Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Will Deacon | 3596 | 62.40% | 17 | 22.97% |
Robin Murphy | 1467 | 25.46% | 35 | 47.30% |
Isaac J. Manjarres | 341 | 5.92% | 3 | 4.05% |
Rob Herring | 188 | 3.26% | 2 | 2.70% |
Sai Prakash Ranjan | 31 | 0.54% | 1 | 1.35% |
Laurent Pinchart | 24 | 0.42% | 1 | 1.35% |
Björn Andersson | 23 | 0.40% | 1 | 1.35% |
Vivek Gautam | 21 | 0.36% | 2 | 2.70% |
Baolin Wang | 19 | 0.33% | 1 | 1.35% |
Jeremy Gebben | 13 | 0.23% | 1 | 1.35% |
Hector Martin | 9 | 0.16% | 1 | 1.35% |
Kefeng Wang | 7 | 0.12% | 1 | 1.35% |
Oleksandr Tyshchenko | 5 | 0.09% | 1 | 1.35% |
Zhen Lei | 4 | 0.07% | 1 | 1.35% |
Christophe Jaillet | 3 | 0.05% | 1 | 1.35% |
Lada Trimasova | 3 | 0.05% | 1 | 1.35% |
Jean-Philippe Brucker | 3 | 0.05% | 1 | 1.35% |
Thomas Gleixner | 2 | 0.03% | 1 | 1.35% |
Bhumika Goyal | 2 | 0.03% | 1 | 1.35% |
Yue haibing | 2 | 0.03% | 1 | 1.35% |
Total | 5763 | 74 |
// SPDX-License-Identifier: GPL-2.0-only /* * CPU-agnostic ARM page table allocator. * * Copyright (C) 2014 ARM Limited * * Author: Will Deacon <will.deacon@arm.com> */ #define pr_fmt(fmt) "arm-lpae io-pgtable: " fmt #include <linux/atomic.h> #include <linux/bitops.h> #include <linux/io-pgtable.h> #include <linux/kernel.h> #include <linux/sizes.h> #include <linux/slab.h> #include <linux/types.h> #include <linux/dma-mapping.h> #include <asm/barrier.h> #include "io-pgtable-arm.h" #define ARM_LPAE_MAX_ADDR_BITS 52 #define ARM_LPAE_S2_MAX_CONCAT_PAGES 16 #define ARM_LPAE_MAX_LEVELS 4 /* Struct accessors */ #define io_pgtable_to_data(x) \ container_of((x), struct arm_lpae_io_pgtable, iop) #define io_pgtable_ops_to_data(x) \ io_pgtable_to_data(io_pgtable_ops_to_pgtable(x)) /* * Calculate the right shift amount to get to the portion describing level l * in a virtual address mapped by the pagetable in d. */ #define ARM_LPAE_LVL_SHIFT(l,d) \ (((ARM_LPAE_MAX_LEVELS - (l)) * (d)->bits_per_level) + \ ilog2(sizeof(arm_lpae_iopte))) #define ARM_LPAE_GRANULE(d) \ (sizeof(arm_lpae_iopte) << (d)->bits_per_level) #define ARM_LPAE_PGD_SIZE(d) \ (sizeof(arm_lpae_iopte) << (d)->pgd_bits) #define ARM_LPAE_PTES_PER_TABLE(d) \ (ARM_LPAE_GRANULE(d) >> ilog2(sizeof(arm_lpae_iopte))) /* * Calculate the index at level l used to map virtual address a using the * pagetable in d. */ #define ARM_LPAE_PGD_IDX(l,d) \ ((l) == (d)->start_level ? (d)->pgd_bits - (d)->bits_per_level : 0) #define ARM_LPAE_LVL_IDX(a,l,d) \ (((u64)(a) >> ARM_LPAE_LVL_SHIFT(l,d)) & \ ((1 << ((d)->bits_per_level + ARM_LPAE_PGD_IDX(l,d))) - 1)) /* Calculate the block/page mapping size at level l for pagetable in d. */ #define ARM_LPAE_BLOCK_SIZE(l,d) (1ULL << ARM_LPAE_LVL_SHIFT(l,d)) /* Page table bits */ #define ARM_LPAE_PTE_TYPE_SHIFT 0 #define ARM_LPAE_PTE_TYPE_MASK 0x3 #define ARM_LPAE_PTE_TYPE_BLOCK 1 #define ARM_LPAE_PTE_TYPE_TABLE 3 #define ARM_LPAE_PTE_TYPE_PAGE 3 #define ARM_LPAE_PTE_ADDR_MASK GENMASK_ULL(47,12) #define ARM_LPAE_PTE_NSTABLE (((arm_lpae_iopte)1) << 63) #define ARM_LPAE_PTE_XN (((arm_lpae_iopte)3) << 53) #define ARM_LPAE_PTE_AF (((arm_lpae_iopte)1) << 10) #define ARM_LPAE_PTE_SH_NS (((arm_lpae_iopte)0) << 8) #define ARM_LPAE_PTE_SH_OS (((arm_lpae_iopte)2) << 8) #define ARM_LPAE_PTE_SH_IS (((arm_lpae_iopte)3) << 8) #define ARM_LPAE_PTE_NS (((arm_lpae_iopte)1) << 5) #define ARM_LPAE_PTE_VALID (((arm_lpae_iopte)1) << 0) #define ARM_LPAE_PTE_ATTR_LO_MASK (((arm_lpae_iopte)0x3ff) << 2) /* Ignore the contiguous bit for block splitting */ #define ARM_LPAE_PTE_ATTR_HI_MASK (((arm_lpae_iopte)6) << 52) #define ARM_LPAE_PTE_ATTR_MASK (ARM_LPAE_PTE_ATTR_LO_MASK | \ ARM_LPAE_PTE_ATTR_HI_MASK) /* Software bit for solving coherency races */ #define ARM_LPAE_PTE_SW_SYNC (((arm_lpae_iopte)1) << 55) /* Stage-1 PTE */ #define ARM_LPAE_PTE_AP_UNPRIV (((arm_lpae_iopte)1) << 6) #define ARM_LPAE_PTE_AP_RDONLY (((arm_lpae_iopte)2) << 6) #define ARM_LPAE_PTE_ATTRINDX_SHIFT 2 #define ARM_LPAE_PTE_nG (((arm_lpae_iopte)1) << 11) /* Stage-2 PTE */ #define ARM_LPAE_PTE_HAP_FAULT (((arm_lpae_iopte)0) << 6) #define ARM_LPAE_PTE_HAP_READ (((arm_lpae_iopte)1) << 6) #define ARM_LPAE_PTE_HAP_WRITE (((arm_lpae_iopte)2) << 6) #define ARM_LPAE_PTE_MEMATTR_OIWB (((arm_lpae_iopte)0xf) << 2) #define ARM_LPAE_PTE_MEMATTR_NC (((arm_lpae_iopte)0x5) << 2) #define ARM_LPAE_PTE_MEMATTR_DEV (((arm_lpae_iopte)0x1) << 2) /* Register bits */ #define ARM_LPAE_VTCR_SL0_MASK 0x3 #define ARM_LPAE_TCR_T0SZ_SHIFT 0 #define ARM_LPAE_VTCR_PS_SHIFT 16 #define ARM_LPAE_VTCR_PS_MASK 0x7 #define ARM_LPAE_MAIR_ATTR_SHIFT(n) ((n) << 3) #define ARM_LPAE_MAIR_ATTR_MASK 0xff #define ARM_LPAE_MAIR_ATTR_DEVICE 0x04 #define ARM_LPAE_MAIR_ATTR_NC 0x44 #define ARM_LPAE_MAIR_ATTR_INC_OWBRWA 0xf4 #define ARM_LPAE_MAIR_ATTR_WBRWA 0xff #define ARM_LPAE_MAIR_ATTR_IDX_NC 0 #define ARM_LPAE_MAIR_ATTR_IDX_CACHE 1 #define ARM_LPAE_MAIR_ATTR_IDX_DEV 2 #define ARM_LPAE_MAIR_ATTR_IDX_INC_OCACHE 3 #define ARM_MALI_LPAE_TTBR_ADRMODE_TABLE (3u << 0) #define ARM_MALI_LPAE_TTBR_READ_INNER BIT(2) #define ARM_MALI_LPAE_TTBR_SHARE_OUTER BIT(4) #define ARM_MALI_LPAE_MEMATTR_IMP_DEF 0x88ULL #define ARM_MALI_LPAE_MEMATTR_WRITE_ALLOC 0x8DULL /* IOPTE accessors */ #define iopte_deref(pte,d) __va(iopte_to_paddr(pte, d)) #define iopte_type(pte) \ (((pte) >> ARM_LPAE_PTE_TYPE_SHIFT) & ARM_LPAE_PTE_TYPE_MASK) #define iopte_prot(pte) ((pte) & ARM_LPAE_PTE_ATTR_MASK) struct arm_lpae_io_pgtable { struct io_pgtable iop; int pgd_bits; int start_level; int bits_per_level; void *pgd; }; typedef u64 arm_lpae_iopte; static inline bool iopte_leaf(arm_lpae_iopte pte, int lvl, enum io_pgtable_fmt fmt) { if (lvl == (ARM_LPAE_MAX_LEVELS - 1) && fmt != ARM_MALI_LPAE) return iopte_type(pte) == ARM_LPAE_PTE_TYPE_PAGE; return iopte_type(pte) == ARM_LPAE_PTE_TYPE_BLOCK; } static arm_lpae_iopte paddr_to_iopte(phys_addr_t paddr, struct arm_lpae_io_pgtable *data) { arm_lpae_iopte pte = paddr; /* Of the bits which overlap, either 51:48 or 15:12 are always RES0 */ return (pte | (pte >> (48 - 12))) & ARM_LPAE_PTE_ADDR_MASK; } static phys_addr_t iopte_to_paddr(arm_lpae_iopte pte, struct arm_lpae_io_pgtable *data) { u64 paddr = pte & ARM_LPAE_PTE_ADDR_MASK; if (ARM_LPAE_GRANULE(data) < SZ_64K) return paddr; /* Rotate the packed high-order bits back to the top */ return (paddr | (paddr << (48 - 12))) & (ARM_LPAE_PTE_ADDR_MASK << 4); } static bool selftest_running = false; static dma_addr_t __arm_lpae_dma_addr(void *pages) { return (dma_addr_t)virt_to_phys(pages); } static void *__arm_lpae_alloc_pages(size_t size, gfp_t gfp, struct io_pgtable_cfg *cfg) { struct device *dev = cfg->iommu_dev; int order = get_order(size); struct page *p; dma_addr_t dma; void *pages; VM_BUG_ON((gfp & __GFP_HIGHMEM)); p = alloc_pages_node(dev_to_node(dev), gfp | __GFP_ZERO, order); if (!p) return NULL; pages = page_address(p); if (!cfg->coherent_walk) { dma = dma_map_single(dev, pages, size, DMA_TO_DEVICE); if (dma_mapping_error(dev, dma)) goto out_free; /* * We depend on the IOMMU being able to work with any physical * address directly, so if the DMA layer suggests otherwise by * translating or truncating them, that bodes very badly... */ if (dma != virt_to_phys(pages)) goto out_unmap; } return pages; out_unmap: dev_err(dev, "Cannot accommodate DMA translation for IOMMU page tables\n"); dma_unmap_single(dev, dma, size, DMA_TO_DEVICE); out_free: __free_pages(p, order); return NULL; } static void __arm_lpae_free_pages(void *pages, size_t size, struct io_pgtable_cfg *cfg) { if (!cfg->coherent_walk) dma_unmap_single(cfg->iommu_dev, __arm_lpae_dma_addr(pages), size, DMA_TO_DEVICE); free_pages((unsigned long)pages, get_order(size)); } static void __arm_lpae_sync_pte(arm_lpae_iopte *ptep, int num_entries, struct io_pgtable_cfg *cfg) { dma_sync_single_for_device(cfg->iommu_dev, __arm_lpae_dma_addr(ptep), sizeof(*ptep) * num_entries, DMA_TO_DEVICE); } static void __arm_lpae_clear_pte(arm_lpae_iopte *ptep, struct io_pgtable_cfg *cfg) { *ptep = 0; if (!cfg->coherent_walk) __arm_lpae_sync_pte(ptep, 1, cfg); } static size_t __arm_lpae_unmap(struct arm_lpae_io_pgtable *data, struct iommu_iotlb_gather *gather, unsigned long iova, size_t size, size_t pgcount, int lvl, arm_lpae_iopte *ptep); static void __arm_lpae_init_pte(struct arm_lpae_io_pgtable *data, phys_addr_t paddr, arm_lpae_iopte prot, int lvl, int num_entries, arm_lpae_iopte *ptep) { arm_lpae_iopte pte = prot; struct io_pgtable_cfg *cfg = &data->iop.cfg; size_t sz = ARM_LPAE_BLOCK_SIZE(lvl, data); int i; if (data->iop.fmt != ARM_MALI_LPAE && lvl == ARM_LPAE_MAX_LEVELS - 1) pte |= ARM_LPAE_PTE_TYPE_PAGE; else pte |= ARM_LPAE_PTE_TYPE_BLOCK; for (i = 0; i < num_entries; i++) ptep[i] = pte | paddr_to_iopte(paddr + i * sz, data); if (!cfg->coherent_walk) __arm_lpae_sync_pte(ptep, num_entries, cfg); } static int arm_lpae_init_pte(struct arm_lpae_io_pgtable *data, unsigned long iova, phys_addr_t paddr, arm_lpae_iopte prot, int lvl, int num_entries, arm_lpae_iopte *ptep) { int i; for (i = 0; i < num_entries; i++) if (iopte_leaf(ptep[i], lvl, data->iop.fmt)) { /* We require an unmap first */ WARN_ON(!selftest_running); return -EEXIST; } else if (iopte_type(ptep[i]) == ARM_LPAE_PTE_TYPE_TABLE) { /* * We need to unmap and free the old table before * overwriting it with a block entry. */ arm_lpae_iopte *tblp; size_t sz = ARM_LPAE_BLOCK_SIZE(lvl, data); tblp = ptep - ARM_LPAE_LVL_IDX(iova, lvl, data); if (__arm_lpae_unmap(data, NULL, iova + i * sz, sz, 1, lvl, tblp) != sz) { WARN_ON(1); return -EINVAL; } } __arm_lpae_init_pte(data, paddr, prot, lvl, num_entries, ptep); return 0; } static arm_lpae_iopte arm_lpae_install_table(arm_lpae_iopte *table, arm_lpae_iopte *ptep, arm_lpae_iopte curr, struct arm_lpae_io_pgtable *data) { arm_lpae_iopte old, new; struct io_pgtable_cfg *cfg = &data->iop.cfg; new = paddr_to_iopte(__pa(table), data) | ARM_LPAE_PTE_TYPE_TABLE; if (cfg->quirks & IO_PGTABLE_QUIRK_ARM_NS) new |= ARM_LPAE_PTE_NSTABLE; /* * Ensure the table itself is visible before its PTE can be. * Whilst we could get away with cmpxchg64_release below, this * doesn't have any ordering semantics when !CONFIG_SMP. */ dma_wmb(); old = cmpxchg64_relaxed(ptep, curr, new); if (cfg->coherent_walk || (old & ARM_LPAE_PTE_SW_SYNC)) return old; /* Even if it's not ours, there's no point waiting; just kick it */ __arm_lpae_sync_pte(ptep, 1, cfg); if (old == curr) WRITE_ONCE(*ptep, new | ARM_LPAE_PTE_SW_SYNC); return old; } static int __arm_lpae_map(struct arm_lpae_io_pgtable *data, unsigned long iova, phys_addr_t paddr, size_t size, size_t pgcount, arm_lpae_iopte prot, int lvl, arm_lpae_iopte *ptep, gfp_t gfp, size_t *mapped) { arm_lpae_iopte *cptep, pte; size_t block_size = ARM_LPAE_BLOCK_SIZE(lvl, data); size_t tblsz = ARM_LPAE_GRANULE(data); struct io_pgtable_cfg *cfg = &data->iop.cfg; int ret = 0, num_entries, max_entries, map_idx_start; /* Find our entry at the current level */ map_idx_start = ARM_LPAE_LVL_IDX(iova, lvl, data); ptep += map_idx_start; /* If we can install a leaf entry at this level, then do so */ if (size == block_size) { max_entries = ARM_LPAE_PTES_PER_TABLE(data) - map_idx_start; num_entries = min_t(int, pgcount, max_entries); ret = arm_lpae_init_pte(data, iova, paddr, prot, lvl, num_entries, ptep); if (!ret) *mapped += num_entries * size; return ret; } /* We can't allocate tables at the final level */ if (WARN_ON(lvl >= ARM_LPAE_MAX_LEVELS - 1)) return -EINVAL; /* Grab a pointer to the next level */ pte = READ_ONCE(*ptep); if (!pte) { cptep = __arm_lpae_alloc_pages(tblsz, gfp, cfg); if (!cptep) return -ENOMEM; pte = arm_lpae_install_table(cptep, ptep, 0, data); if (pte) __arm_lpae_free_pages(cptep, tblsz, cfg); } else if (!cfg->coherent_walk && !(pte & ARM_LPAE_PTE_SW_SYNC)) { __arm_lpae_sync_pte(ptep, 1, cfg); } if (pte && !iopte_leaf(pte, lvl, data->iop.fmt)) { cptep = iopte_deref(pte, data); } else if (pte) { /* We require an unmap first */ WARN_ON(!selftest_running); return -EEXIST; } /* Rinse, repeat */ return __arm_lpae_map(data, iova, paddr, size, pgcount, prot, lvl + 1, cptep, gfp, mapped); } static arm_lpae_iopte arm_lpae_prot_to_pte(struct arm_lpae_io_pgtable *data, int prot) { arm_lpae_iopte pte; if (data->iop.fmt == ARM_64_LPAE_S1 || data->iop.fmt == ARM_32_LPAE_S1) { pte = ARM_LPAE_PTE_nG; if (!(prot & IOMMU_WRITE) && (prot & IOMMU_READ)) pte |= ARM_LPAE_PTE_AP_RDONLY; if (!(prot & IOMMU_PRIV)) pte |= ARM_LPAE_PTE_AP_UNPRIV; } else { pte = ARM_LPAE_PTE_HAP_FAULT; if (prot & IOMMU_READ) pte |= ARM_LPAE_PTE_HAP_READ; if (prot & IOMMU_WRITE) pte |= ARM_LPAE_PTE_HAP_WRITE; } /* * Note that this logic is structured to accommodate Mali LPAE * having stage-1-like attributes but stage-2-like permissions. */ if (data->iop.fmt == ARM_64_LPAE_S2 || data->iop.fmt == ARM_32_LPAE_S2) { if (prot & IOMMU_MMIO) pte |= ARM_LPAE_PTE_MEMATTR_DEV; else if (prot & IOMMU_CACHE) pte |= ARM_LPAE_PTE_MEMATTR_OIWB; else pte |= ARM_LPAE_PTE_MEMATTR_NC; } else { if (prot & IOMMU_MMIO) pte |= (ARM_LPAE_MAIR_ATTR_IDX_DEV << ARM_LPAE_PTE_ATTRINDX_SHIFT); else if (prot & IOMMU_CACHE) pte |= (ARM_LPAE_MAIR_ATTR_IDX_CACHE << ARM_LPAE_PTE_ATTRINDX_SHIFT); } /* * Also Mali has its own notions of shareability wherein its Inner * domain covers the cores within the GPU, and its Outer domain is * "outside the GPU" (i.e. either the Inner or System domain in CPU * terms, depending on coherency). */ if (prot & IOMMU_CACHE && data->iop.fmt != ARM_MALI_LPAE) pte |= ARM_LPAE_PTE_SH_IS; else pte |= ARM_LPAE_PTE_SH_OS; if (prot & IOMMU_NOEXEC) pte |= ARM_LPAE_PTE_XN; if (data->iop.cfg.quirks & IO_PGTABLE_QUIRK_ARM_NS) pte |= ARM_LPAE_PTE_NS; if (data->iop.fmt != ARM_MALI_LPAE) pte |= ARM_LPAE_PTE_AF; return pte; } static int arm_lpae_map_pages(struct io_pgtable_ops *ops, unsigned long iova, phys_addr_t paddr, size_t pgsize, size_t pgcount, int iommu_prot, gfp_t gfp, size_t *mapped) { struct arm_lpae_io_pgtable *data = io_pgtable_ops_to_data(ops); struct io_pgtable_cfg *cfg = &data->iop.cfg; arm_lpae_iopte *ptep = data->pgd; int ret, lvl = data->start_level; arm_lpae_iopte prot; long iaext = (s64)iova >> cfg->ias; if (WARN_ON(!pgsize || (pgsize & cfg->pgsize_bitmap) != pgsize)) return -EINVAL; if (cfg->quirks & IO_PGTABLE_QUIRK_ARM_TTBR1) iaext = ~iaext; if (WARN_ON(iaext || paddr >> cfg->oas)) return -ERANGE; /* If no access, then nothing to do */ if (!(iommu_prot & (IOMMU_READ | IOMMU_WRITE))) return 0; prot = arm_lpae_prot_to_pte(data, iommu_prot); ret = __arm_lpae_map(data, iova, paddr, pgsize, pgcount, prot, lvl, ptep, gfp, mapped); /* * Synchronise all PTE updates for the new mapping before there's * a chance for anything to kick off a table walk for the new iova. */ wmb(); return ret; } static void __arm_lpae_free_pgtable(struct arm_lpae_io_pgtable *data, int lvl, arm_lpae_iopte *ptep) { arm_lpae_iopte *start, *end; unsigned long table_size; if (lvl == data->start_level) table_size = ARM_LPAE_PGD_SIZE(data); else table_size = ARM_LPAE_GRANULE(data); start = ptep; /* Only leaf entries at the last level */ if (lvl == ARM_LPAE_MAX_LEVELS - 1) end = ptep; else end = (void *)ptep + table_size; while (ptep != end) { arm_lpae_iopte pte = *ptep++; if (!pte || iopte_leaf(pte, lvl, data->iop.fmt)) continue; __arm_lpae_free_pgtable(data, lvl + 1, iopte_deref(pte, data)); } __arm_lpae_free_pages(start, table_size, &data->iop.cfg); } static void arm_lpae_free_pgtable(struct io_pgtable *iop) { struct arm_lpae_io_pgtable *data = io_pgtable_to_data(iop); __arm_lpae_free_pgtable(data, data->start_level, data->pgd); kfree(data); } static size_t arm_lpae_split_blk_unmap(struct arm_lpae_io_pgtable *data, struct iommu_iotlb_gather *gather, unsigned long iova, size_t size, arm_lpae_iopte blk_pte, int lvl, arm_lpae_iopte *ptep, size_t pgcount) { struct io_pgtable_cfg *cfg = &data->iop.cfg; arm_lpae_iopte pte, *tablep; phys_addr_t blk_paddr; size_t tablesz = ARM_LPAE_GRANULE(data); size_t split_sz = ARM_LPAE_BLOCK_SIZE(lvl, data); int ptes_per_table = ARM_LPAE_PTES_PER_TABLE(data); int i, unmap_idx_start = -1, num_entries = 0, max_entries; if (WARN_ON(lvl == ARM_LPAE_MAX_LEVELS)) return 0; tablep = __arm_lpae_alloc_pages(tablesz, GFP_ATOMIC, cfg); if (!tablep) return 0; /* Bytes unmapped */ if (size == split_sz) { unmap_idx_start = ARM_LPAE_LVL_IDX(iova, lvl, data); max_entries = ptes_per_table - unmap_idx_start; num_entries = min_t(int, pgcount, max_entries); } blk_paddr = iopte_to_paddr(blk_pte, data); pte = iopte_prot(blk_pte); for (i = 0; i < ptes_per_table; i++, blk_paddr += split_sz) { /* Unmap! */ if (i >= unmap_idx_start && i < (unmap_idx_start + num_entries)) continue; __arm_lpae_init_pte(data, blk_paddr, pte, lvl, 1, &tablep[i]); } pte = arm_lpae_install_table(tablep, ptep, blk_pte, data); if (pte != blk_pte) { __arm_lpae_free_pages(tablep, tablesz, cfg); /* * We may race against someone unmapping another part of this * block, but anything else is invalid. We can't misinterpret * a page entry here since we're never at the last level. */ if (iopte_type(pte) != ARM_LPAE_PTE_TYPE_TABLE) return 0; tablep = iopte_deref(pte, data); } else if (unmap_idx_start >= 0) { for (i = 0; i < num_entries; i++) io_pgtable_tlb_add_page(&data->iop, gather, iova + i * size, size); return num_entries * size; } return __arm_lpae_unmap(data, gather, iova, size, pgcount, lvl, tablep); } static size_t __arm_lpae_unmap(struct arm_lpae_io_pgtable *data, struct iommu_iotlb_gather *gather, unsigned long iova, size_t size, size_t pgcount, int lvl, arm_lpae_iopte *ptep) { arm_lpae_iopte pte; struct io_pgtable *iop = &data->iop; int i = 0, num_entries, max_entries, unmap_idx_start; /* Something went horribly wrong and we ran out of page table */ if (WARN_ON(lvl == ARM_LPAE_MAX_LEVELS)) return 0; unmap_idx_start = ARM_LPAE_LVL_IDX(iova, lvl, data); ptep += unmap_idx_start; pte = READ_ONCE(*ptep); if (WARN_ON(!pte)) return 0; /* If the size matches this level, we're in the right place */ if (size == ARM_LPAE_BLOCK_SIZE(lvl, data)) { max_entries = ARM_LPAE_PTES_PER_TABLE(data) - unmap_idx_start; num_entries = min_t(int, pgcount, max_entries); while (i < num_entries) { pte = READ_ONCE(*ptep); if (WARN_ON(!pte)) break; __arm_lpae_clear_pte(ptep, &iop->cfg); if (!iopte_leaf(pte, lvl, iop->fmt)) { /* Also flush any partial walks */ io_pgtable_tlb_flush_walk(iop, iova + i * size, size, ARM_LPAE_GRANULE(data)); __arm_lpae_free_pgtable(data, lvl + 1, iopte_deref(pte, data)); } else if (!iommu_iotlb_gather_queued(gather)) { io_pgtable_tlb_add_page(iop, gather, iova + i * size, size); } ptep++; i++; } return i * size; } else if (iopte_leaf(pte, lvl, iop->fmt)) { /* * Insert a table at the next level to map the old region, * minus the part we want to unmap */ return arm_lpae_split_blk_unmap(data, gather, iova, size, pte, lvl + 1, ptep, pgcount); } /* Keep on walkin' */ ptep = iopte_deref(pte, data); return __arm_lpae_unmap(data, gather, iova, size, pgcount, lvl + 1, ptep); } static size_t arm_lpae_unmap_pages(struct io_pgtable_ops *ops, unsigned long iova, size_t pgsize, size_t pgcount, struct iommu_iotlb_gather *gather) { struct arm_lpae_io_pgtable *data = io_pgtable_ops_to_data(ops); struct io_pgtable_cfg *cfg = &data->iop.cfg; arm_lpae_iopte *ptep = data->pgd; long iaext = (s64)iova >> cfg->ias; if (WARN_ON(!pgsize || (pgsize & cfg->pgsize_bitmap) != pgsize || !pgcount)) return 0; if (cfg->quirks & IO_PGTABLE_QUIRK_ARM_TTBR1) iaext = ~iaext; if (WARN_ON(iaext)) return 0; return __arm_lpae_unmap(data, gather, iova, pgsize, pgcount, data->start_level, ptep); } static phys_addr_t arm_lpae_iova_to_phys(struct io_pgtable_ops *ops, unsigned long iova) { struct arm_lpae_io_pgtable *data = io_pgtable_ops_to_data(ops); arm_lpae_iopte pte, *ptep = data->pgd; int lvl = data->start_level; do { /* Valid IOPTE pointer? */ if (!ptep) return 0; /* Grab the IOPTE we're interested in */ ptep += ARM_LPAE_LVL_IDX(iova, lvl, data); pte = READ_ONCE(*ptep); /* Valid entry? */ if (!pte) return 0; /* Leaf entry? */ if (iopte_leaf(pte, lvl, data->iop.fmt)) goto found_translation; /* Take it to the next level */ ptep = iopte_deref(pte, data); } while (++lvl < ARM_LPAE_MAX_LEVELS); /* Ran out of page tables to walk */ return 0; found_translation: iova &= (ARM_LPAE_BLOCK_SIZE(lvl, data) - 1); return iopte_to_paddr(pte, data) | iova; } static void arm_lpae_restrict_pgsizes(struct io_pgtable_cfg *cfg) { unsigned long granule, page_sizes; unsigned int max_addr_bits = 48; /* * We need to restrict the supported page sizes to match the * translation regime for a particular granule. Aim to match * the CPU page size if possible, otherwise prefer smaller sizes. * While we're at it, restrict the block sizes to match the * chosen granule. */ if (cfg->pgsize_bitmap & PAGE_SIZE) granule = PAGE_SIZE; else if (cfg->pgsize_bitmap & ~PAGE_MASK) granule = 1UL << __fls(cfg->pgsize_bitmap & ~PAGE_MASK); else if (cfg->pgsize_bitmap & PAGE_MASK) granule = 1UL << __ffs(cfg->pgsize_bitmap & PAGE_MASK); else granule = 0; switch (granule) { case SZ_4K: page_sizes = (SZ_4K | SZ_2M | SZ_1G); break; case SZ_16K: page_sizes = (SZ_16K | SZ_32M); break; case SZ_64K: max_addr_bits = 52; page_sizes = (SZ_64K | SZ_512M); if (cfg->oas > 48) page_sizes |= 1ULL << 42; /* 4TB */ break; default: page_sizes = 0; } cfg->pgsize_bitmap &= page_sizes; cfg->ias = min(cfg->ias, max_addr_bits); cfg->oas = min(cfg->oas, max_addr_bits); } static struct arm_lpae_io_pgtable * arm_lpae_alloc_pgtable(struct io_pgtable_cfg *cfg) { struct arm_lpae_io_pgtable *data; int levels, va_bits, pg_shift; arm_lpae_restrict_pgsizes(cfg); if (!(cfg->pgsize_bitmap & (SZ_4K | SZ_16K | SZ_64K))) return NULL; if (cfg->ias > ARM_LPAE_MAX_ADDR_BITS) return NULL; if (cfg->oas > ARM_LPAE_MAX_ADDR_BITS) return NULL; data = kmalloc(sizeof(*data), GFP_KERNEL); if (!data) return NULL; pg_shift = __ffs(cfg->pgsize_bitmap); data->bits_per_level = pg_shift - ilog2(sizeof(arm_lpae_iopte)); va_bits = cfg->ias - pg_shift; levels = DIV_ROUND_UP(va_bits, data->bits_per_level); data->start_level = ARM_LPAE_MAX_LEVELS - levels; /* Calculate the actual size of our pgd (without concatenation) */ data->pgd_bits = va_bits - (data->bits_per_level * (levels - 1)); data->iop.ops = (struct io_pgtable_ops) { .map_pages = arm_lpae_map_pages, .unmap_pages = arm_lpae_unmap_pages, .iova_to_phys = arm_lpae_iova_to_phys, }; return data; } static struct io_pgtable * arm_64_lpae_alloc_pgtable_s1(struct io_pgtable_cfg *cfg, void *cookie) { u64 reg; struct arm_lpae_io_pgtable *data; typeof(&cfg->arm_lpae_s1_cfg.tcr) tcr = &cfg->arm_lpae_s1_cfg.tcr; bool tg1; if (cfg->quirks & ~(IO_PGTABLE_QUIRK_ARM_NS | IO_PGTABLE_QUIRK_ARM_TTBR1 | IO_PGTABLE_QUIRK_ARM_OUTER_WBWA)) return NULL; data = arm_lpae_alloc_pgtable(cfg); if (!data) return NULL; /* TCR */ if (cfg->coherent_walk) { tcr->sh = ARM_LPAE_TCR_SH_IS; tcr->irgn = ARM_LPAE_TCR_RGN_WBWA; tcr->orgn = ARM_LPAE_TCR_RGN_WBWA; if (cfg->quirks & IO_PGTABLE_QUIRK_ARM_OUTER_WBWA) goto out_free_data; } else { tcr->sh = ARM_LPAE_TCR_SH_OS; tcr->irgn = ARM_LPAE_TCR_RGN_NC; if (!(cfg->quirks & IO_PGTABLE_QUIRK_ARM_OUTER_WBWA)) tcr->orgn = ARM_LPAE_TCR_RGN_NC; else tcr->orgn = ARM_LPAE_TCR_RGN_WBWA; } tg1 = cfg->quirks & IO_PGTABLE_QUIRK_ARM_TTBR1; switch (ARM_LPAE_GRANULE(data)) { case SZ_4K: tcr->tg = tg1 ? ARM_LPAE_TCR_TG1_4K : ARM_LPAE_TCR_TG0_4K; break; case SZ_16K: tcr->tg = tg1 ? ARM_LPAE_TCR_TG1_16K : ARM_LPAE_TCR_TG0_16K; break; case SZ_64K: tcr->tg = tg1 ? ARM_LPAE_TCR_TG1_64K : ARM_LPAE_TCR_TG0_64K; break; } switch (cfg->oas) { case 32: tcr->ips = ARM_LPAE_TCR_PS_32_BIT; break; case 36: tcr->ips = ARM_LPAE_TCR_PS_36_BIT; break; case 40: tcr->ips = ARM_LPAE_TCR_PS_40_BIT; break; case 42: tcr->ips = ARM_LPAE_TCR_PS_42_BIT; break; case 44: tcr->ips = ARM_LPAE_TCR_PS_44_BIT; break; case 48: tcr->ips = ARM_LPAE_TCR_PS_48_BIT; break; case 52: tcr->ips = ARM_LPAE_TCR_PS_52_BIT; break; default: goto out_free_data; } tcr->tsz = 64ULL - cfg->ias; /* MAIRs */ reg = (ARM_LPAE_MAIR_ATTR_NC << ARM_LPAE_MAIR_ATTR_SHIFT(ARM_LPAE_MAIR_ATTR_IDX_NC)) | (ARM_LPAE_MAIR_ATTR_WBRWA << ARM_LPAE_MAIR_ATTR_SHIFT(ARM_LPAE_MAIR_ATTR_IDX_CACHE)) | (ARM_LPAE_MAIR_ATTR_DEVICE << ARM_LPAE_MAIR_ATTR_SHIFT(ARM_LPAE_MAIR_ATTR_IDX_DEV)) | (ARM_LPAE_MAIR_ATTR_INC_OWBRWA << ARM_LPAE_MAIR_ATTR_SHIFT(ARM_LPAE_MAIR_ATTR_IDX_INC_OCACHE)); cfg->arm_lpae_s1_cfg.mair = reg; /* Looking good; allocate a pgd */ data->pgd = __arm_lpae_alloc_pages(ARM_LPAE_PGD_SIZE(data), GFP_KERNEL, cfg); if (!data->pgd) goto out_free_data; /* Ensure the empty pgd is visible before any actual TTBR write */ wmb(); /* TTBR */ cfg->arm_lpae_s1_cfg.ttbr = virt_to_phys(data->pgd); return &data->iop; out_free_data: kfree(data); return NULL; } static struct io_pgtable * arm_64_lpae_alloc_pgtable_s2(struct io_pgtable_cfg *cfg, void *cookie) { u64 sl; struct arm_lpae_io_pgtable *data; typeof(&cfg->arm_lpae_s2_cfg.vtcr) vtcr = &cfg->arm_lpae_s2_cfg.vtcr; /* The NS quirk doesn't apply at stage 2 */ if (cfg->quirks) return NULL; data = arm_lpae_alloc_pgtable(cfg); if (!data) return NULL; /* * Concatenate PGDs at level 1 if possible in order to reduce * the depth of the stage-2 walk. */ if (data->start_level == 0) { unsigned long pgd_pages; pgd_pages = ARM_LPAE_PGD_SIZE(data) / sizeof(arm_lpae_iopte); if (pgd_pages <= ARM_LPAE_S2_MAX_CONCAT_PAGES) { data->pgd_bits += data->bits_per_level; data->start_level++; } } /* VTCR */ if (cfg->coherent_walk) { vtcr->sh = ARM_LPAE_TCR_SH_IS; vtcr->irgn = ARM_LPAE_TCR_RGN_WBWA; vtcr->orgn = ARM_LPAE_TCR_RGN_WBWA; } else { vtcr->sh = ARM_LPAE_TCR_SH_OS; vtcr->irgn = ARM_LPAE_TCR_RGN_NC; vtcr->orgn = ARM_LPAE_TCR_RGN_NC; } sl = data->start_level; switch (ARM_LPAE_GRANULE(data)) { case SZ_4K: vtcr->tg = ARM_LPAE_TCR_TG0_4K; sl++; /* SL0 format is different for 4K granule size */ break; case SZ_16K: vtcr->tg = ARM_LPAE_TCR_TG0_16K; break; case SZ_64K: vtcr->tg = ARM_LPAE_TCR_TG0_64K; break; } switch (cfg->oas) { case 32: vtcr->ps = ARM_LPAE_TCR_PS_32_BIT; break; case 36: vtcr->ps = ARM_LPAE_TCR_PS_36_BIT; break; case 40: vtcr->ps = ARM_LPAE_TCR_PS_40_BIT; break; case 42: vtcr->ps = ARM_LPAE_TCR_PS_42_BIT; break; case 44: vtcr->ps = ARM_LPAE_TCR_PS_44_BIT; break; case 48: vtcr->ps = ARM_LPAE_TCR_PS_48_BIT; break; case 52: vtcr->ps = ARM_LPAE_TCR_PS_52_BIT; break; default: goto out_free_data; } vtcr->tsz = 64ULL - cfg->ias; vtcr->sl = ~sl & ARM_LPAE_VTCR_SL0_MASK; /* Allocate pgd pages */ data->pgd = __arm_lpae_alloc_pages(ARM_LPAE_PGD_SIZE(data), GFP_KERNEL, cfg); if (!data->pgd) goto out_free_data; /* Ensure the empty pgd is visible before any actual TTBR write */ wmb(); /* VTTBR */ cfg->arm_lpae_s2_cfg.vttbr = virt_to_phys(data->pgd); return &data->iop; out_free_data: kfree(data); return NULL; } static struct io_pgtable * arm_32_lpae_alloc_pgtable_s1(struct io_pgtable_cfg *cfg, void *cookie) { if (cfg->ias > 32 || cfg->oas > 40) return NULL; cfg->pgsize_bitmap &= (SZ_4K | SZ_2M | SZ_1G); return arm_64_lpae_alloc_pgtable_s1(cfg, cookie); } static struct io_pgtable * arm_32_lpae_alloc_pgtable_s2(struct io_pgtable_cfg *cfg, void *cookie) { if (cfg->ias > 40 || cfg->oas > 40) return NULL; cfg->pgsize_bitmap &= (SZ_4K | SZ_2M | SZ_1G); return arm_64_lpae_alloc_pgtable_s2(cfg, cookie); } static struct io_pgtable * arm_mali_lpae_alloc_pgtable(struct io_pgtable_cfg *cfg, void *cookie) { struct arm_lpae_io_pgtable *data; /* No quirks for Mali (hopefully) */ if (cfg->quirks) return NULL; if (cfg->ias > 48 || cfg->oas > 40) return NULL; cfg->pgsize_bitmap &= (SZ_4K | SZ_2M | SZ_1G); data = arm_lpae_alloc_pgtable(cfg); if (!data) return NULL; /* Mali seems to need a full 4-level table regardless of IAS */ if (data->start_level > 0) { data->start_level = 0; data->pgd_bits = 0; } /* * MEMATTR: Mali has no actual notion of a non-cacheable type, so the * best we can do is mimic the out-of-tree driver and hope that the * "implementation-defined caching policy" is good enough. Similarly, * we'll use it for the sake of a valid attribute for our 'device' * index, although callers should never request that in practice. */ cfg->arm_mali_lpae_cfg.memattr = (ARM_MALI_LPAE_MEMATTR_IMP_DEF << ARM_LPAE_MAIR_ATTR_SHIFT(ARM_LPAE_MAIR_ATTR_IDX_NC)) | (ARM_MALI_LPAE_MEMATTR_WRITE_ALLOC << ARM_LPAE_MAIR_ATTR_SHIFT(ARM_LPAE_MAIR_ATTR_IDX_CACHE)) | (ARM_MALI_LPAE_MEMATTR_IMP_DEF << ARM_LPAE_MAIR_ATTR_SHIFT(ARM_LPAE_MAIR_ATTR_IDX_DEV)); data->pgd = __arm_lpae_alloc_pages(ARM_LPAE_PGD_SIZE(data), GFP_KERNEL, cfg); if (!data->pgd) goto out_free_data; /* Ensure the empty pgd is visible before TRANSTAB can be written */ wmb(); cfg->arm_mali_lpae_cfg.transtab = virt_to_phys(data->pgd) | ARM_MALI_LPAE_TTBR_READ_INNER | ARM_MALI_LPAE_TTBR_ADRMODE_TABLE; if (cfg->coherent_walk) cfg->arm_mali_lpae_cfg.transtab |= ARM_MALI_LPAE_TTBR_SHARE_OUTER; return &data->iop; out_free_data: kfree(data); return NULL; } struct io_pgtable_init_fns io_pgtable_arm_64_lpae_s1_init_fns = { .alloc = arm_64_lpae_alloc_pgtable_s1, .free = arm_lpae_free_pgtable, }; struct io_pgtable_init_fns io_pgtable_arm_64_lpae_s2_init_fns = { .alloc = arm_64_lpae_alloc_pgtable_s2, .free = arm_lpae_free_pgtable, }; struct io_pgtable_init_fns io_pgtable_arm_32_lpae_s1_init_fns = { .alloc = arm_32_lpae_alloc_pgtable_s1, .free = arm_lpae_free_pgtable, }; struct io_pgtable_init_fns io_pgtable_arm_32_lpae_s2_init_fns = { .alloc = arm_32_lpae_alloc_pgtable_s2, .free = arm_lpae_free_pgtable, }; struct io_pgtable_init_fns io_pgtable_arm_mali_lpae_init_fns = { .alloc = arm_mali_lpae_alloc_pgtable, .free = arm_lpae_free_pgtable, }; #ifdef CONFIG_IOMMU_IO_PGTABLE_LPAE_SELFTEST static struct io_pgtable_cfg *cfg_cookie __initdata; static void __init dummy_tlb_flush_all(void *cookie) { WARN_ON(cookie != cfg_cookie); } static void __init dummy_tlb_flush(unsigned long iova, size_t size, size_t granule, void *cookie) { WARN_ON(cookie != cfg_cookie); WARN_ON(!(size & cfg_cookie->pgsize_bitmap)); } static void __init dummy_tlb_add_page(struct iommu_iotlb_gather *gather, unsigned long iova, size_t granule, void *cookie) { dummy_tlb_flush(iova, granule, granule, cookie); } static const struct iommu_flush_ops dummy_tlb_ops __initconst = { .tlb_flush_all = dummy_tlb_flush_all, .tlb_flush_walk = dummy_tlb_flush, .tlb_add_page = dummy_tlb_add_page, }; static void __init arm_lpae_dump_ops(struct io_pgtable_ops *ops) { struct arm_lpae_io_pgtable *data = io_pgtable_ops_to_data(ops); struct io_pgtable_cfg *cfg = &data->iop.cfg; pr_err("cfg: pgsize_bitmap 0x%lx, ias %u-bit\n", cfg->pgsize_bitmap, cfg->ias); pr_err("data: %d levels, 0x%zx pgd_size, %u pg_shift, %u bits_per_level, pgd @ %p\n", ARM_LPAE_MAX_LEVELS - data->start_level, ARM_LPAE_PGD_SIZE(data), ilog2(ARM_LPAE_GRANULE(data)), data->bits_per_level, data->pgd); } #define __FAIL(ops, i) ({ \ WARN(1, "selftest: test failed for fmt idx %d\n", (i)); \ arm_lpae_dump_ops(ops); \ selftest_running = false; \ -EFAULT; \ }) static int __init arm_lpae_run_tests(struct io_pgtable_cfg *cfg) { static const enum io_pgtable_fmt fmts[] __initconst = { ARM_64_LPAE_S1, ARM_64_LPAE_S2, }; int i, j; unsigned long iova; size_t size, mapped; struct io_pgtable_ops *ops; selftest_running = true; for (i = 0; i < ARRAY_SIZE(fmts); ++i) { cfg_cookie = cfg; ops = alloc_io_pgtable_ops(fmts[i], cfg, cfg); if (!ops) { pr_err("selftest: failed to allocate io pgtable ops\n"); return -ENOMEM; } /* * Initial sanity checks. * Empty page tables shouldn't provide any translations. */ if (ops->iova_to_phys(ops, 42)) return __FAIL(ops, i); if (ops->iova_to_phys(ops, SZ_1G + 42)) return __FAIL(ops, i); if (ops->iova_to_phys(ops, SZ_2G + 42)) return __FAIL(ops, i); /* * Distinct mappings of different granule sizes. */ iova = 0; for_each_set_bit(j, &cfg->pgsize_bitmap, BITS_PER_LONG) { size = 1UL << j; if (ops->map_pages(ops, iova, iova, size, 1, IOMMU_READ | IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_CACHE, GFP_KERNEL, &mapped)) return __FAIL(ops, i); /* Overlapping mappings */ if (!ops->map_pages(ops, iova, iova + size, size, 1, IOMMU_READ | IOMMU_NOEXEC, GFP_KERNEL, &mapped)) return __FAIL(ops, i); if (ops->iova_to_phys(ops, iova + 42) != (iova + 42)) return __FAIL(ops, i); iova += SZ_1G; } /* Partial unmap */ size = 1UL << __ffs(cfg->pgsize_bitmap); if (ops->unmap_pages(ops, SZ_1G + size, size, 1, NULL) != size) return __FAIL(ops, i); /* Remap of partial unmap */ if (ops->map_pages(ops, SZ_1G + size, size, size, 1, IOMMU_READ, GFP_KERNEL, &mapped)) return __FAIL(ops, i); if (ops->iova_to_phys(ops, SZ_1G + size + 42) != (size + 42)) return __FAIL(ops, i); /* Full unmap */ iova = 0; for_each_set_bit(j, &cfg->pgsize_bitmap, BITS_PER_LONG) { size = 1UL << j; if (ops->unmap_pages(ops, iova, size, 1, NULL) != size) return __FAIL(ops, i); if (ops->iova_to_phys(ops, iova + 42)) return __FAIL(ops, i); /* Remap full block */ if (ops->map_pages(ops, iova, iova, size, 1, IOMMU_WRITE, GFP_KERNEL, &mapped)) return __FAIL(ops, i); if (ops->iova_to_phys(ops, iova + 42) != (iova + 42)) return __FAIL(ops, i); iova += SZ_1G; } free_io_pgtable_ops(ops); } selftest_running = false; return 0; } static int __init arm_lpae_do_selftests(void) { static const unsigned long pgsize[] __initconst = { SZ_4K | SZ_2M | SZ_1G, SZ_16K | SZ_32M, SZ_64K | SZ_512M, }; static const unsigned int ias[] __initconst = { 32, 36, 40, 42, 44, 48, }; int i, j, pass = 0, fail = 0; struct device dev; struct io_pgtable_cfg cfg = { .tlb = &dummy_tlb_ops, .oas = 48, .coherent_walk = true, .iommu_dev = &dev, }; /* __arm_lpae_alloc_pages() merely needs dev_to_node() to work */ set_dev_node(&dev, NUMA_NO_NODE); for (i = 0; i < ARRAY_SIZE(pgsize); ++i) { for (j = 0; j < ARRAY_SIZE(ias); ++j) { cfg.pgsize_bitmap = pgsize[i]; cfg.ias = ias[j]; pr_info("selftest: pgsize_bitmap 0x%08lx, IAS %u\n", pgsize[i], ias[j]); if (arm_lpae_run_tests(&cfg)) fail++; else pass++; } } pr_info("selftest: completed with %d PASS %d FAIL\n", pass, fail); return fail ? -EFAULT : 0; } subsys_initcall(arm_lpae_do_selftests); #endif
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1