Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Yong Wu | 8080 | 82.22% | 96 | 57.49% |
Chao Hao | 408 | 4.15% | 9 | 5.39% |
Chengci.Xu | 369 | 3.75% | 4 | 2.40% |
Joerg Roedel | 156 | 1.59% | 4 | 2.40% |
Fabien Parent | 149 | 1.52% | 4 | 2.40% |
Angelo G. Del Regno | 118 | 1.20% | 4 | 2.40% |
Robin Murphy | 108 | 1.10% | 8 | 4.79% |
Jason Gunthorpe | 105 | 1.07% | 2 | 1.20% |
Miles Chen | 93 | 0.95% | 2 | 1.20% |
Guenter Roeck | 50 | 0.51% | 1 | 0.60% |
Lu Baolu | 41 | 0.42% | 2 | 1.20% |
Will Deacon | 29 | 0.30% | 5 | 2.99% |
Yunfei Wang | 25 | 0.25% | 1 | 0.60% |
Honghui Zhang | 17 | 0.17% | 2 | 1.20% |
Yang Yingliang | 9 | 0.09% | 1 | 0.60% |
Dafna Hirschfeld | 8 | 0.08% | 1 | 0.60% |
Arnd Bergmann | 7 | 0.07% | 2 | 1.20% |
Jean-Philippe Brucker | 7 | 0.07% | 1 | 0.60% |
Chen-Yu Tsai | 6 | 0.06% | 1 | 0.60% |
Rob Clark | 5 | 0.05% | 1 | 0.60% |
Dan Carpenter | 5 | 0.05% | 2 | 1.20% |
Wen Yang | 4 | 0.04% | 1 | 0.60% |
Niklas Schnelle | 4 | 0.04% | 1 | 0.60% |
Ricardo Ribalda Delgado | 3 | 0.03% | 1 | 0.60% |
Nícolas F. R. A. Prado | 3 | 0.03% | 1 | 0.60% |
tom | 3 | 0.03% | 1 | 0.60% |
Colin Ian King | 3 | 0.03% | 1 | 0.60% |
Thomas Gleixner | 2 | 0.02% | 1 | 0.60% |
Baolin Wang | 2 | 0.02% | 1 | 0.60% |
Uwe Kleine-König | 2 | 0.02% | 1 | 0.60% |
Nicolin Chen | 2 | 0.02% | 2 | 1.20% |
Arvind Yadav | 2 | 0.02% | 1 | 0.60% |
Rob Herring | 1 | 0.01% | 1 | 0.60% |
Andrzej Hajda | 1 | 0.01% | 1 | 0.60% |
Total | 9827 | 167 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2015-2016 MediaTek Inc. * Author: Yong Wu <yong.wu@mediatek.com> */ #include <linux/arm-smccc.h> #include <linux/bitfield.h> #include <linux/bug.h> #include <linux/clk.h> #include <linux/component.h> #include <linux/device.h> #include <linux/err.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/iommu.h> #include <linux/iopoll.h> #include <linux/io-pgtable.h> #include <linux/list.h> #include <linux/mfd/syscon.h> #include <linux/module.h> #include <linux/of_address.h> #include <linux/of_irq.h> #include <linux/of_platform.h> #include <linux/pci.h> #include <linux/platform_device.h> #include <linux/pm_runtime.h> #include <linux/regmap.h> #include <linux/slab.h> #include <linux/spinlock.h> #include <linux/soc/mediatek/infracfg.h> #include <linux/soc/mediatek/mtk_sip_svc.h> #include <asm/barrier.h> #include <soc/mediatek/smi.h> #include <dt-bindings/memory/mtk-memory-port.h> #define REG_MMU_PT_BASE_ADDR 0x000 #define REG_MMU_INVALIDATE 0x020 #define F_ALL_INVLD 0x2 #define F_MMU_INV_RANGE 0x1 #define REG_MMU_INVLD_START_A 0x024 #define REG_MMU_INVLD_END_A 0x028 #define REG_MMU_INV_SEL_GEN2 0x02c #define REG_MMU_INV_SEL_GEN1 0x038 #define F_INVLD_EN0 BIT(0) #define F_INVLD_EN1 BIT(1) #define REG_MMU_MISC_CTRL 0x048 #define F_MMU_IN_ORDER_WR_EN_MASK (BIT(1) | BIT(17)) #define F_MMU_STANDARD_AXI_MODE_MASK (BIT(3) | BIT(19)) #define REG_MMU_DCM_DIS 0x050 #define F_MMU_DCM BIT(8) #define REG_MMU_WR_LEN_CTRL 0x054 #define F_MMU_WR_THROT_DIS_MASK (BIT(5) | BIT(21)) #define REG_MMU_CTRL_REG 0x110 #define F_MMU_TF_PROT_TO_PROGRAM_ADDR (2 << 4) #define F_MMU_PREFETCH_RT_REPLACE_MOD BIT(4) #define F_MMU_TF_PROT_TO_PROGRAM_ADDR_MT8173 (2 << 5) #define REG_MMU_IVRP_PADDR 0x114 #define REG_MMU_VLD_PA_RNG 0x118 #define F_MMU_VLD_PA_RNG(EA, SA) (((EA) << 8) | (SA)) #define REG_MMU_INT_CONTROL0 0x120 #define F_L2_MULIT_HIT_EN BIT(0) #define F_TABLE_WALK_FAULT_INT_EN BIT(1) #define F_PREETCH_FIFO_OVERFLOW_INT_EN BIT(2) #define F_MISS_FIFO_OVERFLOW_INT_EN BIT(3) #define F_PREFETCH_FIFO_ERR_INT_EN BIT(5) #define F_MISS_FIFO_ERR_INT_EN BIT(6) #define F_INT_CLR_BIT BIT(12) #define REG_MMU_INT_MAIN_CONTROL 0x124 /* mmu0 | mmu1 */ #define F_INT_TRANSLATION_FAULT (BIT(0) | BIT(7)) #define F_INT_MAIN_MULTI_HIT_FAULT (BIT(1) | BIT(8)) #define F_INT_INVALID_PA_FAULT (BIT(2) | BIT(9)) #define F_INT_ENTRY_REPLACEMENT_FAULT (BIT(3) | BIT(10)) #define F_INT_TLB_MISS_FAULT (BIT(4) | BIT(11)) #define F_INT_MISS_TRANSACTION_FIFO_FAULT (BIT(5) | BIT(12)) #define F_INT_PRETETCH_TRANSATION_FIFO_FAULT (BIT(6) | BIT(13)) #define REG_MMU_CPE_DONE 0x12C #define REG_MMU_FAULT_ST1 0x134 #define F_REG_MMU0_FAULT_MASK GENMASK(6, 0) #define F_REG_MMU1_FAULT_MASK GENMASK(13, 7) #define REG_MMU0_FAULT_VA 0x13c #define F_MMU_INVAL_VA_31_12_MASK GENMASK(31, 12) #define F_MMU_INVAL_VA_34_32_MASK GENMASK(11, 9) #define F_MMU_INVAL_PA_34_32_MASK GENMASK(8, 6) #define F_MMU_FAULT_VA_WRITE_BIT BIT(1) #define F_MMU_FAULT_VA_LAYER_BIT BIT(0) #define REG_MMU0_INVLD_PA 0x140 #define REG_MMU1_FAULT_VA 0x144 #define REG_MMU1_INVLD_PA 0x148 #define REG_MMU0_INT_ID 0x150 #define REG_MMU1_INT_ID 0x154 #define F_MMU_INT_ID_COMM_ID(a) (((a) >> 9) & 0x7) #define F_MMU_INT_ID_SUB_COMM_ID(a) (((a) >> 7) & 0x3) #define F_MMU_INT_ID_COMM_ID_EXT(a) (((a) >> 10) & 0x7) #define F_MMU_INT_ID_SUB_COMM_ID_EXT(a) (((a) >> 7) & 0x7) /* Macro for 5 bits length port ID field (default) */ #define F_MMU_INT_ID_LARB_ID(a) (((a) >> 7) & 0x7) #define F_MMU_INT_ID_PORT_ID(a) (((a) >> 2) & 0x1f) /* Macro for 6 bits length port ID field */ #define F_MMU_INT_ID_LARB_ID_WID_6(a) (((a) >> 8) & 0x7) #define F_MMU_INT_ID_PORT_ID_WID_6(a) (((a) >> 2) & 0x3f) #define MTK_PROTECT_PA_ALIGN 256 #define MTK_IOMMU_BANK_SZ 0x1000 #define PERICFG_IOMMU_1 0x714 #define HAS_4GB_MODE BIT(0) /* HW will use the EMI clock if there isn't the "bclk". */ #define HAS_BCLK BIT(1) #define HAS_VLD_PA_RNG BIT(2) #define RESET_AXI BIT(3) #define OUT_ORDER_WR_EN BIT(4) #define HAS_SUB_COMM_2BITS BIT(5) #define HAS_SUB_COMM_3BITS BIT(6) #define WR_THROT_EN BIT(7) #define HAS_LEGACY_IVRP_PADDR BIT(8) #define IOVA_34_EN BIT(9) #define SHARE_PGTABLE BIT(10) /* 2 HW share pgtable */ #define DCM_DISABLE BIT(11) #define STD_AXI_MODE BIT(12) /* For non MM iommu */ /* 2 bits: iommu type */ #define MTK_IOMMU_TYPE_MM (0x0 << 13) #define MTK_IOMMU_TYPE_INFRA (0x1 << 13) #define MTK_IOMMU_TYPE_MASK (0x3 << 13) /* PM and clock always on. e.g. infra iommu */ #define PM_CLK_AO BIT(15) #define IFA_IOMMU_PCIE_SUPPORT BIT(16) #define PGTABLE_PA_35_EN BIT(17) #define TF_PORT_TO_ADDR_MT8173 BIT(18) #define INT_ID_PORT_WIDTH_6 BIT(19) #define CFG_IFA_MASTER_IN_ATF BIT(20) #define MTK_IOMMU_HAS_FLAG_MASK(pdata, _x, mask) \ ((((pdata)->flags) & (mask)) == (_x)) #define MTK_IOMMU_HAS_FLAG(pdata, _x) MTK_IOMMU_HAS_FLAG_MASK(pdata, _x, _x) #define MTK_IOMMU_IS_TYPE(pdata, _x) MTK_IOMMU_HAS_FLAG_MASK(pdata, _x,\ MTK_IOMMU_TYPE_MASK) #define MTK_INVALID_LARBID MTK_LARB_NR_MAX #define MTK_LARB_COM_MAX 8 #define MTK_LARB_SUBCOM_MAX 8 #define MTK_IOMMU_GROUP_MAX 8 #define MTK_IOMMU_BANK_MAX 5 enum mtk_iommu_plat { M4U_MT2712, M4U_MT6779, M4U_MT6795, M4U_MT8167, M4U_MT8173, M4U_MT8183, M4U_MT8186, M4U_MT8188, M4U_MT8192, M4U_MT8195, M4U_MT8365, }; struct mtk_iommu_iova_region { dma_addr_t iova_base; unsigned long long size; }; struct mtk_iommu_suspend_reg { u32 misc_ctrl; u32 dcm_dis; u32 ctrl_reg; u32 vld_pa_rng; u32 wr_len_ctrl; u32 int_control[MTK_IOMMU_BANK_MAX]; u32 int_main_control[MTK_IOMMU_BANK_MAX]; u32 ivrp_paddr[MTK_IOMMU_BANK_MAX]; }; struct mtk_iommu_plat_data { enum mtk_iommu_plat m4u_plat; u32 flags; u32 inv_sel_reg; char *pericfg_comp_str; struct list_head *hw_list; /* * The IOMMU HW may support 16GB iova. In order to balance the IOVA ranges, * different masters will be put in different iova ranges, for example vcodec * is in 4G-8G and cam is in 8G-12G. Meanwhile, some masters may have the * special IOVA range requirement, like CCU can only support the address * 0x40000000-0x44000000. * Here list the iova ranges this SoC supports and which larbs/ports are in * which region. * * 16GB iova all use one pgtable, but each a region is a iommu group. */ struct { unsigned int iova_region_nr; const struct mtk_iommu_iova_region *iova_region; /* * Indicate the correspondance between larbs, ports and regions. * * The index is the same as iova_region and larb port numbers are * described as bit positions. * For example, storing BIT(0) at index 2,1 means "larb 1, port0 is in region 2". * [2] = { [1] = BIT(0) } */ const u32 (*iova_region_larb_msk)[MTK_LARB_NR_MAX]; }; /* * The IOMMU HW may have 5 banks. Each bank has a independent pgtable. * Here list how many banks this SoC supports/enables and which ports are in which bank. */ struct { u8 banks_num; bool banks_enable[MTK_IOMMU_BANK_MAX]; unsigned int banks_portmsk[MTK_IOMMU_BANK_MAX]; }; unsigned char larbid_remap[MTK_LARB_COM_MAX][MTK_LARB_SUBCOM_MAX]; }; struct mtk_iommu_bank_data { void __iomem *base; int irq; u8 id; struct device *parent_dev; struct mtk_iommu_data *parent_data; spinlock_t tlb_lock; /* lock for tlb range flush */ struct mtk_iommu_domain *m4u_dom; /* Each bank has a domain */ }; struct mtk_iommu_data { struct device *dev; struct clk *bclk; phys_addr_t protect_base; /* protect memory base */ struct mtk_iommu_suspend_reg reg; struct iommu_group *m4u_group[MTK_IOMMU_GROUP_MAX]; bool enable_4GB; struct iommu_device iommu; const struct mtk_iommu_plat_data *plat_data; struct device *smicomm_dev; struct mtk_iommu_bank_data *bank; struct mtk_iommu_domain *share_dom; struct regmap *pericfg; struct mutex mutex; /* Protect m4u_group/m4u_dom above */ /* * In the sharing pgtable case, list data->list to the global list like m4ulist. * In the non-sharing pgtable case, list data->list to the itself hw_list_head. */ struct list_head *hw_list; struct list_head hw_list_head; struct list_head list; struct mtk_smi_larb_iommu larb_imu[MTK_LARB_NR_MAX]; }; struct mtk_iommu_domain { struct io_pgtable_cfg cfg; struct io_pgtable_ops *iop; struct mtk_iommu_bank_data *bank; struct iommu_domain domain; struct mutex mutex; /* Protect "data" in this structure */ }; static int mtk_iommu_bind(struct device *dev) { struct mtk_iommu_data *data = dev_get_drvdata(dev); return component_bind_all(dev, &data->larb_imu); } static void mtk_iommu_unbind(struct device *dev) { struct mtk_iommu_data *data = dev_get_drvdata(dev); component_unbind_all(dev, &data->larb_imu); } static const struct iommu_ops mtk_iommu_ops; static int mtk_iommu_hw_init(const struct mtk_iommu_data *data, unsigned int bankid); #define MTK_IOMMU_TLB_ADDR(iova) ({ \ dma_addr_t _addr = iova; \ ((lower_32_bits(_addr) & GENMASK(31, 12)) | upper_32_bits(_addr));\ }) /* * In M4U 4GB mode, the physical address is remapped as below: * * CPU Physical address: * ==================== * * 0 1G 2G 3G 4G 5G * |---A---|---B---|---C---|---D---|---E---| * +--I/O--+------------Memory-------------+ * * IOMMU output physical address: * ============================= * * 4G 5G 6G 7G 8G * |---E---|---B---|---C---|---D---| * +------------Memory-------------+ * * The Region 'A'(I/O) can NOT be mapped by M4U; For Region 'B'/'C'/'D', the * bit32 of the CPU physical address always is needed to set, and for Region * 'E', the CPU physical address keep as is. * Additionally, The iommu consumers always use the CPU phyiscal address. */ #define MTK_IOMMU_4GB_MODE_REMAP_BASE 0x140000000UL static LIST_HEAD(m4ulist); /* List all the M4U HWs */ #define for_each_m4u(data, head) list_for_each_entry(data, head, list) #define MTK_IOMMU_IOVA_SZ_4G (SZ_4G - SZ_8M) /* 8M as gap */ static const struct mtk_iommu_iova_region single_domain[] = { {.iova_base = 0, .size = MTK_IOMMU_IOVA_SZ_4G}, }; #define MT8192_MULTI_REGION_NR_MAX 6 #define MT8192_MULTI_REGION_NR (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT) ? \ MT8192_MULTI_REGION_NR_MAX : 1) static const struct mtk_iommu_iova_region mt8192_multi_dom[MT8192_MULTI_REGION_NR] = { { .iova_base = 0x0, .size = MTK_IOMMU_IOVA_SZ_4G}, /* 0 ~ 4G, */ #if IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT) { .iova_base = SZ_4G, .size = MTK_IOMMU_IOVA_SZ_4G}, /* 4G ~ 8G */ { .iova_base = SZ_4G * 2, .size = MTK_IOMMU_IOVA_SZ_4G}, /* 8G ~ 12G */ { .iova_base = SZ_4G * 3, .size = MTK_IOMMU_IOVA_SZ_4G}, /* 12G ~ 16G */ { .iova_base = 0x240000000ULL, .size = 0x4000000}, /* CCU0 */ { .iova_base = 0x244000000ULL, .size = 0x4000000}, /* CCU1 */ #endif }; /* If 2 M4U share a domain(use the same hwlist), Put the corresponding info in first data.*/ static struct mtk_iommu_data *mtk_iommu_get_frst_data(struct list_head *hwlist) { return list_first_entry(hwlist, struct mtk_iommu_data, list); } static struct mtk_iommu_domain *to_mtk_domain(struct iommu_domain *dom) { return container_of(dom, struct mtk_iommu_domain, domain); } static void mtk_iommu_tlb_flush_all(struct mtk_iommu_data *data) { /* Tlb flush all always is in bank0. */ struct mtk_iommu_bank_data *bank = &data->bank[0]; void __iomem *base = bank->base; unsigned long flags; spin_lock_irqsave(&bank->tlb_lock, flags); writel_relaxed(F_INVLD_EN1 | F_INVLD_EN0, base + data->plat_data->inv_sel_reg); writel_relaxed(F_ALL_INVLD, base + REG_MMU_INVALIDATE); wmb(); /* Make sure the tlb flush all done */ spin_unlock_irqrestore(&bank->tlb_lock, flags); } static void mtk_iommu_tlb_flush_range_sync(unsigned long iova, size_t size, struct mtk_iommu_bank_data *bank) { struct list_head *head = bank->parent_data->hw_list; struct mtk_iommu_bank_data *curbank; struct mtk_iommu_data *data; bool check_pm_status; unsigned long flags; void __iomem *base; int ret; u32 tmp; for_each_m4u(data, head) { /* * To avoid resume the iommu device frequently when the iommu device * is not active, it doesn't always call pm_runtime_get here, then tlb * flush depends on the tlb flush all in the runtime resume. * * There are 2 special cases: * * Case1: The iommu dev doesn't have power domain but has bclk. This case * should also avoid the tlb flush while the dev is not active to mute * the tlb timeout log. like mt8173. * * Case2: The power/clock of infra iommu is always on, and it doesn't * have the device link with the master devices. This case should avoid * the PM status check. */ check_pm_status = !MTK_IOMMU_HAS_FLAG(data->plat_data, PM_CLK_AO); if (check_pm_status) { if (pm_runtime_get_if_in_use(data->dev) <= 0) continue; } curbank = &data->bank[bank->id]; base = curbank->base; spin_lock_irqsave(&curbank->tlb_lock, flags); writel_relaxed(F_INVLD_EN1 | F_INVLD_EN0, base + data->plat_data->inv_sel_reg); writel_relaxed(MTK_IOMMU_TLB_ADDR(iova), base + REG_MMU_INVLD_START_A); writel_relaxed(MTK_IOMMU_TLB_ADDR(iova + size - 1), base + REG_MMU_INVLD_END_A); writel_relaxed(F_MMU_INV_RANGE, base + REG_MMU_INVALIDATE); /* tlb sync */ ret = readl_poll_timeout_atomic(base + REG_MMU_CPE_DONE, tmp, tmp != 0, 10, 1000); /* Clear the CPE status */ writel_relaxed(0, base + REG_MMU_CPE_DONE); spin_unlock_irqrestore(&curbank->tlb_lock, flags); if (ret) { dev_warn(data->dev, "Partial TLB flush timed out, falling back to full flush\n"); mtk_iommu_tlb_flush_all(data); } if (check_pm_status) pm_runtime_put(data->dev); } } static irqreturn_t mtk_iommu_isr(int irq, void *dev_id) { struct mtk_iommu_bank_data *bank = dev_id; struct mtk_iommu_data *data = bank->parent_data; struct mtk_iommu_domain *dom = bank->m4u_dom; unsigned int fault_larb = MTK_INVALID_LARBID, fault_port = 0, sub_comm = 0; u32 int_state, regval, va34_32, pa34_32; const struct mtk_iommu_plat_data *plat_data = data->plat_data; void __iomem *base = bank->base; u64 fault_iova, fault_pa; bool layer, write; /* Read error info from registers */ int_state = readl_relaxed(base + REG_MMU_FAULT_ST1); if (int_state & F_REG_MMU0_FAULT_MASK) { regval = readl_relaxed(base + REG_MMU0_INT_ID); fault_iova = readl_relaxed(base + REG_MMU0_FAULT_VA); fault_pa = readl_relaxed(base + REG_MMU0_INVLD_PA); } else { regval = readl_relaxed(base + REG_MMU1_INT_ID); fault_iova = readl_relaxed(base + REG_MMU1_FAULT_VA); fault_pa = readl_relaxed(base + REG_MMU1_INVLD_PA); } layer = fault_iova & F_MMU_FAULT_VA_LAYER_BIT; write = fault_iova & F_MMU_FAULT_VA_WRITE_BIT; if (MTK_IOMMU_HAS_FLAG(plat_data, IOVA_34_EN)) { va34_32 = FIELD_GET(F_MMU_INVAL_VA_34_32_MASK, fault_iova); fault_iova = fault_iova & F_MMU_INVAL_VA_31_12_MASK; fault_iova |= (u64)va34_32 << 32; } pa34_32 = FIELD_GET(F_MMU_INVAL_PA_34_32_MASK, fault_iova); fault_pa |= (u64)pa34_32 << 32; if (MTK_IOMMU_IS_TYPE(plat_data, MTK_IOMMU_TYPE_MM)) { if (MTK_IOMMU_HAS_FLAG(plat_data, HAS_SUB_COMM_2BITS)) { fault_larb = F_MMU_INT_ID_COMM_ID(regval); sub_comm = F_MMU_INT_ID_SUB_COMM_ID(regval); fault_port = F_MMU_INT_ID_PORT_ID(regval); } else if (MTK_IOMMU_HAS_FLAG(plat_data, HAS_SUB_COMM_3BITS)) { fault_larb = F_MMU_INT_ID_COMM_ID_EXT(regval); sub_comm = F_MMU_INT_ID_SUB_COMM_ID_EXT(regval); fault_port = F_MMU_INT_ID_PORT_ID(regval); } else if (MTK_IOMMU_HAS_FLAG(plat_data, INT_ID_PORT_WIDTH_6)) { fault_port = F_MMU_INT_ID_PORT_ID_WID_6(regval); fault_larb = F_MMU_INT_ID_LARB_ID_WID_6(regval); } else { fault_port = F_MMU_INT_ID_PORT_ID(regval); fault_larb = F_MMU_INT_ID_LARB_ID(regval); } fault_larb = data->plat_data->larbid_remap[fault_larb][sub_comm]; } if (!dom || report_iommu_fault(&dom->domain, bank->parent_dev, fault_iova, write ? IOMMU_FAULT_WRITE : IOMMU_FAULT_READ)) { dev_err_ratelimited( bank->parent_dev, "fault type=0x%x iova=0x%llx pa=0x%llx master=0x%x(larb=%d port=%d) layer=%d %s\n", int_state, fault_iova, fault_pa, regval, fault_larb, fault_port, layer, write ? "write" : "read"); } /* Interrupt clear */ regval = readl_relaxed(base + REG_MMU_INT_CONTROL0); regval |= F_INT_CLR_BIT; writel_relaxed(regval, base + REG_MMU_INT_CONTROL0); mtk_iommu_tlb_flush_all(data); return IRQ_HANDLED; } static unsigned int mtk_iommu_get_bank_id(struct device *dev, const struct mtk_iommu_plat_data *plat_data) { struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); unsigned int i, portmsk = 0, bankid = 0; if (plat_data->banks_num == 1) return bankid; for (i = 0; i < fwspec->num_ids; i++) portmsk |= BIT(MTK_M4U_TO_PORT(fwspec->ids[i])); for (i = 0; i < plat_data->banks_num && i < MTK_IOMMU_BANK_MAX; i++) { if (!plat_data->banks_enable[i]) continue; if (portmsk & plat_data->banks_portmsk[i]) { bankid = i; break; } } return bankid; /* default is 0 */ } static int mtk_iommu_get_iova_region_id(struct device *dev, const struct mtk_iommu_plat_data *plat_data) { struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); unsigned int portidmsk = 0, larbid; const u32 *rgn_larb_msk; int i; if (plat_data->iova_region_nr == 1) return 0; larbid = MTK_M4U_TO_LARB(fwspec->ids[0]); for (i = 0; i < fwspec->num_ids; i++) portidmsk |= BIT(MTK_M4U_TO_PORT(fwspec->ids[i])); for (i = 0; i < plat_data->iova_region_nr; i++) { rgn_larb_msk = plat_data->iova_region_larb_msk[i]; if (!rgn_larb_msk) continue; if ((rgn_larb_msk[larbid] & portidmsk) == portidmsk) return i; } dev_err(dev, "Can NOT find the region for larb(%d-%x).\n", larbid, portidmsk); return -EINVAL; } static int mtk_iommu_config(struct mtk_iommu_data *data, struct device *dev, bool enable, unsigned int regionid) { struct mtk_smi_larb_iommu *larb_mmu; unsigned int larbid, portid; struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); const struct mtk_iommu_iova_region *region; unsigned long portid_msk = 0; struct arm_smccc_res res; int i, ret = 0; for (i = 0; i < fwspec->num_ids; ++i) { portid = MTK_M4U_TO_PORT(fwspec->ids[i]); portid_msk |= BIT(portid); } if (MTK_IOMMU_IS_TYPE(data->plat_data, MTK_IOMMU_TYPE_MM)) { /* All ports should be in the same larb. just use 0 here */ larbid = MTK_M4U_TO_LARB(fwspec->ids[0]); larb_mmu = &data->larb_imu[larbid]; region = data->plat_data->iova_region + regionid; for_each_set_bit(portid, &portid_msk, 32) larb_mmu->bank[portid] = upper_32_bits(region->iova_base); dev_dbg(dev, "%s iommu for larb(%s) port 0x%lx region %d rgn-bank %d.\n", enable ? "enable" : "disable", dev_name(larb_mmu->dev), portid_msk, regionid, upper_32_bits(region->iova_base)); if (enable) larb_mmu->mmu |= portid_msk; else larb_mmu->mmu &= ~portid_msk; } else if (MTK_IOMMU_IS_TYPE(data->plat_data, MTK_IOMMU_TYPE_INFRA)) { if (MTK_IOMMU_HAS_FLAG(data->plat_data, CFG_IFA_MASTER_IN_ATF)) { arm_smccc_smc(MTK_SIP_KERNEL_IOMMU_CONTROL, IOMMU_ATF_CMD_CONFIG_INFRA_IOMMU, portid_msk, enable, 0, 0, 0, 0, &res); ret = res.a0; } else { /* PCI dev has only one output id, enable the next writing bit for PCIe */ if (dev_is_pci(dev)) { if (fwspec->num_ids != 1) { dev_err(dev, "PCI dev can only have one port.\n"); return -ENODEV; } portid_msk |= BIT(portid + 1); } ret = regmap_update_bits(data->pericfg, PERICFG_IOMMU_1, (u32)portid_msk, enable ? (u32)portid_msk : 0); } if (ret) dev_err(dev, "%s iommu(%s) inframaster 0x%lx fail(%d).\n", enable ? "enable" : "disable", dev_name(data->dev), portid_msk, ret); } return ret; } static int mtk_iommu_domain_finalise(struct mtk_iommu_domain *dom, struct mtk_iommu_data *data, unsigned int region_id) { struct mtk_iommu_domain *share_dom = data->share_dom; const struct mtk_iommu_iova_region *region; /* Share pgtable when 2 MM IOMMU share the pgtable or one IOMMU use multiple iova ranges */ if (share_dom) { dom->iop = share_dom->iop; dom->cfg = share_dom->cfg; dom->domain.pgsize_bitmap = share_dom->cfg.pgsize_bitmap; goto update_iova_region; } dom->cfg = (struct io_pgtable_cfg) { .quirks = IO_PGTABLE_QUIRK_ARM_NS | IO_PGTABLE_QUIRK_NO_PERMS | IO_PGTABLE_QUIRK_ARM_MTK_EXT, .pgsize_bitmap = mtk_iommu_ops.pgsize_bitmap, .ias = MTK_IOMMU_HAS_FLAG(data->plat_data, IOVA_34_EN) ? 34 : 32, .iommu_dev = data->dev, }; if (MTK_IOMMU_HAS_FLAG(data->plat_data, PGTABLE_PA_35_EN)) dom->cfg.quirks |= IO_PGTABLE_QUIRK_ARM_MTK_TTBR_EXT; if (MTK_IOMMU_HAS_FLAG(data->plat_data, HAS_4GB_MODE)) dom->cfg.oas = data->enable_4GB ? 33 : 32; else dom->cfg.oas = 35; dom->iop = alloc_io_pgtable_ops(ARM_V7S, &dom->cfg, data); if (!dom->iop) { dev_err(data->dev, "Failed to alloc io pgtable\n"); return -ENOMEM; } /* Update our support page sizes bitmap */ dom->domain.pgsize_bitmap = dom->cfg.pgsize_bitmap; data->share_dom = dom; update_iova_region: /* Update the iova region for this domain */ region = data->plat_data->iova_region + region_id; dom->domain.geometry.aperture_start = region->iova_base; dom->domain.geometry.aperture_end = region->iova_base + region->size - 1; dom->domain.geometry.force_aperture = true; return 0; } static struct iommu_domain *mtk_iommu_domain_alloc_paging(struct device *dev) { struct mtk_iommu_domain *dom; dom = kzalloc(sizeof(*dom), GFP_KERNEL); if (!dom) return NULL; mutex_init(&dom->mutex); return &dom->domain; } static void mtk_iommu_domain_free(struct iommu_domain *domain) { kfree(to_mtk_domain(domain)); } static int mtk_iommu_attach_device(struct iommu_domain *domain, struct device *dev) { struct mtk_iommu_data *data = dev_iommu_priv_get(dev), *frstdata; struct mtk_iommu_domain *dom = to_mtk_domain(domain); struct list_head *hw_list = data->hw_list; struct device *m4udev = data->dev; struct mtk_iommu_bank_data *bank; unsigned int bankid; int ret, region_id; region_id = mtk_iommu_get_iova_region_id(dev, data->plat_data); if (region_id < 0) return region_id; bankid = mtk_iommu_get_bank_id(dev, data->plat_data); mutex_lock(&dom->mutex); if (!dom->bank) { /* Data is in the frstdata in sharing pgtable case. */ frstdata = mtk_iommu_get_frst_data(hw_list); mutex_lock(&frstdata->mutex); ret = mtk_iommu_domain_finalise(dom, frstdata, region_id); mutex_unlock(&frstdata->mutex); if (ret) { mutex_unlock(&dom->mutex); return ret; } dom->bank = &data->bank[bankid]; } mutex_unlock(&dom->mutex); mutex_lock(&data->mutex); bank = &data->bank[bankid]; if (!bank->m4u_dom) { /* Initialize the M4U HW for each a BANK */ ret = pm_runtime_resume_and_get(m4udev); if (ret < 0) { dev_err(m4udev, "pm get fail(%d) in attach.\n", ret); goto err_unlock; } ret = mtk_iommu_hw_init(data, bankid); if (ret) { pm_runtime_put(m4udev); goto err_unlock; } bank->m4u_dom = dom; writel(dom->cfg.arm_v7s_cfg.ttbr, bank->base + REG_MMU_PT_BASE_ADDR); pm_runtime_put(m4udev); } mutex_unlock(&data->mutex); if (region_id > 0) { ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(34)); if (ret) { dev_err(m4udev, "Failed to set dma_mask for %s(%d).\n", dev_name(dev), ret); return ret; } } return mtk_iommu_config(data, dev, true, region_id); err_unlock: mutex_unlock(&data->mutex); return ret; } static int mtk_iommu_identity_attach(struct iommu_domain *identity_domain, struct device *dev) { struct iommu_domain *domain = iommu_get_domain_for_dev(dev); struct mtk_iommu_data *data = dev_iommu_priv_get(dev); if (domain == identity_domain || !domain) return 0; mtk_iommu_config(data, dev, false, 0); return 0; } static struct iommu_domain_ops mtk_iommu_identity_ops = { .attach_dev = mtk_iommu_identity_attach, }; static struct iommu_domain mtk_iommu_identity_domain = { .type = IOMMU_DOMAIN_IDENTITY, .ops = &mtk_iommu_identity_ops, }; static int mtk_iommu_map(struct iommu_domain *domain, unsigned long iova, phys_addr_t paddr, size_t pgsize, size_t pgcount, int prot, gfp_t gfp, size_t *mapped) { struct mtk_iommu_domain *dom = to_mtk_domain(domain); /* The "4GB mode" M4U physically can not use the lower remap of Dram. */ if (dom->bank->parent_data->enable_4GB) paddr |= BIT_ULL(32); /* Synchronize with the tlb_lock */ return dom->iop->map_pages(dom->iop, iova, paddr, pgsize, pgcount, prot, gfp, mapped); } static size_t mtk_iommu_unmap(struct iommu_domain *domain, unsigned long iova, size_t pgsize, size_t pgcount, struct iommu_iotlb_gather *gather) { struct mtk_iommu_domain *dom = to_mtk_domain(domain); iommu_iotlb_gather_add_range(gather, iova, pgsize * pgcount); return dom->iop->unmap_pages(dom->iop, iova, pgsize, pgcount, gather); } static void mtk_iommu_flush_iotlb_all(struct iommu_domain *domain) { struct mtk_iommu_domain *dom = to_mtk_domain(domain); if (dom->bank) mtk_iommu_tlb_flush_all(dom->bank->parent_data); } static void mtk_iommu_iotlb_sync(struct iommu_domain *domain, struct iommu_iotlb_gather *gather) { struct mtk_iommu_domain *dom = to_mtk_domain(domain); size_t length = gather->end - gather->start + 1; mtk_iommu_tlb_flush_range_sync(gather->start, length, dom->bank); } static int mtk_iommu_sync_map(struct iommu_domain *domain, unsigned long iova, size_t size) { struct mtk_iommu_domain *dom = to_mtk_domain(domain); mtk_iommu_tlb_flush_range_sync(iova, size, dom->bank); return 0; } static phys_addr_t mtk_iommu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova) { struct mtk_iommu_domain *dom = to_mtk_domain(domain); phys_addr_t pa; pa = dom->iop->iova_to_phys(dom->iop, iova); if (IS_ENABLED(CONFIG_PHYS_ADDR_T_64BIT) && dom->bank->parent_data->enable_4GB && pa >= MTK_IOMMU_4GB_MODE_REMAP_BASE) pa &= ~BIT_ULL(32); return pa; } static struct iommu_device *mtk_iommu_probe_device(struct device *dev) { struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); struct mtk_iommu_data *data; struct device_link *link; struct device *larbdev; unsigned int larbid, larbidx, i; if (!fwspec || fwspec->ops != &mtk_iommu_ops) return ERR_PTR(-ENODEV); /* Not a iommu client device */ data = dev_iommu_priv_get(dev); if (!MTK_IOMMU_IS_TYPE(data->plat_data, MTK_IOMMU_TYPE_MM)) return &data->iommu; /* * Link the consumer device with the smi-larb device(supplier). * The device that connects with each a larb is a independent HW. * All the ports in each a device should be in the same larbs. */ larbid = MTK_M4U_TO_LARB(fwspec->ids[0]); if (larbid >= MTK_LARB_NR_MAX) return ERR_PTR(-EINVAL); for (i = 1; i < fwspec->num_ids; i++) { larbidx = MTK_M4U_TO_LARB(fwspec->ids[i]); if (larbid != larbidx) { dev_err(dev, "Can only use one larb. Fail@larb%d-%d.\n", larbid, larbidx); return ERR_PTR(-EINVAL); } } larbdev = data->larb_imu[larbid].dev; if (!larbdev) return ERR_PTR(-EINVAL); link = device_link_add(dev, larbdev, DL_FLAG_PM_RUNTIME | DL_FLAG_STATELESS); if (!link) dev_err(dev, "Unable to link %s\n", dev_name(larbdev)); return &data->iommu; } static void mtk_iommu_release_device(struct device *dev) { struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); struct mtk_iommu_data *data; struct device *larbdev; unsigned int larbid; data = dev_iommu_priv_get(dev); if (MTK_IOMMU_IS_TYPE(data->plat_data, MTK_IOMMU_TYPE_MM)) { larbid = MTK_M4U_TO_LARB(fwspec->ids[0]); larbdev = data->larb_imu[larbid].dev; device_link_remove(dev, larbdev); } } static int mtk_iommu_get_group_id(struct device *dev, const struct mtk_iommu_plat_data *plat_data) { unsigned int bankid; /* * If the bank function is enabled, each bank is a iommu group/domain. * Otherwise, each iova region is a iommu group/domain. */ bankid = mtk_iommu_get_bank_id(dev, plat_data); if (bankid) return bankid; return mtk_iommu_get_iova_region_id(dev, plat_data); } static struct iommu_group *mtk_iommu_device_group(struct device *dev) { struct mtk_iommu_data *c_data = dev_iommu_priv_get(dev), *data; struct list_head *hw_list = c_data->hw_list; struct iommu_group *group; int groupid; data = mtk_iommu_get_frst_data(hw_list); if (!data) return ERR_PTR(-ENODEV); groupid = mtk_iommu_get_group_id(dev, data->plat_data); if (groupid < 0) return ERR_PTR(groupid); mutex_lock(&data->mutex); group = data->m4u_group[groupid]; if (!group) { group = iommu_group_alloc(); if (!IS_ERR(group)) data->m4u_group[groupid] = group; } else { iommu_group_ref_get(group); } mutex_unlock(&data->mutex); return group; } static int mtk_iommu_of_xlate(struct device *dev, struct of_phandle_args *args) { struct platform_device *m4updev; if (args->args_count != 1) { dev_err(dev, "invalid #iommu-cells(%d) property for IOMMU\n", args->args_count); return -EINVAL; } if (!dev_iommu_priv_get(dev)) { /* Get the m4u device */ m4updev = of_find_device_by_node(args->np); if (WARN_ON(!m4updev)) return -EINVAL; dev_iommu_priv_set(dev, platform_get_drvdata(m4updev)); } return iommu_fwspec_add_ids(dev, args->args, 1); } static void mtk_iommu_get_resv_regions(struct device *dev, struct list_head *head) { struct mtk_iommu_data *data = dev_iommu_priv_get(dev); unsigned int regionid = mtk_iommu_get_iova_region_id(dev, data->plat_data), i; const struct mtk_iommu_iova_region *resv, *curdom; struct iommu_resv_region *region; int prot = IOMMU_WRITE | IOMMU_READ; if ((int)regionid < 0) return; curdom = data->plat_data->iova_region + regionid; for (i = 0; i < data->plat_data->iova_region_nr; i++) { resv = data->plat_data->iova_region + i; /* Only reserve when the region is inside the current domain */ if (resv->iova_base <= curdom->iova_base || resv->iova_base + resv->size >= curdom->iova_base + curdom->size) continue; region = iommu_alloc_resv_region(resv->iova_base, resv->size, prot, IOMMU_RESV_RESERVED, GFP_KERNEL); if (!region) return; list_add_tail(®ion->list, head); } } static const struct iommu_ops mtk_iommu_ops = { .identity_domain = &mtk_iommu_identity_domain, .domain_alloc_paging = mtk_iommu_domain_alloc_paging, .probe_device = mtk_iommu_probe_device, .release_device = mtk_iommu_release_device, .device_group = mtk_iommu_device_group, .of_xlate = mtk_iommu_of_xlate, .get_resv_regions = mtk_iommu_get_resv_regions, .pgsize_bitmap = SZ_4K | SZ_64K | SZ_1M | SZ_16M, .owner = THIS_MODULE, .default_domain_ops = &(const struct iommu_domain_ops) { .attach_dev = mtk_iommu_attach_device, .map_pages = mtk_iommu_map, .unmap_pages = mtk_iommu_unmap, .flush_iotlb_all = mtk_iommu_flush_iotlb_all, .iotlb_sync = mtk_iommu_iotlb_sync, .iotlb_sync_map = mtk_iommu_sync_map, .iova_to_phys = mtk_iommu_iova_to_phys, .free = mtk_iommu_domain_free, } }; static int mtk_iommu_hw_init(const struct mtk_iommu_data *data, unsigned int bankid) { const struct mtk_iommu_bank_data *bankx = &data->bank[bankid]; const struct mtk_iommu_bank_data *bank0 = &data->bank[0]; u32 regval; /* * Global control settings are in bank0. May re-init these global registers * since no sure if there is bank0 consumers. */ if (MTK_IOMMU_HAS_FLAG(data->plat_data, TF_PORT_TO_ADDR_MT8173)) { regval = F_MMU_PREFETCH_RT_REPLACE_MOD | F_MMU_TF_PROT_TO_PROGRAM_ADDR_MT8173; } else { regval = readl_relaxed(bank0->base + REG_MMU_CTRL_REG); regval |= F_MMU_TF_PROT_TO_PROGRAM_ADDR; } writel_relaxed(regval, bank0->base + REG_MMU_CTRL_REG); if (data->enable_4GB && MTK_IOMMU_HAS_FLAG(data->plat_data, HAS_VLD_PA_RNG)) { /* * If 4GB mode is enabled, the validate PA range is from * 0x1_0000_0000 to 0x1_ffff_ffff. here record bit[32:30]. */ regval = F_MMU_VLD_PA_RNG(7, 4); writel_relaxed(regval, bank0->base + REG_MMU_VLD_PA_RNG); } if (MTK_IOMMU_HAS_FLAG(data->plat_data, DCM_DISABLE)) writel_relaxed(F_MMU_DCM, bank0->base + REG_MMU_DCM_DIS); else writel_relaxed(0, bank0->base + REG_MMU_DCM_DIS); if (MTK_IOMMU_HAS_FLAG(data->plat_data, WR_THROT_EN)) { /* write command throttling mode */ regval = readl_relaxed(bank0->base + REG_MMU_WR_LEN_CTRL); regval &= ~F_MMU_WR_THROT_DIS_MASK; writel_relaxed(regval, bank0->base + REG_MMU_WR_LEN_CTRL); } if (MTK_IOMMU_HAS_FLAG(data->plat_data, RESET_AXI)) { /* The register is called STANDARD_AXI_MODE in this case */ regval = 0; } else { regval = readl_relaxed(bank0->base + REG_MMU_MISC_CTRL); if (!MTK_IOMMU_HAS_FLAG(data->plat_data, STD_AXI_MODE)) regval &= ~F_MMU_STANDARD_AXI_MODE_MASK; if (MTK_IOMMU_HAS_FLAG(data->plat_data, OUT_ORDER_WR_EN)) regval &= ~F_MMU_IN_ORDER_WR_EN_MASK; } writel_relaxed(regval, bank0->base + REG_MMU_MISC_CTRL); /* Independent settings for each bank */ regval = F_L2_MULIT_HIT_EN | F_TABLE_WALK_FAULT_INT_EN | F_PREETCH_FIFO_OVERFLOW_INT_EN | F_MISS_FIFO_OVERFLOW_INT_EN | F_PREFETCH_FIFO_ERR_INT_EN | F_MISS_FIFO_ERR_INT_EN; writel_relaxed(regval, bankx->base + REG_MMU_INT_CONTROL0); regval = F_INT_TRANSLATION_FAULT | F_INT_MAIN_MULTI_HIT_FAULT | F_INT_INVALID_PA_FAULT | F_INT_ENTRY_REPLACEMENT_FAULT | F_INT_TLB_MISS_FAULT | F_INT_MISS_TRANSACTION_FIFO_FAULT | F_INT_PRETETCH_TRANSATION_FIFO_FAULT; writel_relaxed(regval, bankx->base + REG_MMU_INT_MAIN_CONTROL); if (MTK_IOMMU_HAS_FLAG(data->plat_data, HAS_LEGACY_IVRP_PADDR)) regval = (data->protect_base >> 1) | (data->enable_4GB << 31); else regval = lower_32_bits(data->protect_base) | upper_32_bits(data->protect_base); writel_relaxed(regval, bankx->base + REG_MMU_IVRP_PADDR); if (devm_request_irq(bankx->parent_dev, bankx->irq, mtk_iommu_isr, 0, dev_name(bankx->parent_dev), (void *)bankx)) { writel_relaxed(0, bankx->base + REG_MMU_PT_BASE_ADDR); dev_err(bankx->parent_dev, "Failed @ IRQ-%d Request\n", bankx->irq); return -ENODEV; } return 0; } static const struct component_master_ops mtk_iommu_com_ops = { .bind = mtk_iommu_bind, .unbind = mtk_iommu_unbind, }; static int mtk_iommu_mm_dts_parse(struct device *dev, struct component_match **match, struct mtk_iommu_data *data) { struct device_node *larbnode, *frst_avail_smicomm_node = NULL; struct platform_device *plarbdev, *pcommdev; struct device_link *link; int i, larb_nr, ret; larb_nr = of_count_phandle_with_args(dev->of_node, "mediatek,larbs", NULL); if (larb_nr < 0) return larb_nr; if (larb_nr == 0 || larb_nr > MTK_LARB_NR_MAX) return -EINVAL; for (i = 0; i < larb_nr; i++) { struct device_node *smicomm_node, *smi_subcomm_node; u32 id; larbnode = of_parse_phandle(dev->of_node, "mediatek,larbs", i); if (!larbnode) { ret = -EINVAL; goto err_larbdev_put; } if (!of_device_is_available(larbnode)) { of_node_put(larbnode); continue; } ret = of_property_read_u32(larbnode, "mediatek,larb-id", &id); if (ret)/* The id is consecutive if there is no this property */ id = i; if (id >= MTK_LARB_NR_MAX) { of_node_put(larbnode); ret = -EINVAL; goto err_larbdev_put; } plarbdev = of_find_device_by_node(larbnode); of_node_put(larbnode); if (!plarbdev) { ret = -ENODEV; goto err_larbdev_put; } if (data->larb_imu[id].dev) { platform_device_put(plarbdev); ret = -EEXIST; goto err_larbdev_put; } data->larb_imu[id].dev = &plarbdev->dev; if (!plarbdev->dev.driver) { ret = -EPROBE_DEFER; goto err_larbdev_put; } /* Get smi-(sub)-common dev from the last larb. */ smi_subcomm_node = of_parse_phandle(larbnode, "mediatek,smi", 0); if (!smi_subcomm_node) { ret = -EINVAL; goto err_larbdev_put; } /* * It may have two level smi-common. the node is smi-sub-common if it * has a new mediatek,smi property. otherwise it is smi-commmon. */ smicomm_node = of_parse_phandle(smi_subcomm_node, "mediatek,smi", 0); if (smicomm_node) of_node_put(smi_subcomm_node); else smicomm_node = smi_subcomm_node; /* * All the larbs that connect to one IOMMU must connect with the same * smi-common. */ if (!frst_avail_smicomm_node) { frst_avail_smicomm_node = smicomm_node; } else if (frst_avail_smicomm_node != smicomm_node) { dev_err(dev, "mediatek,smi property is not right @larb%d.", id); of_node_put(smicomm_node); ret = -EINVAL; goto err_larbdev_put; } else { of_node_put(smicomm_node); } component_match_add(dev, match, component_compare_dev, &plarbdev->dev); platform_device_put(plarbdev); } if (!frst_avail_smicomm_node) return -EINVAL; pcommdev = of_find_device_by_node(frst_avail_smicomm_node); of_node_put(frst_avail_smicomm_node); if (!pcommdev) return -ENODEV; data->smicomm_dev = &pcommdev->dev; link = device_link_add(data->smicomm_dev, dev, DL_FLAG_STATELESS | DL_FLAG_PM_RUNTIME); platform_device_put(pcommdev); if (!link) { dev_err(dev, "Unable to link %s.\n", dev_name(data->smicomm_dev)); return -EINVAL; } return 0; err_larbdev_put: for (i = MTK_LARB_NR_MAX - 1; i >= 0; i--) { if (!data->larb_imu[i].dev) continue; put_device(data->larb_imu[i].dev); } return ret; } static int mtk_iommu_probe(struct platform_device *pdev) { struct mtk_iommu_data *data; struct device *dev = &pdev->dev; struct resource *res; resource_size_t ioaddr; struct component_match *match = NULL; struct regmap *infracfg; void *protect; int ret, banks_num, i = 0; u32 val; char *p; struct mtk_iommu_bank_data *bank; void __iomem *base; data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL); if (!data) return -ENOMEM; data->dev = dev; data->plat_data = of_device_get_match_data(dev); /* Protect memory. HW will access here while translation fault.*/ protect = devm_kzalloc(dev, MTK_PROTECT_PA_ALIGN * 2, GFP_KERNEL); if (!protect) return -ENOMEM; data->protect_base = ALIGN(virt_to_phys(protect), MTK_PROTECT_PA_ALIGN); if (MTK_IOMMU_HAS_FLAG(data->plat_data, HAS_4GB_MODE)) { infracfg = syscon_regmap_lookup_by_phandle(dev->of_node, "mediatek,infracfg"); if (IS_ERR(infracfg)) { /* * Legacy devicetrees will not specify a phandle to * mediatek,infracfg: in that case, we use the older * way to retrieve a syscon to infra. * * This is for retrocompatibility purposes only, hence * no more compatibles shall be added to this. */ switch (data->plat_data->m4u_plat) { case M4U_MT2712: p = "mediatek,mt2712-infracfg"; break; case M4U_MT8173: p = "mediatek,mt8173-infracfg"; break; default: p = NULL; } infracfg = syscon_regmap_lookup_by_compatible(p); if (IS_ERR(infracfg)) return PTR_ERR(infracfg); } ret = regmap_read(infracfg, REG_INFRA_MISC, &val); if (ret) return ret; data->enable_4GB = !!(val & F_DDR_4GB_SUPPORT_EN); } banks_num = data->plat_data->banks_num; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!res) return -EINVAL; if (resource_size(res) < banks_num * MTK_IOMMU_BANK_SZ) { dev_err(dev, "banknr %d. res %pR is not enough.\n", banks_num, res); return -EINVAL; } base = devm_ioremap_resource(dev, res); if (IS_ERR(base)) return PTR_ERR(base); ioaddr = res->start; data->bank = devm_kmalloc(dev, banks_num * sizeof(*data->bank), GFP_KERNEL); if (!data->bank) return -ENOMEM; do { if (!data->plat_data->banks_enable[i]) continue; bank = &data->bank[i]; bank->id = i; bank->base = base + i * MTK_IOMMU_BANK_SZ; bank->m4u_dom = NULL; bank->irq = platform_get_irq(pdev, i); if (bank->irq < 0) return bank->irq; bank->parent_dev = dev; bank->parent_data = data; spin_lock_init(&bank->tlb_lock); } while (++i < banks_num); if (MTK_IOMMU_HAS_FLAG(data->plat_data, HAS_BCLK)) { data->bclk = devm_clk_get(dev, "bclk"); if (IS_ERR(data->bclk)) return PTR_ERR(data->bclk); } if (MTK_IOMMU_HAS_FLAG(data->plat_data, PGTABLE_PA_35_EN)) { ret = dma_set_mask(dev, DMA_BIT_MASK(35)); if (ret) { dev_err(dev, "Failed to set dma_mask 35.\n"); return ret; } } pm_runtime_enable(dev); if (MTK_IOMMU_IS_TYPE(data->plat_data, MTK_IOMMU_TYPE_MM)) { ret = mtk_iommu_mm_dts_parse(dev, &match, data); if (ret) { dev_err_probe(dev, ret, "mm dts parse fail\n"); goto out_runtime_disable; } } else if (MTK_IOMMU_IS_TYPE(data->plat_data, MTK_IOMMU_TYPE_INFRA) && !MTK_IOMMU_HAS_FLAG(data->plat_data, CFG_IFA_MASTER_IN_ATF)) { p = data->plat_data->pericfg_comp_str; data->pericfg = syscon_regmap_lookup_by_compatible(p); if (IS_ERR(data->pericfg)) { ret = PTR_ERR(data->pericfg); goto out_runtime_disable; } } platform_set_drvdata(pdev, data); mutex_init(&data->mutex); ret = iommu_device_sysfs_add(&data->iommu, dev, NULL, "mtk-iommu.%pa", &ioaddr); if (ret) goto out_link_remove; ret = iommu_device_register(&data->iommu, &mtk_iommu_ops, dev); if (ret) goto out_sysfs_remove; if (MTK_IOMMU_HAS_FLAG(data->plat_data, SHARE_PGTABLE)) { list_add_tail(&data->list, data->plat_data->hw_list); data->hw_list = data->plat_data->hw_list; } else { INIT_LIST_HEAD(&data->hw_list_head); list_add_tail(&data->list, &data->hw_list_head); data->hw_list = &data->hw_list_head; } if (MTK_IOMMU_IS_TYPE(data->plat_data, MTK_IOMMU_TYPE_MM)) { ret = component_master_add_with_match(dev, &mtk_iommu_com_ops, match); if (ret) goto out_list_del; } return ret; out_list_del: list_del(&data->list); iommu_device_unregister(&data->iommu); out_sysfs_remove: iommu_device_sysfs_remove(&data->iommu); out_link_remove: if (MTK_IOMMU_IS_TYPE(data->plat_data, MTK_IOMMU_TYPE_MM)) device_link_remove(data->smicomm_dev, dev); out_runtime_disable: pm_runtime_disable(dev); return ret; } static void mtk_iommu_remove(struct platform_device *pdev) { struct mtk_iommu_data *data = platform_get_drvdata(pdev); struct mtk_iommu_bank_data *bank; int i; iommu_device_sysfs_remove(&data->iommu); iommu_device_unregister(&data->iommu); list_del(&data->list); if (MTK_IOMMU_IS_TYPE(data->plat_data, MTK_IOMMU_TYPE_MM)) { device_link_remove(data->smicomm_dev, &pdev->dev); component_master_del(&pdev->dev, &mtk_iommu_com_ops); } pm_runtime_disable(&pdev->dev); for (i = 0; i < data->plat_data->banks_num; i++) { bank = &data->bank[i]; if (!bank->m4u_dom) continue; devm_free_irq(&pdev->dev, bank->irq, bank); } } static int __maybe_unused mtk_iommu_runtime_suspend(struct device *dev) { struct mtk_iommu_data *data = dev_get_drvdata(dev); struct mtk_iommu_suspend_reg *reg = &data->reg; void __iomem *base; int i = 0; base = data->bank[i].base; reg->wr_len_ctrl = readl_relaxed(base + REG_MMU_WR_LEN_CTRL); reg->misc_ctrl = readl_relaxed(base + REG_MMU_MISC_CTRL); reg->dcm_dis = readl_relaxed(base + REG_MMU_DCM_DIS); reg->ctrl_reg = readl_relaxed(base + REG_MMU_CTRL_REG); reg->vld_pa_rng = readl_relaxed(base + REG_MMU_VLD_PA_RNG); do { if (!data->plat_data->banks_enable[i]) continue; base = data->bank[i].base; reg->int_control[i] = readl_relaxed(base + REG_MMU_INT_CONTROL0); reg->int_main_control[i] = readl_relaxed(base + REG_MMU_INT_MAIN_CONTROL); reg->ivrp_paddr[i] = readl_relaxed(base + REG_MMU_IVRP_PADDR); } while (++i < data->plat_data->banks_num); clk_disable_unprepare(data->bclk); return 0; } static int __maybe_unused mtk_iommu_runtime_resume(struct device *dev) { struct mtk_iommu_data *data = dev_get_drvdata(dev); struct mtk_iommu_suspend_reg *reg = &data->reg; struct mtk_iommu_domain *m4u_dom; void __iomem *base; int ret, i = 0; ret = clk_prepare_enable(data->bclk); if (ret) { dev_err(data->dev, "Failed to enable clk(%d) in resume\n", ret); return ret; } /* * Uppon first resume, only enable the clk and return, since the values of the * registers are not yet set. */ if (!reg->wr_len_ctrl) return 0; base = data->bank[i].base; writel_relaxed(reg->wr_len_ctrl, base + REG_MMU_WR_LEN_CTRL); writel_relaxed(reg->misc_ctrl, base + REG_MMU_MISC_CTRL); writel_relaxed(reg->dcm_dis, base + REG_MMU_DCM_DIS); writel_relaxed(reg->ctrl_reg, base + REG_MMU_CTRL_REG); writel_relaxed(reg->vld_pa_rng, base + REG_MMU_VLD_PA_RNG); do { m4u_dom = data->bank[i].m4u_dom; if (!data->plat_data->banks_enable[i] || !m4u_dom) continue; base = data->bank[i].base; writel_relaxed(reg->int_control[i], base + REG_MMU_INT_CONTROL0); writel_relaxed(reg->int_main_control[i], base + REG_MMU_INT_MAIN_CONTROL); writel_relaxed(reg->ivrp_paddr[i], base + REG_MMU_IVRP_PADDR); writel(m4u_dom->cfg.arm_v7s_cfg.ttbr, base + REG_MMU_PT_BASE_ADDR); } while (++i < data->plat_data->banks_num); /* * Users may allocate dma buffer before they call pm_runtime_get, * in which case it will lack the necessary tlb flush. * Thus, make sure to update the tlb after each PM resume. */ mtk_iommu_tlb_flush_all(data); return 0; } static const struct dev_pm_ops mtk_iommu_pm_ops = { SET_RUNTIME_PM_OPS(mtk_iommu_runtime_suspend, mtk_iommu_runtime_resume, NULL) SET_LATE_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, pm_runtime_force_resume) }; static const struct mtk_iommu_plat_data mt2712_data = { .m4u_plat = M4U_MT2712, .flags = HAS_4GB_MODE | HAS_BCLK | HAS_VLD_PA_RNG | SHARE_PGTABLE | MTK_IOMMU_TYPE_MM, .hw_list = &m4ulist, .inv_sel_reg = REG_MMU_INV_SEL_GEN1, .iova_region = single_domain, .banks_num = 1, .banks_enable = {true}, .iova_region_nr = ARRAY_SIZE(single_domain), .larbid_remap = {{0}, {1}, {2}, {3}, {4}, {5}, {6}, {7}}, }; static const struct mtk_iommu_plat_data mt6779_data = { .m4u_plat = M4U_MT6779, .flags = HAS_SUB_COMM_2BITS | OUT_ORDER_WR_EN | WR_THROT_EN | MTK_IOMMU_TYPE_MM | PGTABLE_PA_35_EN, .inv_sel_reg = REG_MMU_INV_SEL_GEN2, .banks_num = 1, .banks_enable = {true}, .iova_region = single_domain, .iova_region_nr = ARRAY_SIZE(single_domain), .larbid_remap = {{0}, {1}, {2}, {3}, {5}, {7, 8}, {10}, {9}}, }; static const struct mtk_iommu_plat_data mt6795_data = { .m4u_plat = M4U_MT6795, .flags = HAS_4GB_MODE | HAS_BCLK | RESET_AXI | HAS_LEGACY_IVRP_PADDR | MTK_IOMMU_TYPE_MM | TF_PORT_TO_ADDR_MT8173, .inv_sel_reg = REG_MMU_INV_SEL_GEN1, .banks_num = 1, .banks_enable = {true}, .iova_region = single_domain, .iova_region_nr = ARRAY_SIZE(single_domain), .larbid_remap = {{0}, {1}, {2}, {3}, {4}}, /* Linear mapping. */ }; static const struct mtk_iommu_plat_data mt8167_data = { .m4u_plat = M4U_MT8167, .flags = RESET_AXI | HAS_LEGACY_IVRP_PADDR | MTK_IOMMU_TYPE_MM, .inv_sel_reg = REG_MMU_INV_SEL_GEN1, .banks_num = 1, .banks_enable = {true}, .iova_region = single_domain, .iova_region_nr = ARRAY_SIZE(single_domain), .larbid_remap = {{0}, {1}, {2}}, /* Linear mapping. */ }; static const struct mtk_iommu_plat_data mt8173_data = { .m4u_plat = M4U_MT8173, .flags = HAS_4GB_MODE | HAS_BCLK | RESET_AXI | HAS_LEGACY_IVRP_PADDR | MTK_IOMMU_TYPE_MM | TF_PORT_TO_ADDR_MT8173, .inv_sel_reg = REG_MMU_INV_SEL_GEN1, .banks_num = 1, .banks_enable = {true}, .iova_region = single_domain, .iova_region_nr = ARRAY_SIZE(single_domain), .larbid_remap = {{0}, {1}, {2}, {3}, {4}, {5}}, /* Linear mapping. */ }; static const struct mtk_iommu_plat_data mt8183_data = { .m4u_plat = M4U_MT8183, .flags = RESET_AXI | MTK_IOMMU_TYPE_MM, .inv_sel_reg = REG_MMU_INV_SEL_GEN1, .banks_num = 1, .banks_enable = {true}, .iova_region = single_domain, .iova_region_nr = ARRAY_SIZE(single_domain), .larbid_remap = {{0}, {4}, {5}, {6}, {7}, {2}, {3}, {1}}, }; static const unsigned int mt8186_larb_region_msk[MT8192_MULTI_REGION_NR_MAX][MTK_LARB_NR_MAX] = { [0] = {~0, ~0, ~0}, /* Region0: all ports for larb0/1/2 */ [1] = {0, 0, 0, 0, ~0, 0, 0, ~0}, /* Region1: larb4/7 */ [2] = {0, 0, 0, 0, 0, 0, 0, 0, /* Region2: larb8/9/11/13/16/17/19/20 */ ~0, ~0, 0, ~0, 0, ~(u32)(BIT(9) | BIT(10)), 0, 0, /* larb13: the other ports except port9/10 */ ~0, ~0, 0, ~0, ~0}, [3] = {0}, [4] = {[13] = BIT(9) | BIT(10)}, /* larb13 port9/10 */ [5] = {[14] = ~0}, /* larb14 */ }; static const struct mtk_iommu_plat_data mt8186_data_mm = { .m4u_plat = M4U_MT8186, .flags = HAS_BCLK | HAS_SUB_COMM_2BITS | OUT_ORDER_WR_EN | WR_THROT_EN | IOVA_34_EN | MTK_IOMMU_TYPE_MM, .larbid_remap = {{0}, {1, MTK_INVALID_LARBID, 8}, {4}, {7}, {2}, {9, 11, 19, 20}, {MTK_INVALID_LARBID, 14, 16}, {MTK_INVALID_LARBID, 13, MTK_INVALID_LARBID, 17}}, .inv_sel_reg = REG_MMU_INV_SEL_GEN2, .banks_num = 1, .banks_enable = {true}, .iova_region = mt8192_multi_dom, .iova_region_nr = ARRAY_SIZE(mt8192_multi_dom), .iova_region_larb_msk = mt8186_larb_region_msk, }; static const struct mtk_iommu_plat_data mt8188_data_infra = { .m4u_plat = M4U_MT8188, .flags = WR_THROT_EN | DCM_DISABLE | STD_AXI_MODE | PM_CLK_AO | MTK_IOMMU_TYPE_INFRA | IFA_IOMMU_PCIE_SUPPORT | PGTABLE_PA_35_EN | CFG_IFA_MASTER_IN_ATF, .inv_sel_reg = REG_MMU_INV_SEL_GEN2, .banks_num = 1, .banks_enable = {true}, .iova_region = single_domain, .iova_region_nr = ARRAY_SIZE(single_domain), }; static const u32 mt8188_larb_region_msk[MT8192_MULTI_REGION_NR_MAX][MTK_LARB_NR_MAX] = { [0] = {~0, ~0, ~0, ~0}, /* Region0: all ports for larb0/1/2/3 */ [1] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ~0, ~0, ~0}, /* Region1: larb19(21)/21(22)/23 */ [2] = {0, 0, 0, 0, ~0, ~0, ~0, ~0, /* Region2: the other larbs. */ ~0, ~0, ~0, ~0, ~0, ~0, ~0, ~0, ~0, ~0, ~0, ~0, ~0, 0, 0, 0, 0, ~0}, [3] = {0}, [4] = {[24] = BIT(0) | BIT(1)}, /* Only larb27(24) port0/1 */ [5] = {[24] = BIT(2) | BIT(3)}, /* Only larb27(24) port2/3 */ }; static const struct mtk_iommu_plat_data mt8188_data_vdo = { .m4u_plat = M4U_MT8188, .flags = HAS_BCLK | HAS_SUB_COMM_3BITS | OUT_ORDER_WR_EN | WR_THROT_EN | IOVA_34_EN | SHARE_PGTABLE | PGTABLE_PA_35_EN | MTK_IOMMU_TYPE_MM, .hw_list = &m4ulist, .inv_sel_reg = REG_MMU_INV_SEL_GEN2, .banks_num = 1, .banks_enable = {true}, .iova_region = mt8192_multi_dom, .iova_region_nr = ARRAY_SIZE(mt8192_multi_dom), .iova_region_larb_msk = mt8188_larb_region_msk, .larbid_remap = {{2}, {0}, {21}, {0}, {19}, {9, 10, 11 /* 11a */, 25 /* 11c */}, {13, 0, 29 /* 16b */, 30 /* 17b */, 0}, {5}}, }; static const struct mtk_iommu_plat_data mt8188_data_vpp = { .m4u_plat = M4U_MT8188, .flags = HAS_BCLK | HAS_SUB_COMM_3BITS | OUT_ORDER_WR_EN | WR_THROT_EN | IOVA_34_EN | SHARE_PGTABLE | PGTABLE_PA_35_EN | MTK_IOMMU_TYPE_MM, .hw_list = &m4ulist, .inv_sel_reg = REG_MMU_INV_SEL_GEN2, .banks_num = 1, .banks_enable = {true}, .iova_region = mt8192_multi_dom, .iova_region_nr = ARRAY_SIZE(mt8192_multi_dom), .iova_region_larb_msk = mt8188_larb_region_msk, .larbid_remap = {{1}, {3}, {23}, {7}, {MTK_INVALID_LARBID}, {12, 15, 24 /* 11b */}, {14, MTK_INVALID_LARBID, 16 /* 16a */, 17 /* 17a */, MTK_INVALID_LARBID, 27, 28 /* ccu0 */, MTK_INVALID_LARBID}, {4, 6}}, }; static const unsigned int mt8192_larb_region_msk[MT8192_MULTI_REGION_NR_MAX][MTK_LARB_NR_MAX] = { [0] = {~0, ~0}, /* Region0: larb0/1 */ [1] = {0, 0, 0, 0, ~0, ~0, 0, ~0}, /* Region1: larb4/5/7 */ [2] = {0, 0, ~0, 0, 0, 0, 0, 0, /* Region2: larb2/9/11/13/14/16/17/18/19/20 */ 0, ~0, 0, ~0, 0, ~(u32)(BIT(9) | BIT(10)), ~(u32)(BIT(4) | BIT(5)), 0, ~0, ~0, ~0, ~0, ~0}, [3] = {0}, [4] = {[13] = BIT(9) | BIT(10)}, /* larb13 port9/10 */ [5] = {[14] = BIT(4) | BIT(5)}, /* larb14 port4/5 */ }; static const struct mtk_iommu_plat_data mt8192_data = { .m4u_plat = M4U_MT8192, .flags = HAS_BCLK | HAS_SUB_COMM_2BITS | OUT_ORDER_WR_EN | WR_THROT_EN | IOVA_34_EN | MTK_IOMMU_TYPE_MM, .inv_sel_reg = REG_MMU_INV_SEL_GEN2, .banks_num = 1, .banks_enable = {true}, .iova_region = mt8192_multi_dom, .iova_region_nr = ARRAY_SIZE(mt8192_multi_dom), .iova_region_larb_msk = mt8192_larb_region_msk, .larbid_remap = {{0}, {1}, {4, 5}, {7}, {2}, {9, 11, 19, 20}, {0, 14, 16}, {0, 13, 18, 17}}, }; static const struct mtk_iommu_plat_data mt8195_data_infra = { .m4u_plat = M4U_MT8195, .flags = WR_THROT_EN | DCM_DISABLE | STD_AXI_MODE | PM_CLK_AO | MTK_IOMMU_TYPE_INFRA | IFA_IOMMU_PCIE_SUPPORT, .pericfg_comp_str = "mediatek,mt8195-pericfg_ao", .inv_sel_reg = REG_MMU_INV_SEL_GEN2, .banks_num = 5, .banks_enable = {true, false, false, false, true}, .banks_portmsk = {[0] = GENMASK(19, 16), /* PCIe */ [4] = GENMASK(31, 20), /* USB */ }, .iova_region = single_domain, .iova_region_nr = ARRAY_SIZE(single_domain), }; static const unsigned int mt8195_larb_region_msk[MT8192_MULTI_REGION_NR_MAX][MTK_LARB_NR_MAX] = { [0] = {~0, ~0, ~0, ~0}, /* Region0: all ports for larb0/1/2/3 */ [1] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ~0, ~0, ~0, ~0, ~0, /* Region1: larb19/20/21/22/23/24 */ ~0}, [2] = {0, 0, 0, 0, ~0, ~0, ~0, ~0, /* Region2: the other larbs. */ ~0, ~0, ~0, ~0, ~0, ~0, ~0, ~0, ~0, ~0, 0, 0, 0, 0, 0, 0, 0, ~0, ~0, ~0, ~0}, [3] = {0}, [4] = {[18] = BIT(0) | BIT(1)}, /* Only larb18 port0/1 */ [5] = {[18] = BIT(2) | BIT(3)}, /* Only larb18 port2/3 */ }; static const struct mtk_iommu_plat_data mt8195_data_vdo = { .m4u_plat = M4U_MT8195, .flags = HAS_BCLK | HAS_SUB_COMM_2BITS | OUT_ORDER_WR_EN | WR_THROT_EN | IOVA_34_EN | SHARE_PGTABLE | MTK_IOMMU_TYPE_MM, .hw_list = &m4ulist, .inv_sel_reg = REG_MMU_INV_SEL_GEN2, .banks_num = 1, .banks_enable = {true}, .iova_region = mt8192_multi_dom, .iova_region_nr = ARRAY_SIZE(mt8192_multi_dom), .iova_region_larb_msk = mt8195_larb_region_msk, .larbid_remap = {{2, 0}, {21}, {24}, {7}, {19}, {9, 10, 11}, {13, 17, 15/* 17b */, 25}, {5}}, }; static const struct mtk_iommu_plat_data mt8195_data_vpp = { .m4u_plat = M4U_MT8195, .flags = HAS_BCLK | HAS_SUB_COMM_3BITS | OUT_ORDER_WR_EN | WR_THROT_EN | IOVA_34_EN | SHARE_PGTABLE | MTK_IOMMU_TYPE_MM, .hw_list = &m4ulist, .inv_sel_reg = REG_MMU_INV_SEL_GEN2, .banks_num = 1, .banks_enable = {true}, .iova_region = mt8192_multi_dom, .iova_region_nr = ARRAY_SIZE(mt8192_multi_dom), .iova_region_larb_msk = mt8195_larb_region_msk, .larbid_remap = {{1}, {3}, {22, MTK_INVALID_LARBID, MTK_INVALID_LARBID, MTK_INVALID_LARBID, 23}, {8}, {20}, {12}, /* 16: 16a; 29: 16b; 30: CCUtop0; 31: CCUtop1 */ {14, 16, 29, 26, 30, 31, 18}, {4, MTK_INVALID_LARBID, MTK_INVALID_LARBID, MTK_INVALID_LARBID, 6}}, }; static const struct mtk_iommu_plat_data mt8365_data = { .m4u_plat = M4U_MT8365, .flags = RESET_AXI | INT_ID_PORT_WIDTH_6, .inv_sel_reg = REG_MMU_INV_SEL_GEN1, .banks_num = 1, .banks_enable = {true}, .iova_region = single_domain, .iova_region_nr = ARRAY_SIZE(single_domain), .larbid_remap = {{0}, {1}, {2}, {3}, {4}, {5}}, /* Linear mapping. */ }; static const struct of_device_id mtk_iommu_of_ids[] = { { .compatible = "mediatek,mt2712-m4u", .data = &mt2712_data}, { .compatible = "mediatek,mt6779-m4u", .data = &mt6779_data}, { .compatible = "mediatek,mt6795-m4u", .data = &mt6795_data}, { .compatible = "mediatek,mt8167-m4u", .data = &mt8167_data}, { .compatible = "mediatek,mt8173-m4u", .data = &mt8173_data}, { .compatible = "mediatek,mt8183-m4u", .data = &mt8183_data}, { .compatible = "mediatek,mt8186-iommu-mm", .data = &mt8186_data_mm}, /* mm: m4u */ { .compatible = "mediatek,mt8188-iommu-infra", .data = &mt8188_data_infra}, { .compatible = "mediatek,mt8188-iommu-vdo", .data = &mt8188_data_vdo}, { .compatible = "mediatek,mt8188-iommu-vpp", .data = &mt8188_data_vpp}, { .compatible = "mediatek,mt8192-m4u", .data = &mt8192_data}, { .compatible = "mediatek,mt8195-iommu-infra", .data = &mt8195_data_infra}, { .compatible = "mediatek,mt8195-iommu-vdo", .data = &mt8195_data_vdo}, { .compatible = "mediatek,mt8195-iommu-vpp", .data = &mt8195_data_vpp}, { .compatible = "mediatek,mt8365-m4u", .data = &mt8365_data}, {} }; static struct platform_driver mtk_iommu_driver = { .probe = mtk_iommu_probe, .remove_new = mtk_iommu_remove, .driver = { .name = "mtk-iommu", .of_match_table = mtk_iommu_of_ids, .pm = &mtk_iommu_pm_ops, } }; module_platform_driver(mtk_iommu_driver); MODULE_DESCRIPTION("IOMMU API for MediaTek M4U implementations"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1