Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Willy Tarreau | 881 | 89.26% | 1 | 9.09% |
Uwe Kleine-König | 46 | 4.66% | 3 | 27.27% |
Kees Cook | 32 | 3.24% | 1 | 9.09% |
Frédéric Weisbecker | 20 | 2.03% | 1 | 9.09% |
Andy Shevchenko | 3 | 0.30% | 1 | 9.09% |
Thomas Gleixner | 2 | 0.20% | 1 | 9.09% |
Jason A. Donenfeld | 1 | 0.10% | 1 | 9.09% |
Steven Rostedt | 1 | 0.10% | 1 | 9.09% |
Arnd Bergmann | 1 | 0.10% | 1 | 9.09% |
Total | 987 | 11 |
// SPDX-License-Identifier: GPL-2.0-only /* * Activity LED trigger * * Copyright (C) 2017 Willy Tarreau <w@1wt.eu> * Partially based on Atsushi Nemoto's ledtrig-heartbeat.c. */ #include <linux/init.h> #include <linux/kernel.h> #include <linux/kernel_stat.h> #include <linux/leds.h> #include <linux/module.h> #include <linux/panic_notifier.h> #include <linux/reboot.h> #include <linux/sched.h> #include <linux/slab.h> #include <linux/timer.h> #include "../leds.h" static int panic_detected; struct activity_data { struct timer_list timer; struct led_classdev *led_cdev; u64 last_used; u64 last_boot; int time_left; int state; int invert; }; static void led_activity_function(struct timer_list *t) { struct activity_data *activity_data = from_timer(activity_data, t, timer); struct led_classdev *led_cdev = activity_data->led_cdev; unsigned int target; unsigned int usage; int delay; u64 curr_used; u64 curr_boot; s32 diff_used; s32 diff_boot; int cpus; int i; if (test_and_clear_bit(LED_BLINK_BRIGHTNESS_CHANGE, &led_cdev->work_flags)) led_cdev->blink_brightness = led_cdev->new_blink_brightness; if (unlikely(panic_detected)) { /* full brightness in case of panic */ led_set_brightness_nosleep(led_cdev, led_cdev->blink_brightness); return; } cpus = 0; curr_used = 0; for_each_possible_cpu(i) { struct kernel_cpustat kcpustat; kcpustat_cpu_fetch(&kcpustat, i); curr_used += kcpustat.cpustat[CPUTIME_USER] + kcpustat.cpustat[CPUTIME_NICE] + kcpustat.cpustat[CPUTIME_SYSTEM] + kcpustat.cpustat[CPUTIME_SOFTIRQ] + kcpustat.cpustat[CPUTIME_IRQ]; cpus++; } /* We come here every 100ms in the worst case, so that's 100M ns of * cumulated time. By dividing by 2^16, we get the time resolution * down to 16us, ensuring we won't overflow 32-bit computations below * even up to 3k CPUs, while keeping divides cheap on smaller systems. */ curr_boot = ktime_get_boottime_ns() * cpus; diff_boot = (curr_boot - activity_data->last_boot) >> 16; diff_used = (curr_used - activity_data->last_used) >> 16; activity_data->last_boot = curr_boot; activity_data->last_used = curr_used; if (diff_boot <= 0 || diff_used < 0) usage = 0; else if (diff_used >= diff_boot) usage = 100; else usage = 100 * diff_used / diff_boot; /* * Now we know the total boot_time multiplied by the number of CPUs, and * the total idle+wait time for all CPUs. We'll compare how they evolved * since last call. The % of overall CPU usage is : * * 1 - delta_idle / delta_boot * * What we want is that when the CPU usage is zero, the LED must blink * slowly with very faint flashes that are detectable but not disturbing * (typically 10ms every second, or 10ms ON, 990ms OFF). Then we want * blinking frequency to increase up to the point where the load is * enough to saturate one core in multi-core systems or 50% in single * core systems. At this point it should reach 10 Hz with a 10/90 duty * cycle (10ms ON, 90ms OFF). After this point, the blinking frequency * remains stable (10 Hz) and only the duty cycle increases to report * the activity, up to the point where we have 90ms ON, 10ms OFF when * all cores are saturated. It's important that the LED never stays in * a steady state so that it's easy to distinguish an idle or saturated * machine from a hung one. * * This gives us : * - a target CPU usage of min(50%, 100%/#CPU) for a 10% duty cycle * (10ms ON, 90ms OFF) * - below target : * ON_ms = 10 * OFF_ms = 90 + (1 - usage/target) * 900 * - above target : * ON_ms = 10 + (usage-target)/(100%-target) * 80 * OFF_ms = 90 - (usage-target)/(100%-target) * 80 * * In order to keep a good responsiveness, we cap the sleep time to * 100 ms and keep track of the sleep time left. This allows us to * quickly change it if needed. */ activity_data->time_left -= 100; if (activity_data->time_left <= 0) { activity_data->time_left = 0; activity_data->state = !activity_data->state; led_set_brightness_nosleep(led_cdev, (activity_data->state ^ activity_data->invert) ? led_cdev->blink_brightness : LED_OFF); } target = (cpus > 1) ? (100 / cpus) : 50; if (usage < target) delay = activity_data->state ? 10 : /* ON */ 990 - 900 * usage / target; /* OFF */ else delay = activity_data->state ? 10 + 80 * (usage - target) / (100 - target) : /* ON */ 90 - 80 * (usage - target) / (100 - target); /* OFF */ if (!activity_data->time_left || delay <= activity_data->time_left) activity_data->time_left = delay; delay = min_t(int, activity_data->time_left, 100); mod_timer(&activity_data->timer, jiffies + msecs_to_jiffies(delay)); } static ssize_t led_invert_show(struct device *dev, struct device_attribute *attr, char *buf) { struct activity_data *activity_data = led_trigger_get_drvdata(dev); return sprintf(buf, "%u\n", activity_data->invert); } static ssize_t led_invert_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { struct activity_data *activity_data = led_trigger_get_drvdata(dev); unsigned long state; int ret; ret = kstrtoul(buf, 0, &state); if (ret) return ret; activity_data->invert = !!state; return size; } static DEVICE_ATTR(invert, 0644, led_invert_show, led_invert_store); static struct attribute *activity_led_attrs[] = { &dev_attr_invert.attr, NULL }; ATTRIBUTE_GROUPS(activity_led); static int activity_activate(struct led_classdev *led_cdev) { struct activity_data *activity_data; activity_data = kzalloc(sizeof(*activity_data), GFP_KERNEL); if (!activity_data) return -ENOMEM; led_set_trigger_data(led_cdev, activity_data); activity_data->led_cdev = led_cdev; timer_setup(&activity_data->timer, led_activity_function, 0); if (!led_cdev->blink_brightness) led_cdev->blink_brightness = led_cdev->max_brightness; led_activity_function(&activity_data->timer); set_bit(LED_BLINK_SW, &led_cdev->work_flags); return 0; } static void activity_deactivate(struct led_classdev *led_cdev) { struct activity_data *activity_data = led_get_trigger_data(led_cdev); timer_shutdown_sync(&activity_data->timer); kfree(activity_data); clear_bit(LED_BLINK_SW, &led_cdev->work_flags); } static struct led_trigger activity_led_trigger = { .name = "activity", .activate = activity_activate, .deactivate = activity_deactivate, .groups = activity_led_groups, }; static int activity_reboot_notifier(struct notifier_block *nb, unsigned long code, void *unused) { led_trigger_unregister(&activity_led_trigger); return NOTIFY_DONE; } static int activity_panic_notifier(struct notifier_block *nb, unsigned long code, void *unused) { panic_detected = 1; return NOTIFY_DONE; } static struct notifier_block activity_reboot_nb = { .notifier_call = activity_reboot_notifier, }; static struct notifier_block activity_panic_nb = { .notifier_call = activity_panic_notifier, }; static int __init activity_init(void) { int rc = led_trigger_register(&activity_led_trigger); if (!rc) { atomic_notifier_chain_register(&panic_notifier_list, &activity_panic_nb); register_reboot_notifier(&activity_reboot_nb); } return rc; } static void __exit activity_exit(void) { unregister_reboot_notifier(&activity_reboot_nb); atomic_notifier_chain_unregister(&panic_notifier_list, &activity_panic_nb); led_trigger_unregister(&activity_led_trigger); } module_init(activity_init); module_exit(activity_exit); MODULE_AUTHOR("Willy Tarreau <w@1wt.eu>"); MODULE_DESCRIPTION("Activity LED trigger"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1