Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jai Luthra | 5174 | 100.00% | 1 | 100.00% |
Total | 5174 | 1 |
// SPDX-License-Identifier: GPL-2.0-only /* * TI CSI2RX Shim Wrapper Driver * * Copyright (C) 2023 Texas Instruments Incorporated - https://www.ti.com/ * * Author: Pratyush Yadav <p.yadav@ti.com> * Author: Jai Luthra <j-luthra@ti.com> */ #include <linux/bitfield.h> #include <linux/dmaengine.h> #include <linux/module.h> #include <linux/of_platform.h> #include <linux/platform_device.h> #include <media/mipi-csi2.h> #include <media/v4l2-device.h> #include <media/v4l2-ioctl.h> #include <media/v4l2-mc.h> #include <media/videobuf2-dma-contig.h> #define TI_CSI2RX_MODULE_NAME "j721e-csi2rx" #define SHIM_CNTL 0x10 #define SHIM_CNTL_PIX_RST BIT(0) #define SHIM_DMACNTX 0x20 #define SHIM_DMACNTX_EN BIT(31) #define SHIM_DMACNTX_YUV422 GENMASK(27, 26) #define SHIM_DMACNTX_SIZE GENMASK(21, 20) #define SHIM_DMACNTX_FMT GENMASK(5, 0) #define SHIM_DMACNTX_YUV422_MODE_11 3 #define SHIM_DMACNTX_SIZE_8 0 #define SHIM_DMACNTX_SIZE_16 1 #define SHIM_DMACNTX_SIZE_32 2 #define SHIM_PSI_CFG0 0x24 #define SHIM_PSI_CFG0_SRC_TAG GENMASK(15, 0) #define SHIM_PSI_CFG0_DST_TAG GENMASK(31, 16) #define PSIL_WORD_SIZE_BYTES 16 /* * There are no hard limits on the width or height. The DMA engine can handle * all sizes. The max width and height are arbitrary numbers for this driver. * Use 16K * 16K as the arbitrary limit. It is large enough that it is unlikely * the limit will be hit in practice. */ #define MAX_WIDTH_BYTES SZ_16K #define MAX_HEIGHT_LINES SZ_16K #define DRAIN_TIMEOUT_MS 50 #define DRAIN_BUFFER_SIZE SZ_32K struct ti_csi2rx_fmt { u32 fourcc; /* Four character code. */ u32 code; /* Mbus code. */ u32 csi_dt; /* CSI Data type. */ u8 bpp; /* Bits per pixel. */ u8 size; /* Data size shift when unpacking. */ }; struct ti_csi2rx_buffer { /* Common v4l2 buffer. Must be first. */ struct vb2_v4l2_buffer vb; struct list_head list; struct ti_csi2rx_dev *csi; }; enum ti_csi2rx_dma_state { TI_CSI2RX_DMA_STOPPED, /* Streaming not started yet. */ TI_CSI2RX_DMA_IDLE, /* Streaming but no pending DMA operation. */ TI_CSI2RX_DMA_ACTIVE, /* Streaming and pending DMA operation. */ }; struct ti_csi2rx_dma { /* Protects all fields in this struct. */ spinlock_t lock; struct dma_chan *chan; /* Buffers queued to the driver, waiting to be processed by DMA. */ struct list_head queue; enum ti_csi2rx_dma_state state; /* * Queue of buffers submitted to DMA engine. */ struct list_head submitted; /* Buffer to drain stale data from PSI-L endpoint */ struct { void *vaddr; dma_addr_t paddr; size_t len; } drain; }; struct ti_csi2rx_dev { struct device *dev; void __iomem *shim; struct v4l2_device v4l2_dev; struct video_device vdev; struct media_device mdev; struct media_pipeline pipe; struct media_pad pad; struct v4l2_async_notifier notifier; struct v4l2_subdev *source; struct vb2_queue vidq; struct mutex mutex; /* To serialize ioctls. */ struct v4l2_format v_fmt; struct ti_csi2rx_dma dma; u32 sequence; }; static const struct ti_csi2rx_fmt ti_csi2rx_formats[] = { { .fourcc = V4L2_PIX_FMT_YUYV, .code = MEDIA_BUS_FMT_YUYV8_1X16, .csi_dt = MIPI_CSI2_DT_YUV422_8B, .bpp = 16, .size = SHIM_DMACNTX_SIZE_8, }, { .fourcc = V4L2_PIX_FMT_UYVY, .code = MEDIA_BUS_FMT_UYVY8_1X16, .csi_dt = MIPI_CSI2_DT_YUV422_8B, .bpp = 16, .size = SHIM_DMACNTX_SIZE_8, }, { .fourcc = V4L2_PIX_FMT_YVYU, .code = MEDIA_BUS_FMT_YVYU8_1X16, .csi_dt = MIPI_CSI2_DT_YUV422_8B, .bpp = 16, .size = SHIM_DMACNTX_SIZE_8, }, { .fourcc = V4L2_PIX_FMT_VYUY, .code = MEDIA_BUS_FMT_VYUY8_1X16, .csi_dt = MIPI_CSI2_DT_YUV422_8B, .bpp = 16, .size = SHIM_DMACNTX_SIZE_8, }, { .fourcc = V4L2_PIX_FMT_SBGGR8, .code = MEDIA_BUS_FMT_SBGGR8_1X8, .csi_dt = MIPI_CSI2_DT_RAW8, .bpp = 8, .size = SHIM_DMACNTX_SIZE_8, }, { .fourcc = V4L2_PIX_FMT_SGBRG8, .code = MEDIA_BUS_FMT_SGBRG8_1X8, .csi_dt = MIPI_CSI2_DT_RAW8, .bpp = 8, .size = SHIM_DMACNTX_SIZE_8, }, { .fourcc = V4L2_PIX_FMT_SGRBG8, .code = MEDIA_BUS_FMT_SGRBG8_1X8, .csi_dt = MIPI_CSI2_DT_RAW8, .bpp = 8, .size = SHIM_DMACNTX_SIZE_8, }, { .fourcc = V4L2_PIX_FMT_SRGGB8, .code = MEDIA_BUS_FMT_SRGGB8_1X8, .csi_dt = MIPI_CSI2_DT_RAW8, .bpp = 8, .size = SHIM_DMACNTX_SIZE_8, }, { .fourcc = V4L2_PIX_FMT_SBGGR10, .code = MEDIA_BUS_FMT_SBGGR10_1X10, .csi_dt = MIPI_CSI2_DT_RAW10, .bpp = 16, .size = SHIM_DMACNTX_SIZE_16, }, { .fourcc = V4L2_PIX_FMT_SGBRG10, .code = MEDIA_BUS_FMT_SGBRG10_1X10, .csi_dt = MIPI_CSI2_DT_RAW10, .bpp = 16, .size = SHIM_DMACNTX_SIZE_16, }, { .fourcc = V4L2_PIX_FMT_SGRBG10, .code = MEDIA_BUS_FMT_SGRBG10_1X10, .csi_dt = MIPI_CSI2_DT_RAW10, .bpp = 16, .size = SHIM_DMACNTX_SIZE_16, }, { .fourcc = V4L2_PIX_FMT_SRGGB10, .code = MEDIA_BUS_FMT_SRGGB10_1X10, .csi_dt = MIPI_CSI2_DT_RAW10, .bpp = 16, .size = SHIM_DMACNTX_SIZE_16, }, /* More formats can be supported but they are not listed for now. */ }; /* Forward declaration needed by ti_csi2rx_dma_callback. */ static int ti_csi2rx_start_dma(struct ti_csi2rx_dev *csi, struct ti_csi2rx_buffer *buf); static const struct ti_csi2rx_fmt *find_format_by_fourcc(u32 pixelformat) { unsigned int i; for (i = 0; i < ARRAY_SIZE(ti_csi2rx_formats); i++) { if (ti_csi2rx_formats[i].fourcc == pixelformat) return &ti_csi2rx_formats[i]; } return NULL; } static const struct ti_csi2rx_fmt *find_format_by_code(u32 code) { unsigned int i; for (i = 0; i < ARRAY_SIZE(ti_csi2rx_formats); i++) { if (ti_csi2rx_formats[i].code == code) return &ti_csi2rx_formats[i]; } return NULL; } static void ti_csi2rx_fill_fmt(const struct ti_csi2rx_fmt *csi_fmt, struct v4l2_format *v4l2_fmt) { struct v4l2_pix_format *pix = &v4l2_fmt->fmt.pix; unsigned int pixels_in_word; pixels_in_word = PSIL_WORD_SIZE_BYTES * 8 / csi_fmt->bpp; /* Clamp width and height to sensible maximums (16K x 16K) */ pix->width = clamp_t(unsigned int, pix->width, pixels_in_word, MAX_WIDTH_BYTES * 8 / csi_fmt->bpp); pix->height = clamp_t(unsigned int, pix->height, 1, MAX_HEIGHT_LINES); /* Width should be a multiple of transfer word-size */ pix->width = rounddown(pix->width, pixels_in_word); v4l2_fmt->type = V4L2_BUF_TYPE_VIDEO_CAPTURE; pix->pixelformat = csi_fmt->fourcc; pix->bytesperline = pix->width * (csi_fmt->bpp / 8); pix->sizeimage = pix->bytesperline * pix->height; } static int ti_csi2rx_querycap(struct file *file, void *priv, struct v4l2_capability *cap) { strscpy(cap->driver, TI_CSI2RX_MODULE_NAME, sizeof(cap->driver)); strscpy(cap->card, TI_CSI2RX_MODULE_NAME, sizeof(cap->card)); return 0; } static int ti_csi2rx_enum_fmt_vid_cap(struct file *file, void *priv, struct v4l2_fmtdesc *f) { const struct ti_csi2rx_fmt *fmt = NULL; if (f->mbus_code) { /* 1-to-1 mapping between bus formats and pixel formats */ if (f->index > 0) return -EINVAL; fmt = find_format_by_code(f->mbus_code); } else { if (f->index >= ARRAY_SIZE(ti_csi2rx_formats)) return -EINVAL; fmt = &ti_csi2rx_formats[f->index]; } if (!fmt) return -EINVAL; f->pixelformat = fmt->fourcc; memset(f->reserved, 0, sizeof(f->reserved)); f->type = V4L2_BUF_TYPE_VIDEO_CAPTURE; return 0; } static int ti_csi2rx_g_fmt_vid_cap(struct file *file, void *prov, struct v4l2_format *f) { struct ti_csi2rx_dev *csi = video_drvdata(file); *f = csi->v_fmt; return 0; } static int ti_csi2rx_try_fmt_vid_cap(struct file *file, void *priv, struct v4l2_format *f) { const struct ti_csi2rx_fmt *fmt; /* * Default to the first format if the requested pixel format code isn't * supported. */ fmt = find_format_by_fourcc(f->fmt.pix.pixelformat); if (!fmt) fmt = &ti_csi2rx_formats[0]; /* Interlaced formats are not supported. */ f->fmt.pix.field = V4L2_FIELD_NONE; ti_csi2rx_fill_fmt(fmt, f); return 0; } static int ti_csi2rx_s_fmt_vid_cap(struct file *file, void *priv, struct v4l2_format *f) { struct ti_csi2rx_dev *csi = video_drvdata(file); struct vb2_queue *q = &csi->vidq; int ret; if (vb2_is_busy(q)) return -EBUSY; ret = ti_csi2rx_try_fmt_vid_cap(file, priv, f); if (ret < 0) return ret; csi->v_fmt = *f; return 0; } static int ti_csi2rx_enum_framesizes(struct file *file, void *fh, struct v4l2_frmsizeenum *fsize) { const struct ti_csi2rx_fmt *fmt; unsigned int pixels_in_word; fmt = find_format_by_fourcc(fsize->pixel_format); if (!fmt || fsize->index != 0) return -EINVAL; /* * Number of pixels in one PSI-L word. The transfer happens in multiples * of PSI-L word sizes. */ pixels_in_word = PSIL_WORD_SIZE_BYTES * 8 / fmt->bpp; fsize->type = V4L2_FRMSIZE_TYPE_STEPWISE; fsize->stepwise.min_width = pixels_in_word; fsize->stepwise.max_width = rounddown(MAX_WIDTH_BYTES * 8 / fmt->bpp, pixels_in_word); fsize->stepwise.step_width = pixels_in_word; fsize->stepwise.min_height = 1; fsize->stepwise.max_height = MAX_HEIGHT_LINES; fsize->stepwise.step_height = 1; return 0; } static const struct v4l2_ioctl_ops csi_ioctl_ops = { .vidioc_querycap = ti_csi2rx_querycap, .vidioc_enum_fmt_vid_cap = ti_csi2rx_enum_fmt_vid_cap, .vidioc_try_fmt_vid_cap = ti_csi2rx_try_fmt_vid_cap, .vidioc_g_fmt_vid_cap = ti_csi2rx_g_fmt_vid_cap, .vidioc_s_fmt_vid_cap = ti_csi2rx_s_fmt_vid_cap, .vidioc_enum_framesizes = ti_csi2rx_enum_framesizes, .vidioc_reqbufs = vb2_ioctl_reqbufs, .vidioc_create_bufs = vb2_ioctl_create_bufs, .vidioc_prepare_buf = vb2_ioctl_prepare_buf, .vidioc_querybuf = vb2_ioctl_querybuf, .vidioc_qbuf = vb2_ioctl_qbuf, .vidioc_dqbuf = vb2_ioctl_dqbuf, .vidioc_expbuf = vb2_ioctl_expbuf, .vidioc_streamon = vb2_ioctl_streamon, .vidioc_streamoff = vb2_ioctl_streamoff, }; static const struct v4l2_file_operations csi_fops = { .owner = THIS_MODULE, .open = v4l2_fh_open, .release = vb2_fop_release, .read = vb2_fop_read, .poll = vb2_fop_poll, .unlocked_ioctl = video_ioctl2, .mmap = vb2_fop_mmap, }; static int csi_async_notifier_bound(struct v4l2_async_notifier *notifier, struct v4l2_subdev *subdev, struct v4l2_async_connection *asc) { struct ti_csi2rx_dev *csi = dev_get_drvdata(notifier->v4l2_dev->dev); csi->source = subdev; return 0; } static int csi_async_notifier_complete(struct v4l2_async_notifier *notifier) { struct ti_csi2rx_dev *csi = dev_get_drvdata(notifier->v4l2_dev->dev); struct video_device *vdev = &csi->vdev; int ret; ret = video_register_device(vdev, VFL_TYPE_VIDEO, -1); if (ret) return ret; ret = v4l2_create_fwnode_links_to_pad(csi->source, &csi->pad, MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED); if (ret) { video_unregister_device(vdev); return ret; } ret = v4l2_device_register_subdev_nodes(&csi->v4l2_dev); if (ret) video_unregister_device(vdev); return ret; } static const struct v4l2_async_notifier_operations csi_async_notifier_ops = { .bound = csi_async_notifier_bound, .complete = csi_async_notifier_complete, }; static int ti_csi2rx_notifier_register(struct ti_csi2rx_dev *csi) { struct fwnode_handle *fwnode; struct v4l2_async_connection *asc; struct device_node *node; int ret; node = of_get_child_by_name(csi->dev->of_node, "csi-bridge"); if (!node) return -EINVAL; fwnode = of_fwnode_handle(node); if (!fwnode) { of_node_put(node); return -EINVAL; } v4l2_async_nf_init(&csi->notifier, &csi->v4l2_dev); csi->notifier.ops = &csi_async_notifier_ops; asc = v4l2_async_nf_add_fwnode(&csi->notifier, fwnode, struct v4l2_async_connection); of_node_put(node); if (IS_ERR(asc)) { v4l2_async_nf_cleanup(&csi->notifier); return PTR_ERR(asc); } ret = v4l2_async_nf_register(&csi->notifier); if (ret) { v4l2_async_nf_cleanup(&csi->notifier); return ret; } return 0; } static void ti_csi2rx_setup_shim(struct ti_csi2rx_dev *csi) { const struct ti_csi2rx_fmt *fmt; unsigned int reg; fmt = find_format_by_fourcc(csi->v_fmt.fmt.pix.pixelformat); /* De-assert the pixel interface reset. */ reg = SHIM_CNTL_PIX_RST; writel(reg, csi->shim + SHIM_CNTL); reg = SHIM_DMACNTX_EN; reg |= FIELD_PREP(SHIM_DMACNTX_FMT, fmt->csi_dt); /* * The hardware assumes incoming YUV422 8-bit data on MIPI CSI2 bus * follows the spec and is packed in the order U0 -> Y0 -> V0 -> Y1 -> * ... * * There is an option to swap the bytes around before storing in * memory, to achieve different pixel formats: * * Byte3 <----------- Byte0 * [ Y1 ][ V0 ][ Y0 ][ U0 ] MODE 11 * [ Y1 ][ U0 ][ Y0 ][ V0 ] MODE 10 * [ V0 ][ Y1 ][ U0 ][ Y0 ] MODE 01 * [ U0 ][ Y1 ][ V0 ][ Y0 ] MODE 00 * * We don't have any requirement to change pixelformat from what is * coming from the source, so we keep it in MODE 11, which does not * swap any bytes when storing in memory. */ switch (fmt->fourcc) { case V4L2_PIX_FMT_UYVY: case V4L2_PIX_FMT_VYUY: case V4L2_PIX_FMT_YUYV: case V4L2_PIX_FMT_YVYU: reg |= FIELD_PREP(SHIM_DMACNTX_YUV422, SHIM_DMACNTX_YUV422_MODE_11); break; default: /* Ignore if not YUV 4:2:2 */ break; } reg |= FIELD_PREP(SHIM_DMACNTX_SIZE, fmt->size); writel(reg, csi->shim + SHIM_DMACNTX); reg = FIELD_PREP(SHIM_PSI_CFG0_SRC_TAG, 0) | FIELD_PREP(SHIM_PSI_CFG0_DST_TAG, 0); writel(reg, csi->shim + SHIM_PSI_CFG0); } static void ti_csi2rx_drain_callback(void *param) { struct completion *drain_complete = param; complete(drain_complete); } /* * Drain the stale data left at the PSI-L endpoint. * * This might happen if no buffers are queued in time but source is still * streaming. In multi-stream scenarios this can happen when one stream is * stopped but other is still streaming, and thus module-level pixel reset is * not asserted. * * To prevent that stale data corrupting the subsequent transactions, it is * required to issue DMA requests to drain it out. */ static int ti_csi2rx_drain_dma(struct ti_csi2rx_dev *csi) { struct dma_async_tx_descriptor *desc; struct completion drain_complete; dma_cookie_t cookie; int ret; init_completion(&drain_complete); desc = dmaengine_prep_slave_single(csi->dma.chan, csi->dma.drain.paddr, csi->dma.drain.len, DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); if (!desc) { ret = -EIO; goto out; } desc->callback = ti_csi2rx_drain_callback; desc->callback_param = &drain_complete; cookie = dmaengine_submit(desc); ret = dma_submit_error(cookie); if (ret) goto out; dma_async_issue_pending(csi->dma.chan); if (!wait_for_completion_timeout(&drain_complete, msecs_to_jiffies(DRAIN_TIMEOUT_MS))) { dmaengine_terminate_sync(csi->dma.chan); dev_dbg(csi->dev, "DMA transfer timed out for drain buffer\n"); ret = -ETIMEDOUT; goto out; } out: return ret; } static void ti_csi2rx_dma_callback(void *param) { struct ti_csi2rx_buffer *buf = param; struct ti_csi2rx_dev *csi = buf->csi; struct ti_csi2rx_dma *dma = &csi->dma; unsigned long flags; /* * TODO: Derive the sequence number from the CSI2RX frame number * hardware monitor registers. */ buf->vb.vb2_buf.timestamp = ktime_get_ns(); buf->vb.sequence = csi->sequence++; spin_lock_irqsave(&dma->lock, flags); WARN_ON(!list_is_first(&buf->list, &dma->submitted)); vb2_buffer_done(&buf->vb.vb2_buf, VB2_BUF_STATE_DONE); list_del(&buf->list); /* If there are more buffers to process then start their transfer. */ while (!list_empty(&dma->queue)) { buf = list_entry(dma->queue.next, struct ti_csi2rx_buffer, list); if (ti_csi2rx_start_dma(csi, buf)) { dev_err(csi->dev, "Failed to queue the next buffer for DMA\n"); vb2_buffer_done(&buf->vb.vb2_buf, VB2_BUF_STATE_ERROR); } else { list_move_tail(&buf->list, &dma->submitted); } } if (list_empty(&dma->submitted)) dma->state = TI_CSI2RX_DMA_IDLE; spin_unlock_irqrestore(&dma->lock, flags); } static int ti_csi2rx_start_dma(struct ti_csi2rx_dev *csi, struct ti_csi2rx_buffer *buf) { unsigned long addr; struct dma_async_tx_descriptor *desc; size_t len = csi->v_fmt.fmt.pix.sizeimage; dma_cookie_t cookie; int ret = 0; addr = vb2_dma_contig_plane_dma_addr(&buf->vb.vb2_buf, 0); desc = dmaengine_prep_slave_single(csi->dma.chan, addr, len, DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); if (!desc) return -EIO; desc->callback = ti_csi2rx_dma_callback; desc->callback_param = buf; cookie = dmaengine_submit(desc); ret = dma_submit_error(cookie); if (ret) return ret; dma_async_issue_pending(csi->dma.chan); return 0; } static void ti_csi2rx_stop_dma(struct ti_csi2rx_dev *csi) { struct ti_csi2rx_dma *dma = &csi->dma; enum ti_csi2rx_dma_state state; unsigned long flags; int ret; spin_lock_irqsave(&dma->lock, flags); state = csi->dma.state; dma->state = TI_CSI2RX_DMA_STOPPED; spin_unlock_irqrestore(&dma->lock, flags); if (state != TI_CSI2RX_DMA_STOPPED) { /* * Normal DMA termination does not clean up pending data on * the endpoint if multiple streams are running and only one * is stopped, as the module-level pixel reset cannot be * enforced before terminating DMA. */ ret = ti_csi2rx_drain_dma(csi); if (ret && ret != -ETIMEDOUT) dev_warn(csi->dev, "Failed to drain DMA. Next frame might be bogus\n"); } ret = dmaengine_terminate_sync(csi->dma.chan); if (ret) dev_err(csi->dev, "Failed to stop DMA: %d\n", ret); } static void ti_csi2rx_cleanup_buffers(struct ti_csi2rx_dev *csi, enum vb2_buffer_state state) { struct ti_csi2rx_dma *dma = &csi->dma; struct ti_csi2rx_buffer *buf, *tmp; unsigned long flags; spin_lock_irqsave(&dma->lock, flags); list_for_each_entry_safe(buf, tmp, &csi->dma.queue, list) { list_del(&buf->list); vb2_buffer_done(&buf->vb.vb2_buf, state); } list_for_each_entry_safe(buf, tmp, &csi->dma.submitted, list) { list_del(&buf->list); vb2_buffer_done(&buf->vb.vb2_buf, state); } spin_unlock_irqrestore(&dma->lock, flags); } static int ti_csi2rx_queue_setup(struct vb2_queue *q, unsigned int *nbuffers, unsigned int *nplanes, unsigned int sizes[], struct device *alloc_devs[]) { struct ti_csi2rx_dev *csi = vb2_get_drv_priv(q); unsigned int size = csi->v_fmt.fmt.pix.sizeimage; if (*nplanes) { if (sizes[0] < size) return -EINVAL; size = sizes[0]; } *nplanes = 1; sizes[0] = size; return 0; } static int ti_csi2rx_buffer_prepare(struct vb2_buffer *vb) { struct ti_csi2rx_dev *csi = vb2_get_drv_priv(vb->vb2_queue); unsigned long size = csi->v_fmt.fmt.pix.sizeimage; if (vb2_plane_size(vb, 0) < size) { dev_err(csi->dev, "Data will not fit into plane\n"); return -EINVAL; } vb2_set_plane_payload(vb, 0, size); return 0; } static void ti_csi2rx_buffer_queue(struct vb2_buffer *vb) { struct ti_csi2rx_dev *csi = vb2_get_drv_priv(vb->vb2_queue); struct ti_csi2rx_buffer *buf; struct ti_csi2rx_dma *dma = &csi->dma; bool restart_dma = false; unsigned long flags = 0; int ret; buf = container_of(vb, struct ti_csi2rx_buffer, vb.vb2_buf); buf->csi = csi; spin_lock_irqsave(&dma->lock, flags); /* * Usually the DMA callback takes care of queueing the pending buffers. * But if DMA has stalled due to lack of buffers, restart it now. */ if (dma->state == TI_CSI2RX_DMA_IDLE) { /* * Do not restart DMA with the lock held because * ti_csi2rx_drain_dma() might block for completion. * There won't be a race on queueing DMA anyway since the * callback is not being fired. */ restart_dma = true; dma->state = TI_CSI2RX_DMA_ACTIVE; } else { list_add_tail(&buf->list, &dma->queue); } spin_unlock_irqrestore(&dma->lock, flags); if (restart_dma) { /* * Once frames start dropping, some data gets stuck in the DMA * pipeline somewhere. So the first DMA transfer after frame * drops gives a partial frame. This is obviously not useful to * the application and will only confuse it. Issue a DMA * transaction to drain that up. */ ret = ti_csi2rx_drain_dma(csi); if (ret && ret != -ETIMEDOUT) dev_warn(csi->dev, "Failed to drain DMA. Next frame might be bogus\n"); ret = ti_csi2rx_start_dma(csi, buf); if (ret) { dev_err(csi->dev, "Failed to start DMA: %d\n", ret); spin_lock_irqsave(&dma->lock, flags); vb2_buffer_done(&buf->vb.vb2_buf, VB2_BUF_STATE_ERROR); dma->state = TI_CSI2RX_DMA_IDLE; spin_unlock_irqrestore(&dma->lock, flags); } else { spin_lock_irqsave(&dma->lock, flags); list_add_tail(&buf->list, &dma->submitted); spin_unlock_irqrestore(&dma->lock, flags); } } } static int ti_csi2rx_start_streaming(struct vb2_queue *vq, unsigned int count) { struct ti_csi2rx_dev *csi = vb2_get_drv_priv(vq); struct ti_csi2rx_dma *dma = &csi->dma; struct ti_csi2rx_buffer *buf; unsigned long flags; int ret = 0; spin_lock_irqsave(&dma->lock, flags); if (list_empty(&dma->queue)) ret = -EIO; spin_unlock_irqrestore(&dma->lock, flags); if (ret) return ret; ret = video_device_pipeline_start(&csi->vdev, &csi->pipe); if (ret) goto err; ti_csi2rx_setup_shim(csi); csi->sequence = 0; spin_lock_irqsave(&dma->lock, flags); buf = list_entry(dma->queue.next, struct ti_csi2rx_buffer, list); ret = ti_csi2rx_start_dma(csi, buf); if (ret) { dev_err(csi->dev, "Failed to start DMA: %d\n", ret); spin_unlock_irqrestore(&dma->lock, flags); goto err_pipeline; } list_move_tail(&buf->list, &dma->submitted); dma->state = TI_CSI2RX_DMA_ACTIVE; spin_unlock_irqrestore(&dma->lock, flags); ret = v4l2_subdev_call(csi->source, video, s_stream, 1); if (ret) goto err_dma; return 0; err_dma: ti_csi2rx_stop_dma(csi); err_pipeline: video_device_pipeline_stop(&csi->vdev); writel(0, csi->shim + SHIM_CNTL); writel(0, csi->shim + SHIM_DMACNTX); err: ti_csi2rx_cleanup_buffers(csi, VB2_BUF_STATE_QUEUED); return ret; } static void ti_csi2rx_stop_streaming(struct vb2_queue *vq) { struct ti_csi2rx_dev *csi = vb2_get_drv_priv(vq); int ret; video_device_pipeline_stop(&csi->vdev); writel(0, csi->shim + SHIM_CNTL); writel(0, csi->shim + SHIM_DMACNTX); ret = v4l2_subdev_call(csi->source, video, s_stream, 0); if (ret) dev_err(csi->dev, "Failed to stop subdev stream\n"); ti_csi2rx_stop_dma(csi); ti_csi2rx_cleanup_buffers(csi, VB2_BUF_STATE_ERROR); } static const struct vb2_ops csi_vb2_qops = { .queue_setup = ti_csi2rx_queue_setup, .buf_prepare = ti_csi2rx_buffer_prepare, .buf_queue = ti_csi2rx_buffer_queue, .start_streaming = ti_csi2rx_start_streaming, .stop_streaming = ti_csi2rx_stop_streaming, .wait_prepare = vb2_ops_wait_prepare, .wait_finish = vb2_ops_wait_finish, }; static int ti_csi2rx_init_vb2q(struct ti_csi2rx_dev *csi) { struct vb2_queue *q = &csi->vidq; int ret; q->type = V4L2_BUF_TYPE_VIDEO_CAPTURE; q->io_modes = VB2_MMAP | VB2_DMABUF; q->drv_priv = csi; q->buf_struct_size = sizeof(struct ti_csi2rx_buffer); q->ops = &csi_vb2_qops; q->mem_ops = &vb2_dma_contig_memops; q->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_MONOTONIC; q->dev = dmaengine_get_dma_device(csi->dma.chan); q->lock = &csi->mutex; q->min_buffers_needed = 1; ret = vb2_queue_init(q); if (ret) return ret; csi->vdev.queue = q; return 0; } static int ti_csi2rx_link_validate(struct media_link *link) { struct media_entity *entity = link->sink->entity; struct video_device *vdev = media_entity_to_video_device(entity); struct ti_csi2rx_dev *csi = container_of(vdev, struct ti_csi2rx_dev, vdev); struct v4l2_pix_format *csi_fmt = &csi->v_fmt.fmt.pix; struct v4l2_subdev_format source_fmt = { .which = V4L2_SUBDEV_FORMAT_ACTIVE, .pad = link->source->index, }; const struct ti_csi2rx_fmt *ti_fmt; int ret; ret = v4l2_subdev_call_state_active(csi->source, pad, get_fmt, &source_fmt); if (ret) return ret; if (source_fmt.format.width != csi_fmt->width) { dev_dbg(csi->dev, "Width does not match (source %u, sink %u)\n", source_fmt.format.width, csi_fmt->width); return -EPIPE; } if (source_fmt.format.height != csi_fmt->height) { dev_dbg(csi->dev, "Height does not match (source %u, sink %u)\n", source_fmt.format.height, csi_fmt->height); return -EPIPE; } if (source_fmt.format.field != csi_fmt->field && csi_fmt->field != V4L2_FIELD_NONE) { dev_dbg(csi->dev, "Field does not match (source %u, sink %u)\n", source_fmt.format.field, csi_fmt->field); return -EPIPE; } ti_fmt = find_format_by_code(source_fmt.format.code); if (!ti_fmt) { dev_dbg(csi->dev, "Media bus format 0x%x not supported\n", source_fmt.format.code); return -EPIPE; } if (ti_fmt->fourcc != csi_fmt->pixelformat) { dev_dbg(csi->dev, "Cannot transform source fmt 0x%x to sink fmt 0x%x\n", ti_fmt->fourcc, csi_fmt->pixelformat); return -EPIPE; } return 0; } static const struct media_entity_operations ti_csi2rx_video_entity_ops = { .link_validate = ti_csi2rx_link_validate, }; static int ti_csi2rx_init_dma(struct ti_csi2rx_dev *csi) { struct dma_slave_config cfg = { .src_addr_width = DMA_SLAVE_BUSWIDTH_16_BYTES, }; int ret; INIT_LIST_HEAD(&csi->dma.queue); INIT_LIST_HEAD(&csi->dma.submitted); spin_lock_init(&csi->dma.lock); csi->dma.state = TI_CSI2RX_DMA_STOPPED; csi->dma.chan = dma_request_chan(csi->dev, "rx0"); if (IS_ERR(csi->dma.chan)) return PTR_ERR(csi->dma.chan); ret = dmaengine_slave_config(csi->dma.chan, &cfg); if (ret) { dma_release_channel(csi->dma.chan); return ret; } csi->dma.drain.len = DRAIN_BUFFER_SIZE; csi->dma.drain.vaddr = dma_alloc_coherent(csi->dev, csi->dma.drain.len, &csi->dma.drain.paddr, GFP_KERNEL); if (!csi->dma.drain.vaddr) return -ENOMEM; return 0; } static int ti_csi2rx_v4l2_init(struct ti_csi2rx_dev *csi) { struct media_device *mdev = &csi->mdev; struct video_device *vdev = &csi->vdev; const struct ti_csi2rx_fmt *fmt; struct v4l2_pix_format *pix_fmt = &csi->v_fmt.fmt.pix; int ret; fmt = find_format_by_fourcc(V4L2_PIX_FMT_UYVY); if (!fmt) return -EINVAL; pix_fmt->width = 640; pix_fmt->height = 480; pix_fmt->field = V4L2_FIELD_NONE; pix_fmt->colorspace = V4L2_COLORSPACE_SRGB; pix_fmt->ycbcr_enc = V4L2_YCBCR_ENC_601, pix_fmt->quantization = V4L2_QUANTIZATION_LIM_RANGE, pix_fmt->xfer_func = V4L2_XFER_FUNC_SRGB, ti_csi2rx_fill_fmt(fmt, &csi->v_fmt); mdev->dev = csi->dev; mdev->hw_revision = 1; strscpy(mdev->model, "TI-CSI2RX", sizeof(mdev->model)); media_device_init(mdev); strscpy(vdev->name, TI_CSI2RX_MODULE_NAME, sizeof(vdev->name)); vdev->v4l2_dev = &csi->v4l2_dev; vdev->vfl_dir = VFL_DIR_RX; vdev->fops = &csi_fops; vdev->ioctl_ops = &csi_ioctl_ops; vdev->release = video_device_release_empty; vdev->device_caps = V4L2_CAP_VIDEO_CAPTURE | V4L2_CAP_STREAMING | V4L2_CAP_IO_MC; vdev->lock = &csi->mutex; video_set_drvdata(vdev, csi); csi->pad.flags = MEDIA_PAD_FL_SINK; vdev->entity.ops = &ti_csi2rx_video_entity_ops; ret = media_entity_pads_init(&csi->vdev.entity, 1, &csi->pad); if (ret) return ret; csi->v4l2_dev.mdev = mdev; ret = v4l2_device_register(csi->dev, &csi->v4l2_dev); if (ret) return ret; ret = media_device_register(mdev); if (ret) { v4l2_device_unregister(&csi->v4l2_dev); media_device_cleanup(mdev); return ret; } return 0; } static void ti_csi2rx_cleanup_dma(struct ti_csi2rx_dev *csi) { dma_free_coherent(csi->dev, csi->dma.drain.len, csi->dma.drain.vaddr, csi->dma.drain.paddr); csi->dma.drain.vaddr = NULL; dma_release_channel(csi->dma.chan); } static void ti_csi2rx_cleanup_v4l2(struct ti_csi2rx_dev *csi) { media_device_unregister(&csi->mdev); v4l2_device_unregister(&csi->v4l2_dev); media_device_cleanup(&csi->mdev); } static void ti_csi2rx_cleanup_subdev(struct ti_csi2rx_dev *csi) { v4l2_async_nf_unregister(&csi->notifier); v4l2_async_nf_cleanup(&csi->notifier); } static void ti_csi2rx_cleanup_vb2q(struct ti_csi2rx_dev *csi) { vb2_queue_release(&csi->vidq); } static int ti_csi2rx_probe(struct platform_device *pdev) { struct ti_csi2rx_dev *csi; struct resource *res; int ret; csi = devm_kzalloc(&pdev->dev, sizeof(*csi), GFP_KERNEL); if (!csi) return -ENOMEM; csi->dev = &pdev->dev; platform_set_drvdata(pdev, csi); mutex_init(&csi->mutex); res = platform_get_resource(pdev, IORESOURCE_MEM, 0); csi->shim = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(csi->shim)) { ret = PTR_ERR(csi->shim); goto err_mutex; } ret = ti_csi2rx_init_dma(csi); if (ret) goto err_mutex; ret = ti_csi2rx_v4l2_init(csi); if (ret) goto err_dma; ret = ti_csi2rx_init_vb2q(csi); if (ret) goto err_v4l2; ret = ti_csi2rx_notifier_register(csi); if (ret) goto err_vb2q; ret = of_platform_populate(csi->dev->of_node, NULL, NULL, csi->dev); if (ret) { dev_err(csi->dev, "Failed to create children: %d\n", ret); goto err_subdev; } return 0; err_subdev: ti_csi2rx_cleanup_subdev(csi); err_vb2q: ti_csi2rx_cleanup_vb2q(csi); err_v4l2: ti_csi2rx_cleanup_v4l2(csi); err_dma: ti_csi2rx_cleanup_dma(csi); err_mutex: mutex_destroy(&csi->mutex); return ret; } static int ti_csi2rx_remove(struct platform_device *pdev) { struct ti_csi2rx_dev *csi = platform_get_drvdata(pdev); video_unregister_device(&csi->vdev); ti_csi2rx_cleanup_vb2q(csi); ti_csi2rx_cleanup_subdev(csi); ti_csi2rx_cleanup_v4l2(csi); ti_csi2rx_cleanup_dma(csi); mutex_destroy(&csi->mutex); return 0; } static const struct of_device_id ti_csi2rx_of_match[] = { { .compatible = "ti,j721e-csi2rx-shim", }, { }, }; MODULE_DEVICE_TABLE(of, ti_csi2rx_of_match); static struct platform_driver ti_csi2rx_pdrv = { .probe = ti_csi2rx_probe, .remove = ti_csi2rx_remove, .driver = { .name = TI_CSI2RX_MODULE_NAME, .of_match_table = ti_csi2rx_of_match, }, }; module_platform_driver(ti_csi2rx_pdrv); MODULE_DESCRIPTION("TI J721E CSI2 RX Driver"); MODULE_AUTHOR("Jai Luthra <j-luthra@ti.com>"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1