Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Tomas Melin | 1964 | 62.77% | 1 | 12.50% |
LI Qingwu | 1136 | 36.31% | 5 | 62.50% |
Wei Yongjun | 24 | 0.77% | 1 | 12.50% |
Jonathan Cameron | 5 | 0.16% | 1 | 12.50% |
Total | 3129 | 8 |
// SPDX-License-Identifier: GPL-2.0-only /* * Murata SCA3300 3-axis industrial accelerometer * * Copyright (c) 2021 Vaisala Oyj. All rights reserved. */ #include <linux/bitops.h> #include <linux/crc8.h> #include <linux/delay.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/spi/spi.h> #include <asm/unaligned.h> #include <linux/iio/buffer.h> #include <linux/iio/iio.h> #include <linux/iio/sysfs.h> #include <linux/iio/trigger_consumer.h> #include <linux/iio/triggered_buffer.h> #define SCA3300_ALIAS "sca3300" #define SCA3300_CRC8_POLYNOMIAL 0x1d /* Device mode register */ #define SCA3300_REG_MODE 0xd #define SCA3300_MODE_SW_RESET 0x20 /* Last register in map */ #define SCA3300_REG_SELBANK 0x1f /* Device status and mask */ #define SCA3300_REG_STATUS 0x6 #define SCA3300_STATUS_MASK GENMASK(8, 0) /* Device ID */ #define SCA3300_REG_WHOAMI 0x10 #define SCA3300_WHOAMI_ID 0x51 #define SCL3300_WHOAMI_ID 0xC1 /* Device return status and mask */ #define SCA3300_VALUE_RS_ERROR 0x3 #define SCA3300_MASK_RS_STATUS GENMASK(1, 0) #define SCL3300_REG_ANG_CTRL 0x0C #define SCL3300_ANG_ENABLE 0x1F enum sca3300_scan_indexes { SCA3300_ACC_X = 0, SCA3300_ACC_Y, SCA3300_ACC_Z, SCA3300_TEMP, SCA3300_INCLI_X, SCA3300_INCLI_Y, SCA3300_INCLI_Z, SCA3300_SCAN_MAX }; /* * Buffer size max case: * Three accel channels, two bytes per channel. * Temperature channel, two bytes. * Three incli channels, two bytes per channel. * Timestamp channel, eight bytes. */ #define SCA3300_MAX_BUFFER_SIZE (ALIGN(sizeof(s16) * SCA3300_SCAN_MAX, sizeof(s64)) + sizeof(s64)) #define SCA3300_ACCEL_CHANNEL(index, reg, axis) { \ .type = IIO_ACCEL, \ .address = reg, \ .modified = 1, \ .channel2 = IIO_MOD_##axis, \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ .info_mask_shared_by_type = \ BIT(IIO_CHAN_INFO_SCALE) | \ BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY), \ .info_mask_shared_by_type_available = \ BIT(IIO_CHAN_INFO_SCALE) | \ BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY), \ .scan_index = index, \ .scan_type = { \ .sign = 's', \ .realbits = 16, \ .storagebits = 16, \ .endianness = IIO_CPU, \ }, \ } #define SCA3300_INCLI_CHANNEL(index, reg, axis) { \ .type = IIO_INCLI, \ .address = reg, \ .modified = 1, \ .channel2 = IIO_MOD_##axis, \ .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ .info_mask_shared_by_type_available = BIT(IIO_CHAN_INFO_SCALE), \ .scan_index = index, \ .scan_type = { \ .sign = 's', \ .realbits = 16, \ .storagebits = 16, \ .endianness = IIO_CPU, \ }, \ } #define SCA3300_TEMP_CHANNEL(index, reg) { \ .type = IIO_TEMP, \ .address = reg, \ .scan_index = index, \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ .scan_type = { \ .sign = 's', \ .realbits = 16, \ .storagebits = 16, \ .endianness = IIO_CPU, \ }, \ } static const struct iio_chan_spec sca3300_channels[] = { SCA3300_ACCEL_CHANNEL(SCA3300_ACC_X, 0x1, X), SCA3300_ACCEL_CHANNEL(SCA3300_ACC_Y, 0x2, Y), SCA3300_ACCEL_CHANNEL(SCA3300_ACC_Z, 0x3, Z), SCA3300_TEMP_CHANNEL(SCA3300_TEMP, 0x05), IIO_CHAN_SOFT_TIMESTAMP(4), }; static const int sca3300_lp_freq[] = {70, 10}; static const int sca3300_lp_freq_map[] = {0, 0, 0, 1}; static const int scl3300_lp_freq[] = {40, 70, 10}; static const int scl3300_lp_freq_map[] = {0, 1, 2}; static const int sca3300_accel_scale[][2] = {{0, 370}, {0, 741}, {0, 185}}; static const int sca3300_accel_scale_map[] = {0, 1, 2, 2}; static const int scl3300_accel_scale[][2] = {{0, 167}, {0, 333}, {0, 83}}; static const int scl3300_accel_scale_map[] = {0, 1, 2}; static const int scl3300_incli_scale[][2] = {{0, 5495}}; static const int scl3300_incli_scale_map[] = {0, 0, 0}; static const int sca3300_avail_modes_map[] = {0, 1, 2, 3}; static const int scl3300_avail_modes_map[] = {0, 1, 3}; static const struct iio_chan_spec scl3300_channels[] = { SCA3300_ACCEL_CHANNEL(SCA3300_ACC_X, 0x1, X), SCA3300_ACCEL_CHANNEL(SCA3300_ACC_Y, 0x2, Y), SCA3300_ACCEL_CHANNEL(SCA3300_ACC_Z, 0x3, Z), SCA3300_TEMP_CHANNEL(SCA3300_TEMP, 0x05), SCA3300_INCLI_CHANNEL(SCA3300_INCLI_X, 0x09, X), SCA3300_INCLI_CHANNEL(SCA3300_INCLI_Y, 0x0A, Y), SCA3300_INCLI_CHANNEL(SCA3300_INCLI_Z, 0x0B, Z), IIO_CHAN_SOFT_TIMESTAMP(7), }; static const unsigned long sca3300_scan_masks[] = { BIT(SCA3300_ACC_X) | BIT(SCA3300_ACC_Y) | BIT(SCA3300_ACC_Z) | BIT(SCA3300_TEMP), 0 }; static const unsigned long scl3300_scan_masks[] = { BIT(SCA3300_ACC_X) | BIT(SCA3300_ACC_Y) | BIT(SCA3300_ACC_Z) | BIT(SCA3300_TEMP) | BIT(SCA3300_INCLI_X) | BIT(SCA3300_INCLI_Y) | BIT(SCA3300_INCLI_Z), 0 }; struct sca3300_chip_info { const char *name; const unsigned long *scan_masks; const struct iio_chan_spec *channels; u8 num_channels; u8 num_accel_scales; const int (*accel_scale)[2]; const int *accel_scale_map; const int (*incli_scale)[2]; const int *incli_scale_map; u8 num_incli_scales; u8 num_freqs; const int *freq_table; const int *freq_map; const int *avail_modes_table; u8 num_avail_modes; u8 chip_id; bool angle_supported; }; /** * struct sca3300_data - device data * @spi: SPI device structure * @lock: Data buffer lock * @chip: Sensor chip specific information * @buffer: Triggered buffer: * -SCA3300: 4 channel 16-bit data + 64-bit timestamp * -SCL3300: 7 channel 16-bit data + 64-bit timestamp * @txbuf: Transmit buffer * @rxbuf: Receive buffer */ struct sca3300_data { struct spi_device *spi; struct mutex lock; const struct sca3300_chip_info *chip; u8 buffer[SCA3300_MAX_BUFFER_SIZE] __aligned(sizeof(s64)); u8 txbuf[4] __aligned(IIO_DMA_MINALIGN); u8 rxbuf[4]; }; static const struct sca3300_chip_info sca3300_chip_tbl[] = { { .name = "sca3300", .scan_masks = sca3300_scan_masks, .channels = sca3300_channels, .num_channels = ARRAY_SIZE(sca3300_channels), .num_accel_scales = ARRAY_SIZE(sca3300_accel_scale)*2, .accel_scale = sca3300_accel_scale, .accel_scale_map = sca3300_accel_scale_map, .num_freqs = ARRAY_SIZE(sca3300_lp_freq), .freq_table = sca3300_lp_freq, .freq_map = sca3300_lp_freq_map, .avail_modes_table = sca3300_avail_modes_map, .num_avail_modes = 4, .chip_id = SCA3300_WHOAMI_ID, .angle_supported = false, }, { .name = "scl3300", .scan_masks = scl3300_scan_masks, .channels = scl3300_channels, .num_channels = ARRAY_SIZE(scl3300_channels), .num_accel_scales = ARRAY_SIZE(scl3300_accel_scale)*2, .accel_scale = scl3300_accel_scale, .accel_scale_map = scl3300_accel_scale_map, .incli_scale = scl3300_incli_scale, .incli_scale_map = scl3300_incli_scale_map, .num_incli_scales = ARRAY_SIZE(scl3300_incli_scale)*2, .num_freqs = ARRAY_SIZE(scl3300_lp_freq), .freq_table = scl3300_lp_freq, .freq_map = scl3300_lp_freq_map, .avail_modes_table = scl3300_avail_modes_map, .num_avail_modes = 3, .chip_id = SCL3300_WHOAMI_ID, .angle_supported = true, }, }; DECLARE_CRC8_TABLE(sca3300_crc_table); static int sca3300_transfer(struct sca3300_data *sca_data, int *val) { /* Consecutive requests min. 10 us delay (Datasheet section 5.1.2) */ struct spi_delay delay = { .value = 10, .unit = SPI_DELAY_UNIT_USECS }; int32_t ret; int rs; u8 crc; struct spi_transfer xfers[2] = { { .tx_buf = sca_data->txbuf, .len = ARRAY_SIZE(sca_data->txbuf), .delay = delay, .cs_change = 1, }, { .rx_buf = sca_data->rxbuf, .len = ARRAY_SIZE(sca_data->rxbuf), .delay = delay, } }; /* inverted crc value as described in device data sheet */ crc = ~crc8(sca3300_crc_table, &sca_data->txbuf[0], 3, CRC8_INIT_VALUE); sca_data->txbuf[3] = crc; ret = spi_sync_transfer(sca_data->spi, xfers, ARRAY_SIZE(xfers)); if (ret) { dev_err(&sca_data->spi->dev, "transfer error, error: %d\n", ret); return -EIO; } crc = ~crc8(sca3300_crc_table, &sca_data->rxbuf[0], 3, CRC8_INIT_VALUE); if (sca_data->rxbuf[3] != crc) { dev_err(&sca_data->spi->dev, "CRC checksum mismatch"); return -EIO; } /* get return status */ rs = sca_data->rxbuf[0] & SCA3300_MASK_RS_STATUS; if (rs == SCA3300_VALUE_RS_ERROR) ret = -EINVAL; *val = sign_extend32(get_unaligned_be16(&sca_data->rxbuf[1]), 15); return ret; } static int sca3300_error_handler(struct sca3300_data *sca_data) { int ret; int val; mutex_lock(&sca_data->lock); sca_data->txbuf[0] = SCA3300_REG_STATUS << 2; ret = sca3300_transfer(sca_data, &val); mutex_unlock(&sca_data->lock); /* * Return status error is cleared after reading status register once, * expect EINVAL here. */ if (ret != -EINVAL) { dev_err(&sca_data->spi->dev, "error reading device status: %d\n", ret); return ret; } dev_err(&sca_data->spi->dev, "device status: 0x%lx\n", val & SCA3300_STATUS_MASK); return 0; } static int sca3300_read_reg(struct sca3300_data *sca_data, u8 reg, int *val) { int ret; mutex_lock(&sca_data->lock); sca_data->txbuf[0] = reg << 2; ret = sca3300_transfer(sca_data, val); mutex_unlock(&sca_data->lock); if (ret != -EINVAL) return ret; return sca3300_error_handler(sca_data); } static int sca3300_write_reg(struct sca3300_data *sca_data, u8 reg, int val) { int reg_val = 0; int ret; mutex_lock(&sca_data->lock); /* BIT(7) for write operation */ sca_data->txbuf[0] = BIT(7) | (reg << 2); put_unaligned_be16(val, &sca_data->txbuf[1]); ret = sca3300_transfer(sca_data, ®_val); mutex_unlock(&sca_data->lock); if (ret != -EINVAL) return ret; return sca3300_error_handler(sca_data); } static int sca3300_set_op_mode(struct sca3300_data *sca_data, int index) { if ((index < 0) || (index >= sca_data->chip->num_avail_modes)) return -EINVAL; return sca3300_write_reg(sca_data, SCA3300_REG_MODE, sca_data->chip->avail_modes_table[index]); } static int sca3300_get_op_mode(struct sca3300_data *sca_data, int *index) { int reg_val; int ret; int i; ret = sca3300_read_reg(sca_data, SCA3300_REG_MODE, ®_val); if (ret) return ret; for (i = 0; i < sca_data->chip->num_avail_modes; i++) { if (sca_data->chip->avail_modes_table[i] == reg_val) break; } if (i == sca_data->chip->num_avail_modes) return -EINVAL; *index = i; return 0; } static int sca3300_set_frequency(struct sca3300_data *data, int val) { const struct sca3300_chip_info *chip = data->chip; unsigned int index; int *opmode_scale; int *new_scale; unsigned int i; if (sca3300_get_op_mode(data, &index)) return -EINVAL; /* * Find a mode in which the requested sampling frequency is available * and the scaling currently set is retained. */ opmode_scale = (int *)chip->accel_scale[chip->accel_scale_map[index]]; for (i = 0; i < chip->num_avail_modes; i++) { new_scale = (int *)chip->accel_scale[chip->accel_scale_map[i]]; if ((val == chip->freq_table[chip->freq_map[i]]) && (opmode_scale[1] == new_scale[1]) && (opmode_scale[0] == new_scale[0])) break; } if (i == chip->num_avail_modes) return -EINVAL; return sca3300_set_op_mode(data, i); } static int sca3300_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { struct sca3300_data *data = iio_priv(indio_dev); int index; int i; switch (mask) { case IIO_CHAN_INFO_SCALE: if (chan->type != IIO_ACCEL) return -EINVAL; /* * Letting scale take priority over sampling frequency. * That makes sense given we can only ever end up increasing * the sampling frequency which is unlikely to be a problem. */ for (i = 0; i < data->chip->num_avail_modes; i++) { index = data->chip->accel_scale_map[i]; if ((val == data->chip->accel_scale[index][0]) && (val2 == data->chip->accel_scale[index][1])) return sca3300_set_op_mode(data, i); } return -EINVAL; case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY: return sca3300_set_frequency(data, val); default: return -EINVAL; } } static int sca3300_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct sca3300_data *data = iio_priv(indio_dev); int index; int ret; switch (mask) { case IIO_CHAN_INFO_RAW: ret = sca3300_read_reg(data, chan->address, val); if (ret) return ret; return IIO_VAL_INT; case IIO_CHAN_INFO_SCALE: ret = sca3300_get_op_mode(data, &index); if (ret) return ret; switch (chan->type) { case IIO_INCLI: index = data->chip->incli_scale_map[index]; *val = data->chip->incli_scale[index][0]; *val2 = data->chip->incli_scale[index][1]; return IIO_VAL_INT_PLUS_MICRO; case IIO_ACCEL: index = data->chip->accel_scale_map[index]; *val = data->chip->accel_scale[index][0]; *val2 = data->chip->accel_scale[index][1]; return IIO_VAL_INT_PLUS_MICRO; default: return -EINVAL; } case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY: ret = sca3300_get_op_mode(data, &index); if (ret) return ret; index = data->chip->freq_map[index]; *val = data->chip->freq_table[index]; return IIO_VAL_INT; default: return -EINVAL; } } static irqreturn_t sca3300_trigger_handler(int irq, void *p) { struct iio_poll_func *pf = p; struct iio_dev *indio_dev = pf->indio_dev; struct sca3300_data *data = iio_priv(indio_dev); int bit, ret, val, i = 0; s16 *channels = (s16 *)data->buffer; for_each_set_bit(bit, indio_dev->active_scan_mask, indio_dev->masklength) { ret = sca3300_read_reg(data, indio_dev->channels[bit].address, &val); if (ret) { dev_err_ratelimited(&data->spi->dev, "failed to read register, error: %d\n", ret); /* handled, but bailing out due to errors */ goto out; } channels[i++] = val; } iio_push_to_buffers_with_timestamp(indio_dev, data->buffer, iio_get_time_ns(indio_dev)); out: iio_trigger_notify_done(indio_dev->trig); return IRQ_HANDLED; } /* * sca3300_init - Device init sequence. See datasheet rev 2 section * 4.2 Start-Up Sequence for details. */ static int sca3300_init(struct sca3300_data *sca_data, struct iio_dev *indio_dev) { int value = 0; int ret; int i; ret = sca3300_write_reg(sca_data, SCA3300_REG_MODE, SCA3300_MODE_SW_RESET); if (ret) return ret; /* * Wait 1ms after SW-reset command. * Wait for the settling of signal paths, * 15ms for SCA3300 and 25ms for SCL3300, */ usleep_range(26e3, 50e3); ret = sca3300_read_reg(sca_data, SCA3300_REG_WHOAMI, &value); if (ret) return ret; for (i = 0; i < ARRAY_SIZE(sca3300_chip_tbl); i++) { if (sca3300_chip_tbl[i].chip_id == value) break; } if (i == ARRAY_SIZE(sca3300_chip_tbl)) { dev_err(&sca_data->spi->dev, "unknown chip id %x\n", value); return -ENODEV; } sca_data->chip = &sca3300_chip_tbl[i]; if (sca_data->chip->angle_supported) { ret = sca3300_write_reg(sca_data, SCL3300_REG_ANG_CTRL, SCL3300_ANG_ENABLE); if (ret) return ret; } return 0; } static int sca3300_debugfs_reg_access(struct iio_dev *indio_dev, unsigned int reg, unsigned int writeval, unsigned int *readval) { struct sca3300_data *data = iio_priv(indio_dev); int value; int ret; if (reg > SCA3300_REG_SELBANK) return -EINVAL; if (!readval) return sca3300_write_reg(data, reg, writeval); ret = sca3300_read_reg(data, reg, &value); if (ret) return ret; *readval = value; return 0; } static int sca3300_read_avail(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, const int **vals, int *type, int *length, long mask) { struct sca3300_data *data = iio_priv(indio_dev); switch (mask) { case IIO_CHAN_INFO_SCALE: switch (chan->type) { case IIO_INCLI: *vals = (const int *)data->chip->incli_scale; *length = data->chip->num_incli_scales; *type = IIO_VAL_INT_PLUS_MICRO; return IIO_AVAIL_LIST; case IIO_ACCEL: *vals = (const int *)data->chip->accel_scale; *length = data->chip->num_accel_scales; *type = IIO_VAL_INT_PLUS_MICRO; return IIO_AVAIL_LIST; default: return -EINVAL; } case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY: *vals = (const int *)data->chip->freq_table; *length = data->chip->num_freqs; *type = IIO_VAL_INT; return IIO_AVAIL_LIST; default: return -EINVAL; } } static const struct iio_info sca3300_info = { .read_raw = sca3300_read_raw, .write_raw = sca3300_write_raw, .debugfs_reg_access = &sca3300_debugfs_reg_access, .read_avail = sca3300_read_avail, }; static int sca3300_probe(struct spi_device *spi) { struct sca3300_data *sca_data; struct iio_dev *indio_dev; int ret; indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*sca_data)); if (!indio_dev) return -ENOMEM; sca_data = iio_priv(indio_dev); mutex_init(&sca_data->lock); sca_data->spi = spi; crc8_populate_msb(sca3300_crc_table, SCA3300_CRC8_POLYNOMIAL); indio_dev->info = &sca3300_info; ret = sca3300_init(sca_data, indio_dev); if (ret) { dev_err(&spi->dev, "failed to init device, error: %d\n", ret); return ret; } indio_dev->name = sca_data->chip->name; indio_dev->modes = INDIO_DIRECT_MODE; indio_dev->channels = sca_data->chip->channels; indio_dev->num_channels = sca_data->chip->num_channels; indio_dev->available_scan_masks = sca_data->chip->scan_masks; ret = devm_iio_triggered_buffer_setup(&spi->dev, indio_dev, iio_pollfunc_store_time, sca3300_trigger_handler, NULL); if (ret) { dev_err(&spi->dev, "iio triggered buffer setup failed, error: %d\n", ret); return ret; } ret = devm_iio_device_register(&spi->dev, indio_dev); if (ret) { dev_err(&spi->dev, "iio device register failed, error: %d\n", ret); } return ret; } static const struct of_device_id sca3300_dt_ids[] = { { .compatible = "murata,sca3300"}, { .compatible = "murata,scl3300"}, {} }; MODULE_DEVICE_TABLE(of, sca3300_dt_ids); static const struct spi_device_id sca3300_ids[] = { { "sca3300" }, { "scl3300" }, {} }; MODULE_DEVICE_TABLE(spi, sca3300_ids); static struct spi_driver sca3300_driver = { .driver = { .name = SCA3300_ALIAS, .of_match_table = sca3300_dt_ids, }, .probe = sca3300_probe, .id_table = sca3300_ids, }; module_spi_driver(sca3300_driver); MODULE_AUTHOR("Tomas Melin <tomas.melin@vaisala.com>"); MODULE_DESCRIPTION("Murata SCA3300 SPI Accelerometer"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1