Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Heinz Mauelshagen | 1000 | 47.60% | 4 | 10.00% |
Mikulas Patocka | 625 | 29.75% | 13 | 32.50% |
Christian Löhle | 261 | 12.42% | 1 | 2.50% |
Mike Snitzer | 122 | 5.81% | 6 | 15.00% |
Dmitriy Monakhov | 27 | 1.29% | 1 | 2.50% |
Alasdair G. Kergon | 16 | 0.76% | 5 | 12.50% |
Vivek Goyal | 13 | 0.62% | 1 | 2.50% |
Kees Cook | 12 | 0.57% | 1 | 2.50% |
Milan Broz | 7 | 0.33% | 1 | 2.50% |
Christoph Hellwig | 4 | 0.19% | 1 | 2.50% |
Kent Overstreet | 4 | 0.19% | 1 | 2.50% |
Tomohiro Kusumi | 3 | 0.14% | 2 | 5.00% |
Nicholas Mc Guire | 3 | 0.14% | 1 | 2.50% |
Tushar Sugandhi | 2 | 0.10% | 1 | 2.50% |
Yangtao Li | 2 | 0.10% | 1 | 2.50% |
Total | 2101 | 40 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2005-2007 Red Hat GmbH * * A target that delays reads and/or writes and can send * them to different devices. * * This file is released under the GPL. */ #include <linux/module.h> #include <linux/init.h> #include <linux/blkdev.h> #include <linux/bio.h> #include <linux/slab.h> #include <linux/kthread.h> #include <linux/device-mapper.h> #define DM_MSG_PREFIX "delay" struct delay_class { struct dm_dev *dev; sector_t start; unsigned int delay; unsigned int ops; }; struct delay_c { struct timer_list delay_timer; struct mutex timer_lock; struct workqueue_struct *kdelayd_wq; struct work_struct flush_expired_bios; struct list_head delayed_bios; struct task_struct *worker; bool may_delay; struct delay_class read; struct delay_class write; struct delay_class flush; int argc; }; struct dm_delay_info { struct delay_c *context; struct delay_class *class; struct list_head list; unsigned long expires; }; static DEFINE_MUTEX(delayed_bios_lock); static void handle_delayed_timer(struct timer_list *t) { struct delay_c *dc = from_timer(dc, t, delay_timer); queue_work(dc->kdelayd_wq, &dc->flush_expired_bios); } static void queue_timeout(struct delay_c *dc, unsigned long expires) { mutex_lock(&dc->timer_lock); if (!timer_pending(&dc->delay_timer) || expires < dc->delay_timer.expires) mod_timer(&dc->delay_timer, expires); mutex_unlock(&dc->timer_lock); } static inline bool delay_is_fast(struct delay_c *dc) { return !!dc->worker; } static void flush_bios(struct bio *bio) { struct bio *n; while (bio) { n = bio->bi_next; bio->bi_next = NULL; dm_submit_bio_remap(bio, NULL); bio = n; } } static void flush_delayed_bios(struct delay_c *dc, bool flush_all) { struct dm_delay_info *delayed, *next; struct bio_list flush_bio_list; unsigned long next_expires = 0; bool start_timer = false; bio_list_init(&flush_bio_list); mutex_lock(&delayed_bios_lock); list_for_each_entry_safe(delayed, next, &dc->delayed_bios, list) { cond_resched(); if (flush_all || time_after_eq(jiffies, delayed->expires)) { struct bio *bio = dm_bio_from_per_bio_data(delayed, sizeof(struct dm_delay_info)); list_del(&delayed->list); bio_list_add(&flush_bio_list, bio); delayed->class->ops--; continue; } if (!delay_is_fast(dc)) { if (!start_timer) { start_timer = true; next_expires = delayed->expires; } else { next_expires = min(next_expires, delayed->expires); } } } mutex_unlock(&delayed_bios_lock); if (start_timer) queue_timeout(dc, next_expires); flush_bios(bio_list_get(&flush_bio_list)); } static int flush_worker_fn(void *data) { struct delay_c *dc = data; while (!kthread_should_stop()) { flush_delayed_bios(dc, false); mutex_lock(&delayed_bios_lock); if (unlikely(list_empty(&dc->delayed_bios))) { set_current_state(TASK_INTERRUPTIBLE); mutex_unlock(&delayed_bios_lock); schedule(); } else { mutex_unlock(&delayed_bios_lock); cond_resched(); } } return 0; } static void flush_expired_bios(struct work_struct *work) { struct delay_c *dc; dc = container_of(work, struct delay_c, flush_expired_bios); flush_delayed_bios(dc, false); } static void delay_dtr(struct dm_target *ti) { struct delay_c *dc = ti->private; if (dc->kdelayd_wq) destroy_workqueue(dc->kdelayd_wq); if (dc->read.dev) dm_put_device(ti, dc->read.dev); if (dc->write.dev) dm_put_device(ti, dc->write.dev); if (dc->flush.dev) dm_put_device(ti, dc->flush.dev); if (dc->worker) kthread_stop(dc->worker); mutex_destroy(&dc->timer_lock); kfree(dc); } static int delay_class_ctr(struct dm_target *ti, struct delay_class *c, char **argv) { int ret; unsigned long long tmpll; char dummy; if (sscanf(argv[1], "%llu%c", &tmpll, &dummy) != 1 || tmpll != (sector_t)tmpll) { ti->error = "Invalid device sector"; return -EINVAL; } c->start = tmpll; if (sscanf(argv[2], "%u%c", &c->delay, &dummy) != 1) { ti->error = "Invalid delay"; return -EINVAL; } ret = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &c->dev); if (ret) { ti->error = "Device lookup failed"; return ret; } return 0; } /* * Mapping parameters: * <device> <offset> <delay> [<write_device> <write_offset> <write_delay>] * * With separate write parameters, the first set is only used for reads. * Offsets are specified in sectors. * Delays are specified in milliseconds. */ static int delay_ctr(struct dm_target *ti, unsigned int argc, char **argv) { struct delay_c *dc; int ret; unsigned int max_delay; if (argc != 3 && argc != 6 && argc != 9) { ti->error = "Requires exactly 3, 6 or 9 arguments"; return -EINVAL; } dc = kzalloc(sizeof(*dc), GFP_KERNEL); if (!dc) { ti->error = "Cannot allocate context"; return -ENOMEM; } ti->private = dc; INIT_LIST_HEAD(&dc->delayed_bios); mutex_init(&dc->timer_lock); dc->may_delay = true; dc->argc = argc; ret = delay_class_ctr(ti, &dc->read, argv); if (ret) goto bad; max_delay = dc->read.delay; if (argc == 3) { ret = delay_class_ctr(ti, &dc->write, argv); if (ret) goto bad; ret = delay_class_ctr(ti, &dc->flush, argv); if (ret) goto bad; max_delay = max(max_delay, dc->write.delay); max_delay = max(max_delay, dc->flush.delay); goto out; } ret = delay_class_ctr(ti, &dc->write, argv + 3); if (ret) goto bad; if (argc == 6) { ret = delay_class_ctr(ti, &dc->flush, argv + 3); if (ret) goto bad; max_delay = max(max_delay, dc->flush.delay); goto out; } ret = delay_class_ctr(ti, &dc->flush, argv + 6); if (ret) goto bad; max_delay = max(max_delay, dc->flush.delay); out: if (max_delay < 50) { /* * In case of small requested delays, use kthread instead of * timers and workqueue to achieve better latency. */ dc->worker = kthread_create(&flush_worker_fn, dc, "dm-delay-flush-worker"); if (IS_ERR(dc->worker)) { ret = PTR_ERR(dc->worker); dc->worker = NULL; goto bad; } } else { timer_setup(&dc->delay_timer, handle_delayed_timer, 0); INIT_WORK(&dc->flush_expired_bios, flush_expired_bios); dc->kdelayd_wq = alloc_workqueue("kdelayd", WQ_MEM_RECLAIM, 0); if (!dc->kdelayd_wq) { ret = -EINVAL; DMERR("Couldn't start kdelayd"); goto bad; } } ti->num_flush_bios = 1; ti->num_discard_bios = 1; ti->accounts_remapped_io = true; ti->per_io_data_size = sizeof(struct dm_delay_info); return 0; bad: delay_dtr(ti); return ret; } static int delay_bio(struct delay_c *dc, struct delay_class *c, struct bio *bio) { struct dm_delay_info *delayed; unsigned long expires = 0; if (!c->delay) return DM_MAPIO_REMAPPED; delayed = dm_per_bio_data(bio, sizeof(struct dm_delay_info)); delayed->context = dc; delayed->expires = expires = jiffies + msecs_to_jiffies(c->delay); mutex_lock(&delayed_bios_lock); if (unlikely(!dc->may_delay)) { mutex_unlock(&delayed_bios_lock); return DM_MAPIO_REMAPPED; } c->ops++; list_add_tail(&delayed->list, &dc->delayed_bios); mutex_unlock(&delayed_bios_lock); if (delay_is_fast(dc)) wake_up_process(dc->worker); else queue_timeout(dc, expires); return DM_MAPIO_SUBMITTED; } static void delay_presuspend(struct dm_target *ti) { struct delay_c *dc = ti->private; mutex_lock(&delayed_bios_lock); dc->may_delay = false; mutex_unlock(&delayed_bios_lock); if (!delay_is_fast(dc)) del_timer_sync(&dc->delay_timer); flush_delayed_bios(dc, true); } static void delay_resume(struct dm_target *ti) { struct delay_c *dc = ti->private; dc->may_delay = true; } static int delay_map(struct dm_target *ti, struct bio *bio) { struct delay_c *dc = ti->private; struct delay_class *c; struct dm_delay_info *delayed = dm_per_bio_data(bio, sizeof(struct dm_delay_info)); if (bio_data_dir(bio) == WRITE) { if (unlikely(bio->bi_opf & REQ_PREFLUSH)) c = &dc->flush; else c = &dc->write; } else { c = &dc->read; } delayed->class = c; bio_set_dev(bio, c->dev->bdev); bio->bi_iter.bi_sector = c->start + dm_target_offset(ti, bio->bi_iter.bi_sector); return delay_bio(dc, c, bio); } #define DMEMIT_DELAY_CLASS(c) \ DMEMIT("%s %llu %u", (c)->dev->name, (unsigned long long)(c)->start, (c)->delay) static void delay_status(struct dm_target *ti, status_type_t type, unsigned int status_flags, char *result, unsigned int maxlen) { struct delay_c *dc = ti->private; int sz = 0; switch (type) { case STATUSTYPE_INFO: DMEMIT("%u %u %u", dc->read.ops, dc->write.ops, dc->flush.ops); break; case STATUSTYPE_TABLE: DMEMIT_DELAY_CLASS(&dc->read); if (dc->argc >= 6) { DMEMIT(" "); DMEMIT_DELAY_CLASS(&dc->write); } if (dc->argc >= 9) { DMEMIT(" "); DMEMIT_DELAY_CLASS(&dc->flush); } break; case STATUSTYPE_IMA: *result = '\0'; break; } } static int delay_iterate_devices(struct dm_target *ti, iterate_devices_callout_fn fn, void *data) { struct delay_c *dc = ti->private; int ret = 0; ret = fn(ti, dc->read.dev, dc->read.start, ti->len, data); if (ret) goto out; ret = fn(ti, dc->write.dev, dc->write.start, ti->len, data); if (ret) goto out; ret = fn(ti, dc->flush.dev, dc->flush.start, ti->len, data); if (ret) goto out; out: return ret; } static struct target_type delay_target = { .name = "delay", .version = {1, 4, 0}, .features = DM_TARGET_PASSES_INTEGRITY, .module = THIS_MODULE, .ctr = delay_ctr, .dtr = delay_dtr, .map = delay_map, .presuspend = delay_presuspend, .resume = delay_resume, .status = delay_status, .iterate_devices = delay_iterate_devices, }; module_dm(delay); MODULE_DESCRIPTION(DM_NAME " delay target"); MODULE_AUTHOR("Heinz Mauelshagen <mauelshagen@redhat.com>"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1