Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Laurent Pinchart | 5396 | 59.15% | 70 | 63.06% |
Rui Miguel Silva | 2761 | 30.27% | 2 | 1.80% |
Steve Longerbeam | 301 | 3.30% | 11 | 9.91% |
Paul Elder | 191 | 2.09% | 2 | 1.80% |
Martin Kepplinger | 145 | 1.59% | 1 | 0.90% |
Fabio Estevam | 139 | 1.52% | 7 | 6.31% |
Alexander Stein | 80 | 0.88% | 4 | 3.60% |
Frieder Schrempf | 28 | 0.31% | 1 | 0.90% |
Tomi Valkeinen | 25 | 0.27% | 2 | 1.80% |
Sébastien Szymanski | 17 | 0.19% | 1 | 0.90% |
Sakari Ailus | 13 | 0.14% | 3 | 2.70% |
Jacopo Mondi | 9 | 0.10% | 1 | 0.90% |
Ezequiel García | 8 | 0.09% | 1 | 0.90% |
Yang Yingliang | 3 | 0.03% | 1 | 0.90% |
Uwe Kleine-König | 2 | 0.02% | 1 | 0.90% |
Mauro Carvalho Chehab | 2 | 0.02% | 1 | 0.90% |
Petko Manolov | 1 | 0.01% | 1 | 0.90% |
Rob Herring | 1 | 0.01% | 1 | 0.90% |
Total | 9122 | 111 |
// SPDX-License-Identifier: GPL-2.0 /* * V4L2 Capture CSI Subdev for Freescale i.MX6UL/L / i.MX7 SOC * * Copyright (c) 2019 Linaro Ltd * */ #include <linux/clk.h> #include <linux/delay.h> #include <linux/interrupt.h> #include <linux/math.h> #include <linux/mfd/syscon.h> #include <linux/minmax.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_graph.h> #include <linux/pinctrl/consumer.h> #include <linux/platform_device.h> #include <linux/regmap.h> #include <linux/slab.h> #include <linux/spinlock.h> #include <linux/types.h> #include <media/v4l2-device.h> #include <media/v4l2-fwnode.h> #include <media/v4l2-ioctl.h> #include <media/v4l2-mc.h> #include <media/v4l2-subdev.h> #include <media/videobuf2-dma-contig.h> #define IMX7_CSI_PAD_SINK 0 #define IMX7_CSI_PAD_SRC 1 #define IMX7_CSI_PADS_NUM 2 /* csi control reg 1 */ #define BIT_SWAP16_EN BIT(31) #define BIT_EXT_VSYNC BIT(30) #define BIT_EOF_INT_EN BIT(29) #define BIT_PRP_IF_EN BIT(28) #define BIT_CCIR_MODE BIT(27) #define BIT_COF_INT_EN BIT(26) #define BIT_SF_OR_INTEN BIT(25) #define BIT_RF_OR_INTEN BIT(24) #define BIT_SFF_DMA_DONE_INTEN BIT(22) #define BIT_STATFF_INTEN BIT(21) #define BIT_FB2_DMA_DONE_INTEN BIT(20) #define BIT_FB1_DMA_DONE_INTEN BIT(19) #define BIT_RXFF_INTEN BIT(18) #define BIT_SOF_POL BIT(17) #define BIT_SOF_INTEN BIT(16) #define BIT_MCLKDIV(n) ((n) << 12) #define BIT_MCLKDIV_MASK (0xf << 12) #define BIT_HSYNC_POL BIT(11) #define BIT_CCIR_EN BIT(10) #define BIT_MCLKEN BIT(9) #define BIT_FCC BIT(8) #define BIT_PACK_DIR BIT(7) #define BIT_CLR_STATFIFO BIT(6) #define BIT_CLR_RXFIFO BIT(5) #define BIT_GCLK_MODE BIT(4) #define BIT_INV_DATA BIT(3) #define BIT_INV_PCLK BIT(2) #define BIT_REDGE BIT(1) #define BIT_PIXEL_BIT BIT(0) /* control reg 2 */ #define BIT_DMA_BURST_TYPE_RFF_INCR4 (1 << 30) #define BIT_DMA_BURST_TYPE_RFF_INCR8 (2 << 30) #define BIT_DMA_BURST_TYPE_RFF_INCR16 (3 << 30) #define BIT_DMA_BURST_TYPE_RFF_MASK (3 << 30) /* control reg 3 */ #define BIT_FRMCNT(n) ((n) << 16) #define BIT_FRMCNT_MASK (0xffff << 16) #define BIT_FRMCNT_RST BIT(15) #define BIT_DMA_REFLASH_RFF BIT(14) #define BIT_DMA_REFLASH_SFF BIT(13) #define BIT_DMA_REQ_EN_RFF BIT(12) #define BIT_DMA_REQ_EN_SFF BIT(11) #define BIT_STATFF_LEVEL(n) ((n) << 8) #define BIT_STATFF_LEVEL_MASK (0x7 << 8) #define BIT_HRESP_ERR_EN BIT(7) #define BIT_RXFF_LEVEL(n) ((n) << 4) #define BIT_RXFF_LEVEL_MASK (0x7 << 4) #define BIT_TWO_8BIT_SENSOR BIT(3) #define BIT_ZERO_PACK_EN BIT(2) #define BIT_ECC_INT_EN BIT(1) #define BIT_ECC_AUTO_EN BIT(0) /* csi status reg */ #define BIT_ADDR_CH_ERR_INT BIT(28) #define BIT_FIELD0_INT BIT(27) #define BIT_FIELD1_INT BIT(26) #define BIT_SFF_OR_INT BIT(25) #define BIT_RFF_OR_INT BIT(24) #define BIT_DMA_TSF_DONE_SFF BIT(22) #define BIT_STATFF_INT BIT(21) #define BIT_DMA_TSF_DONE_FB2 BIT(20) #define BIT_DMA_TSF_DONE_FB1 BIT(19) #define BIT_RXFF_INT BIT(18) #define BIT_EOF_INT BIT(17) #define BIT_SOF_INT BIT(16) #define BIT_F2_INT BIT(15) #define BIT_F1_INT BIT(14) #define BIT_COF_INT BIT(13) #define BIT_HRESP_ERR_INT BIT(7) #define BIT_ECC_INT BIT(1) #define BIT_DRDY BIT(0) /* csi image parameter reg */ #define BIT_IMAGE_WIDTH(n) ((n) << 16) #define BIT_IMAGE_HEIGHT(n) (n) /* csi control reg 18 */ #define BIT_CSI_HW_ENABLE BIT(31) #define BIT_MIPI_DATA_FORMAT_RAW8 (0x2a << 25) #define BIT_MIPI_DATA_FORMAT_RAW10 (0x2b << 25) #define BIT_MIPI_DATA_FORMAT_RAW12 (0x2c << 25) #define BIT_MIPI_DATA_FORMAT_RAW14 (0x2d << 25) #define BIT_MIPI_DATA_FORMAT_YUV422_8B (0x1e << 25) #define BIT_MIPI_DATA_FORMAT_MASK (0x3f << 25) #define BIT_DATA_FROM_MIPI BIT(22) #define BIT_MIPI_YU_SWAP BIT(21) #define BIT_MIPI_DOUBLE_CMPNT BIT(20) #define BIT_MASK_OPTION_FIRST_FRAME (0 << 18) #define BIT_MASK_OPTION_CSI_EN (1 << 18) #define BIT_MASK_OPTION_SECOND_FRAME (2 << 18) #define BIT_MASK_OPTION_ON_DATA (3 << 18) #define BIT_BASEADDR_CHG_ERR_EN BIT(9) #define BIT_BASEADDR_SWITCH_SEL BIT(5) #define BIT_BASEADDR_SWITCH_EN BIT(4) #define BIT_PARALLEL24_EN BIT(3) #define BIT_DEINTERLACE_EN BIT(2) #define BIT_TVDECODER_IN_EN BIT(1) #define BIT_NTSC_EN BIT(0) #define CSI_MCLK_VF 1 #define CSI_MCLK_ENC 2 #define CSI_MCLK_RAW 4 #define CSI_MCLK_I2C 8 #define CSI_CSICR1 0x00 #define CSI_CSICR2 0x04 #define CSI_CSICR3 0x08 #define CSI_STATFIFO 0x0c #define CSI_CSIRXFIFO 0x10 #define CSI_CSIRXCNT 0x14 #define CSI_CSISR 0x18 #define CSI_CSIDBG 0x1c #define CSI_CSIDMASA_STATFIFO 0x20 #define CSI_CSIDMATS_STATFIFO 0x24 #define CSI_CSIDMASA_FB1 0x28 #define CSI_CSIDMASA_FB2 0x2c #define CSI_CSIFBUF_PARA 0x30 #define CSI_CSIIMAG_PARA 0x34 #define CSI_CSICR18 0x48 #define CSI_CSICR19 0x4c #define IMX7_CSI_VIDEO_NAME "imx-capture" /* In bytes, per queue */ #define IMX7_CSI_VIDEO_MEM_LIMIT SZ_512M #define IMX7_CSI_VIDEO_EOF_TIMEOUT 2000 #define IMX7_CSI_DEF_MBUS_CODE MEDIA_BUS_FMT_UYVY8_2X8 #define IMX7_CSI_DEF_PIX_FORMAT V4L2_PIX_FMT_UYVY #define IMX7_CSI_DEF_PIX_WIDTH 640 #define IMX7_CSI_DEF_PIX_HEIGHT 480 enum imx_csi_model { IMX7_CSI_IMX7 = 0, IMX7_CSI_IMX8MQ, }; struct imx7_csi_pixfmt { /* the in-memory FourCC pixel format */ u32 fourcc; /* * the set of equivalent media bus codes for the fourcc. * NOTE! codes pointer is NULL for in-memory-only formats. */ const u32 *codes; int bpp; /* total bpp */ bool yuv; }; struct imx7_csi_vb2_buffer { struct vb2_v4l2_buffer vbuf; struct list_head list; }; static inline struct imx7_csi_vb2_buffer * to_imx7_csi_vb2_buffer(struct vb2_buffer *vb) { struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb); return container_of(vbuf, struct imx7_csi_vb2_buffer, vbuf); } struct imx7_csi_dma_buf { void *virt; dma_addr_t dma_addr; unsigned long len; }; struct imx7_csi { struct device *dev; /* Resources and locks */ void __iomem *regbase; int irq; struct clk *mclk; spinlock_t irqlock; /* Protects last_eof */ /* Media and V4L2 device */ struct media_device mdev; struct v4l2_device v4l2_dev; struct v4l2_async_notifier notifier; struct media_pipeline pipe; struct v4l2_subdev *src_sd; bool is_csi2; /* V4L2 subdev */ struct v4l2_subdev sd; struct media_pad pad[IMX7_CSI_PADS_NUM]; /* Video device */ struct video_device *vdev; /* Video device */ struct media_pad vdev_pad; /* Video device pad */ struct v4l2_pix_format vdev_fmt; /* The user format */ const struct imx7_csi_pixfmt *vdev_cc; struct v4l2_rect vdev_compose; /* The compose rectangle */ struct mutex vdev_mutex; /* Protect vdev operations */ struct vb2_queue q; /* The videobuf2 queue */ struct list_head ready_q; /* List of queued buffers */ spinlock_t q_lock; /* Protect ready_q */ /* Buffers and streaming state */ struct imx7_csi_vb2_buffer *active_vb2_buf[2]; struct imx7_csi_dma_buf underrun_buf; bool is_streaming; int buf_num; u32 frame_sequence; bool last_eof; struct completion last_eof_completion; enum imx_csi_model model; }; static struct imx7_csi * imx7_csi_notifier_to_dev(struct v4l2_async_notifier *n) { return container_of(n, struct imx7_csi, notifier); } /* ----------------------------------------------------------------------------- * Hardware Configuration */ static u32 imx7_csi_reg_read(struct imx7_csi *csi, unsigned int offset) { return readl(csi->regbase + offset); } static void imx7_csi_reg_write(struct imx7_csi *csi, unsigned int value, unsigned int offset) { writel(value, csi->regbase + offset); } static u32 imx7_csi_irq_clear(struct imx7_csi *csi) { u32 isr; isr = imx7_csi_reg_read(csi, CSI_CSISR); imx7_csi_reg_write(csi, isr, CSI_CSISR); return isr; } static void imx7_csi_init_default(struct imx7_csi *csi) { imx7_csi_reg_write(csi, BIT_SOF_POL | BIT_REDGE | BIT_GCLK_MODE | BIT_HSYNC_POL | BIT_FCC | BIT_MCLKDIV(1) | BIT_MCLKEN, CSI_CSICR1); imx7_csi_reg_write(csi, 0, CSI_CSICR2); imx7_csi_reg_write(csi, BIT_FRMCNT_RST, CSI_CSICR3); imx7_csi_reg_write(csi, BIT_IMAGE_WIDTH(IMX7_CSI_DEF_PIX_WIDTH) | BIT_IMAGE_HEIGHT(IMX7_CSI_DEF_PIX_HEIGHT), CSI_CSIIMAG_PARA); imx7_csi_reg_write(csi, BIT_DMA_REFLASH_RFF, CSI_CSICR3); } static void imx7_csi_hw_enable_irq(struct imx7_csi *csi) { u32 cr1 = imx7_csi_reg_read(csi, CSI_CSICR1); cr1 |= BIT_RFF_OR_INT; cr1 |= BIT_FB1_DMA_DONE_INTEN; cr1 |= BIT_FB2_DMA_DONE_INTEN; imx7_csi_reg_write(csi, cr1, CSI_CSICR1); } static void imx7_csi_hw_disable_irq(struct imx7_csi *csi) { u32 cr1 = imx7_csi_reg_read(csi, CSI_CSICR1); cr1 &= ~BIT_RFF_OR_INT; cr1 &= ~BIT_FB1_DMA_DONE_INTEN; cr1 &= ~BIT_FB2_DMA_DONE_INTEN; imx7_csi_reg_write(csi, cr1, CSI_CSICR1); } static void imx7_csi_hw_enable(struct imx7_csi *csi) { u32 cr = imx7_csi_reg_read(csi, CSI_CSICR18); cr |= BIT_CSI_HW_ENABLE; imx7_csi_reg_write(csi, cr, CSI_CSICR18); } static void imx7_csi_hw_disable(struct imx7_csi *csi) { u32 cr = imx7_csi_reg_read(csi, CSI_CSICR18); cr &= ~BIT_CSI_HW_ENABLE; imx7_csi_reg_write(csi, cr, CSI_CSICR18); } static void imx7_csi_dma_reflash(struct imx7_csi *csi) { u32 cr3; cr3 = imx7_csi_reg_read(csi, CSI_CSICR3); cr3 |= BIT_DMA_REFLASH_RFF; imx7_csi_reg_write(csi, cr3, CSI_CSICR3); } static void imx7_csi_rx_fifo_clear(struct imx7_csi *csi) { u32 cr1 = imx7_csi_reg_read(csi, CSI_CSICR1) & ~BIT_FCC; imx7_csi_reg_write(csi, cr1, CSI_CSICR1); imx7_csi_reg_write(csi, cr1 | BIT_CLR_RXFIFO, CSI_CSICR1); imx7_csi_reg_write(csi, cr1 | BIT_FCC, CSI_CSICR1); } static void imx7_csi_dmareq_rff_enable(struct imx7_csi *csi) { u32 cr3 = imx7_csi_reg_read(csi, CSI_CSICR3); cr3 |= BIT_DMA_REQ_EN_RFF; cr3 |= BIT_HRESP_ERR_EN; cr3 &= ~BIT_RXFF_LEVEL_MASK; cr3 |= BIT_RXFF_LEVEL(2); imx7_csi_reg_write(csi, cr3, CSI_CSICR3); } static void imx7_csi_dmareq_rff_disable(struct imx7_csi *csi) { u32 cr3 = imx7_csi_reg_read(csi, CSI_CSICR3); cr3 &= ~BIT_DMA_REQ_EN_RFF; cr3 &= ~BIT_HRESP_ERR_EN; imx7_csi_reg_write(csi, cr3, CSI_CSICR3); } static void imx7_csi_update_buf(struct imx7_csi *csi, dma_addr_t dma_addr, int buf_num) { if (buf_num == 1) imx7_csi_reg_write(csi, dma_addr, CSI_CSIDMASA_FB2); else imx7_csi_reg_write(csi, dma_addr, CSI_CSIDMASA_FB1); } static struct imx7_csi_vb2_buffer *imx7_csi_video_next_buf(struct imx7_csi *csi); static void imx7_csi_setup_vb2_buf(struct imx7_csi *csi) { struct imx7_csi_vb2_buffer *buf; struct vb2_buffer *vb2_buf; int i; for (i = 0; i < 2; i++) { dma_addr_t dma_addr; buf = imx7_csi_video_next_buf(csi); if (buf) { csi->active_vb2_buf[i] = buf; vb2_buf = &buf->vbuf.vb2_buf; dma_addr = vb2_dma_contig_plane_dma_addr(vb2_buf, 0); } else { csi->active_vb2_buf[i] = NULL; dma_addr = csi->underrun_buf.dma_addr; } imx7_csi_update_buf(csi, dma_addr, i); } } static void imx7_csi_dma_unsetup_vb2_buf(struct imx7_csi *csi, enum vb2_buffer_state return_status) { struct imx7_csi_vb2_buffer *buf; int i; /* return any remaining active frames with return_status */ for (i = 0; i < 2; i++) { buf = csi->active_vb2_buf[i]; if (buf) { struct vb2_buffer *vb = &buf->vbuf.vb2_buf; vb->timestamp = ktime_get_ns(); vb2_buffer_done(vb, return_status); csi->active_vb2_buf[i] = NULL; } } } static void imx7_csi_free_dma_buf(struct imx7_csi *csi, struct imx7_csi_dma_buf *buf) { if (buf->virt) dma_free_coherent(csi->dev, buf->len, buf->virt, buf->dma_addr); buf->virt = NULL; buf->dma_addr = 0; } static int imx7_csi_alloc_dma_buf(struct imx7_csi *csi, struct imx7_csi_dma_buf *buf, int size) { imx7_csi_free_dma_buf(csi, buf); buf->len = PAGE_ALIGN(size); buf->virt = dma_alloc_coherent(csi->dev, buf->len, &buf->dma_addr, GFP_DMA | GFP_KERNEL); if (!buf->virt) return -ENOMEM; return 0; } static int imx7_csi_dma_setup(struct imx7_csi *csi) { int ret; ret = imx7_csi_alloc_dma_buf(csi, &csi->underrun_buf, csi->vdev_fmt.sizeimage); if (ret < 0) { v4l2_warn(&csi->sd, "consider increasing the CMA area\n"); return ret; } csi->frame_sequence = 0; csi->last_eof = false; init_completion(&csi->last_eof_completion); imx7_csi_setup_vb2_buf(csi); return 0; } static void imx7_csi_dma_cleanup(struct imx7_csi *csi, enum vb2_buffer_state return_status) { imx7_csi_dma_unsetup_vb2_buf(csi, return_status); imx7_csi_free_dma_buf(csi, &csi->underrun_buf); } static void imx7_csi_dma_stop(struct imx7_csi *csi) { unsigned long timeout_jiffies; unsigned long flags; int ret; /* mark next EOF interrupt as the last before stream off */ spin_lock_irqsave(&csi->irqlock, flags); csi->last_eof = true; spin_unlock_irqrestore(&csi->irqlock, flags); /* * and then wait for interrupt handler to mark completion. */ timeout_jiffies = msecs_to_jiffies(IMX7_CSI_VIDEO_EOF_TIMEOUT); ret = wait_for_completion_timeout(&csi->last_eof_completion, timeout_jiffies); if (ret == 0) v4l2_warn(&csi->sd, "wait last EOF timeout\n"); imx7_csi_hw_disable_irq(csi); } static void imx7_csi_configure(struct imx7_csi *csi, struct v4l2_subdev_state *sd_state) { struct v4l2_pix_format *out_pix = &csi->vdev_fmt; int width = out_pix->width; u32 stride = 0; u32 cr3 = BIT_FRMCNT_RST; u32 cr1, cr18; cr18 = imx7_csi_reg_read(csi, CSI_CSICR18); cr18 &= ~(BIT_CSI_HW_ENABLE | BIT_MIPI_DATA_FORMAT_MASK | BIT_DATA_FROM_MIPI | BIT_MIPI_DOUBLE_CMPNT | BIT_BASEADDR_CHG_ERR_EN | BIT_BASEADDR_SWITCH_SEL | BIT_BASEADDR_SWITCH_EN | BIT_DEINTERLACE_EN); if (out_pix->field == V4L2_FIELD_INTERLACED) { cr18 |= BIT_DEINTERLACE_EN; stride = out_pix->width; } if (!csi->is_csi2) { cr1 = BIT_SOF_POL | BIT_REDGE | BIT_GCLK_MODE | BIT_HSYNC_POL | BIT_FCC | BIT_MCLKDIV(1) | BIT_MCLKEN; cr18 |= BIT_BASEADDR_SWITCH_EN | BIT_BASEADDR_SWITCH_SEL | BIT_BASEADDR_CHG_ERR_EN; if (out_pix->pixelformat == V4L2_PIX_FMT_UYVY || out_pix->pixelformat == V4L2_PIX_FMT_YUYV) width *= 2; } else { const struct v4l2_mbus_framefmt *sink_fmt; sink_fmt = v4l2_subdev_get_pad_format(&csi->sd, sd_state, IMX7_CSI_PAD_SINK); cr1 = BIT_SOF_POL | BIT_REDGE | BIT_HSYNC_POL | BIT_FCC | BIT_MCLKDIV(1) | BIT_MCLKEN; cr18 |= BIT_DATA_FROM_MIPI; switch (sink_fmt->code) { case MEDIA_BUS_FMT_Y8_1X8: case MEDIA_BUS_FMT_SBGGR8_1X8: case MEDIA_BUS_FMT_SGBRG8_1X8: case MEDIA_BUS_FMT_SGRBG8_1X8: case MEDIA_BUS_FMT_SRGGB8_1X8: cr18 |= BIT_MIPI_DATA_FORMAT_RAW8; break; case MEDIA_BUS_FMT_Y10_1X10: case MEDIA_BUS_FMT_SBGGR10_1X10: case MEDIA_BUS_FMT_SGBRG10_1X10: case MEDIA_BUS_FMT_SGRBG10_1X10: case MEDIA_BUS_FMT_SRGGB10_1X10: cr3 |= BIT_TWO_8BIT_SENSOR; cr18 |= BIT_MIPI_DATA_FORMAT_RAW10; break; case MEDIA_BUS_FMT_Y12_1X12: case MEDIA_BUS_FMT_SBGGR12_1X12: case MEDIA_BUS_FMT_SGBRG12_1X12: case MEDIA_BUS_FMT_SGRBG12_1X12: case MEDIA_BUS_FMT_SRGGB12_1X12: cr3 |= BIT_TWO_8BIT_SENSOR; cr18 |= BIT_MIPI_DATA_FORMAT_RAW12; break; case MEDIA_BUS_FMT_Y14_1X14: case MEDIA_BUS_FMT_SBGGR14_1X14: case MEDIA_BUS_FMT_SGBRG14_1X14: case MEDIA_BUS_FMT_SGRBG14_1X14: case MEDIA_BUS_FMT_SRGGB14_1X14: cr3 |= BIT_TWO_8BIT_SENSOR; cr18 |= BIT_MIPI_DATA_FORMAT_RAW14; break; /* * The CSI bridge has a 16-bit input bus. Depending on the * connected source, data may be transmitted with 8 or 10 bits * per clock sample (in bits [9:2] or [9:0] respectively) or * with 16 bits per clock sample (in bits [15:0]). The data is * then packed into a 32-bit FIFO (as shown in figure 13-11 of * the i.MX8MM reference manual rev. 3). * * The data packing in a 32-bit FIFO input word is controlled by * the CR3 TWO_8BIT_SENSOR field (also known as SENSOR_16BITS in * the i.MX8MM reference manual). When set to 0, data packing * groups four 8-bit input samples (bits [9:2]). When set to 1, * data packing groups two 16-bit input samples (bits [15:0]). * * The register field CR18 MIPI_DOUBLE_CMPNT also needs to be * configured according to the input format for YUV 4:2:2 data. * The field controls the gasket between the CSI-2 receiver and * the CSI bridge. On i.MX7 and i.MX8MM, the field must be set * to 1 when the CSIS outputs 16-bit samples. On i.MX8MQ, the * gasket ignores the MIPI_DOUBLE_CMPNT bit and YUV 4:2:2 always * uses 16-bit samples. Setting MIPI_DOUBLE_CMPNT in that case * has no effect, but doesn't cause any issue. */ case MEDIA_BUS_FMT_UYVY8_2X8: case MEDIA_BUS_FMT_YUYV8_2X8: cr18 |= BIT_MIPI_DATA_FORMAT_YUV422_8B; break; case MEDIA_BUS_FMT_UYVY8_1X16: case MEDIA_BUS_FMT_YUYV8_1X16: cr3 |= BIT_TWO_8BIT_SENSOR; cr18 |= BIT_MIPI_DATA_FORMAT_YUV422_8B | BIT_MIPI_DOUBLE_CMPNT; break; } } imx7_csi_reg_write(csi, cr1, CSI_CSICR1); imx7_csi_reg_write(csi, BIT_DMA_BURST_TYPE_RFF_INCR16, CSI_CSICR2); imx7_csi_reg_write(csi, cr3, CSI_CSICR3); imx7_csi_reg_write(csi, cr18, CSI_CSICR18); imx7_csi_reg_write(csi, (width * out_pix->height) >> 2, CSI_CSIRXCNT); imx7_csi_reg_write(csi, BIT_IMAGE_WIDTH(width) | BIT_IMAGE_HEIGHT(out_pix->height), CSI_CSIIMAG_PARA); imx7_csi_reg_write(csi, stride, CSI_CSIFBUF_PARA); } static int imx7_csi_init(struct imx7_csi *csi, struct v4l2_subdev_state *sd_state) { int ret; ret = clk_prepare_enable(csi->mclk); if (ret < 0) return ret; imx7_csi_configure(csi, sd_state); ret = imx7_csi_dma_setup(csi); if (ret < 0) { clk_disable_unprepare(csi->mclk); return ret; } return 0; } static void imx7_csi_deinit(struct imx7_csi *csi, enum vb2_buffer_state return_status) { imx7_csi_dma_cleanup(csi, return_status); imx7_csi_init_default(csi); imx7_csi_dmareq_rff_disable(csi); clk_disable_unprepare(csi->mclk); } static void imx7_csi_baseaddr_switch_on_second_frame(struct imx7_csi *csi) { u32 cr18 = imx7_csi_reg_read(csi, CSI_CSICR18); cr18 |= BIT_BASEADDR_SWITCH_EN | BIT_BASEADDR_SWITCH_SEL | BIT_BASEADDR_CHG_ERR_EN; cr18 |= BIT_MASK_OPTION_SECOND_FRAME; imx7_csi_reg_write(csi, cr18, CSI_CSICR18); } static void imx7_csi_enable(struct imx7_csi *csi) { /* Clear the Rx FIFO and reflash the DMA controller. */ imx7_csi_rx_fifo_clear(csi); imx7_csi_dma_reflash(csi); usleep_range(2000, 3000); /* Clear and enable the interrupts. */ imx7_csi_irq_clear(csi); imx7_csi_hw_enable_irq(csi); /* Enable the RxFIFO DMA and the CSI. */ imx7_csi_dmareq_rff_enable(csi); imx7_csi_hw_enable(csi); if (csi->model == IMX7_CSI_IMX8MQ) imx7_csi_baseaddr_switch_on_second_frame(csi); } static void imx7_csi_disable(struct imx7_csi *csi) { imx7_csi_dma_stop(csi); imx7_csi_dmareq_rff_disable(csi); imx7_csi_hw_disable_irq(csi); imx7_csi_hw_disable(csi); } /* ----------------------------------------------------------------------------- * Interrupt Handling */ static void imx7_csi_error_recovery(struct imx7_csi *csi) { imx7_csi_hw_disable(csi); imx7_csi_rx_fifo_clear(csi); imx7_csi_dma_reflash(csi); imx7_csi_hw_enable(csi); } static void imx7_csi_vb2_buf_done(struct imx7_csi *csi) { struct imx7_csi_vb2_buffer *done, *next; struct vb2_buffer *vb; dma_addr_t dma_addr; done = csi->active_vb2_buf[csi->buf_num]; if (done) { done->vbuf.field = csi->vdev_fmt.field; done->vbuf.sequence = csi->frame_sequence; vb = &done->vbuf.vb2_buf; vb->timestamp = ktime_get_ns(); vb2_buffer_done(vb, VB2_BUF_STATE_DONE); } csi->frame_sequence++; /* get next queued buffer */ next = imx7_csi_video_next_buf(csi); if (next) { dma_addr = vb2_dma_contig_plane_dma_addr(&next->vbuf.vb2_buf, 0); csi->active_vb2_buf[csi->buf_num] = next; } else { dma_addr = csi->underrun_buf.dma_addr; csi->active_vb2_buf[csi->buf_num] = NULL; } imx7_csi_update_buf(csi, dma_addr, csi->buf_num); } static irqreturn_t imx7_csi_irq_handler(int irq, void *data) { struct imx7_csi *csi = data; u32 status; spin_lock(&csi->irqlock); status = imx7_csi_irq_clear(csi); if (status & BIT_RFF_OR_INT) { dev_warn(csi->dev, "Rx fifo overflow\n"); imx7_csi_error_recovery(csi); } if (status & BIT_HRESP_ERR_INT) { dev_warn(csi->dev, "Hresponse error detected\n"); imx7_csi_error_recovery(csi); } if (status & BIT_ADDR_CH_ERR_INT) { imx7_csi_hw_disable(csi); imx7_csi_dma_reflash(csi); imx7_csi_hw_enable(csi); } if ((status & BIT_DMA_TSF_DONE_FB1) && (status & BIT_DMA_TSF_DONE_FB2)) { /* * For both FB1 and FB2 interrupter bits set case, * CSI DMA is work in one of FB1 and FB2 buffer, * but software can not know the state. * Skip it to avoid base address updated * when csi work in field0 and field1 will write to * new base address. */ } else if (status & BIT_DMA_TSF_DONE_FB1) { csi->buf_num = 0; } else if (status & BIT_DMA_TSF_DONE_FB2) { csi->buf_num = 1; } if ((status & BIT_DMA_TSF_DONE_FB1) || (status & BIT_DMA_TSF_DONE_FB2)) { imx7_csi_vb2_buf_done(csi); if (csi->last_eof) { complete(&csi->last_eof_completion); csi->last_eof = false; } } spin_unlock(&csi->irqlock); return IRQ_HANDLED; } /* ----------------------------------------------------------------------------- * Format Helpers */ #define IMX_BUS_FMTS(fmt...) (const u32[]) {fmt, 0} /* * List of supported pixel formats for the subdevs. Keep V4L2_PIX_FMT_UYVY and * MEDIA_BUS_FMT_UYVY8_2X8 first to match IMX7_CSI_DEF_PIX_FORMAT and * IMX7_CSI_DEF_MBUS_CODE. * * TODO: Restrict the supported formats list based on the SoC integration. * * The CSI bridge can be configured to sample pixel components from the Rx queue * in single (8bpp) or double (16bpp) component modes. Image format variants * with different sample sizes (ie YUYV_2X8 vs YUYV_1X16) determine the pixel * components sampling size per each clock cycle and their packing mode (see * imx7_csi_configure() for details). * * As the CSI bridge can be interfaced with different IP blocks depending on the * SoC model it is integrated on, the Rx queue sampling size should match the * size of the samples transferred by the transmitting IP block. To avoid * misconfigurations of the capture pipeline, the enumeration of the supported * formats should be restricted to match the pixel source transmitting mode. * * Example: i.MX8MM SoC integrates the CSI bridge with the Samsung CSIS CSI-2 * receiver which operates in dual pixel sampling mode. The CSI bridge should * only expose the 1X16 formats variant which instructs it to operate in dual * pixel sampling mode. When the CSI bridge is instead integrated on an i.MX7, * which supports both serial and parallel input, it should expose both * variants. * * This currently only applies to YUYV formats, but other formats might need to * be handled in the same way. */ static const struct imx7_csi_pixfmt pixel_formats[] = { /*** YUV formats start here ***/ { .fourcc = V4L2_PIX_FMT_UYVY, .codes = IMX_BUS_FMTS( MEDIA_BUS_FMT_UYVY8_2X8, MEDIA_BUS_FMT_UYVY8_1X16 ), .yuv = true, .bpp = 16, }, { .fourcc = V4L2_PIX_FMT_YUYV, .codes = IMX_BUS_FMTS( MEDIA_BUS_FMT_YUYV8_2X8, MEDIA_BUS_FMT_YUYV8_1X16 ), .yuv = true, .bpp = 16, }, /*** raw bayer and grayscale formats start here ***/ { .fourcc = V4L2_PIX_FMT_SBGGR8, .codes = IMX_BUS_FMTS(MEDIA_BUS_FMT_SBGGR8_1X8), .bpp = 8, }, { .fourcc = V4L2_PIX_FMT_SGBRG8, .codes = IMX_BUS_FMTS(MEDIA_BUS_FMT_SGBRG8_1X8), .bpp = 8, }, { .fourcc = V4L2_PIX_FMT_SGRBG8, .codes = IMX_BUS_FMTS(MEDIA_BUS_FMT_SGRBG8_1X8), .bpp = 8, }, { .fourcc = V4L2_PIX_FMT_SRGGB8, .codes = IMX_BUS_FMTS(MEDIA_BUS_FMT_SRGGB8_1X8), .bpp = 8, }, { .fourcc = V4L2_PIX_FMT_SBGGR10, .codes = IMX_BUS_FMTS(MEDIA_BUS_FMT_SBGGR10_1X10), .bpp = 16, }, { .fourcc = V4L2_PIX_FMT_SGBRG10, .codes = IMX_BUS_FMTS(MEDIA_BUS_FMT_SGBRG10_1X10), .bpp = 16, }, { .fourcc = V4L2_PIX_FMT_SGRBG10, .codes = IMX_BUS_FMTS(MEDIA_BUS_FMT_SGRBG10_1X10), .bpp = 16, }, { .fourcc = V4L2_PIX_FMT_SRGGB10, .codes = IMX_BUS_FMTS(MEDIA_BUS_FMT_SRGGB10_1X10), .bpp = 16, }, { .fourcc = V4L2_PIX_FMT_SBGGR12, .codes = IMX_BUS_FMTS(MEDIA_BUS_FMT_SBGGR12_1X12), .bpp = 16, }, { .fourcc = V4L2_PIX_FMT_SGBRG12, .codes = IMX_BUS_FMTS(MEDIA_BUS_FMT_SGBRG12_1X12), .bpp = 16, }, { .fourcc = V4L2_PIX_FMT_SGRBG12, .codes = IMX_BUS_FMTS(MEDIA_BUS_FMT_SGRBG12_1X12), .bpp = 16, }, { .fourcc = V4L2_PIX_FMT_SRGGB12, .codes = IMX_BUS_FMTS(MEDIA_BUS_FMT_SRGGB12_1X12), .bpp = 16, }, { .fourcc = V4L2_PIX_FMT_SBGGR14, .codes = IMX_BUS_FMTS(MEDIA_BUS_FMT_SBGGR14_1X14), .bpp = 16, }, { .fourcc = V4L2_PIX_FMT_SGBRG14, .codes = IMX_BUS_FMTS(MEDIA_BUS_FMT_SGBRG14_1X14), .bpp = 16, }, { .fourcc = V4L2_PIX_FMT_SGRBG14, .codes = IMX_BUS_FMTS(MEDIA_BUS_FMT_SGRBG14_1X14), .bpp = 16, }, { .fourcc = V4L2_PIX_FMT_SRGGB14, .codes = IMX_BUS_FMTS(MEDIA_BUS_FMT_SRGGB14_1X14), .bpp = 16, }, { .fourcc = V4L2_PIX_FMT_GREY, .codes = IMX_BUS_FMTS(MEDIA_BUS_FMT_Y8_1X8), .bpp = 8, }, { .fourcc = V4L2_PIX_FMT_Y10, .codes = IMX_BUS_FMTS(MEDIA_BUS_FMT_Y10_1X10), .bpp = 16, }, { .fourcc = V4L2_PIX_FMT_Y12, .codes = IMX_BUS_FMTS(MEDIA_BUS_FMT_Y12_1X12), .bpp = 16, }, { .fourcc = V4L2_PIX_FMT_Y14, .codes = IMX_BUS_FMTS(MEDIA_BUS_FMT_Y14_1X14), .bpp = 16, }, }; /* * Search in the pixel_formats[] array for an entry with the given fourcc * return it. */ static const struct imx7_csi_pixfmt *imx7_csi_find_pixel_format(u32 fourcc) { unsigned int i; for (i = 0; i < ARRAY_SIZE(pixel_formats); i++) { const struct imx7_csi_pixfmt *fmt = &pixel_formats[i]; if (fmt->fourcc == fourcc) return fmt; } return NULL; } /* * Search in the pixel_formats[] array for an entry with the given media * bus code and return it. */ static const struct imx7_csi_pixfmt *imx7_csi_find_mbus_format(u32 code) { unsigned int i; for (i = 0; i < ARRAY_SIZE(pixel_formats); i++) { const struct imx7_csi_pixfmt *fmt = &pixel_formats[i]; unsigned int j; if (!fmt->codes) continue; for (j = 0; fmt->codes[j]; j++) { if (code == fmt->codes[j]) return fmt; } } return NULL; } /* * Enumerate entries in the pixel_formats[] array that match the * requested search criteria. Return the media-bus code that matches * the search criteria at the requested match index. * * @code: The returned media-bus code that matches the search criteria at * the requested match index. * @index: The requested match index. */ static int imx7_csi_enum_mbus_formats(u32 *code, u32 index) { unsigned int i; for (i = 0; i < ARRAY_SIZE(pixel_formats); i++) { const struct imx7_csi_pixfmt *fmt = &pixel_formats[i]; unsigned int j; if (!fmt->codes) continue; for (j = 0; fmt->codes[j]; j++) { if (index == 0) { *code = fmt->codes[j]; return 0; } index--; } } return -EINVAL; } /* ----------------------------------------------------------------------------- * Video Capture Device - IOCTLs */ static int imx7_csi_video_querycap(struct file *file, void *fh, struct v4l2_capability *cap) { struct imx7_csi *csi = video_drvdata(file); strscpy(cap->driver, IMX7_CSI_VIDEO_NAME, sizeof(cap->driver)); strscpy(cap->card, IMX7_CSI_VIDEO_NAME, sizeof(cap->card)); snprintf(cap->bus_info, sizeof(cap->bus_info), "platform:%s", dev_name(csi->dev)); return 0; } static int imx7_csi_video_enum_fmt_vid_cap(struct file *file, void *fh, struct v4l2_fmtdesc *f) { unsigned int index = f->index; unsigned int i; for (i = 0; i < ARRAY_SIZE(pixel_formats); i++) { const struct imx7_csi_pixfmt *fmt = &pixel_formats[i]; /* * If a media bus code is specified, only consider formats that * match it. */ if (f->mbus_code) { unsigned int j; if (!fmt->codes) continue; for (j = 0; fmt->codes[j]; j++) { if (f->mbus_code == fmt->codes[j]) break; } if (!fmt->codes[j]) continue; } if (index == 0) { f->pixelformat = fmt->fourcc; return 0; } index--; } return -EINVAL; } static int imx7_csi_video_enum_framesizes(struct file *file, void *fh, struct v4l2_frmsizeenum *fsize) { const struct imx7_csi_pixfmt *cc; u32 walign; if (fsize->index > 0) return -EINVAL; cc = imx7_csi_find_pixel_format(fsize->pixel_format); if (!cc) return -EINVAL; /* * The width alignment is 8 bytes as indicated by the * CSI_IMAG_PARA.IMAGE_WIDTH documentation. Convert it to pixels. */ walign = 8 * 8 / cc->bpp; fsize->type = V4L2_FRMSIZE_TYPE_CONTINUOUS; fsize->stepwise.min_width = walign; fsize->stepwise.max_width = round_down(65535U, walign); fsize->stepwise.min_height = 1; fsize->stepwise.max_height = 65535; fsize->stepwise.step_width = walign; fsize->stepwise.step_height = 1; return 0; } static int imx7_csi_video_g_fmt_vid_cap(struct file *file, void *fh, struct v4l2_format *f) { struct imx7_csi *csi = video_drvdata(file); f->fmt.pix = csi->vdev_fmt; return 0; } static const struct imx7_csi_pixfmt * __imx7_csi_video_try_fmt(struct v4l2_pix_format *pixfmt, struct v4l2_rect *compose) { const struct imx7_csi_pixfmt *cc; u32 walign; if (compose) { compose->width = pixfmt->width; compose->height = pixfmt->height; } /* * Find the pixel format, default to the first supported format if not * found. */ cc = imx7_csi_find_pixel_format(pixfmt->pixelformat); if (!cc) { pixfmt->pixelformat = IMX7_CSI_DEF_PIX_FORMAT; cc = imx7_csi_find_pixel_format(pixfmt->pixelformat); } /* * The width alignment is 8 bytes as indicated by the * CSI_IMAG_PARA.IMAGE_WIDTH documentation. Convert it to pixels. * * TODO: Implement configurable stride support. */ walign = 8 * 8 / cc->bpp; pixfmt->width = clamp(round_up(pixfmt->width, walign), walign, round_down(65535U, walign)); pixfmt->height = clamp(pixfmt->height, 1U, 65535U); pixfmt->bytesperline = pixfmt->width * cc->bpp / 8; pixfmt->sizeimage = pixfmt->bytesperline * pixfmt->height; pixfmt->field = V4L2_FIELD_NONE; return cc; } static int imx7_csi_video_try_fmt_vid_cap(struct file *file, void *fh, struct v4l2_format *f) { __imx7_csi_video_try_fmt(&f->fmt.pix, NULL); return 0; } static int imx7_csi_video_s_fmt_vid_cap(struct file *file, void *fh, struct v4l2_format *f) { struct imx7_csi *csi = video_drvdata(file); const struct imx7_csi_pixfmt *cc; if (vb2_is_busy(&csi->q)) { dev_err(csi->dev, "%s queue busy\n", __func__); return -EBUSY; } cc = __imx7_csi_video_try_fmt(&f->fmt.pix, &csi->vdev_compose); csi->vdev_cc = cc; csi->vdev_fmt = f->fmt.pix; return 0; } static int imx7_csi_video_g_selection(struct file *file, void *fh, struct v4l2_selection *s) { struct imx7_csi *csi = video_drvdata(file); if (s->type != V4L2_BUF_TYPE_VIDEO_CAPTURE) return -EINVAL; switch (s->target) { case V4L2_SEL_TGT_COMPOSE: case V4L2_SEL_TGT_COMPOSE_DEFAULT: case V4L2_SEL_TGT_COMPOSE_BOUNDS: /* The compose rectangle is fixed to the source format. */ s->r = csi->vdev_compose; break; case V4L2_SEL_TGT_COMPOSE_PADDED: /* * The hardware writes with a configurable but fixed DMA burst * size. If the source format width is not burst size aligned, * the written frame contains padding to the right. */ s->r.left = 0; s->r.top = 0; s->r.width = csi->vdev_fmt.width; s->r.height = csi->vdev_fmt.height; break; default: return -EINVAL; } return 0; } static const struct v4l2_ioctl_ops imx7_csi_video_ioctl_ops = { .vidioc_querycap = imx7_csi_video_querycap, .vidioc_enum_fmt_vid_cap = imx7_csi_video_enum_fmt_vid_cap, .vidioc_enum_framesizes = imx7_csi_video_enum_framesizes, .vidioc_g_fmt_vid_cap = imx7_csi_video_g_fmt_vid_cap, .vidioc_try_fmt_vid_cap = imx7_csi_video_try_fmt_vid_cap, .vidioc_s_fmt_vid_cap = imx7_csi_video_s_fmt_vid_cap, .vidioc_g_selection = imx7_csi_video_g_selection, .vidioc_reqbufs = vb2_ioctl_reqbufs, .vidioc_create_bufs = vb2_ioctl_create_bufs, .vidioc_prepare_buf = vb2_ioctl_prepare_buf, .vidioc_querybuf = vb2_ioctl_querybuf, .vidioc_qbuf = vb2_ioctl_qbuf, .vidioc_dqbuf = vb2_ioctl_dqbuf, .vidioc_expbuf = vb2_ioctl_expbuf, .vidioc_streamon = vb2_ioctl_streamon, .vidioc_streamoff = vb2_ioctl_streamoff, }; /* ----------------------------------------------------------------------------- * Video Capture Device - Queue Operations */ static int imx7_csi_video_queue_setup(struct vb2_queue *vq, unsigned int *nbuffers, unsigned int *nplanes, unsigned int sizes[], struct device *alloc_devs[]) { struct imx7_csi *csi = vb2_get_drv_priv(vq); struct v4l2_pix_format *pix = &csi->vdev_fmt; unsigned int count = *nbuffers; if (vq->type != V4L2_BUF_TYPE_VIDEO_CAPTURE) return -EINVAL; if (*nplanes) { if (*nplanes != 1 || sizes[0] < pix->sizeimage) return -EINVAL; count += vq->num_buffers; } count = min_t(__u32, IMX7_CSI_VIDEO_MEM_LIMIT / pix->sizeimage, count); if (*nplanes) *nbuffers = (count < vq->num_buffers) ? 0 : count - vq->num_buffers; else *nbuffers = count; *nplanes = 1; sizes[0] = pix->sizeimage; return 0; } static int imx7_csi_video_buf_init(struct vb2_buffer *vb) { struct imx7_csi_vb2_buffer *buf = to_imx7_csi_vb2_buffer(vb); INIT_LIST_HEAD(&buf->list); return 0; } static int imx7_csi_video_buf_prepare(struct vb2_buffer *vb) { struct imx7_csi *csi = vb2_get_drv_priv(vb->vb2_queue); struct v4l2_pix_format *pix = &csi->vdev_fmt; if (vb2_plane_size(vb, 0) < pix->sizeimage) { dev_err(csi->dev, "data will not fit into plane (%lu < %lu)\n", vb2_plane_size(vb, 0), (long)pix->sizeimage); return -EINVAL; } vb2_set_plane_payload(vb, 0, pix->sizeimage); return 0; } static bool imx7_csi_fast_track_buffer(struct imx7_csi *csi, struct imx7_csi_vb2_buffer *buf) { unsigned long flags; dma_addr_t dma_addr; int buf_num; u32 isr; if (!csi->is_streaming) return false; dma_addr = vb2_dma_contig_plane_dma_addr(&buf->vbuf.vb2_buf, 0); /* * buf_num holds the framebuffer ID of the most recently (*not* the * next anticipated) triggered interrupt. Without loss of generality, * if buf_num is 0, the hardware is capturing to FB2. If FB1 has been * programmed with a dummy buffer (as indicated by active_vb2_buf[0] * being NULL), then we can fast-track the new buffer by programming * its address in FB1 before the hardware completes FB2, instead of * adding it to the buffer queue and incurring a delay of one * additional frame. * * The irqlock prevents races with the interrupt handler that updates * buf_num when it programs the next buffer, but we can still race with * the hardware if we program the buffer in FB1 just after the hardware * completes FB2 and switches to FB1 and before buf_num can be updated * by the interrupt handler for FB2. The fast-tracked buffer would * then be ignored by the hardware while the driver would think it has * successfully been processed. * * To avoid this problem, if we can't avoid the race, we can detect * that we have lost it by checking, after programming the buffer in * FB1, if the interrupt flag indicating completion of FB2 has been * raised. If that is not the case, fast-tracking succeeded, and we can * update active_vb2_buf[0]. Otherwise, we may or may not have lost the * race (as the interrupt flag may have been raised just after * programming FB1 and before we read the interrupt status register), * and we need to assume the worst case of a race loss and queue the * buffer through the slow path. */ spin_lock_irqsave(&csi->irqlock, flags); buf_num = csi->buf_num; if (csi->active_vb2_buf[buf_num]) { spin_unlock_irqrestore(&csi->irqlock, flags); return false; } imx7_csi_update_buf(csi, dma_addr, buf_num); isr = imx7_csi_reg_read(csi, CSI_CSISR); if (isr & (buf_num ? BIT_DMA_TSF_DONE_FB1 : BIT_DMA_TSF_DONE_FB2)) { /* * The interrupt for the /other/ FB just came (the isr hasn't * run yet though, because we have the lock here); we can't be * sure we've programmed buf_num FB in time, so queue the buffer * to the buffer queue normally. No need to undo writing the FB * register, since we won't return it as active_vb2_buf is NULL, * so it's okay to potentially write it to both FB1 and FB2; * only the one where it was queued normally will be returned. */ spin_unlock_irqrestore(&csi->irqlock, flags); return false; } csi->active_vb2_buf[buf_num] = buf; spin_unlock_irqrestore(&csi->irqlock, flags); return true; } static void imx7_csi_video_buf_queue(struct vb2_buffer *vb) { struct imx7_csi *csi = vb2_get_drv_priv(vb->vb2_queue); struct imx7_csi_vb2_buffer *buf = to_imx7_csi_vb2_buffer(vb); unsigned long flags; if (imx7_csi_fast_track_buffer(csi, buf)) return; spin_lock_irqsave(&csi->q_lock, flags); list_add_tail(&buf->list, &csi->ready_q); spin_unlock_irqrestore(&csi->q_lock, flags); } static int imx7_csi_video_validate_fmt(struct imx7_csi *csi) { struct v4l2_subdev_format fmt_src = { .pad = IMX7_CSI_PAD_SRC, .which = V4L2_SUBDEV_FORMAT_ACTIVE, }; const struct imx7_csi_pixfmt *cc; int ret; /* Retrieve the media bus format on the source subdev. */ ret = v4l2_subdev_call_state_active(&csi->sd, pad, get_fmt, &fmt_src); if (ret) return ret; /* * Verify that the media bus size matches the size set on the video * node. It is sufficient to check the compose rectangle size without * checking the rounded size from pix_fmt, as the rounded size is * derived directly from the compose rectangle size, and will thus * always match if the compose rectangle matches. */ if (csi->vdev_compose.width != fmt_src.format.width || csi->vdev_compose.height != fmt_src.format.height) return -EPIPE; /* * Verify that the media bus code is compatible with the pixel format * set on the video node. */ cc = imx7_csi_find_mbus_format(fmt_src.format.code); if (!cc || csi->vdev_cc->yuv != cc->yuv) return -EPIPE; return 0; } static int imx7_csi_video_start_streaming(struct vb2_queue *vq, unsigned int count) { struct imx7_csi *csi = vb2_get_drv_priv(vq); struct imx7_csi_vb2_buffer *buf, *tmp; unsigned long flags; int ret; ret = imx7_csi_video_validate_fmt(csi); if (ret) { dev_err(csi->dev, "capture format not valid\n"); goto err_buffers; } mutex_lock(&csi->mdev.graph_mutex); ret = __video_device_pipeline_start(csi->vdev, &csi->pipe); if (ret) goto err_unlock; ret = v4l2_subdev_call(&csi->sd, video, s_stream, 1); if (ret) goto err_stop; mutex_unlock(&csi->mdev.graph_mutex); return 0; err_stop: __video_device_pipeline_stop(csi->vdev); err_unlock: mutex_unlock(&csi->mdev.graph_mutex); dev_err(csi->dev, "pipeline start failed with %d\n", ret); err_buffers: spin_lock_irqsave(&csi->q_lock, flags); list_for_each_entry_safe(buf, tmp, &csi->ready_q, list) { list_del(&buf->list); vb2_buffer_done(&buf->vbuf.vb2_buf, VB2_BUF_STATE_QUEUED); } spin_unlock_irqrestore(&csi->q_lock, flags); return ret; } static void imx7_csi_video_stop_streaming(struct vb2_queue *vq) { struct imx7_csi *csi = vb2_get_drv_priv(vq); struct imx7_csi_vb2_buffer *frame; struct imx7_csi_vb2_buffer *tmp; unsigned long flags; mutex_lock(&csi->mdev.graph_mutex); v4l2_subdev_call(&csi->sd, video, s_stream, 0); __video_device_pipeline_stop(csi->vdev); mutex_unlock(&csi->mdev.graph_mutex); /* release all active buffers */ spin_lock_irqsave(&csi->q_lock, flags); list_for_each_entry_safe(frame, tmp, &csi->ready_q, list) { list_del(&frame->list); vb2_buffer_done(&frame->vbuf.vb2_buf, VB2_BUF_STATE_ERROR); } spin_unlock_irqrestore(&csi->q_lock, flags); } static const struct vb2_ops imx7_csi_video_qops = { .queue_setup = imx7_csi_video_queue_setup, .buf_init = imx7_csi_video_buf_init, .buf_prepare = imx7_csi_video_buf_prepare, .buf_queue = imx7_csi_video_buf_queue, .wait_prepare = vb2_ops_wait_prepare, .wait_finish = vb2_ops_wait_finish, .start_streaming = imx7_csi_video_start_streaming, .stop_streaming = imx7_csi_video_stop_streaming, }; /* ----------------------------------------------------------------------------- * Video Capture Device - File Operations */ static int imx7_csi_video_open(struct file *file) { struct imx7_csi *csi = video_drvdata(file); int ret; if (mutex_lock_interruptible(&csi->vdev_mutex)) return -ERESTARTSYS; ret = v4l2_fh_open(file); if (ret) { dev_err(csi->dev, "v4l2_fh_open failed\n"); goto out; } ret = v4l2_pipeline_pm_get(&csi->vdev->entity); if (ret) v4l2_fh_release(file); out: mutex_unlock(&csi->vdev_mutex); return ret; } static int imx7_csi_video_release(struct file *file) { struct imx7_csi *csi = video_drvdata(file); struct vb2_queue *vq = &csi->q; mutex_lock(&csi->vdev_mutex); if (file->private_data == vq->owner) { vb2_queue_release(vq); vq->owner = NULL; } v4l2_pipeline_pm_put(&csi->vdev->entity); v4l2_fh_release(file); mutex_unlock(&csi->vdev_mutex); return 0; } static const struct v4l2_file_operations imx7_csi_video_fops = { .owner = THIS_MODULE, .open = imx7_csi_video_open, .release = imx7_csi_video_release, .poll = vb2_fop_poll, .unlocked_ioctl = video_ioctl2, .mmap = vb2_fop_mmap, }; /* ----------------------------------------------------------------------------- * Video Capture Device - Init & Cleanup */ static struct imx7_csi_vb2_buffer *imx7_csi_video_next_buf(struct imx7_csi *csi) { struct imx7_csi_vb2_buffer *buf = NULL; unsigned long flags; spin_lock_irqsave(&csi->q_lock, flags); /* get next queued buffer */ if (!list_empty(&csi->ready_q)) { buf = list_entry(csi->ready_q.next, struct imx7_csi_vb2_buffer, list); list_del(&buf->list); } spin_unlock_irqrestore(&csi->q_lock, flags); return buf; } static void imx7_csi_video_init_format(struct imx7_csi *csi) { struct v4l2_pix_format *pixfmt = &csi->vdev_fmt; pixfmt->width = IMX7_CSI_DEF_PIX_WIDTH; pixfmt->height = IMX7_CSI_DEF_PIX_HEIGHT; csi->vdev_cc = __imx7_csi_video_try_fmt(pixfmt, &csi->vdev_compose); } static int imx7_csi_video_register(struct imx7_csi *csi) { struct v4l2_subdev *sd = &csi->sd; struct v4l2_device *v4l2_dev = sd->v4l2_dev; struct video_device *vdev = csi->vdev; int ret; vdev->v4l2_dev = v4l2_dev; /* Initialize the default format and compose rectangle. */ imx7_csi_video_init_format(csi); /* Register the video device. */ ret = video_register_device(vdev, VFL_TYPE_VIDEO, -1); if (ret) { dev_err(csi->dev, "Failed to register video device\n"); return ret; } dev_info(csi->dev, "Registered %s as /dev/%s\n", vdev->name, video_device_node_name(vdev)); /* Create the link from the CSI subdev to the video device. */ ret = media_create_pad_link(&sd->entity, IMX7_CSI_PAD_SRC, &vdev->entity, 0, MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED); if (ret) { dev_err(csi->dev, "failed to create link to device node\n"); video_unregister_device(vdev); return ret; } return 0; } static void imx7_csi_video_unregister(struct imx7_csi *csi) { media_entity_cleanup(&csi->vdev->entity); video_unregister_device(csi->vdev); } static int imx7_csi_video_init(struct imx7_csi *csi) { struct video_device *vdev; struct vb2_queue *vq; int ret; mutex_init(&csi->vdev_mutex); INIT_LIST_HEAD(&csi->ready_q); spin_lock_init(&csi->q_lock); /* Allocate and initialize the video device. */ vdev = video_device_alloc(); if (!vdev) return -ENOMEM; vdev->fops = &imx7_csi_video_fops; vdev->ioctl_ops = &imx7_csi_video_ioctl_ops; vdev->minor = -1; vdev->release = video_device_release; vdev->vfl_dir = VFL_DIR_RX; vdev->tvnorms = V4L2_STD_NTSC | V4L2_STD_PAL | V4L2_STD_SECAM; vdev->device_caps = V4L2_CAP_VIDEO_CAPTURE | V4L2_CAP_STREAMING | V4L2_CAP_IO_MC; vdev->lock = &csi->vdev_mutex; vdev->queue = &csi->q; snprintf(vdev->name, sizeof(vdev->name), "%s capture", csi->sd.name); video_set_drvdata(vdev, csi); csi->vdev = vdev; /* Initialize the video device pad. */ csi->vdev_pad.flags = MEDIA_PAD_FL_SINK; ret = media_entity_pads_init(&vdev->entity, 1, &csi->vdev_pad); if (ret) { video_device_release(vdev); return ret; } /* Initialize the vb2 queue. */ vq = &csi->q; vq->type = V4L2_BUF_TYPE_VIDEO_CAPTURE; vq->io_modes = VB2_MMAP | VB2_DMABUF; vq->drv_priv = csi; vq->buf_struct_size = sizeof(struct imx7_csi_vb2_buffer); vq->ops = &imx7_csi_video_qops; vq->mem_ops = &vb2_dma_contig_memops; vq->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_MONOTONIC; vq->lock = &csi->vdev_mutex; vq->min_buffers_needed = 2; vq->dev = csi->dev; ret = vb2_queue_init(vq); if (ret) { dev_err(csi->dev, "vb2_queue_init failed\n"); video_device_release(vdev); return ret; } return 0; } /* ----------------------------------------------------------------------------- * V4L2 Subdev Operations */ static int imx7_csi_s_stream(struct v4l2_subdev *sd, int enable) { struct imx7_csi *csi = v4l2_get_subdevdata(sd); struct v4l2_subdev_state *sd_state; int ret = 0; sd_state = v4l2_subdev_lock_and_get_active_state(sd); if (enable) { ret = imx7_csi_init(csi, sd_state); if (ret < 0) goto out_unlock; ret = v4l2_subdev_call(csi->src_sd, video, s_stream, 1); if (ret < 0) { imx7_csi_deinit(csi, VB2_BUF_STATE_QUEUED); goto out_unlock; } imx7_csi_enable(csi); } else { imx7_csi_disable(csi); v4l2_subdev_call(csi->src_sd, video, s_stream, 0); imx7_csi_deinit(csi, VB2_BUF_STATE_ERROR); } csi->is_streaming = !!enable; out_unlock: v4l2_subdev_unlock_state(sd_state); return ret; } static int imx7_csi_init_cfg(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state) { const struct imx7_csi_pixfmt *cc; int i; cc = imx7_csi_find_mbus_format(IMX7_CSI_DEF_MBUS_CODE); for (i = 0; i < IMX7_CSI_PADS_NUM; i++) { struct v4l2_mbus_framefmt *mf = v4l2_subdev_get_pad_format(sd, sd_state, i); mf->code = IMX7_CSI_DEF_MBUS_CODE; mf->width = IMX7_CSI_DEF_PIX_WIDTH; mf->height = IMX7_CSI_DEF_PIX_HEIGHT; mf->field = V4L2_FIELD_NONE; mf->colorspace = V4L2_COLORSPACE_SRGB; mf->xfer_func = V4L2_MAP_XFER_FUNC_DEFAULT(mf->colorspace); mf->ycbcr_enc = V4L2_MAP_YCBCR_ENC_DEFAULT(mf->colorspace); mf->quantization = V4L2_MAP_QUANTIZATION_DEFAULT(!cc->yuv, mf->colorspace, mf->ycbcr_enc); } return 0; } static int imx7_csi_enum_mbus_code(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_mbus_code_enum *code) { struct v4l2_mbus_framefmt *in_fmt; int ret = 0; in_fmt = v4l2_subdev_get_pad_format(sd, sd_state, IMX7_CSI_PAD_SINK); switch (code->pad) { case IMX7_CSI_PAD_SINK: ret = imx7_csi_enum_mbus_formats(&code->code, code->index); break; case IMX7_CSI_PAD_SRC: if (code->index != 0) { ret = -EINVAL; break; } code->code = in_fmt->code; break; default: ret = -EINVAL; break; } return ret; } /* * Default the colorspace in tryfmt to SRGB if set to an unsupported * colorspace or not initialized. Then set the remaining colorimetry * parameters based on the colorspace if they are uninitialized. * * tryfmt->code must be set on entry. */ static void imx7_csi_try_colorimetry(struct v4l2_mbus_framefmt *tryfmt) { const struct imx7_csi_pixfmt *cc; bool is_rgb = false; cc = imx7_csi_find_mbus_format(tryfmt->code); if (cc && !cc->yuv) is_rgb = true; switch (tryfmt->colorspace) { case V4L2_COLORSPACE_SMPTE170M: case V4L2_COLORSPACE_REC709: case V4L2_COLORSPACE_JPEG: case V4L2_COLORSPACE_SRGB: case V4L2_COLORSPACE_BT2020: case V4L2_COLORSPACE_OPRGB: case V4L2_COLORSPACE_DCI_P3: case V4L2_COLORSPACE_RAW: break; default: tryfmt->colorspace = V4L2_COLORSPACE_SRGB; break; } if (tryfmt->xfer_func == V4L2_XFER_FUNC_DEFAULT) tryfmt->xfer_func = V4L2_MAP_XFER_FUNC_DEFAULT(tryfmt->colorspace); if (tryfmt->ycbcr_enc == V4L2_YCBCR_ENC_DEFAULT) tryfmt->ycbcr_enc = V4L2_MAP_YCBCR_ENC_DEFAULT(tryfmt->colorspace); if (tryfmt->quantization == V4L2_QUANTIZATION_DEFAULT) tryfmt->quantization = V4L2_MAP_QUANTIZATION_DEFAULT(is_rgb, tryfmt->colorspace, tryfmt->ycbcr_enc); } static void imx7_csi_try_fmt(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_format *sdformat, const struct imx7_csi_pixfmt **cc) { const struct imx7_csi_pixfmt *in_cc; struct v4l2_mbus_framefmt *in_fmt; u32 code; in_fmt = v4l2_subdev_get_pad_format(sd, sd_state, IMX7_CSI_PAD_SINK); switch (sdformat->pad) { case IMX7_CSI_PAD_SRC: in_cc = imx7_csi_find_mbus_format(in_fmt->code); sdformat->format.width = in_fmt->width; sdformat->format.height = in_fmt->height; sdformat->format.code = in_fmt->code; sdformat->format.field = in_fmt->field; *cc = in_cc; sdformat->format.colorspace = in_fmt->colorspace; sdformat->format.xfer_func = in_fmt->xfer_func; sdformat->format.quantization = in_fmt->quantization; sdformat->format.ycbcr_enc = in_fmt->ycbcr_enc; break; case IMX7_CSI_PAD_SINK: *cc = imx7_csi_find_mbus_format(sdformat->format.code); if (!*cc) { code = IMX7_CSI_DEF_MBUS_CODE; *cc = imx7_csi_find_mbus_format(code); sdformat->format.code = code; } if (sdformat->format.field != V4L2_FIELD_INTERLACED) sdformat->format.field = V4L2_FIELD_NONE; break; } imx7_csi_try_colorimetry(&sdformat->format); } static int imx7_csi_set_fmt(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_format *sdformat) { struct imx7_csi *csi = v4l2_get_subdevdata(sd); const struct imx7_csi_pixfmt *outcc; struct v4l2_mbus_framefmt *outfmt; const struct imx7_csi_pixfmt *cc; struct v4l2_mbus_framefmt *fmt; struct v4l2_subdev_format format; if (csi->is_streaming) return -EBUSY; imx7_csi_try_fmt(sd, sd_state, sdformat, &cc); fmt = v4l2_subdev_get_pad_format(sd, sd_state, sdformat->pad); *fmt = sdformat->format; if (sdformat->pad == IMX7_CSI_PAD_SINK) { /* propagate format to source pads */ format.pad = IMX7_CSI_PAD_SRC; format.which = sdformat->which; format.format = sdformat->format; imx7_csi_try_fmt(sd, sd_state, &format, &outcc); outfmt = v4l2_subdev_get_pad_format(sd, sd_state, IMX7_CSI_PAD_SRC); *outfmt = format.format; } return 0; } static int imx7_csi_pad_link_validate(struct v4l2_subdev *sd, struct media_link *link, struct v4l2_subdev_format *source_fmt, struct v4l2_subdev_format *sink_fmt) { struct imx7_csi *csi = v4l2_get_subdevdata(sd); struct media_pad *pad = NULL; unsigned int i; int ret; /* * Validate the source link, and record whether the source uses the * parallel input or the CSI-2 receiver. */ ret = v4l2_subdev_link_validate_default(sd, link, source_fmt, sink_fmt); if (ret) return ret; switch (csi->src_sd->entity.function) { case MEDIA_ENT_F_VID_IF_BRIDGE: /* The input is the CSI-2 receiver. */ csi->is_csi2 = true; break; case MEDIA_ENT_F_VID_MUX: /* The input is the mux, check its input. */ for (i = 0; i < csi->src_sd->entity.num_pads; i++) { struct media_pad *spad = &csi->src_sd->entity.pads[i]; if (!(spad->flags & MEDIA_PAD_FL_SINK)) continue; pad = media_pad_remote_pad_first(spad); if (pad) break; } if (!pad) return -ENODEV; csi->is_csi2 = pad->entity->function == MEDIA_ENT_F_VID_IF_BRIDGE; break; default: /* * The input is an external entity, it must use the parallel * bus. */ csi->is_csi2 = false; break; } return 0; } static int imx7_csi_registered(struct v4l2_subdev *sd) { struct imx7_csi *csi = v4l2_get_subdevdata(sd); int ret; ret = imx7_csi_video_init(csi); if (ret) return ret; ret = imx7_csi_video_register(csi); if (ret) return ret; ret = v4l2_device_register_subdev_nodes(&csi->v4l2_dev); if (ret) goto err_unreg; ret = media_device_register(&csi->mdev); if (ret) goto err_unreg; return 0; err_unreg: imx7_csi_video_unregister(csi); return ret; } static void imx7_csi_unregistered(struct v4l2_subdev *sd) { struct imx7_csi *csi = v4l2_get_subdevdata(sd); imx7_csi_video_unregister(csi); } static const struct v4l2_subdev_video_ops imx7_csi_video_ops = { .s_stream = imx7_csi_s_stream, }; static const struct v4l2_subdev_pad_ops imx7_csi_pad_ops = { .init_cfg = imx7_csi_init_cfg, .enum_mbus_code = imx7_csi_enum_mbus_code, .get_fmt = v4l2_subdev_get_fmt, .set_fmt = imx7_csi_set_fmt, .link_validate = imx7_csi_pad_link_validate, }; static const struct v4l2_subdev_ops imx7_csi_subdev_ops = { .video = &imx7_csi_video_ops, .pad = &imx7_csi_pad_ops, }; static const struct v4l2_subdev_internal_ops imx7_csi_internal_ops = { .registered = imx7_csi_registered, .unregistered = imx7_csi_unregistered, }; /* ----------------------------------------------------------------------------- * Media Entity Operations */ static const struct media_entity_operations imx7_csi_entity_ops = { .link_validate = v4l2_subdev_link_validate, .get_fwnode_pad = v4l2_subdev_get_fwnode_pad_1_to_1, }; /* ----------------------------------------------------------------------------- * Probe & Remove */ static int imx7_csi_notify_bound(struct v4l2_async_notifier *notifier, struct v4l2_subdev *sd, struct v4l2_async_connection *asd) { struct imx7_csi *csi = imx7_csi_notifier_to_dev(notifier); struct media_pad *sink = &csi->sd.entity.pads[IMX7_CSI_PAD_SINK]; csi->src_sd = sd; return v4l2_create_fwnode_links_to_pad(sd, sink, MEDIA_LNK_FL_ENABLED | MEDIA_LNK_FL_IMMUTABLE); } static int imx7_csi_notify_complete(struct v4l2_async_notifier *notifier) { struct imx7_csi *csi = imx7_csi_notifier_to_dev(notifier); return v4l2_device_register_subdev_nodes(&csi->v4l2_dev); } static const struct v4l2_async_notifier_operations imx7_csi_notify_ops = { .bound = imx7_csi_notify_bound, .complete = imx7_csi_notify_complete, }; static int imx7_csi_async_register(struct imx7_csi *csi) { struct v4l2_async_connection *asd; struct fwnode_handle *ep; int ret; v4l2_async_nf_init(&csi->notifier, &csi->v4l2_dev); ep = fwnode_graph_get_endpoint_by_id(dev_fwnode(csi->dev), 0, 0, FWNODE_GRAPH_ENDPOINT_NEXT); if (!ep) { ret = dev_err_probe(csi->dev, -ENOTCONN, "Failed to get remote endpoint\n"); goto error; } asd = v4l2_async_nf_add_fwnode_remote(&csi->notifier, ep, struct v4l2_async_connection); fwnode_handle_put(ep); if (IS_ERR(asd)) { ret = dev_err_probe(csi->dev, PTR_ERR(asd), "Failed to add remote subdev to notifier\n"); goto error; } csi->notifier.ops = &imx7_csi_notify_ops; ret = v4l2_async_nf_register(&csi->notifier); if (ret) goto error; return 0; error: v4l2_async_nf_cleanup(&csi->notifier); return ret; } static void imx7_csi_media_cleanup(struct imx7_csi *csi) { v4l2_device_unregister(&csi->v4l2_dev); media_device_unregister(&csi->mdev); v4l2_subdev_cleanup(&csi->sd); media_device_cleanup(&csi->mdev); } static const struct media_device_ops imx7_csi_media_ops = { .link_notify = v4l2_pipeline_link_notify, }; static int imx7_csi_media_dev_init(struct imx7_csi *csi) { int ret; strscpy(csi->mdev.model, "imx-media", sizeof(csi->mdev.model)); csi->mdev.ops = &imx7_csi_media_ops; csi->mdev.dev = csi->dev; csi->v4l2_dev.mdev = &csi->mdev; strscpy(csi->v4l2_dev.name, "imx-media", sizeof(csi->v4l2_dev.name)); snprintf(csi->mdev.bus_info, sizeof(csi->mdev.bus_info), "platform:%s", dev_name(csi->mdev.dev)); media_device_init(&csi->mdev); ret = v4l2_device_register(csi->dev, &csi->v4l2_dev); if (ret < 0) { v4l2_err(&csi->v4l2_dev, "Failed to register v4l2_device: %d\n", ret); goto cleanup; } return 0; cleanup: media_device_cleanup(&csi->mdev); return ret; } static int imx7_csi_media_init(struct imx7_csi *csi) { unsigned int i; int ret; /* add media device */ ret = imx7_csi_media_dev_init(csi); if (ret) return ret; v4l2_subdev_init(&csi->sd, &imx7_csi_subdev_ops); v4l2_set_subdevdata(&csi->sd, csi); csi->sd.internal_ops = &imx7_csi_internal_ops; csi->sd.entity.ops = &imx7_csi_entity_ops; csi->sd.entity.function = MEDIA_ENT_F_VID_IF_BRIDGE; csi->sd.dev = csi->dev; csi->sd.owner = THIS_MODULE; csi->sd.flags = V4L2_SUBDEV_FL_HAS_DEVNODE; snprintf(csi->sd.name, sizeof(csi->sd.name), "csi"); for (i = 0; i < IMX7_CSI_PADS_NUM; i++) csi->pad[i].flags = (i == IMX7_CSI_PAD_SINK) ? MEDIA_PAD_FL_SINK : MEDIA_PAD_FL_SOURCE; ret = media_entity_pads_init(&csi->sd.entity, IMX7_CSI_PADS_NUM, csi->pad); if (ret) goto error; ret = v4l2_subdev_init_finalize(&csi->sd); if (ret) goto error; ret = v4l2_device_register_subdev(&csi->v4l2_dev, &csi->sd); if (ret) goto error; return 0; error: imx7_csi_media_cleanup(csi); return ret; } static int imx7_csi_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct imx7_csi *csi; int ret; csi = devm_kzalloc(&pdev->dev, sizeof(*csi), GFP_KERNEL); if (!csi) return -ENOMEM; csi->dev = dev; platform_set_drvdata(pdev, csi); spin_lock_init(&csi->irqlock); /* Acquire resources and install interrupt handler. */ csi->mclk = devm_clk_get(&pdev->dev, "mclk"); if (IS_ERR(csi->mclk)) { ret = PTR_ERR(csi->mclk); dev_err(dev, "Failed to get mclk: %d", ret); return ret; } csi->irq = platform_get_irq(pdev, 0); if (csi->irq < 0) return csi->irq; csi->regbase = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(csi->regbase)) return PTR_ERR(csi->regbase); csi->model = (enum imx_csi_model)(uintptr_t)of_device_get_match_data(&pdev->dev); ret = devm_request_irq(dev, csi->irq, imx7_csi_irq_handler, 0, "csi", (void *)csi); if (ret < 0) { dev_err(dev, "Request CSI IRQ failed.\n"); return ret; } /* Initialize all the media device infrastructure. */ ret = imx7_csi_media_init(csi); if (ret) return ret; ret = imx7_csi_async_register(csi); if (ret) goto err_media_cleanup; return 0; err_media_cleanup: imx7_csi_media_cleanup(csi); return ret; } static void imx7_csi_remove(struct platform_device *pdev) { struct imx7_csi *csi = platform_get_drvdata(pdev); imx7_csi_media_cleanup(csi); v4l2_async_nf_unregister(&csi->notifier); v4l2_async_nf_cleanup(&csi->notifier); v4l2_async_unregister_subdev(&csi->sd); } static const struct of_device_id imx7_csi_of_match[] = { { .compatible = "fsl,imx8mq-csi", .data = (void *)IMX7_CSI_IMX8MQ }, { .compatible = "fsl,imx7-csi", .data = (void *)IMX7_CSI_IMX7 }, { .compatible = "fsl,imx6ul-csi", .data = (void *)IMX7_CSI_IMX7 }, { }, }; MODULE_DEVICE_TABLE(of, imx7_csi_of_match); static struct platform_driver imx7_csi_driver = { .probe = imx7_csi_probe, .remove_new = imx7_csi_remove, .driver = { .of_match_table = imx7_csi_of_match, .name = "imx7-csi", }, }; module_platform_driver(imx7_csi_driver); MODULE_DESCRIPTION("i.MX7 CSI subdev driver"); MODULE_AUTHOR("Rui Miguel Silva <rui.silva@linaro.org>"); MODULE_LICENSE("GPL v2"); MODULE_ALIAS("platform:imx7-csi");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1