SHUNT_CURRENT_L_LIMIT: /* * The valus is read in voltage in the chip but reported as * current to the user. * 2's complement number shifted by one to four depending * on the pga gain setting. 1lsb = 10uV */ *val = sign_extend32(regval, 17 - tmp51x_get_pga_shift(data)); *val = DIV_ROUND_CLOSEST(*val * 10000, data->shunt_uohms); break; case TMP51X_BUS_VOLTAGE_RESULT: case TMP51X_BUS_VOLTAGE_H_LIMIT: case TMP51X_BUS_VOLTAGE_L_LIMIT: // 1lsb = 4mV *val = (regval >> TMP51X_BUS_VOLTAGE_SHIFT) * 4; break; case TMP51X_POWER_RESULT: case TMP51X_POWER_LIMIT: // Power = (current * BusVoltage) / 5000 *val = regval * data->pwr_lsb_uw; break; case TMP51X_BUS_CURRENT_RESULT: // Current = (ShuntVoltage * CalibrationRegister) / 4096 *val = sign_extend32(regval, 16) * data->curr_lsb_ua; *val = DIV_ROUND_CLOSEST(*val, 1000); break; case TMP51X_LOCAL_TEMP_RESULT: case TMP51X_REMOTE_TEMP_RESULT_1: case TMP51X_REMOTE_TEMP_RESULT_2: case TMP513_REMOTE_TEMP_RESULT_3: case TMP51X_LOCAL_TEMP_LIMIT: case TMP51X_REMOTE_TEMP_LIMIT_1: case TMP51X_REMOTE_TEMP_LIMIT_2: case TMP513_REMOTE_TEMP_LIMIT_3: // 1lsb = 0.0625 degrees centigrade *val = sign_extend32(regval, 16) >> TMP51X_TEMP_SHIFT; *val = DIV_ROUND_CLOSEST(*val * 625, 10); break; case TMP51X_N_FACTOR_AND_HYST_1: // 1lsb = 0.5 degrees centigrade *val = (regval & TMP51X_HYST_MASK) * 500; break; default: // Programmer goofed WARN_ON_ONCE(1); *val = 0; return -EOPNOTSUPP; } return 0; } static int tmp51x_set_value(struct tmp51x_data *data, u8 reg, long val) { int regval, max_val; u32 mask = 0; switch (reg) { case TMP51X_SHUNT_CURRENT_H_LIMIT: case TMP51X_SHUNT_CURRENT_L_LIMIT: /* * The user enter current value and we convert it to * voltage. 1lsb = 10uV */ val = DIV_ROUND_CLOSEST(val * data->shunt_uohms, 10000); max_val = U16_MAX >> tmp51x_get_pga_shift(data); regval = clamp_val(val, -max_val, max_val); break; case TMP51X_BUS_VOLTAGE_H_LIMIT: case TMP51X_BUS_VOLTAGE_L_LIMIT: // 1lsb = 4mV max_val = (data->vbus_range_uvolt == TMP51X_VBUS_RANGE_32V) ? MAX_BUS_VOLTAGE_32_LIMIT : MAX_BUS_VOLTAGE_16_LIMIT; val = clamp_val(DIV_ROUND_CLOSEST(val, 4), 0, max_val); regval = val << TMP51X_BUS_VOLTAGE_SHIFT; break; case TMP51X_POWER_LIMIT: regval = clamp_val(DIV_ROUND_CLOSEST(val, data->pwr_lsb_uw), 0, U16_MAX); break; case TMP51X_LOCAL_TEMP_LIMIT: case TMP51X_REMOTE_TEMP_LIMIT_1: case TMP51X_REMOTE_TEMP_LIMIT_2: case TMP513_REMOTE_TEMP_LIMIT_3: // 1lsb = 0.0625 degrees centigrade val = clamp_val(val, MIN_TEMP_LIMIT, MAX_TEMP_LIMIT); regval = DIV_ROUND_CLOSEST(val * 10, 625) << TMP51X_TEMP_SHIFT; break; case TMP51X_N_FACTOR_AND_HYST_1: // 1lsb = 0.5 degrees centigrade val = clamp_val(val, 0, MAX_TEMP_HYST); regval = DIV_ROUND_CLOSEST(val, 500); mask = TMP51X_HYST_MASK; break; default: // Programmer goofed WARN_ON_ONCE(1); return -EOPNOTSUPP; } if (mask == 0) return regmap_write(data->regmap, reg, regval); else return regmap_update_bits(data->regmap, reg, mask, regval); } static u8 tmp51x_get_reg(enum hwmon_sensor_types type, u32 attr, int channel) { switch (type) { case hwmon_temp: switch (attr) { case hwmon_temp_input: return TMP51X_TEMP_INPUT[channel]; case hwmon_temp_crit_alarm: return TMP51X_STATUS; case hwmon_temp_crit: return TMP51X_TEMP_CRIT[channel]; case hwmon_temp_crit_hyst: return TMP51X_TEMP_CRIT_HYST[channel]; } break; case hwmon_in: switch (attr) { case hwmon_in_input: return TMP51X_BUS_VOLTAGE_RESULT; case hwmon_in_lcrit_alarm: case hwmon_in_crit_alarm: return TMP51X_STATUS; case hwmon_in_lcrit: return TMP51X_BUS_VOLTAGE_L_LIMIT; case hwmon_in_crit: return TMP51X_BUS_VOLTAGE_H_LIMIT; } break; case hwmon_curr: switch (attr) { case hwmon_curr_input: return TMP51X_CURR_INPUT[channel]; case hwmon_curr_lcrit_alarm: case hwmon_curr_crit_alarm: return TMP51X_STATUS; case hwmon_curr_lcrit: return TMP51X_SHUNT_CURRENT_L_LIMIT; case hwmon_curr_crit: return TMP51X_SHUNT_CURRENT_H_LIMIT; } break; case hwmon_power: switch (attr) { case hwmon_power_input: return TMP51X_POWER_RESULT; case hwmon_power_crit_alarm: return TMP51X_STATUS; case hwmon_power_crit: return TMP51X_POWER_LIMIT; } break; default: break; } return 0; } static u8 tmp51x_get_status_pos(enum hwmon_sensor_types type, u32 attr, int channel) { switch (type) { case hwmon_temp: switch (attr) { case hwmon_temp_crit_alarm: return TMP51X_TEMP_CRIT_ALARM[channel]; } break; case hwmon_in: switch (attr) { case hwmon_in_lcrit_alarm: return TMP51X_BUS_VOLTAGE_L_LIMIT_POS; case hwmon_in_crit_alarm: return TMP51X_BUS_VOLTAGE_H_LIMIT_POS; } break; case hwmon_curr: switch (attr) { case hwmon_curr_lcrit_alarm: return TMP51X_SHUNT_CURRENT_L_LIMIT_POS; case hwmon_curr_crit_alarm: return TMP51X_SHUNT_CURRENT_H_LIMIT_POS; } break; case hwmon_power: switch (attr) { case hwmon_power_crit_alarm: return TMP51X_POWER_LIMIT_POS; } break; default: break; } return 0; } static int tmp51x_read(struct device *dev, enum hwmon_sensor_types type, u32 attr, int channel, long *val) { struct tmp51x_data *data = dev_get_drvdata(dev); int ret; u32 regval; u8 pos = 0, reg = 0; reg = tmp51x_get_reg(type, attr, channel); if (reg == 0) return -EOPNOTSUPP; if (reg == TMP51X_STATUS) pos = tmp51x_get_status_pos(type, attr, channel); ret = regmap_read(data->regmap, reg, ®val); if (ret < 0) return ret; return tmp51x_get_value(data, reg, pos, regval, val); } static int tmp51x_write(struct device *dev, enum hwmon_sensor_types type, u32 attr, int channel, long val) { u8 reg = 0; reg = tmp51x_get_reg(type, attr, channel); if (reg == 0) return -EOPNOTSUPP; return tmp51x_set_value(dev_get_drvdata(dev), reg, val); } static umode_t tmp51x_is_visible(const void *_data, enum hwmon_sensor_types type, u32 attr, int channel) { const struct tmp51x_data *data = _data; switch (type) { case hwmon_temp: if (channel >= data->max_channels) return 0; switch (attr) { case hwmon_temp_input: case hwmon_temp_crit_alarm: return 0444; case hwmon_temp_crit: return 0644; case hwmon_temp_crit_hyst: if (channel == 0) return 0644; return 0444; } break; case hwmon_in: switch (attr) { case hwmon_in_input: case hwmon_in_lcrit_alarm: case hwmon_in_crit_alarm: return 0444; case hwmon_in_lcrit: case hwmon_in_crit: return 0644; } break; case hwmon_curr: if (!data->shunt_uohms) return 0; switch (attr) { case hwmon_curr_input: case hwmon_curr_lcrit_alarm: case hwmon_curr_crit_alarm: return 0444; case hwmon_curr_lcrit: case hwmon_curr_crit: return 0644; } break; case hwmon_power: if (!data->shunt_uohms) return 0; switch (attr) { case hwmon_power_input: case hwmon_power_crit_alarm: return 0444; case hwmon_power_crit: return 0644; } break; default: break; } return 0; } static const struct hwmon_channel_info * const tmp51x_info[] = { HWMON_CHANNEL_INFO(temp, HWMON_T_INPUT | HWMON_T_CRIT | HWMON_T_CRIT_ALARM | HWMON_T_CRIT_HYST, HWMON_T_INPUT | HWMON_T_CRIT | HWMON_T_CRIT_ALARM | HWMON_T_CRIT_HYST, HWMON_T_INPUT | HWMON_T_CRIT | HWMON_T_CRIT_ALARM | HWMON_T_CRIT_HYST, HWMON_T_INPUT | HWMON_T_CRIT | HWMON_T_CRIT_ALARM | HWMON_T_CRIT_HYST), HWMON_CHANNEL_INFO(in, HWMON_I_INPUT | HWMON_I_LCRIT | HWMON_I_LCRIT_ALARM | HWMON_I_CRIT | HWMON_I_CRIT_ALARM), HWMON_CHANNEL_INFO(curr, HWMON_C_INPUT | HWMON_C_LCRIT | HWMON_C_LCRIT_ALARM | HWMON_C_CRIT | HWMON_C_CRIT_ALARM, HWMON_C_INPUT), HWMON_CHANNEL_INFO(power, HWMON_P_INPUT | HWMON_P_CRIT | HWMON_P_CRIT_ALARM), NULL }; static const struct hwmon_ops tmp51x_hwmon_ops = { .is_visible = tmp51x_is_visible, .read = tmp51x_read, .write = tmp51x_write, }; static const struct hwmon_chip_info tmp51x_chip_info = { .ops = &tmp51x_hwmon_ops, .info = tmp51x_info, }; /* * Calibrate the tmp51x following the datasheet method */ static int tmp51x_calibrate(struct tmp51x_data *data) { int vshunt_max = data->pga_gain * 40; u64 max_curr_ma; u32 div; /* * If shunt_uohms is equal to 0, the calibration should be set to 0. * The consequence will be that the current and power measurement engine * of the sensor will not work. Temperature and voltage sensing will * continue to work. */ if (data->shunt_uohms == 0) return regmap_write(data->regmap, TMP51X_SHUNT_CALIBRATION, 0); max_curr_ma = DIV_ROUND_CLOSEST_ULL(vshunt_max * 1000 * 1000, data->shunt_uohms); /* * Calculate the minimal bit resolution for the current and the power. * Those values will be used during register interpretation. */ data->curr_lsb_ua = DIV_ROUND_CLOSEST_ULL(max_curr_ma * 1000, 32767); data->pwr_lsb_uw = 20 * data->curr_lsb_ua; div = DIV_ROUND_CLOSEST_ULL(data->curr_lsb_ua * data->shunt_uohms, 1000 * 1000); return regmap_write(data->regmap, TMP51X_SHUNT_CALIBRATION, DIV_ROUND_CLOSEST(40960, div)); } /* * Initialize the configuration and calibration registers. */ static int tmp51x_init(struct tmp51x_data *data) { unsigned int regval; int ret = regmap_write(data->regmap, TMP51X_SHUNT_CONFIG, data->shunt_config); if (ret < 0) return ret; ret = regmap_write(data->regmap, TMP51X_TEMP_CONFIG, data->temp_config); if (ret < 0) return ret; // nFactor configuration ret = regmap_update_bits(data->regmap, TMP51X_N_FACTOR_AND_HYST_1, TMP51X_NFACTOR_MASK, data->nfactor[0] << 8); if (ret < 0) return ret; ret = regmap_write(data->regmap, TMP51X_N_FACTOR_2, data->nfactor[1] << 8); if (ret < 0) return ret; if (data->max_channels == TMP513_MAX_CHANNELS) { ret = regmap_write(data->regmap, TMP513_N_FACTOR_3, data->nfactor[2] << 8); if (ret < 0) return ret; } ret = tmp51x_calibrate(data); if (ret < 0) return ret; // Read the status register before using as the datasheet propose return regmap_read(data->regmap, TMP51X_STATUS, ®val); } static const struct i2c_device_id tmp51x_id[] = { { "tmp512", TMP512_MAX_CHANNELS }, { "tmp513", TMP513_MAX_CHANNELS }, { } }; MODULE_DEVICE_TABLE(i2c, tmp51x_id); static const struct of_device_id tmp51x_of_match[] = { { .compatible = "ti,tmp512", .data = (void *)TMP512_MAX_CHANNELS }, { .compatible = "ti,tmp513", .data = (void *)TMP513_MAX_CHANNELS }, { } }; MODULE_DEVICE_TABLE(of, tmp51x_of_match); static int tmp51x_vbus_range_to_reg(struct device *dev, struct tmp51x_data *data) { if (data->vbus_range_uvolt == TMP51X_VBUS_RANGE_32V) { data->shunt_config |= TMP51X_BUS_VOLTAGE_MASK; } else if (data->vbus_range_uvolt == TMP51X_VBUS_RANGE_16V) { data->shunt_config &= ~TMP51X_BUS_VOLTAGE_MASK; } else { dev_err(dev, "ti,bus-range-microvolt is invalid: %u\n", data->vbus_range_uvolt); return -EINVAL; } return 0; } static int tmp51x_pga_gain_to_reg(struct device *dev, struct tmp51x_data *data) { if (data->pga_gain == 8) { data->shunt_config |= CURRENT_SENSE_VOLTAGE_320_MASK; } else if (data->pga_gain == 4) { data->shunt_config |= CURRENT_SENSE_VOLTAGE_160_MASK; } else if (data->pga_gain == 2) { data->shunt_config |= CURRENT_SENSE_VOLTAGE_80_MASK; } else if (data->pga_gain == 1) { data->shunt_config |= CURRENT_SENSE_VOLTAGE_40_MASK; } else { dev_err(dev, "ti,pga-gain is invalid: %u\n", data->pga_gain); return -EINVAL; } return 0; } static int tmp51x_read_properties(struct device *dev, struct tmp51x_data *data) { int ret; u32 val; ret = device_property_read_u32(dev, "shunt-resistor-micro-ohms", &val); data->shunt_uohms = (ret >= 0) ? val : TMP51X_SHUNT_VALUE_DEFAULT; ret = device_property_read_u32(dev, "ti,bus-range-microvolt", &val); data->vbus_range_uvolt = (ret >= 0) ? val : TMP51X_VBUS_RANGE_DEFAULT; ret = tmp51x_vbus_range_to_reg(dev, data); if (ret < 0) return ret; ret = device_property_read_u32(dev, "ti,pga-gain", &val); data->pga_gain = (ret >= 0) ? val : TMP51X_PGA_DEFAULT; ret = tmp51x_pga_gain_to_reg(dev, data); if (ret < 0) return ret; device_property_read_u32_array(dev, "ti,nfactor", data->nfactor, data->max_channels - 1); // Check if shunt value is compatible with pga-gain if (data->shunt_uohms > data->pga_gain * 40 * 1000 * 1000) { dev_err(dev, "shunt-resistor: %u too big for pga_gain: %u\n", data->shunt_uohms, data->pga_gain); return -EINVAL; } return 0; } static void tmp51x_use_default(struct tmp51x_data *data) { data->vbus_range_uvolt = TMP51X_VBUS_RANGE_DEFAULT; data->pga_gain = TMP51X_PGA_DEFAULT; data->shunt_uohms = TMP51X_SHUNT_VALUE_DEFAULT; } static int tmp51x_configure(struct device *dev, struct tmp51x_data *data) { data->shunt_config = TMP51X_SHUNT_CONFIG_DEFAULT; data->temp_config = TMP51X_TEMP_CONFIG_DEFAULT(data->max_channels); if (dev->of_node) return tmp51x_read_properties(dev, data); tmp51x_use_default(data); return 0; } static int tmp51x_probe(struct i2c_client *client) { struct device *dev = &client->dev; struct tmp51x_data *data; struct device *hwmon_dev; int ret; data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL); if (!data) return -ENOMEM; data->max_channels = (uintptr_t)i2c_get_match_data(client); ret = tmp51x_configure(dev, data); if (ret < 0) { dev_err(dev, "error configuring the device: %d\n", ret); return ret; } data->regmap = devm_regmap_init_i2c(client, &tmp51x_regmap_config); if (IS_ERR(data->regmap)) { dev_err(dev, "failed to allocate register map\n"); return PTR_ERR(data->regmap); } ret = tmp51x_init(data); if (ret < 0) { dev_err(dev, "error configuring the device: %d\n", ret); return -ENODEV; } hwmon_dev = devm_hwmon_device_register_with_info(dev, client->name, data, &tmp51x_chip_info, NULL); if (IS_ERR(hwmon_dev)) return PTR_ERR(hwmon_dev); dev_dbg(dev, "power monitor %s\n", client->name); return 0; } static struct i2c_driver tmp51x_driver = { .driver = { .name = "tmp51x", .of_match_table = tmp51x_of_match, }, .probe = tmp51x_probe, .id_table = tmp51x_id, }; module_i2c_driver(tmp51x_driver); MODULE_AUTHOR("Eric Tremblay <etremblay@distechcontrols.com>"); MODULE_DESCRIPTION("tmp51x driver"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1