Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Joerg Roedel | 2489 | 18.88% | 75 | 23.66% |
Alex Williamson | 2430 | 18.43% | 5 | 1.58% |
Jason Gunthorpe | 2085 | 15.81% | 46 | 14.51% |
Lu Baolu | 1515 | 11.49% | 25 | 7.89% |
Robin Murphy | 1097 | 8.32% | 39 | 12.30% |
Eric Auger | 639 | 4.85% | 9 | 2.84% |
Jacob jun Pan | 381 | 2.89% | 3 | 0.95% |
Will Deacon | 345 | 2.62% | 9 | 2.84% |
Jean-Philippe Brucker | 315 | 2.39% | 4 | 1.26% |
Sai Praneeth | 283 | 2.15% | 1 | 0.32% |
Ohad Ben-Cohen | 265 | 2.01% | 6 | 1.89% |
Tero Kristo via iommu | 156 | 1.18% | 1 | 0.32% |
Yong Wu | 142 | 1.08% | 3 | 0.95% |
Christoph Hellwig | 98 | 0.74% | 6 | 1.89% |
Olof Johansson | 93 | 0.71% | 1 | 0.32% |
Olav Haugan | 87 | 0.66% | 1 | 0.32% |
shameer | 70 | 0.53% | 3 | 0.95% |
Nicolin Chen | 68 | 0.52% | 2 | 0.63% |
Nipun Gupta | 62 | 0.47% | 2 | 0.63% |
Shuah Khan | 56 | 0.42% | 8 | 2.52% |
Thierry Reding | 41 | 0.31% | 3 | 0.95% |
Vijayanand Jitta | 35 | 0.27% | 1 | 0.32% |
Lorenzo Pieralisi | 32 | 0.24% | 1 | 0.32% |
Zhen Lei | 31 | 0.24% | 3 | 0.95% |
Isaac J. Manjarres | 23 | 0.17% | 1 | 0.32% |
Lianbo Jiang | 23 | 0.17% | 1 | 0.32% |
Niklas Schnelle | 21 | 0.16% | 1 | 0.32% |
John Garry | 16 | 0.12% | 2 | 0.63% |
Heiner Kallweit | 16 | 0.12% | 2 | 0.63% |
Andy Shevchenko | 15 | 0.11% | 2 | 0.63% |
Jordan Crouse | 15 | 0.11% | 1 | 0.32% |
Mark Salter | 15 | 0.11% | 1 | 0.32% |
Heiko Stübner | 14 | 0.11% | 1 | 0.32% |
tom | 14 | 0.11% | 2 | 0.63% |
Zhichang Yuan | 14 | 0.11% | 1 | 0.32% |
Logan Gunthorpe | 13 | 0.10% | 2 | 0.63% |
Sheng Yang | 11 | 0.08% | 1 | 0.32% |
Dmitry Osipenko | 11 | 0.08% | 2 | 0.63% |
Marek Szyprowski | 11 | 0.08% | 2 | 0.63% |
Andrew Morton | 11 | 0.08% | 2 | 0.63% |
Hiroshi Doyu | 10 | 0.08% | 2 | 0.63% |
Björn Helgaas | 9 | 0.07% | 1 | 0.32% |
Gerard Snitselaar | 8 | 0.06% | 1 | 0.32% |
Jacek Lawrynowicz | 7 | 0.05% | 1 | 0.32% |
Miaoqian Lin | 7 | 0.05% | 1 | 0.32% |
Tom Lendacky | 7 | 0.05% | 2 | 0.63% |
Yang Yingliang | 6 | 0.05% | 1 | 0.32% |
Yoshihiro Shimoda | 6 | 0.05% | 1 | 0.32% |
Allen M Kay | 5 | 0.04% | 1 | 0.32% |
Joe Perches | 5 | 0.04% | 1 | 0.32% |
Anil S Keshavamurthy | 4 | 0.03% | 1 | 0.32% |
Paul Gortmaker | 4 | 0.03% | 1 | 0.32% |
Baoquan He | 4 | 0.03% | 1 | 0.32% |
Greg Kroah-Hartman | 4 | 0.03% | 1 | 0.32% |
Florian Fainelli | 4 | 0.03% | 1 | 0.32% |
Qiushi Wu | 4 | 0.03% | 1 | 0.32% |
Gary R Hook | 3 | 0.02% | 1 | 0.32% |
Ashish Mhetre | 3 | 0.02% | 1 | 0.32% |
Marc Zyngier | 3 | 0.02% | 1 | 0.32% |
Vasant Hegde | 3 | 0.02% | 2 | 0.63% |
Suravee Suthikulpanit | 3 | 0.02% | 1 | 0.32% |
Zhu Wang | 2 | 0.02% | 1 | 0.32% |
Hannes Eder | 2 | 0.02% | 1 | 0.32% |
Wei Yongjun | 2 | 0.02% | 1 | 0.32% |
Cho KyongHo | 2 | 0.02% | 1 | 0.32% |
Thomas Gleixner | 2 | 0.02% | 1 | 0.32% |
keliu | 2 | 0.02% | 1 | 0.32% |
Fabio Estevam | 2 | 0.02% | 1 | 0.32% |
Thomas Weißschuh | 1 | 0.01% | 1 | 0.32% |
Qian Cai | 1 | 0.01% | 1 | 0.32% |
Doug Anderson | 1 | 0.01% | 1 | 0.32% |
Dan J Williams | 1 | 0.01% | 1 | 0.32% |
Varun Sethi | 1 | 0.01% | 1 | 0.32% |
Total | 13186 | 317 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2007-2008 Advanced Micro Devices, Inc. * Author: Joerg Roedel <jroedel@suse.de> */ #define pr_fmt(fmt) "iommu: " fmt #include <linux/amba/bus.h> #include <linux/device.h> #include <linux/kernel.h> #include <linux/bits.h> #include <linux/bug.h> #include <linux/types.h> #include <linux/init.h> #include <linux/export.h> #include <linux/slab.h> #include <linux/errno.h> #include <linux/host1x_context_bus.h> #include <linux/iommu.h> #include <linux/idr.h> #include <linux/err.h> #include <linux/pci.h> #include <linux/pci-ats.h> #include <linux/bitops.h> #include <linux/platform_device.h> #include <linux/property.h> #include <linux/fsl/mc.h> #include <linux/module.h> #include <linux/cc_platform.h> #include <linux/cdx/cdx_bus.h> #include <trace/events/iommu.h> #include <linux/sched/mm.h> #include <linux/msi.h> #include "dma-iommu.h" #include "iommu-priv.h" #include "iommu-sva.h" static struct kset *iommu_group_kset; static DEFINE_IDA(iommu_group_ida); static DEFINE_IDA(iommu_global_pasid_ida); static unsigned int iommu_def_domain_type __read_mostly; static bool iommu_dma_strict __read_mostly = IS_ENABLED(CONFIG_IOMMU_DEFAULT_DMA_STRICT); static u32 iommu_cmd_line __read_mostly; struct iommu_group { struct kobject kobj; struct kobject *devices_kobj; struct list_head devices; struct xarray pasid_array; struct mutex mutex; void *iommu_data; void (*iommu_data_release)(void *iommu_data); char *name; int id; struct iommu_domain *default_domain; struct iommu_domain *blocking_domain; struct iommu_domain *domain; struct list_head entry; unsigned int owner_cnt; void *owner; }; struct group_device { struct list_head list; struct device *dev; char *name; }; /* Iterate over each struct group_device in a struct iommu_group */ #define for_each_group_device(group, pos) \ list_for_each_entry(pos, &(group)->devices, list) struct iommu_group_attribute { struct attribute attr; ssize_t (*show)(struct iommu_group *group, char *buf); ssize_t (*store)(struct iommu_group *group, const char *buf, size_t count); }; static const char * const iommu_group_resv_type_string[] = { [IOMMU_RESV_DIRECT] = "direct", [IOMMU_RESV_DIRECT_RELAXABLE] = "direct-relaxable", [IOMMU_RESV_RESERVED] = "reserved", [IOMMU_RESV_MSI] = "msi", [IOMMU_RESV_SW_MSI] = "msi", }; #define IOMMU_CMD_LINE_DMA_API BIT(0) #define IOMMU_CMD_LINE_STRICT BIT(1) static int iommu_bus_notifier(struct notifier_block *nb, unsigned long action, void *data); static void iommu_release_device(struct device *dev); static struct iommu_domain * __iommu_group_domain_alloc(struct iommu_group *group, unsigned int type); static int __iommu_attach_device(struct iommu_domain *domain, struct device *dev); static int __iommu_attach_group(struct iommu_domain *domain, struct iommu_group *group); enum { IOMMU_SET_DOMAIN_MUST_SUCCEED = 1 << 0, }; static int __iommu_device_set_domain(struct iommu_group *group, struct device *dev, struct iommu_domain *new_domain, unsigned int flags); static int __iommu_group_set_domain_internal(struct iommu_group *group, struct iommu_domain *new_domain, unsigned int flags); static int __iommu_group_set_domain(struct iommu_group *group, struct iommu_domain *new_domain) { return __iommu_group_set_domain_internal(group, new_domain, 0); } static void __iommu_group_set_domain_nofail(struct iommu_group *group, struct iommu_domain *new_domain) { WARN_ON(__iommu_group_set_domain_internal( group, new_domain, IOMMU_SET_DOMAIN_MUST_SUCCEED)); } static int iommu_setup_default_domain(struct iommu_group *group, int target_type); static int iommu_create_device_direct_mappings(struct iommu_domain *domain, struct device *dev); static ssize_t iommu_group_store_type(struct iommu_group *group, const char *buf, size_t count); static struct group_device *iommu_group_alloc_device(struct iommu_group *group, struct device *dev); static void __iommu_group_free_device(struct iommu_group *group, struct group_device *grp_dev); #define IOMMU_GROUP_ATTR(_name, _mode, _show, _store) \ struct iommu_group_attribute iommu_group_attr_##_name = \ __ATTR(_name, _mode, _show, _store) #define to_iommu_group_attr(_attr) \ container_of(_attr, struct iommu_group_attribute, attr) #define to_iommu_group(_kobj) \ container_of(_kobj, struct iommu_group, kobj) static LIST_HEAD(iommu_device_list); static DEFINE_SPINLOCK(iommu_device_lock); static struct bus_type * const iommu_buses[] = { &platform_bus_type, #ifdef CONFIG_PCI &pci_bus_type, #endif #ifdef CONFIG_ARM_AMBA &amba_bustype, #endif #ifdef CONFIG_FSL_MC_BUS &fsl_mc_bus_type, #endif #ifdef CONFIG_TEGRA_HOST1X_CONTEXT_BUS &host1x_context_device_bus_type, #endif #ifdef CONFIG_CDX_BUS &cdx_bus_type, #endif }; /* * Use a function instead of an array here because the domain-type is a * bit-field, so an array would waste memory. */ static const char *iommu_domain_type_str(unsigned int t) { switch (t) { case IOMMU_DOMAIN_BLOCKED: return "Blocked"; case IOMMU_DOMAIN_IDENTITY: return "Passthrough"; case IOMMU_DOMAIN_UNMANAGED: return "Unmanaged"; case IOMMU_DOMAIN_DMA: case IOMMU_DOMAIN_DMA_FQ: return "Translated"; case IOMMU_DOMAIN_PLATFORM: return "Platform"; default: return "Unknown"; } } static int __init iommu_subsys_init(void) { struct notifier_block *nb; if (!(iommu_cmd_line & IOMMU_CMD_LINE_DMA_API)) { if (IS_ENABLED(CONFIG_IOMMU_DEFAULT_PASSTHROUGH)) iommu_set_default_passthrough(false); else iommu_set_default_translated(false); if (iommu_default_passthrough() && cc_platform_has(CC_ATTR_MEM_ENCRYPT)) { pr_info("Memory encryption detected - Disabling default IOMMU Passthrough\n"); iommu_set_default_translated(false); } } if (!iommu_default_passthrough() && !iommu_dma_strict) iommu_def_domain_type = IOMMU_DOMAIN_DMA_FQ; pr_info("Default domain type: %s%s\n", iommu_domain_type_str(iommu_def_domain_type), (iommu_cmd_line & IOMMU_CMD_LINE_DMA_API) ? " (set via kernel command line)" : ""); if (!iommu_default_passthrough()) pr_info("DMA domain TLB invalidation policy: %s mode%s\n", iommu_dma_strict ? "strict" : "lazy", (iommu_cmd_line & IOMMU_CMD_LINE_STRICT) ? " (set via kernel command line)" : ""); nb = kcalloc(ARRAY_SIZE(iommu_buses), sizeof(*nb), GFP_KERNEL); if (!nb) return -ENOMEM; for (int i = 0; i < ARRAY_SIZE(iommu_buses); i++) { nb[i].notifier_call = iommu_bus_notifier; bus_register_notifier(iommu_buses[i], &nb[i]); } return 0; } subsys_initcall(iommu_subsys_init); static int remove_iommu_group(struct device *dev, void *data) { if (dev->iommu && dev->iommu->iommu_dev == data) iommu_release_device(dev); return 0; } /** * iommu_device_register() - Register an IOMMU hardware instance * @iommu: IOMMU handle for the instance * @ops: IOMMU ops to associate with the instance * @hwdev: (optional) actual instance device, used for fwnode lookup * * Return: 0 on success, or an error. */ int iommu_device_register(struct iommu_device *iommu, const struct iommu_ops *ops, struct device *hwdev) { int err = 0; /* We need to be able to take module references appropriately */ if (WARN_ON(is_module_address((unsigned long)ops) && !ops->owner)) return -EINVAL; /* * Temporarily enforce global restriction to a single driver. This was * already the de-facto behaviour, since any possible combination of * existing drivers would compete for at least the PCI or platform bus. */ if (iommu_buses[0]->iommu_ops && iommu_buses[0]->iommu_ops != ops) return -EBUSY; iommu->ops = ops; if (hwdev) iommu->fwnode = dev_fwnode(hwdev); spin_lock(&iommu_device_lock); list_add_tail(&iommu->list, &iommu_device_list); spin_unlock(&iommu_device_lock); for (int i = 0; i < ARRAY_SIZE(iommu_buses) && !err; i++) { iommu_buses[i]->iommu_ops = ops; err = bus_iommu_probe(iommu_buses[i]); } if (err) iommu_device_unregister(iommu); return err; } EXPORT_SYMBOL_GPL(iommu_device_register); void iommu_device_unregister(struct iommu_device *iommu) { for (int i = 0; i < ARRAY_SIZE(iommu_buses); i++) bus_for_each_dev(iommu_buses[i], NULL, iommu, remove_iommu_group); spin_lock(&iommu_device_lock); list_del(&iommu->list); spin_unlock(&iommu_device_lock); /* Pairs with the alloc in generic_single_device_group() */ iommu_group_put(iommu->singleton_group); iommu->singleton_group = NULL; } EXPORT_SYMBOL_GPL(iommu_device_unregister); #if IS_ENABLED(CONFIG_IOMMUFD_TEST) void iommu_device_unregister_bus(struct iommu_device *iommu, struct bus_type *bus, struct notifier_block *nb) { bus_unregister_notifier(bus, nb); iommu_device_unregister(iommu); } EXPORT_SYMBOL_GPL(iommu_device_unregister_bus); /* * Register an iommu driver against a single bus. This is only used by iommufd * selftest to create a mock iommu driver. The caller must provide * some memory to hold a notifier_block. */ int iommu_device_register_bus(struct iommu_device *iommu, const struct iommu_ops *ops, struct bus_type *bus, struct notifier_block *nb) { int err; iommu->ops = ops; nb->notifier_call = iommu_bus_notifier; err = bus_register_notifier(bus, nb); if (err) return err; spin_lock(&iommu_device_lock); list_add_tail(&iommu->list, &iommu_device_list); spin_unlock(&iommu_device_lock); bus->iommu_ops = ops; err = bus_iommu_probe(bus); if (err) { iommu_device_unregister_bus(iommu, bus, nb); return err; } return 0; } EXPORT_SYMBOL_GPL(iommu_device_register_bus); #endif static struct dev_iommu *dev_iommu_get(struct device *dev) { struct dev_iommu *param = dev->iommu; if (param) return param; param = kzalloc(sizeof(*param), GFP_KERNEL); if (!param) return NULL; mutex_init(¶m->lock); dev->iommu = param; return param; } static void dev_iommu_free(struct device *dev) { struct dev_iommu *param = dev->iommu; dev->iommu = NULL; if (param->fwspec) { fwnode_handle_put(param->fwspec->iommu_fwnode); kfree(param->fwspec); } kfree(param); } static u32 dev_iommu_get_max_pasids(struct device *dev) { u32 max_pasids = 0, bits = 0; int ret; if (dev_is_pci(dev)) { ret = pci_max_pasids(to_pci_dev(dev)); if (ret > 0) max_pasids = ret; } else { ret = device_property_read_u32(dev, "pasid-num-bits", &bits); if (!ret) max_pasids = 1UL << bits; } return min_t(u32, max_pasids, dev->iommu->iommu_dev->max_pasids); } /* * Init the dev->iommu and dev->iommu_group in the struct device and get the * driver probed */ static int iommu_init_device(struct device *dev, const struct iommu_ops *ops) { struct iommu_device *iommu_dev; struct iommu_group *group; int ret; if (!dev_iommu_get(dev)) return -ENOMEM; if (!try_module_get(ops->owner)) { ret = -EINVAL; goto err_free; } iommu_dev = ops->probe_device(dev); if (IS_ERR(iommu_dev)) { ret = PTR_ERR(iommu_dev); goto err_module_put; } dev->iommu->iommu_dev = iommu_dev; ret = iommu_device_link(iommu_dev, dev); if (ret) goto err_release; group = ops->device_group(dev); if (WARN_ON_ONCE(group == NULL)) group = ERR_PTR(-EINVAL); if (IS_ERR(group)) { ret = PTR_ERR(group); goto err_unlink; } dev->iommu_group = group; dev->iommu->max_pasids = dev_iommu_get_max_pasids(dev); if (ops->is_attach_deferred) dev->iommu->attach_deferred = ops->is_attach_deferred(dev); return 0; err_unlink: iommu_device_unlink(iommu_dev, dev); err_release: if (ops->release_device) ops->release_device(dev); err_module_put: module_put(ops->owner); err_free: dev->iommu->iommu_dev = NULL; dev_iommu_free(dev); return ret; } static void iommu_deinit_device(struct device *dev) { struct iommu_group *group = dev->iommu_group; const struct iommu_ops *ops = dev_iommu_ops(dev); lockdep_assert_held(&group->mutex); iommu_device_unlink(dev->iommu->iommu_dev, dev); /* * release_device() must stop using any attached domain on the device. * If there are still other devices in the group they are not effected * by this callback. * * The IOMMU driver must set the device to either an identity or * blocking translation and stop using any domain pointer, as it is * going to be freed. */ if (ops->release_device) ops->release_device(dev); /* * If this is the last driver to use the group then we must free the * domains before we do the module_put(). */ if (list_empty(&group->devices)) { if (group->default_domain) { iommu_domain_free(group->default_domain); group->default_domain = NULL; } if (group->blocking_domain) { iommu_domain_free(group->blocking_domain); group->blocking_domain = NULL; } group->domain = NULL; } /* Caller must put iommu_group */ dev->iommu_group = NULL; module_put(ops->owner); dev_iommu_free(dev); } DEFINE_MUTEX(iommu_probe_device_lock); static int __iommu_probe_device(struct device *dev, struct list_head *group_list) { const struct iommu_ops *ops = dev->bus->iommu_ops; struct iommu_group *group; struct group_device *gdev; int ret; if (!ops) return -ENODEV; /* * Serialise to avoid races between IOMMU drivers registering in * parallel and/or the "replay" calls from ACPI/OF code via client * driver probe. Once the latter have been cleaned up we should * probably be able to use device_lock() here to minimise the scope, * but for now enforcing a simple global ordering is fine. */ lockdep_assert_held(&iommu_probe_device_lock); /* Device is probed already if in a group */ if (dev->iommu_group) return 0; ret = iommu_init_device(dev, ops); if (ret) return ret; group = dev->iommu_group; gdev = iommu_group_alloc_device(group, dev); mutex_lock(&group->mutex); if (IS_ERR(gdev)) { ret = PTR_ERR(gdev); goto err_put_group; } /* * The gdev must be in the list before calling * iommu_setup_default_domain() */ list_add_tail(&gdev->list, &group->devices); WARN_ON(group->default_domain && !group->domain); if (group->default_domain) iommu_create_device_direct_mappings(group->default_domain, dev); if (group->domain) { ret = __iommu_device_set_domain(group, dev, group->domain, 0); if (ret) goto err_remove_gdev; } else if (!group->default_domain && !group_list) { ret = iommu_setup_default_domain(group, 0); if (ret) goto err_remove_gdev; } else if (!group->default_domain) { /* * With a group_list argument we defer the default_domain setup * to the caller by providing a de-duplicated list of groups * that need further setup. */ if (list_empty(&group->entry)) list_add_tail(&group->entry, group_list); } mutex_unlock(&group->mutex); if (dev_is_pci(dev)) iommu_dma_set_pci_32bit_workaround(dev); return 0; err_remove_gdev: list_del(&gdev->list); __iommu_group_free_device(group, gdev); err_put_group: iommu_deinit_device(dev); mutex_unlock(&group->mutex); iommu_group_put(group); return ret; } int iommu_probe_device(struct device *dev) { const struct iommu_ops *ops; int ret; mutex_lock(&iommu_probe_device_lock); ret = __iommu_probe_device(dev, NULL); mutex_unlock(&iommu_probe_device_lock); if (ret) return ret; ops = dev_iommu_ops(dev); if (ops->probe_finalize) ops->probe_finalize(dev); return 0; } static void __iommu_group_free_device(struct iommu_group *group, struct group_device *grp_dev) { struct device *dev = grp_dev->dev; sysfs_remove_link(group->devices_kobj, grp_dev->name); sysfs_remove_link(&dev->kobj, "iommu_group"); trace_remove_device_from_group(group->id, dev); /* * If the group has become empty then ownership must have been * released, and the current domain must be set back to NULL or * the default domain. */ if (list_empty(&group->devices)) WARN_ON(group->owner_cnt || group->domain != group->default_domain); kfree(grp_dev->name); kfree(grp_dev); } /* Remove the iommu_group from the struct device. */ static void __iommu_group_remove_device(struct device *dev) { struct iommu_group *group = dev->iommu_group; struct group_device *device; mutex_lock(&group->mutex); for_each_group_device(group, device) { if (device->dev != dev) continue; list_del(&device->list); __iommu_group_free_device(group, device); if (dev->iommu && dev->iommu->iommu_dev) iommu_deinit_device(dev); else dev->iommu_group = NULL; break; } mutex_unlock(&group->mutex); /* * Pairs with the get in iommu_init_device() or * iommu_group_add_device() */ iommu_group_put(group); } static void iommu_release_device(struct device *dev) { struct iommu_group *group = dev->iommu_group; if (group) __iommu_group_remove_device(dev); /* Free any fwspec if no iommu_driver was ever attached */ if (dev->iommu) dev_iommu_free(dev); } static int __init iommu_set_def_domain_type(char *str) { bool pt; int ret; ret = kstrtobool(str, &pt); if (ret) return ret; if (pt) iommu_set_default_passthrough(true); else iommu_set_default_translated(true); return 0; } early_param("iommu.passthrough", iommu_set_def_domain_type); static int __init iommu_dma_setup(char *str) { int ret = kstrtobool(str, &iommu_dma_strict); if (!ret) iommu_cmd_line |= IOMMU_CMD_LINE_STRICT; return ret; } early_param("iommu.strict", iommu_dma_setup); void iommu_set_dma_strict(void) { iommu_dma_strict = true; if (iommu_def_domain_type == IOMMU_DOMAIN_DMA_FQ) iommu_def_domain_type = IOMMU_DOMAIN_DMA; } static ssize_t iommu_group_attr_show(struct kobject *kobj, struct attribute *__attr, char *buf) { struct iommu_group_attribute *attr = to_iommu_group_attr(__attr); struct iommu_group *group = to_iommu_group(kobj); ssize_t ret = -EIO; if (attr->show) ret = attr->show(group, buf); return ret; } static ssize_t iommu_group_attr_store(struct kobject *kobj, struct attribute *__attr, const char *buf, size_t count) { struct iommu_group_attribute *attr = to_iommu_group_attr(__attr); struct iommu_group *group = to_iommu_group(kobj); ssize_t ret = -EIO; if (attr->store) ret = attr->store(group, buf, count); return ret; } static const struct sysfs_ops iommu_group_sysfs_ops = { .show = iommu_group_attr_show, .store = iommu_group_attr_store, }; static int iommu_group_create_file(struct iommu_group *group, struct iommu_group_attribute *attr) { return sysfs_create_file(&group->kobj, &attr->attr); } static void iommu_group_remove_file(struct iommu_group *group, struct iommu_group_attribute *attr) { sysfs_remove_file(&group->kobj, &attr->attr); } static ssize_t iommu_group_show_name(struct iommu_group *group, char *buf) { return sysfs_emit(buf, "%s\n", group->name); } /** * iommu_insert_resv_region - Insert a new region in the * list of reserved regions. * @new: new region to insert * @regions: list of regions * * Elements are sorted by start address and overlapping segments * of the same type are merged. */ static int iommu_insert_resv_region(struct iommu_resv_region *new, struct list_head *regions) { struct iommu_resv_region *iter, *tmp, *nr, *top; LIST_HEAD(stack); nr = iommu_alloc_resv_region(new->start, new->length, new->prot, new->type, GFP_KERNEL); if (!nr) return -ENOMEM; /* First add the new element based on start address sorting */ list_for_each_entry(iter, regions, list) { if (nr->start < iter->start || (nr->start == iter->start && nr->type <= iter->type)) break; } list_add_tail(&nr->list, &iter->list); /* Merge overlapping segments of type nr->type in @regions, if any */ list_for_each_entry_safe(iter, tmp, regions, list) { phys_addr_t top_end, iter_end = iter->start + iter->length - 1; /* no merge needed on elements of different types than @new */ if (iter->type != new->type) { list_move_tail(&iter->list, &stack); continue; } /* look for the last stack element of same type as @iter */ list_for_each_entry_reverse(top, &stack, list) if (top->type == iter->type) goto check_overlap; list_move_tail(&iter->list, &stack); continue; check_overlap: top_end = top->start + top->length - 1; if (iter->start > top_end + 1) { list_move_tail(&iter->list, &stack); } else { top->length = max(top_end, iter_end) - top->start + 1; list_del(&iter->list); kfree(iter); } } list_splice(&stack, regions); return 0; } static int iommu_insert_device_resv_regions(struct list_head *dev_resv_regions, struct list_head *group_resv_regions) { struct iommu_resv_region *entry; int ret = 0; list_for_each_entry(entry, dev_resv_regions, list) { ret = iommu_insert_resv_region(entry, group_resv_regions); if (ret) break; } return ret; } int iommu_get_group_resv_regions(struct iommu_group *group, struct list_head *head) { struct group_device *device; int ret = 0; mutex_lock(&group->mutex); for_each_group_device(group, device) { struct list_head dev_resv_regions; /* * Non-API groups still expose reserved_regions in sysfs, * so filter out calls that get here that way. */ if (!device->dev->iommu) break; INIT_LIST_HEAD(&dev_resv_regions); iommu_get_resv_regions(device->dev, &dev_resv_regions); ret = iommu_insert_device_resv_regions(&dev_resv_regions, head); iommu_put_resv_regions(device->dev, &dev_resv_regions); if (ret) break; } mutex_unlock(&group->mutex); return ret; } EXPORT_SYMBOL_GPL(iommu_get_group_resv_regions); static ssize_t iommu_group_show_resv_regions(struct iommu_group *group, char *buf) { struct iommu_resv_region *region, *next; struct list_head group_resv_regions; int offset = 0; INIT_LIST_HEAD(&group_resv_regions); iommu_get_group_resv_regions(group, &group_resv_regions); list_for_each_entry_safe(region, next, &group_resv_regions, list) { offset += sysfs_emit_at(buf, offset, "0x%016llx 0x%016llx %s\n", (long long)region->start, (long long)(region->start + region->length - 1), iommu_group_resv_type_string[region->type]); kfree(region); } return offset; } static ssize_t iommu_group_show_type(struct iommu_group *group, char *buf) { char *type = "unknown"; mutex_lock(&group->mutex); if (group->default_domain) { switch (group->default_domain->type) { case IOMMU_DOMAIN_BLOCKED: type = "blocked"; break; case IOMMU_DOMAIN_IDENTITY: type = "identity"; break; case IOMMU_DOMAIN_UNMANAGED: type = "unmanaged"; break; case IOMMU_DOMAIN_DMA: type = "DMA"; break; case IOMMU_DOMAIN_DMA_FQ: type = "DMA-FQ"; break; } } mutex_unlock(&group->mutex); return sysfs_emit(buf, "%s\n", type); } static IOMMU_GROUP_ATTR(name, S_IRUGO, iommu_group_show_name, NULL); static IOMMU_GROUP_ATTR(reserved_regions, 0444, iommu_group_show_resv_regions, NULL); static IOMMU_GROUP_ATTR(type, 0644, iommu_group_show_type, iommu_group_store_type); static void iommu_group_release(struct kobject *kobj) { struct iommu_group *group = to_iommu_group(kobj); pr_debug("Releasing group %d\n", group->id); if (group->iommu_data_release) group->iommu_data_release(group->iommu_data); ida_free(&iommu_group_ida, group->id); /* Domains are free'd by iommu_deinit_device() */ WARN_ON(group->default_domain); WARN_ON(group->blocking_domain); kfree(group->name); kfree(group); } static const struct kobj_type iommu_group_ktype = { .sysfs_ops = &iommu_group_sysfs_ops, .release = iommu_group_release, }; /** * iommu_group_alloc - Allocate a new group * * This function is called by an iommu driver to allocate a new iommu * group. The iommu group represents the minimum granularity of the iommu. * Upon successful return, the caller holds a reference to the supplied * group in order to hold the group until devices are added. Use * iommu_group_put() to release this extra reference count, allowing the * group to be automatically reclaimed once it has no devices or external * references. */ struct iommu_group *iommu_group_alloc(void) { struct iommu_group *group; int ret; group = kzalloc(sizeof(*group), GFP_KERNEL); if (!group) return ERR_PTR(-ENOMEM); group->kobj.kset = iommu_group_kset; mutex_init(&group->mutex); INIT_LIST_HEAD(&group->devices); INIT_LIST_HEAD(&group->entry); xa_init(&group->pasid_array); ret = ida_alloc(&iommu_group_ida, GFP_KERNEL); if (ret < 0) { kfree(group); return ERR_PTR(ret); } group->id = ret; ret = kobject_init_and_add(&group->kobj, &iommu_group_ktype, NULL, "%d", group->id); if (ret) { kobject_put(&group->kobj); return ERR_PTR(ret); } group->devices_kobj = kobject_create_and_add("devices", &group->kobj); if (!group->devices_kobj) { kobject_put(&group->kobj); /* triggers .release & free */ return ERR_PTR(-ENOMEM); } /* * The devices_kobj holds a reference on the group kobject, so * as long as that exists so will the group. We can therefore * use the devices_kobj for reference counting. */ kobject_put(&group->kobj); ret = iommu_group_create_file(group, &iommu_group_attr_reserved_regions); if (ret) { kobject_put(group->devices_kobj); return ERR_PTR(ret); } ret = iommu_group_create_file(group, &iommu_group_attr_type); if (ret) { kobject_put(group->devices_kobj); return ERR_PTR(ret); } pr_debug("Allocated group %d\n", group->id); return group; } EXPORT_SYMBOL_GPL(iommu_group_alloc); /** * iommu_group_get_iommudata - retrieve iommu_data registered for a group * @group: the group * * iommu drivers can store data in the group for use when doing iommu * operations. This function provides a way to retrieve it. Caller * should hold a group reference. */ void *iommu_group_get_iommudata(struct iommu_group *group) { return group->iommu_data; } EXPORT_SYMBOL_GPL(iommu_group_get_iommudata); /** * iommu_group_set_iommudata - set iommu_data for a group * @group: the group * @iommu_data: new data * @release: release function for iommu_data * * iommu drivers can store data in the group for use when doing iommu * operations. This function provides a way to set the data after * the group has been allocated. Caller should hold a group reference. */ void iommu_group_set_iommudata(struct iommu_group *group, void *iommu_data, void (*release)(void *iommu_data)) { group->iommu_data = iommu_data; group->iommu_data_release = release; } EXPORT_SYMBOL_GPL(iommu_group_set_iommudata); /** * iommu_group_set_name - set name for a group * @group: the group * @name: name * * Allow iommu driver to set a name for a group. When set it will * appear in a name attribute file under the group in sysfs. */ int iommu_group_set_name(struct iommu_group *group, const char *name) { int ret; if (group->name) { iommu_group_remove_file(group, &iommu_group_attr_name); kfree(group->name); group->name = NULL; if (!name) return 0; } group->name = kstrdup(name, GFP_KERNEL); if (!group->name) return -ENOMEM; ret = iommu_group_create_file(group, &iommu_group_attr_name); if (ret) { kfree(group->name); group->name = NULL; return ret; } return 0; } EXPORT_SYMBOL_GPL(iommu_group_set_name); static int iommu_create_device_direct_mappings(struct iommu_domain *domain, struct device *dev) { struct iommu_resv_region *entry; struct list_head mappings; unsigned long pg_size; int ret = 0; pg_size = domain->pgsize_bitmap ? 1UL << __ffs(domain->pgsize_bitmap) : 0; INIT_LIST_HEAD(&mappings); if (WARN_ON_ONCE(iommu_is_dma_domain(domain) && !pg_size)) return -EINVAL; iommu_get_resv_regions(dev, &mappings); /* We need to consider overlapping regions for different devices */ list_for_each_entry(entry, &mappings, list) { dma_addr_t start, end, addr; size_t map_size = 0; if (entry->type == IOMMU_RESV_DIRECT) dev->iommu->require_direct = 1; if ((entry->type != IOMMU_RESV_DIRECT && entry->type != IOMMU_RESV_DIRECT_RELAXABLE) || !iommu_is_dma_domain(domain)) continue; start = ALIGN(entry->start, pg_size); end = ALIGN(entry->start + entry->length, pg_size); for (addr = start; addr <= end; addr += pg_size) { phys_addr_t phys_addr; if (addr == end) goto map_end; phys_addr = iommu_iova_to_phys(domain, addr); if (!phys_addr) { map_size += pg_size; continue; } map_end: if (map_size) { ret = iommu_map(domain, addr - map_size, addr - map_size, map_size, entry->prot, GFP_KERNEL); if (ret) goto out; map_size = 0; } } } if (!list_empty(&mappings) && iommu_is_dma_domain(domain)) iommu_flush_iotlb_all(domain); out: iommu_put_resv_regions(dev, &mappings); return ret; } /* This is undone by __iommu_group_free_device() */ static struct group_device *iommu_group_alloc_device(struct iommu_group *group, struct device *dev) { int ret, i = 0; struct group_device *device; device = kzalloc(sizeof(*device), GFP_KERNEL); if (!device) return ERR_PTR(-ENOMEM); device->dev = dev; ret = sysfs_create_link(&dev->kobj, &group->kobj, "iommu_group"); if (ret) goto err_free_device; device->name = kasprintf(GFP_KERNEL, "%s", kobject_name(&dev->kobj)); rename: if (!device->name) { ret = -ENOMEM; goto err_remove_link; } ret = sysfs_create_link_nowarn(group->devices_kobj, &dev->kobj, device->name); if (ret) { if (ret == -EEXIST && i >= 0) { /* * Account for the slim chance of collision * and append an instance to the name. */ kfree(device->name); device->name = kasprintf(GFP_KERNEL, "%s.%d", kobject_name(&dev->kobj), i++); goto rename; } goto err_free_name; } trace_add_device_to_group(group->id, dev); dev_info(dev, "Adding to iommu group %d\n", group->id); return device; err_free_name: kfree(device->name); err_remove_link: sysfs_remove_link(&dev->kobj, "iommu_group"); err_free_device: kfree(device); dev_err(dev, "Failed to add to iommu group %d: %d\n", group->id, ret); return ERR_PTR(ret); } /** * iommu_group_add_device - add a device to an iommu group * @group: the group into which to add the device (reference should be held) * @dev: the device * * This function is called by an iommu driver to add a device into a * group. Adding a device increments the group reference count. */ int iommu_group_add_device(struct iommu_group *group, struct device *dev) { struct group_device *gdev; gdev = iommu_group_alloc_device(group, dev); if (IS_ERR(gdev)) return PTR_ERR(gdev); iommu_group_ref_get(group); dev->iommu_group = group; mutex_lock(&group->mutex); list_add_tail(&gdev->list, &group->devices); mutex_unlock(&group->mutex); return 0; } EXPORT_SYMBOL_GPL(iommu_group_add_device); /** * iommu_group_remove_device - remove a device from it's current group * @dev: device to be removed * * This function is called by an iommu driver to remove the device from * it's current group. This decrements the iommu group reference count. */ void iommu_group_remove_device(struct device *dev) { struct iommu_group *group = dev->iommu_group; if (!group) return; dev_info(dev, "Removing from iommu group %d\n", group->id); __iommu_group_remove_device(dev); } EXPORT_SYMBOL_GPL(iommu_group_remove_device); /** * iommu_group_for_each_dev - iterate over each device in the group * @group: the group * @data: caller opaque data to be passed to callback function * @fn: caller supplied callback function * * This function is called by group users to iterate over group devices. * Callers should hold a reference count to the group during callback. * The group->mutex is held across callbacks, which will block calls to * iommu_group_add/remove_device. */ int iommu_group_for_each_dev(struct iommu_group *group, void *data, int (*fn)(struct device *, void *)) { struct group_device *device; int ret = 0; mutex_lock(&group->mutex); for_each_group_device(group, device) { ret = fn(device->dev, data); if (ret) break; } mutex_unlock(&group->mutex); return ret; } EXPORT_SYMBOL_GPL(iommu_group_for_each_dev); /** * iommu_group_get - Return the group for a device and increment reference * @dev: get the group that this device belongs to * * This function is called by iommu drivers and users to get the group * for the specified device. If found, the group is returned and the group * reference in incremented, else NULL. */ struct iommu_group *iommu_group_get(struct device *dev) { struct iommu_group *group = dev->iommu_group; if (group) kobject_get(group->devices_kobj); return group; } EXPORT_SYMBOL_GPL(iommu_group_get); /** * iommu_group_ref_get - Increment reference on a group * @group: the group to use, must not be NULL * * This function is called by iommu drivers to take additional references on an * existing group. Returns the given group for convenience. */ struct iommu_group *iommu_group_ref_get(struct iommu_group *group) { kobject_get(group->devices_kobj); return group; } EXPORT_SYMBOL_GPL(iommu_group_ref_get); /** * iommu_group_put - Decrement group reference * @group: the group to use * * This function is called by iommu drivers and users to release the * iommu group. Once the reference count is zero, the group is released. */ void iommu_group_put(struct iommu_group *group) { if (group) kobject_put(group->devices_kobj); } EXPORT_SYMBOL_GPL(iommu_group_put); /** * iommu_register_device_fault_handler() - Register a device fault handler * @dev: the device * @handler: the fault handler * @data: private data passed as argument to the handler * * When an IOMMU fault event is received, this handler gets called with the * fault event and data as argument. The handler should return 0 on success. If * the fault is recoverable (IOMMU_FAULT_PAGE_REQ), the consumer should also * complete the fault by calling iommu_page_response() with one of the following * response code: * - IOMMU_PAGE_RESP_SUCCESS: retry the translation * - IOMMU_PAGE_RESP_INVALID: terminate the fault * - IOMMU_PAGE_RESP_FAILURE: terminate the fault and stop reporting * page faults if possible. * * Return 0 if the fault handler was installed successfully, or an error. */ int iommu_register_device_fault_handler(struct device *dev, iommu_dev_fault_handler_t handler, void *data) { struct dev_iommu *param = dev->iommu; int ret = 0; if (!param) return -EINVAL; mutex_lock(¶m->lock); /* Only allow one fault handler registered for each device */ if (param->fault_param) { ret = -EBUSY; goto done_unlock; } get_device(dev); param->fault_param = kzalloc(sizeof(*param->fault_param), GFP_KERNEL); if (!param->fault_param) { put_device(dev); ret = -ENOMEM; goto done_unlock; } param->fault_param->handler = handler; param->fault_param->data = data; mutex_init(¶m->fault_param->lock); INIT_LIST_HEAD(¶m->fault_param->faults); done_unlock: mutex_unlock(¶m->lock); return ret; } EXPORT_SYMBOL_GPL(iommu_register_device_fault_handler); /** * iommu_unregister_device_fault_handler() - Unregister the device fault handler * @dev: the device * * Remove the device fault handler installed with * iommu_register_device_fault_handler(). * * Return 0 on success, or an error. */ int iommu_unregister_device_fault_handler(struct device *dev) { struct dev_iommu *param = dev->iommu; int ret = 0; if (!param) return -EINVAL; mutex_lock(¶m->lock); if (!param->fault_param) goto unlock; /* we cannot unregister handler if there are pending faults */ if (!list_empty(¶m->fault_param->faults)) { ret = -EBUSY; goto unlock; } kfree(param->fault_param); param->fault_param = NULL; put_device(dev); unlock: mutex_unlock(¶m->lock); return ret; } EXPORT_SYMBOL_GPL(iommu_unregister_device_fault_handler); /** * iommu_report_device_fault() - Report fault event to device driver * @dev: the device * @evt: fault event data * * Called by IOMMU drivers when a fault is detected, typically in a threaded IRQ * handler. When this function fails and the fault is recoverable, it is the * caller's responsibility to complete the fault. * * Return 0 on success, or an error. */ int iommu_report_device_fault(struct device *dev, struct iommu_fault_event *evt) { struct dev_iommu *param = dev->iommu; struct iommu_fault_event *evt_pending = NULL; struct iommu_fault_param *fparam; int ret = 0; if (!param || !evt) return -EINVAL; /* we only report device fault if there is a handler registered */ mutex_lock(¶m->lock); fparam = param->fault_param; if (!fparam || !fparam->handler) { ret = -EINVAL; goto done_unlock; } if (evt->fault.type == IOMMU_FAULT_PAGE_REQ && (evt->fault.prm.flags & IOMMU_FAULT_PAGE_REQUEST_LAST_PAGE)) { evt_pending = kmemdup(evt, sizeof(struct iommu_fault_event), GFP_KERNEL); if (!evt_pending) { ret = -ENOMEM; goto done_unlock; } mutex_lock(&fparam->lock); list_add_tail(&evt_pending->list, &fparam->faults); mutex_unlock(&fparam->lock); } ret = fparam->handler(&evt->fault, fparam->data); if (ret && evt_pending) { mutex_lock(&fparam->lock); list_del(&evt_pending->list); mutex_unlock(&fparam->lock); kfree(evt_pending); } done_unlock: mutex_unlock(¶m->lock); return ret; } EXPORT_SYMBOL_GPL(iommu_report_device_fault); int iommu_page_response(struct device *dev, struct iommu_page_response *msg) { bool needs_pasid; int ret = -EINVAL; struct iommu_fault_event *evt; struct iommu_fault_page_request *prm; struct dev_iommu *param = dev->iommu; const struct iommu_ops *ops = dev_iommu_ops(dev); bool has_pasid = msg->flags & IOMMU_PAGE_RESP_PASID_VALID; if (!ops->page_response) return -ENODEV; if (!param || !param->fault_param) return -EINVAL; if (msg->version != IOMMU_PAGE_RESP_VERSION_1 || msg->flags & ~IOMMU_PAGE_RESP_PASID_VALID) return -EINVAL; /* Only send response if there is a fault report pending */ mutex_lock(¶m->fault_param->lock); if (list_empty(¶m->fault_param->faults)) { dev_warn_ratelimited(dev, "no pending PRQ, drop response\n"); goto done_unlock; } /* * Check if we have a matching page request pending to respond, * otherwise return -EINVAL */ list_for_each_entry(evt, ¶m->fault_param->faults, list) { prm = &evt->fault.prm; if (prm->grpid != msg->grpid) continue; /* * If the PASID is required, the corresponding request is * matched using the group ID, the PASID valid bit and the PASID * value. Otherwise only the group ID matches request and * response. */ needs_pasid = prm->flags & IOMMU_FAULT_PAGE_RESPONSE_NEEDS_PASID; if (needs_pasid && (!has_pasid || msg->pasid != prm->pasid)) continue; if (!needs_pasid && has_pasid) { /* No big deal, just clear it. */ msg->flags &= ~IOMMU_PAGE_RESP_PASID_VALID; msg->pasid = 0; } ret = ops->page_response(dev, evt, msg); list_del(&evt->list); kfree(evt); break; } done_unlock: mutex_unlock(¶m->fault_param->lock); return ret; } EXPORT_SYMBOL_GPL(iommu_page_response); /** * iommu_group_id - Return ID for a group * @group: the group to ID * * Return the unique ID for the group matching the sysfs group number. */ int iommu_group_id(struct iommu_group *group) { return group->id; } EXPORT_SYMBOL_GPL(iommu_group_id); static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev, unsigned long *devfns); /* * To consider a PCI device isolated, we require ACS to support Source * Validation, Request Redirection, Completer Redirection, and Upstream * Forwarding. This effectively means that devices cannot spoof their * requester ID, requests and completions cannot be redirected, and all * transactions are forwarded upstream, even as it passes through a * bridge where the target device is downstream. */ #define REQ_ACS_FLAGS (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF) /* * For multifunction devices which are not isolated from each other, find * all the other non-isolated functions and look for existing groups. For * each function, we also need to look for aliases to or from other devices * that may already have a group. */ static struct iommu_group *get_pci_function_alias_group(struct pci_dev *pdev, unsigned long *devfns) { struct pci_dev *tmp = NULL; struct iommu_group *group; if (!pdev->multifunction || pci_acs_enabled(pdev, REQ_ACS_FLAGS)) return NULL; for_each_pci_dev(tmp) { if (tmp == pdev || tmp->bus != pdev->bus || PCI_SLOT(tmp->devfn) != PCI_SLOT(pdev->devfn) || pci_acs_enabled(tmp, REQ_ACS_FLAGS)) continue; group = get_pci_alias_group(tmp, devfns); if (group) { pci_dev_put(tmp); return group; } } return NULL; } /* * Look for aliases to or from the given device for existing groups. DMA * aliases are only supported on the same bus, therefore the search * space is quite small (especially since we're really only looking at pcie * device, and therefore only expect multiple slots on the root complex or * downstream switch ports). It's conceivable though that a pair of * multifunction devices could have aliases between them that would cause a * loop. To prevent this, we use a bitmap to track where we've been. */ static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev, unsigned long *devfns) { struct pci_dev *tmp = NULL; struct iommu_group *group; if (test_and_set_bit(pdev->devfn & 0xff, devfns)) return NULL; group = iommu_group_get(&pdev->dev); if (group) return group; for_each_pci_dev(tmp) { if (tmp == pdev || tmp->bus != pdev->bus) continue; /* We alias them or they alias us */ if (pci_devs_are_dma_aliases(pdev, tmp)) { group = get_pci_alias_group(tmp, devfns); if (group) { pci_dev_put(tmp); return group; } group = get_pci_function_alias_group(tmp, devfns); if (group) { pci_dev_put(tmp); return group; } } } return NULL; } struct group_for_pci_data { struct pci_dev *pdev; struct iommu_group *group; }; /* * DMA alias iterator callback, return the last seen device. Stop and return * the IOMMU group if we find one along the way. */ static int get_pci_alias_or_group(struct pci_dev *pdev, u16 alias, void *opaque) { struct group_for_pci_data *data = opaque; data->pdev = pdev; data->group = iommu_group_get(&pdev->dev); return data->group != NULL; } /* * Generic device_group call-back function. It just allocates one * iommu-group per device. */ struct iommu_group *generic_device_group(struct device *dev) { return iommu_group_alloc(); } EXPORT_SYMBOL_GPL(generic_device_group); /* * Generic device_group call-back function. It just allocates one * iommu-group per iommu driver instance shared by every device * probed by that iommu driver. */ struct iommu_group *generic_single_device_group(struct device *dev) { struct iommu_device *iommu = dev->iommu->iommu_dev; if (!iommu->singleton_group) { struct iommu_group *group; group = iommu_group_alloc(); if (IS_ERR(group)) return group; iommu->singleton_group = group; } return iommu_group_ref_get(iommu->singleton_group); } EXPORT_SYMBOL_GPL(generic_single_device_group); /* * Use standard PCI bus topology, isolation features, and DMA alias quirks * to find or create an IOMMU group for a device. */ struct iommu_group *pci_device_group(struct device *dev) { struct pci_dev *pdev = to_pci_dev(dev); struct group_for_pci_data data; struct pci_bus *bus; struct iommu_group *group = NULL; u64 devfns[4] = { 0 }; if (WARN_ON(!dev_is_pci(dev))) return ERR_PTR(-EINVAL); /* * Find the upstream DMA alias for the device. A device must not * be aliased due to topology in order to have its own IOMMU group. * If we find an alias along the way that already belongs to a * group, use it. */ if (pci_for_each_dma_alias(pdev, get_pci_alias_or_group, &data)) return data.group; pdev = data.pdev; /* * Continue upstream from the point of minimum IOMMU granularity * due to aliases to the point where devices are protected from * peer-to-peer DMA by PCI ACS. Again, if we find an existing * group, use it. */ for (bus = pdev->bus; !pci_is_root_bus(bus); bus = bus->parent) { if (!bus->self) continue; if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS)) break; pdev = bus->self; group = iommu_group_get(&pdev->dev); if (group) return group; } /* * Look for existing groups on device aliases. If we alias another * device or another device aliases us, use the same group. */ group = get_pci_alias_group(pdev, (unsigned long *)devfns); if (group) return group; /* * Look for existing groups on non-isolated functions on the same * slot and aliases of those funcions, if any. No need to clear * the search bitmap, the tested devfns are still valid. */ group = get_pci_function_alias_group(pdev, (unsigned long *)devfns); if (group) return group; /* No shared group found, allocate new */ return iommu_group_alloc(); } EXPORT_SYMBOL_GPL(pci_device_group); /* Get the IOMMU group for device on fsl-mc bus */ struct iommu_group *fsl_mc_device_group(struct device *dev) { struct device *cont_dev = fsl_mc_cont_dev(dev); struct iommu_group *group; group = iommu_group_get(cont_dev); if (!group) group = iommu_group_alloc(); return group; } EXPORT_SYMBOL_GPL(fsl_mc_device_group); static struct iommu_domain * __iommu_group_alloc_default_domain(struct iommu_group *group, int req_type) { if (group->default_domain && group->default_domain->type == req_type) return group->default_domain; return __iommu_group_domain_alloc(group, req_type); } /* * Returns the iommu_ops for the devices in an iommu group. * * It is assumed that all devices in an iommu group are managed by a single * IOMMU unit. Therefore, this returns the dev_iommu_ops of the first device * in the group. */ static const struct iommu_ops *group_iommu_ops(struct iommu_group *group) { struct group_device *device = list_first_entry(&group->devices, struct group_device, list); lockdep_assert_held(&group->mutex); return dev_iommu_ops(device->dev); } /* * req_type of 0 means "auto" which means to select a domain based on * iommu_def_domain_type or what the driver actually supports. */ static struct iommu_domain * iommu_group_alloc_default_domain(struct iommu_group *group, int req_type) { const struct iommu_ops *ops = group_iommu_ops(group); struct iommu_domain *dom; lockdep_assert_held(&group->mutex); /* * Allow legacy drivers to specify the domain that will be the default * domain. This should always be either an IDENTITY/BLOCKED/PLATFORM * domain. Do not use in new drivers. */ if (ops->default_domain) { if (req_type) return ERR_PTR(-EINVAL); return ops->default_domain; } if (req_type) return __iommu_group_alloc_default_domain(group, req_type); /* The driver gave no guidance on what type to use, try the default */ dom = __iommu_group_alloc_default_domain(group, iommu_def_domain_type); if (!IS_ERR(dom)) return dom; /* Otherwise IDENTITY and DMA_FQ defaults will try DMA */ if (iommu_def_domain_type == IOMMU_DOMAIN_DMA) return ERR_PTR(-EINVAL); dom = __iommu_group_alloc_default_domain(group, IOMMU_DOMAIN_DMA); if (IS_ERR(dom)) return dom; pr_warn("Failed to allocate default IOMMU domain of type %u for group %s - Falling back to IOMMU_DOMAIN_DMA", iommu_def_domain_type, group->name); return dom; } struct iommu_domain *iommu_group_default_domain(struct iommu_group *group) { return group->default_domain; } static int probe_iommu_group(struct device *dev, void *data) { struct list_head *group_list = data; int ret; mutex_lock(&iommu_probe_device_lock); ret = __iommu_probe_device(dev, group_list); mutex_unlock(&iommu_probe_device_lock); if (ret == -ENODEV) ret = 0; return ret; } static int iommu_bus_notifier(struct notifier_block *nb, unsigned long action, void *data) { struct device *dev = data; if (action == BUS_NOTIFY_ADD_DEVICE) { int ret; ret = iommu_probe_device(dev); return (ret) ? NOTIFY_DONE : NOTIFY_OK; } else if (action == BUS_NOTIFY_REMOVED_DEVICE) { iommu_release_device(dev); return NOTIFY_OK; } return 0; } /* * Combine the driver's chosen def_domain_type across all the devices in a * group. Drivers must give a consistent result. */ static int iommu_get_def_domain_type(struct iommu_group *group, struct device *dev, int cur_type) { const struct iommu_ops *ops = group_iommu_ops(group); int type; if (!ops->def_domain_type) return cur_type; type = ops->def_domain_type(dev); if (!type || cur_type == type) return cur_type; if (!cur_type) return type; dev_err_ratelimited( dev, "IOMMU driver error, requesting conflicting def_domain_type, %s and %s, for devices in group %u.\n", iommu_domain_type_str(cur_type), iommu_domain_type_str(type), group->id); /* * Try to recover, drivers are allowed to force IDENITY or DMA, IDENTITY * takes precedence. */ if (type == IOMMU_DOMAIN_IDENTITY) return type; return cur_type; } /* * A target_type of 0 will select the best domain type. 0 can be returned in * this case meaning the global default should be used. */ static int iommu_get_default_domain_type(struct iommu_group *group, int target_type) { struct device *untrusted = NULL; struct group_device *gdev; int driver_type = 0; lockdep_assert_held(&group->mutex); /* * ARM32 drivers supporting CONFIG_ARM_DMA_USE_IOMMU can declare an * identity_domain and it will automatically become their default * domain. Later on ARM_DMA_USE_IOMMU will install its UNMANAGED domain. * Override the selection to IDENTITY. */ if (IS_ENABLED(CONFIG_ARM_DMA_USE_IOMMU)) { static_assert(!(IS_ENABLED(CONFIG_ARM_DMA_USE_IOMMU) && IS_ENABLED(CONFIG_IOMMU_DMA))); driver_type = IOMMU_DOMAIN_IDENTITY; } for_each_group_device(group, gdev) { driver_type = iommu_get_def_domain_type(group, gdev->dev, driver_type); if (dev_is_pci(gdev->dev) && to_pci_dev(gdev->dev)->untrusted) { /* * No ARM32 using systems will set untrusted, it cannot * work. */ if (WARN_ON(IS_ENABLED(CONFIG_ARM_DMA_USE_IOMMU))) return -1; untrusted = gdev->dev; } } /* * If the common dma ops are not selected in kconfig then we cannot use * IOMMU_DOMAIN_DMA at all. Force IDENTITY if nothing else has been * selected. */ if (!IS_ENABLED(CONFIG_IOMMU_DMA)) { if (WARN_ON(driver_type == IOMMU_DOMAIN_DMA)) return -1; if (!driver_type) driver_type = IOMMU_DOMAIN_IDENTITY; } if (untrusted) { if (driver_type && driver_type != IOMMU_DOMAIN_DMA) { dev_err_ratelimited( untrusted, "Device is not trusted, but driver is overriding group %u to %s, refusing to probe.\n", group->id, iommu_domain_type_str(driver_type)); return -1; } driver_type = IOMMU_DOMAIN_DMA; } if (target_type) { if (driver_type && target_type != driver_type) return -1; return target_type; } return driver_type; } static void iommu_group_do_probe_finalize(struct device *dev) { const struct iommu_ops *ops = dev_iommu_ops(dev); if (ops->probe_finalize) ops->probe_finalize(dev); } int bus_iommu_probe(const struct bus_type *bus) { struct iommu_group *group, *next; LIST_HEAD(group_list); int ret; ret = bus_for_each_dev(bus, NULL, &group_list, probe_iommu_group); if (ret) return ret; list_for_each_entry_safe(group, next, &group_list, entry) { struct group_device *gdev; mutex_lock(&group->mutex); /* Remove item from the list */ list_del_init(&group->entry); /* * We go to the trouble of deferred default domain creation so * that the cross-group default domain type and the setup of the * IOMMU_RESV_DIRECT will work correctly in non-hotpug scenarios. */ ret = iommu_setup_default_domain(group, 0); if (ret) { mutex_unlock(&group->mutex); return ret; } mutex_unlock(&group->mutex); /* * FIXME: Mis-locked because the ops->probe_finalize() call-back * of some IOMMU drivers calls arm_iommu_attach_device() which * in-turn might call back into IOMMU core code, where it tries * to take group->mutex, resulting in a deadlock. */ for_each_group_device(group, gdev) iommu_group_do_probe_finalize(gdev->dev); } return 0; } bool iommu_present(const struct bus_type *bus) { return bus->iommu_ops != NULL; } EXPORT_SYMBOL_GPL(iommu_present); /** * device_iommu_capable() - check for a general IOMMU capability * @dev: device to which the capability would be relevant, if available * @cap: IOMMU capability * * Return: true if an IOMMU is present and supports the given capability * for the given device, otherwise false. */ bool device_iommu_capable(struct device *dev, enum iommu_cap cap) { const struct iommu_ops *ops; if (!dev->iommu || !dev->iommu->iommu_dev) return false; ops = dev_iommu_ops(dev); if (!ops->capable) return false; return ops->capable(dev, cap); } EXPORT_SYMBOL_GPL(device_iommu_capable); /** * iommu_group_has_isolated_msi() - Compute msi_device_has_isolated_msi() * for a group * @group: Group to query * * IOMMU groups should not have differing values of * msi_device_has_isolated_msi() for devices in a group. However nothing * directly prevents this, so ensure mistakes don't result in isolation failures * by checking that all the devices are the same. */ bool iommu_group_has_isolated_msi(struct iommu_group *group) { struct group_device *group_dev; bool ret = true; mutex_lock(&group->mutex); for_each_group_device(group, group_dev) ret &= msi_device_has_isolated_msi(group_dev->dev); mutex_unlock(&group->mutex); return ret; } EXPORT_SYMBOL_GPL(iommu_group_has_isolated_msi); /** * iommu_set_fault_handler() - set a fault handler for an iommu domain * @domain: iommu domain * @handler: fault handler * @token: user data, will be passed back to the fault handler * * This function should be used by IOMMU users which want to be notified * whenever an IOMMU fault happens. * * The fault handler itself should return 0 on success, and an appropriate * error code otherwise. */ void iommu_set_fault_handler(struct iommu_domain *domain, iommu_fault_handler_t handler, void *token) { BUG_ON(!domain); domain->handler = handler; domain->handler_token = token; } EXPORT_SYMBOL_GPL(iommu_set_fault_handler); static struct iommu_domain *__iommu_domain_alloc(const struct iommu_ops *ops, struct device *dev, unsigned int type) { struct iommu_domain *domain; unsigned int alloc_type = type & IOMMU_DOMAIN_ALLOC_FLAGS; if (alloc_type == IOMMU_DOMAIN_IDENTITY && ops->identity_domain) return ops->identity_domain; else if (alloc_type == IOMMU_DOMAIN_BLOCKED && ops->blocked_domain) return ops->blocked_domain; else if (type & __IOMMU_DOMAIN_PAGING && ops->domain_alloc_paging) domain = ops->domain_alloc_paging(dev); else if (ops->domain_alloc) domain = ops->domain_alloc(alloc_type); else return ERR_PTR(-EOPNOTSUPP); /* * Many domain_alloc ops now return ERR_PTR, make things easier for the * driver by accepting ERR_PTR from all domain_alloc ops instead of * having two rules. */ if (IS_ERR(domain)) return domain; if (!domain) return ERR_PTR(-ENOMEM); domain->type = type; /* * If not already set, assume all sizes by default; the driver * may override this later */ if (!domain->pgsize_bitmap) domain->pgsize_bitmap = ops->pgsize_bitmap; if (!domain->ops) domain->ops = ops->default_domain_ops; if (iommu_is_dma_domain(domain)) { int rc; rc = iommu_get_dma_cookie(domain); if (rc) { iommu_domain_free(domain); return ERR_PTR(rc); } } return domain; } static struct iommu_domain * __iommu_group_domain_alloc(struct iommu_group *group, unsigned int type) { struct device *dev = list_first_entry(&group->devices, struct group_device, list) ->dev; return __iommu_domain_alloc(group_iommu_ops(group), dev, type); } struct iommu_domain *iommu_domain_alloc(const struct bus_type *bus) { struct iommu_domain *domain; if (bus == NULL || bus->iommu_ops == NULL) return NULL; domain = __iommu_domain_alloc(bus->iommu_ops, NULL, IOMMU_DOMAIN_UNMANAGED); if (IS_ERR(domain)) return NULL; return domain; } EXPORT_SYMBOL_GPL(iommu_domain_alloc); void iommu_domain_free(struct iommu_domain *domain) { if (domain->type == IOMMU_DOMAIN_SVA) mmdrop(domain->mm); iommu_put_dma_cookie(domain); if (domain->ops->free) domain->ops->free(domain); } EXPORT_SYMBOL_GPL(iommu_domain_free); /* * Put the group's domain back to the appropriate core-owned domain - either the * standard kernel-mode DMA configuration or an all-DMA-blocked domain. */ static void __iommu_group_set_core_domain(struct iommu_group *group) { struct iommu_domain *new_domain; if (group->owner) new_domain = group->blocking_domain; else new_domain = group->default_domain; __iommu_group_set_domain_nofail(group, new_domain); } static int __iommu_attach_device(struct iommu_domain *domain, struct device *dev) { int ret; if (unlikely(domain->ops->attach_dev == NULL)) return -ENODEV; ret = domain->ops->attach_dev(domain, dev); if (ret) return ret; dev->iommu->attach_deferred = 0; trace_attach_device_to_domain(dev); return 0; } /** * iommu_attach_device - Attach an IOMMU domain to a device * @domain: IOMMU domain to attach * @dev: Device that will be attached * * Returns 0 on success and error code on failure * * Note that EINVAL can be treated as a soft failure, indicating * that certain configuration of the domain is incompatible with * the device. In this case attaching a different domain to the * device may succeed. */ int iommu_attach_device(struct iommu_domain *domain, struct device *dev) { /* Caller must be a probed driver on dev */ struct iommu_group *group = dev->iommu_group; int ret; if (!group) return -ENODEV; /* * Lock the group to make sure the device-count doesn't * change while we are attaching */ mutex_lock(&group->mutex); ret = -EINVAL; if (list_count_nodes(&group->devices) != 1) goto out_unlock; ret = __iommu_attach_group(domain, group); out_unlock: mutex_unlock(&group->mutex); return ret; } EXPORT_SYMBOL_GPL(iommu_attach_device); int iommu_deferred_attach(struct device *dev, struct iommu_domain *domain) { if (dev->iommu && dev->iommu->attach_deferred) return __iommu_attach_device(domain, dev); return 0; } void iommu_detach_device(struct iommu_domain *domain, struct device *dev) { /* Caller must be a probed driver on dev */ struct iommu_group *group = dev->iommu_group; if (!group) return; mutex_lock(&group->mutex); if (WARN_ON(domain != group->domain) || WARN_ON(list_count_nodes(&group->devices) != 1)) goto out_unlock; __iommu_group_set_core_domain(group); out_unlock: mutex_unlock(&group->mutex); } EXPORT_SYMBOL_GPL(iommu_detach_device); struct iommu_domain *iommu_get_domain_for_dev(struct device *dev) { /* Caller must be a probed driver on dev */ struct iommu_group *group = dev->iommu_group; if (!group) return NULL; return group->domain; } EXPORT_SYMBOL_GPL(iommu_get_domain_for_dev); /* * For IOMMU_DOMAIN_DMA implementations which already provide their own * guarantees that the group and its default domain are valid and correct. */ struct iommu_domain *iommu_get_dma_domain(struct device *dev) { return dev->iommu_group->default_domain; } static int __iommu_attach_group(struct iommu_domain *domain, struct iommu_group *group) { if (group->domain && group->domain != group->default_domain && group->domain != group->blocking_domain) return -EBUSY; return __iommu_group_set_domain(group, domain); } /** * iommu_attach_group - Attach an IOMMU domain to an IOMMU group * @domain: IOMMU domain to attach * @group: IOMMU group that will be attached * * Returns 0 on success and error code on failure * * Note that EINVAL can be treated as a soft failure, indicating * that certain configuration of the domain is incompatible with * the group. In this case attaching a different domain to the * group may succeed. */ int iommu_attach_group(struct iommu_domain *domain, struct iommu_group *group) { int ret; mutex_lock(&group->mutex); ret = __iommu_attach_group(domain, group); mutex_unlock(&group->mutex); return ret; } EXPORT_SYMBOL_GPL(iommu_attach_group); /** * iommu_group_replace_domain - replace the domain that a group is attached to * @new_domain: new IOMMU domain to replace with * @group: IOMMU group that will be attached to the new domain * * This API allows the group to switch domains without being forced to go to * the blocking domain in-between. * * If the currently attached domain is a core domain (e.g. a default_domain), * it will act just like the iommu_attach_group(). */ int iommu_group_replace_domain(struct iommu_group *group, struct iommu_domain *new_domain) { int ret; if (!new_domain) return -EINVAL; mutex_lock(&group->mutex); ret = __iommu_group_set_domain(group, new_domain); mutex_unlock(&group->mutex); return ret; } EXPORT_SYMBOL_NS_GPL(iommu_group_replace_domain, IOMMUFD_INTERNAL); static int __iommu_device_set_domain(struct iommu_group *group, struct device *dev, struct iommu_domain *new_domain, unsigned int flags) { int ret; /* * If the device requires IOMMU_RESV_DIRECT then we cannot allow * the blocking domain to be attached as it does not contain the * required 1:1 mapping. This test effectively excludes the device * being used with iommu_group_claim_dma_owner() which will block * vfio and iommufd as well. */ if (dev->iommu->require_direct && (new_domain->type == IOMMU_DOMAIN_BLOCKED || new_domain == group->blocking_domain)) { dev_warn(dev, "Firmware has requested this device have a 1:1 IOMMU mapping, rejecting configuring the device without a 1:1 mapping. Contact your platform vendor.\n"); return -EINVAL; } if (dev->iommu->attach_deferred) { if (new_domain == group->default_domain) return 0; dev->iommu->attach_deferred = 0; } ret = __iommu_attach_device(new_domain, dev); if (ret) { /* * If we have a blocking domain then try to attach that in hopes * of avoiding a UAF. Modern drivers should implement blocking * domains as global statics that cannot fail. */ if ((flags & IOMMU_SET_DOMAIN_MUST_SUCCEED) && group->blocking_domain && group->blocking_domain != new_domain) __iommu_attach_device(group->blocking_domain, dev); return ret; } return 0; } /* * If 0 is returned the group's domain is new_domain. If an error is returned * then the group's domain will be set back to the existing domain unless * IOMMU_SET_DOMAIN_MUST_SUCCEED, otherwise an error is returned and the group's * domains is left inconsistent. This is a driver bug to fail attach with a * previously good domain. We try to avoid a kernel UAF because of this. * * IOMMU groups are really the natural working unit of the IOMMU, but the IOMMU * API works on domains and devices. Bridge that gap by iterating over the * devices in a group. Ideally we'd have a single device which represents the * requestor ID of the group, but we also allow IOMMU drivers to create policy * defined minimum sets, where the physical hardware may be able to distiguish * members, but we wish to group them at a higher level (ex. untrusted * multi-function PCI devices). Thus we attach each device. */ static int __iommu_group_set_domain_internal(struct iommu_group *group, struct iommu_domain *new_domain, unsigned int flags) { struct group_device *last_gdev; struct group_device *gdev; int result; int ret; lockdep_assert_held(&group->mutex); if (group->domain == new_domain) return 0; if (WARN_ON(!new_domain)) return -EINVAL; /* * Changing the domain is done by calling attach_dev() on the new * domain. This switch does not have to be atomic and DMA can be * discarded during the transition. DMA must only be able to access * either new_domain or group->domain, never something else. */ result = 0; for_each_group_device(group, gdev) { ret = __iommu_device_set_domain(group, gdev->dev, new_domain, flags); if (ret) { result = ret; /* * Keep trying the other devices in the group. If a * driver fails attach to an otherwise good domain, and * does not support blocking domains, it should at least * drop its reference on the current domain so we don't * UAF. */ if (flags & IOMMU_SET_DOMAIN_MUST_SUCCEED) continue; goto err_revert; } } group->domain = new_domain; return result; err_revert: /* * This is called in error unwind paths. A well behaved driver should * always allow us to attach to a domain that was already attached. */ last_gdev = gdev; for_each_group_device(group, gdev) { /* * A NULL domain can happen only for first probe, in which case * we leave group->domain as NULL and let release clean * everything up. */ if (group->domain) WARN_ON(__iommu_device_set_domain( group, gdev->dev, group->domain, IOMMU_SET_DOMAIN_MUST_SUCCEED)); if (gdev == last_gdev) break; } return ret; } void iommu_detach_group(struct iommu_domain *domain, struct iommu_group *group) { mutex_lock(&group->mutex); __iommu_group_set_core_domain(group); mutex_unlock(&group->mutex); } EXPORT_SYMBOL_GPL(iommu_detach_group); phys_addr_t iommu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova) { if (domain->type == IOMMU_DOMAIN_IDENTITY) return iova; if (domain->type == IOMMU_DOMAIN_BLOCKED) return 0; return domain->ops->iova_to_phys(domain, iova); } EXPORT_SYMBOL_GPL(iommu_iova_to_phys); static size_t iommu_pgsize(struct iommu_domain *domain, unsigned long iova, phys_addr_t paddr, size_t size, size_t *count) { unsigned int pgsize_idx, pgsize_idx_next; unsigned long pgsizes; size_t offset, pgsize, pgsize_next; unsigned long addr_merge = paddr | iova; /* Page sizes supported by the hardware and small enough for @size */ pgsizes = domain->pgsize_bitmap & GENMASK(__fls(size), 0); /* Constrain the page sizes further based on the maximum alignment */ if (likely(addr_merge)) pgsizes &= GENMASK(__ffs(addr_merge), 0); /* Make sure we have at least one suitable page size */ BUG_ON(!pgsizes); /* Pick the biggest page size remaining */ pgsize_idx = __fls(pgsizes); pgsize = BIT(pgsize_idx); if (!count) return pgsize; /* Find the next biggest support page size, if it exists */ pgsizes = domain->pgsize_bitmap & ~GENMASK(pgsize_idx, 0); if (!pgsizes) goto out_set_count; pgsize_idx_next = __ffs(pgsizes); pgsize_next = BIT(pgsize_idx_next); /* * There's no point trying a bigger page size unless the virtual * and physical addresses are similarly offset within the larger page. */ if ((iova ^ paddr) & (pgsize_next - 1)) goto out_set_count; /* Calculate the offset to the next page size alignment boundary */ offset = pgsize_next - (addr_merge & (pgsize_next - 1)); /* * If size is big enough to accommodate the larger page, reduce * the number of smaller pages. */ if (offset + pgsize_next <= size) size = offset; out_set_count: *count = size >> pgsize_idx; return pgsize; } static int __iommu_map(struct iommu_domain *domain, unsigned long iova, phys_addr_t paddr, size_t size, int prot, gfp_t gfp) { const struct iommu_domain_ops *ops = domain->ops; unsigned long orig_iova = iova; unsigned int min_pagesz; size_t orig_size = size; phys_addr_t orig_paddr = paddr; int ret = 0; if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING))) return -EINVAL; if (WARN_ON(!ops->map_pages || domain->pgsize_bitmap == 0UL)) return -ENODEV; /* find out the minimum page size supported */ min_pagesz = 1 << __ffs(domain->pgsize_bitmap); /* * both the virtual address and the physical one, as well as * the size of the mapping, must be aligned (at least) to the * size of the smallest page supported by the hardware */ if (!IS_ALIGNED(iova | paddr | size, min_pagesz)) { pr_err("unaligned: iova 0x%lx pa %pa size 0x%zx min_pagesz 0x%x\n", iova, &paddr, size, min_pagesz); return -EINVAL; } pr_debug("map: iova 0x%lx pa %pa size 0x%zx\n", iova, &paddr, size); while (size) { size_t pgsize, count, mapped = 0; pgsize = iommu_pgsize(domain, iova, paddr, size, &count); pr_debug("mapping: iova 0x%lx pa %pa pgsize 0x%zx count %zu\n", iova, &paddr, pgsize, count); ret = ops->map_pages(domain, iova, paddr, pgsize, count, prot, gfp, &mapped); /* * Some pages may have been mapped, even if an error occurred, * so we should account for those so they can be unmapped. */ size -= mapped; if (ret) break; iova += mapped; paddr += mapped; } /* unroll mapping in case something went wrong */ if (ret) iommu_unmap(domain, orig_iova, orig_size - size); else trace_map(orig_iova, orig_paddr, orig_size); return ret; } int iommu_map(struct iommu_domain *domain, unsigned long iova, phys_addr_t paddr, size_t size, int prot, gfp_t gfp) { const struct iommu_domain_ops *ops = domain->ops; int ret; might_sleep_if(gfpflags_allow_blocking(gfp)); /* Discourage passing strange GFP flags */ if (WARN_ON_ONCE(gfp & (__GFP_COMP | __GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM))) return -EINVAL; ret = __iommu_map(domain, iova, paddr, size, prot, gfp); if (ret == 0 && ops->iotlb_sync_map) { ret = ops->iotlb_sync_map(domain, iova, size); if (ret) goto out_err; } return ret; out_err: /* undo mappings already done */ iommu_unmap(domain, iova, size); return ret; } EXPORT_SYMBOL_GPL(iommu_map); static size_t __iommu_unmap(struct iommu_domain *domain, unsigned long iova, size_t size, struct iommu_iotlb_gather *iotlb_gather) { const struct iommu_domain_ops *ops = domain->ops; size_t unmapped_page, unmapped = 0; unsigned long orig_iova = iova; unsigned int min_pagesz; if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING))) return 0; if (WARN_ON(!ops->unmap_pages || domain->pgsize_bitmap == 0UL)) return 0; /* find out the minimum page size supported */ min_pagesz = 1 << __ffs(domain->pgsize_bitmap); /* * The virtual address, as well as the size of the mapping, must be * aligned (at least) to the size of the smallest page supported * by the hardware */ if (!IS_ALIGNED(iova | size, min_pagesz)) { pr_err("unaligned: iova 0x%lx size 0x%zx min_pagesz 0x%x\n", iova, size, min_pagesz); return 0; } pr_debug("unmap this: iova 0x%lx size 0x%zx\n", iova, size); /* * Keep iterating until we either unmap 'size' bytes (or more) * or we hit an area that isn't mapped. */ while (unmapped < size) { size_t pgsize, count; pgsize = iommu_pgsize(domain, iova, iova, size - unmapped, &count); unmapped_page = ops->unmap_pages(domain, iova, pgsize, count, iotlb_gather); if (!unmapped_page) break; pr_debug("unmapped: iova 0x%lx size 0x%zx\n", iova, unmapped_page); iova += unmapped_page; unmapped += unmapped_page; } trace_unmap(orig_iova, size, unmapped); return unmapped; } size_t iommu_unmap(struct iommu_domain *domain, unsigned long iova, size_t size) { struct iommu_iotlb_gather iotlb_gather; size_t ret; iommu_iotlb_gather_init(&iotlb_gather); ret = __iommu_unmap(domain, iova, size, &iotlb_gather); iommu_iotlb_sync(domain, &iotlb_gather); return ret; } EXPORT_SYMBOL_GPL(iommu_unmap); size_t iommu_unmap_fast(struct iommu_domain *domain, unsigned long iova, size_t size, struct iommu_iotlb_gather *iotlb_gather) { return __iommu_unmap(domain, iova, size, iotlb_gather); } EXPORT_SYMBOL_GPL(iommu_unmap_fast); ssize_t iommu_map_sg(struct iommu_domain *domain, unsigned long iova, struct scatterlist *sg, unsigned int nents, int prot, gfp_t gfp) { const struct iommu_domain_ops *ops = domain->ops; size_t len = 0, mapped = 0; phys_addr_t start; unsigned int i = 0; int ret; might_sleep_if(gfpflags_allow_blocking(gfp)); /* Discourage passing strange GFP flags */ if (WARN_ON_ONCE(gfp & (__GFP_COMP | __GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM))) return -EINVAL; while (i <= nents) { phys_addr_t s_phys = sg_phys(sg); if (len && s_phys != start + len) { ret = __iommu_map(domain, iova + mapped, start, len, prot, gfp); if (ret) goto out_err; mapped += len; len = 0; } if (sg_dma_is_bus_address(sg)) goto next; if (len) { len += sg->length; } else { len = sg->length; start = s_phys; } next: if (++i < nents) sg = sg_next(sg); } if (ops->iotlb_sync_map) { ret = ops->iotlb_sync_map(domain, iova, mapped); if (ret) goto out_err; } return mapped; out_err: /* undo mappings already done */ iommu_unmap(domain, iova, mapped); return ret; } EXPORT_SYMBOL_GPL(iommu_map_sg); /** * report_iommu_fault() - report about an IOMMU fault to the IOMMU framework * @domain: the iommu domain where the fault has happened * @dev: the device where the fault has happened * @iova: the faulting address * @flags: mmu fault flags (e.g. IOMMU_FAULT_READ/IOMMU_FAULT_WRITE/...) * * This function should be called by the low-level IOMMU implementations * whenever IOMMU faults happen, to allow high-level users, that are * interested in such events, to know about them. * * This event may be useful for several possible use cases: * - mere logging of the event * - dynamic TLB/PTE loading * - if restarting of the faulting device is required * * Returns 0 on success and an appropriate error code otherwise (if dynamic * PTE/TLB loading will one day be supported, implementations will be able * to tell whether it succeeded or not according to this return value). * * Specifically, -ENOSYS is returned if a fault handler isn't installed * (though fault handlers can also return -ENOSYS, in case they want to * elicit the default behavior of the IOMMU drivers). */ int report_iommu_fault(struct iommu_domain *domain, struct device *dev, unsigned long iova, int flags) { int ret = -ENOSYS; /* * if upper layers showed interest and installed a fault handler, * invoke it. */ if (domain->handler) ret = domain->handler(domain, dev, iova, flags, domain->handler_token); trace_io_page_fault(dev, iova, flags); return ret; } EXPORT_SYMBOL_GPL(report_iommu_fault); static int __init iommu_init(void) { iommu_group_kset = kset_create_and_add("iommu_groups", NULL, kernel_kobj); BUG_ON(!iommu_group_kset); iommu_debugfs_setup(); return 0; } core_initcall(iommu_init); int iommu_enable_nesting(struct iommu_domain *domain) { if (domain->type != IOMMU_DOMAIN_UNMANAGED) return -EINVAL; if (!domain->ops->enable_nesting) return -EINVAL; return domain->ops->enable_nesting(domain); } EXPORT_SYMBOL_GPL(iommu_enable_nesting); int iommu_set_pgtable_quirks(struct iommu_domain *domain, unsigned long quirk) { if (domain->type != IOMMU_DOMAIN_UNMANAGED) return -EINVAL; if (!domain->ops->set_pgtable_quirks) return -EINVAL; return domain->ops->set_pgtable_quirks(domain, quirk); } EXPORT_SYMBOL_GPL(iommu_set_pgtable_quirks); /** * iommu_get_resv_regions - get reserved regions * @dev: device for which to get reserved regions * @list: reserved region list for device * * This returns a list of reserved IOVA regions specific to this device. * A domain user should not map IOVA in these ranges. */ void iommu_get_resv_regions(struct device *dev, struct list_head *list) { const struct iommu_ops *ops = dev_iommu_ops(dev); if (ops->get_resv_regions) ops->get_resv_regions(dev, list); } EXPORT_SYMBOL_GPL(iommu_get_resv_regions); /** * iommu_put_resv_regions - release reserved regions * @dev: device for which to free reserved regions * @list: reserved region list for device * * This releases a reserved region list acquired by iommu_get_resv_regions(). */ void iommu_put_resv_regions(struct device *dev, struct list_head *list) { struct iommu_resv_region *entry, *next; list_for_each_entry_safe(entry, next, list, list) { if (entry->free) entry->free(dev, entry); else kfree(entry); } } EXPORT_SYMBOL(iommu_put_resv_regions); struct iommu_resv_region *iommu_alloc_resv_region(phys_addr_t start, size_t length, int prot, enum iommu_resv_type type, gfp_t gfp) { struct iommu_resv_region *region; region = kzalloc(sizeof(*region), gfp); if (!region) return NULL; INIT_LIST_HEAD(®ion->list); region->start = start; region->length = length; region->prot = prot; region->type = type; return region; } EXPORT_SYMBOL_GPL(iommu_alloc_resv_region); void iommu_set_default_passthrough(bool cmd_line) { if (cmd_line) iommu_cmd_line |= IOMMU_CMD_LINE_DMA_API; iommu_def_domain_type = IOMMU_DOMAIN_IDENTITY; } void iommu_set_default_translated(bool cmd_line) { if (cmd_line) iommu_cmd_line |= IOMMU_CMD_LINE_DMA_API; iommu_def_domain_type = IOMMU_DOMAIN_DMA; } bool iommu_default_passthrough(void) { return iommu_def_domain_type == IOMMU_DOMAIN_IDENTITY; } EXPORT_SYMBOL_GPL(iommu_default_passthrough); const struct iommu_ops *iommu_ops_from_fwnode(struct fwnode_handle *fwnode) { const struct iommu_ops *ops = NULL; struct iommu_device *iommu; spin_lock(&iommu_device_lock); list_for_each_entry(iommu, &iommu_device_list, list) if (iommu->fwnode == fwnode) { ops = iommu->ops; break; } spin_unlock(&iommu_device_lock); return ops; } int iommu_fwspec_init(struct device *dev, struct fwnode_handle *iommu_fwnode, const struct iommu_ops *ops) { struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); if (fwspec) return ops == fwspec->ops ? 0 : -EINVAL; if (!dev_iommu_get(dev)) return -ENOMEM; /* Preallocate for the overwhelmingly common case of 1 ID */ fwspec = kzalloc(struct_size(fwspec, ids, 1), GFP_KERNEL); if (!fwspec) return -ENOMEM; of_node_get(to_of_node(iommu_fwnode)); fwspec->iommu_fwnode = iommu_fwnode; fwspec->ops = ops; dev_iommu_fwspec_set(dev, fwspec); return 0; } EXPORT_SYMBOL_GPL(iommu_fwspec_init); void iommu_fwspec_free(struct device *dev) { struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); if (fwspec) { fwnode_handle_put(fwspec->iommu_fwnode); kfree(fwspec); dev_iommu_fwspec_set(dev, NULL); } } EXPORT_SYMBOL_GPL(iommu_fwspec_free); int iommu_fwspec_add_ids(struct device *dev, u32 *ids, int num_ids) { struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); int i, new_num; if (!fwspec) return -EINVAL; new_num = fwspec->num_ids + num_ids; if (new_num > 1) { fwspec = krealloc(fwspec, struct_size(fwspec, ids, new_num), GFP_KERNEL); if (!fwspec) return -ENOMEM; dev_iommu_fwspec_set(dev, fwspec); } for (i = 0; i < num_ids; i++) fwspec->ids[fwspec->num_ids + i] = ids[i]; fwspec->num_ids = new_num; return 0; } EXPORT_SYMBOL_GPL(iommu_fwspec_add_ids); /* * Per device IOMMU features. */ int iommu_dev_enable_feature(struct device *dev, enum iommu_dev_features feat) { if (dev->iommu && dev->iommu->iommu_dev) { const struct iommu_ops *ops = dev->iommu->iommu_dev->ops; if (ops->dev_enable_feat) return ops->dev_enable_feat(dev, feat); } return -ENODEV; } EXPORT_SYMBOL_GPL(iommu_dev_enable_feature); /* * The device drivers should do the necessary cleanups before calling this. */ int iommu_dev_disable_feature(struct device *dev, enum iommu_dev_features feat) { if (dev->iommu && dev->iommu->iommu_dev) { const struct iommu_ops *ops = dev->iommu->iommu_dev->ops; if (ops->dev_disable_feat) return ops->dev_disable_feat(dev, feat); } return -EBUSY; } EXPORT_SYMBOL_GPL(iommu_dev_disable_feature); /** * iommu_setup_default_domain - Set the default_domain for the group * @group: Group to change * @target_type: Domain type to set as the default_domain * * Allocate a default domain and set it as the current domain on the group. If * the group already has a default domain it will be changed to the target_type. * When target_type is 0 the default domain is selected based on driver and * system preferences. */ static int iommu_setup_default_domain(struct iommu_group *group, int target_type) { struct iommu_domain *old_dom = group->default_domain; struct group_device *gdev; struct iommu_domain *dom; bool direct_failed; int req_type; int ret; lockdep_assert_held(&group->mutex); req_type = iommu_get_default_domain_type(group, target_type); if (req_type < 0) return -EINVAL; dom = iommu_group_alloc_default_domain(group, req_type); if (IS_ERR(dom)) return PTR_ERR(dom); if (group->default_domain == dom) return 0; /* * IOMMU_RESV_DIRECT and IOMMU_RESV_DIRECT_RELAXABLE regions must be * mapped before their device is attached, in order to guarantee * continuity with any FW activity */ direct_failed = false; for_each_group_device(group, gdev) { if (iommu_create_device_direct_mappings(dom, gdev->dev)) { direct_failed = true; dev_warn_once( gdev->dev->iommu->iommu_dev->dev, "IOMMU driver was not able to establish FW requested direct mapping."); } } /* We must set default_domain early for __iommu_device_set_domain */ group->default_domain = dom; if (!group->domain) { /* * Drivers are not allowed to fail the first domain attach. * The only way to recover from this is to fail attaching the * iommu driver and call ops->release_device. Put the domain * in group->default_domain so it is freed after. */ ret = __iommu_group_set_domain_internal( group, dom, IOMMU_SET_DOMAIN_MUST_SUCCEED); if (WARN_ON(ret)) goto out_free_old; } else { ret = __iommu_group_set_domain(group, dom); if (ret) goto err_restore_def_domain; } /* * Drivers are supposed to allow mappings to be installed in a domain * before device attachment, but some don't. Hack around this defect by * trying again after attaching. If this happens it means the device * will not continuously have the IOMMU_RESV_DIRECT map. */ if (direct_failed) { for_each_group_device(group, gdev) { ret = iommu_create_device_direct_mappings(dom, gdev->dev); if (ret) goto err_restore_domain; } } out_free_old: if (old_dom) iommu_domain_free(old_dom); return ret; err_restore_domain: if (old_dom) __iommu_group_set_domain_internal( group, old_dom, IOMMU_SET_DOMAIN_MUST_SUCCEED); err_restore_def_domain: if (old_dom) { iommu_domain_free(dom); group->default_domain = old_dom; } return ret; } /* * Changing the default domain through sysfs requires the users to unbind the * drivers from the devices in the iommu group, except for a DMA -> DMA-FQ * transition. Return failure if this isn't met. * * We need to consider the race between this and the device release path. * group->mutex is used here to guarantee that the device release path * will not be entered at the same time. */ static ssize_t iommu_group_store_type(struct iommu_group *group, const char *buf, size_t count) { struct group_device *gdev; int ret, req_type; if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO)) return -EACCES; if (WARN_ON(!group) || !group->default_domain) return -EINVAL; if (sysfs_streq(buf, "identity")) req_type = IOMMU_DOMAIN_IDENTITY; else if (sysfs_streq(buf, "DMA")) req_type = IOMMU_DOMAIN_DMA; else if (sysfs_streq(buf, "DMA-FQ")) req_type = IOMMU_DOMAIN_DMA_FQ; else if (sysfs_streq(buf, "auto")) req_type = 0; else return -EINVAL; mutex_lock(&group->mutex); /* We can bring up a flush queue without tearing down the domain. */ if (req_type == IOMMU_DOMAIN_DMA_FQ && group->default_domain->type == IOMMU_DOMAIN_DMA) { ret = iommu_dma_init_fq(group->default_domain); if (ret) goto out_unlock; group->default_domain->type = IOMMU_DOMAIN_DMA_FQ; ret = count; goto out_unlock; } /* Otherwise, ensure that device exists and no driver is bound. */ if (list_empty(&group->devices) || group->owner_cnt) { ret = -EPERM; goto out_unlock; } ret = iommu_setup_default_domain(group, req_type); if (ret) goto out_unlock; /* * Release the mutex here because ops->probe_finalize() call-back of * some vendor IOMMU drivers calls arm_iommu_attach_device() which * in-turn might call back into IOMMU core code, where it tries to take * group->mutex, resulting in a deadlock. */ mutex_unlock(&group->mutex); /* Make sure dma_ops is appropriatley set */ for_each_group_device(group, gdev) iommu_group_do_probe_finalize(gdev->dev); return count; out_unlock: mutex_unlock(&group->mutex); return ret ?: count; } /** * iommu_device_use_default_domain() - Device driver wants to handle device * DMA through the kernel DMA API. * @dev: The device. * * The device driver about to bind @dev wants to do DMA through the kernel * DMA API. Return 0 if it is allowed, otherwise an error. */ int iommu_device_use_default_domain(struct device *dev) { /* Caller is the driver core during the pre-probe path */ struct iommu_group *group = dev->iommu_group; int ret = 0; if (!group) return 0; mutex_lock(&group->mutex); if (group->owner_cnt) { if (group->domain != group->default_domain || group->owner || !xa_empty(&group->pasid_array)) { ret = -EBUSY; goto unlock_out; } } group->owner_cnt++; unlock_out: mutex_unlock(&group->mutex); return ret; } /** * iommu_device_unuse_default_domain() - Device driver stops handling device * DMA through the kernel DMA API. * @dev: The device. * * The device driver doesn't want to do DMA through kernel DMA API anymore. * It must be called after iommu_device_use_default_domain(). */ void iommu_device_unuse_default_domain(struct device *dev) { /* Caller is the driver core during the post-probe path */ struct iommu_group *group = dev->iommu_group; if (!group) return; mutex_lock(&group->mutex); if (!WARN_ON(!group->owner_cnt || !xa_empty(&group->pasid_array))) group->owner_cnt--; mutex_unlock(&group->mutex); } static int __iommu_group_alloc_blocking_domain(struct iommu_group *group) { struct iommu_domain *domain; if (group->blocking_domain) return 0; domain = __iommu_group_domain_alloc(group, IOMMU_DOMAIN_BLOCKED); if (IS_ERR(domain)) { /* * For drivers that do not yet understand IOMMU_DOMAIN_BLOCKED * create an empty domain instead. */ domain = __iommu_group_domain_alloc(group, IOMMU_DOMAIN_UNMANAGED); if (IS_ERR(domain)) return PTR_ERR(domain); } group->blocking_domain = domain; return 0; } static int __iommu_take_dma_ownership(struct iommu_group *group, void *owner) { int ret; if ((group->domain && group->domain != group->default_domain) || !xa_empty(&group->pasid_array)) return -EBUSY; ret = __iommu_group_alloc_blocking_domain(group); if (ret) return ret; ret = __iommu_group_set_domain(group, group->blocking_domain); if (ret) return ret; group->owner = owner; group->owner_cnt++; return 0; } /** * iommu_group_claim_dma_owner() - Set DMA ownership of a group * @group: The group. * @owner: Caller specified pointer. Used for exclusive ownership. * * This is to support backward compatibility for vfio which manages the dma * ownership in iommu_group level. New invocations on this interface should be * prohibited. Only a single owner may exist for a group. */ int iommu_group_claim_dma_owner(struct iommu_group *group, void *owner) { int ret = 0; if (WARN_ON(!owner)) return -EINVAL; mutex_lock(&group->mutex); if (group->owner_cnt) { ret = -EPERM; goto unlock_out; } ret = __iommu_take_dma_ownership(group, owner); unlock_out: mutex_unlock(&group->mutex); return ret; } EXPORT_SYMBOL_GPL(iommu_group_claim_dma_owner); /** * iommu_device_claim_dma_owner() - Set DMA ownership of a device * @dev: The device. * @owner: Caller specified pointer. Used for exclusive ownership. * * Claim the DMA ownership of a device. Multiple devices in the same group may * concurrently claim ownership if they present the same owner value. Returns 0 * on success and error code on failure */ int iommu_device_claim_dma_owner(struct device *dev, void *owner) { /* Caller must be a probed driver on dev */ struct iommu_group *group = dev->iommu_group; int ret = 0; if (WARN_ON(!owner)) return -EINVAL; if (!group) return -ENODEV; mutex_lock(&group->mutex); if (group->owner_cnt) { if (group->owner != owner) { ret = -EPERM; goto unlock_out; } group->owner_cnt++; goto unlock_out; } ret = __iommu_take_dma_ownership(group, owner); unlock_out: mutex_unlock(&group->mutex); return ret; } EXPORT_SYMBOL_GPL(iommu_device_claim_dma_owner); static void __iommu_release_dma_ownership(struct iommu_group *group) { if (WARN_ON(!group->owner_cnt || !group->owner || !xa_empty(&group->pasid_array))) return; group->owner_cnt = 0; group->owner = NULL; __iommu_group_set_domain_nofail(group, group->default_domain); } /** * iommu_group_release_dma_owner() - Release DMA ownership of a group * @group: The group * * Release the DMA ownership claimed by iommu_group_claim_dma_owner(). */ void iommu_group_release_dma_owner(struct iommu_group *group) { mutex_lock(&group->mutex); __iommu_release_dma_ownership(group); mutex_unlock(&group->mutex); } EXPORT_SYMBOL_GPL(iommu_group_release_dma_owner); /** * iommu_device_release_dma_owner() - Release DMA ownership of a device * @dev: The device. * * Release the DMA ownership claimed by iommu_device_claim_dma_owner(). */ void iommu_device_release_dma_owner(struct device *dev) { /* Caller must be a probed driver on dev */ struct iommu_group *group = dev->iommu_group; mutex_lock(&group->mutex); if (group->owner_cnt > 1) group->owner_cnt--; else __iommu_release_dma_ownership(group); mutex_unlock(&group->mutex); } EXPORT_SYMBOL_GPL(iommu_device_release_dma_owner); /** * iommu_group_dma_owner_claimed() - Query group dma ownership status * @group: The group. * * This provides status query on a given group. It is racy and only for * non-binding status reporting. */ bool iommu_group_dma_owner_claimed(struct iommu_group *group) { unsigned int user; mutex_lock(&group->mutex); user = group->owner_cnt; mutex_unlock(&group->mutex); return user; } EXPORT_SYMBOL_GPL(iommu_group_dma_owner_claimed); static int __iommu_set_group_pasid(struct iommu_domain *domain, struct iommu_group *group, ioasid_t pasid) { struct group_device *device; int ret = 0; for_each_group_device(group, device) { ret = domain->ops->set_dev_pasid(domain, device->dev, pasid); if (ret) break; } return ret; } static void __iommu_remove_group_pasid(struct iommu_group *group, ioasid_t pasid) { struct group_device *device; const struct iommu_ops *ops; for_each_group_device(group, device) { ops = dev_iommu_ops(device->dev); ops->remove_dev_pasid(device->dev, pasid); } } /* * iommu_attach_device_pasid() - Attach a domain to pasid of device * @domain: the iommu domain. * @dev: the attached device. * @pasid: the pasid of the device. * * Return: 0 on success, or an error. */ int iommu_attach_device_pasid(struct iommu_domain *domain, struct device *dev, ioasid_t pasid) { /* Caller must be a probed driver on dev */ struct iommu_group *group = dev->iommu_group; void *curr; int ret; if (!domain->ops->set_dev_pasid) return -EOPNOTSUPP; if (!group) return -ENODEV; mutex_lock(&group->mutex); curr = xa_cmpxchg(&group->pasid_array, pasid, NULL, domain, GFP_KERNEL); if (curr) { ret = xa_err(curr) ? : -EBUSY; goto out_unlock; } ret = __iommu_set_group_pasid(domain, group, pasid); if (ret) { __iommu_remove_group_pasid(group, pasid); xa_erase(&group->pasid_array, pasid); } out_unlock: mutex_unlock(&group->mutex); return ret; } EXPORT_SYMBOL_GPL(iommu_attach_device_pasid); /* * iommu_detach_device_pasid() - Detach the domain from pasid of device * @domain: the iommu domain. * @dev: the attached device. * @pasid: the pasid of the device. * * The @domain must have been attached to @pasid of the @dev with * iommu_attach_device_pasid(). */ void iommu_detach_device_pasid(struct iommu_domain *domain, struct device *dev, ioasid_t pasid) { /* Caller must be a probed driver on dev */ struct iommu_group *group = dev->iommu_group; mutex_lock(&group->mutex); __iommu_remove_group_pasid(group, pasid); WARN_ON(xa_erase(&group->pasid_array, pasid) != domain); mutex_unlock(&group->mutex); } EXPORT_SYMBOL_GPL(iommu_detach_device_pasid); /* * iommu_get_domain_for_dev_pasid() - Retrieve domain for @pasid of @dev * @dev: the queried device * @pasid: the pasid of the device * @type: matched domain type, 0 for any match * * This is a variant of iommu_get_domain_for_dev(). It returns the existing * domain attached to pasid of a device. Callers must hold a lock around this * function, and both iommu_attach/detach_dev_pasid() whenever a domain of * type is being manipulated. This API does not internally resolve races with * attach/detach. * * Return: attached domain on success, NULL otherwise. */ struct iommu_domain *iommu_get_domain_for_dev_pasid(struct device *dev, ioasid_t pasid, unsigned int type) { /* Caller must be a probed driver on dev */ struct iommu_group *group = dev->iommu_group; struct iommu_domain *domain; if (!group) return NULL; xa_lock(&group->pasid_array); domain = xa_load(&group->pasid_array, pasid); if (type && domain && domain->type != type) domain = ERR_PTR(-EBUSY); xa_unlock(&group->pasid_array); return domain; } EXPORT_SYMBOL_GPL(iommu_get_domain_for_dev_pasid); struct iommu_domain *iommu_sva_domain_alloc(struct device *dev, struct mm_struct *mm) { const struct iommu_ops *ops = dev_iommu_ops(dev); struct iommu_domain *domain; domain = ops->domain_alloc(IOMMU_DOMAIN_SVA); if (!domain) return NULL; domain->type = IOMMU_DOMAIN_SVA; mmgrab(mm); domain->mm = mm; domain->iopf_handler = iommu_sva_handle_iopf; domain->fault_data = mm; return domain; } ioasid_t iommu_alloc_global_pasid(struct device *dev) { int ret; /* max_pasids == 0 means that the device does not support PASID */ if (!dev->iommu->max_pasids) return IOMMU_PASID_INVALID; /* * max_pasids is set up by vendor driver based on number of PASID bits * supported but the IDA allocation is inclusive. */ ret = ida_alloc_range(&iommu_global_pasid_ida, IOMMU_FIRST_GLOBAL_PASID, dev->iommu->max_pasids - 1, GFP_KERNEL); return ret < 0 ? IOMMU_PASID_INVALID : ret; } EXPORT_SYMBOL_GPL(iommu_alloc_global_pasid); void iommu_free_global_pasid(ioasid_t pasid) { if (WARN_ON(pasid == IOMMU_PASID_INVALID)) return; ida_free(&iommu_global_pasid_ida, pasid); } EXPORT_SYMBOL_GPL(iommu_free_global_pasid);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1