Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Archit Taneja | 1282 | 61.58% | 2 | 12.50% |
Vaibhav Hiremath | 425 | 20.41% | 1 | 6.25% |
Peter Ujfalusi | 315 | 15.13% | 2 | 12.50% |
Hans Verkuil | 21 | 1.01% | 1 | 6.25% |
Arnd Bergmann | 13 | 0.62% | 3 | 18.75% |
Laurent Pinchart | 11 | 0.53% | 1 | 6.25% |
Mauro Carvalho Chehab | 9 | 0.43% | 3 | 18.75% |
Tony Lindgren | 4 | 0.19% | 1 | 6.25% |
Rusty Russell | 1 | 0.05% | 1 | 6.25% |
Tomi Valkeinen | 1 | 0.05% | 1 | 6.25% |
Total | 2082 | 16 |
/* * omap_vout_vrfb.c * * Copyright (C) 2010 Texas Instruments. * * This file is licensed under the terms of the GNU General Public License * version 2. This program is licensed "as is" without any warranty of any * kind, whether express or implied. * */ #include <linux/sched.h> #include <linux/platform_device.h> #include <linux/videodev2.h> #include <linux/slab.h> #include <media/v4l2-device.h> #include <video/omapvrfb.h> #include "omap_voutdef.h" #include "omap_voutlib.h" #include "omap_vout_vrfb.h" #define OMAP_DMA_NO_DEVICE 0 /* * Function for allocating video buffers */ static int omap_vout_allocate_vrfb_buffers(struct omap_vout_device *vout, unsigned int *count, int startindex) { int i, j; for (i = 0; i < *count; i++) { if (!vout->smsshado_virt_addr[i]) { vout->smsshado_virt_addr[i] = omap_vout_alloc_buffer(vout->smsshado_size, &vout->smsshado_phy_addr[i]); } if (!vout->smsshado_virt_addr[i] && startindex != -1) { if (vout->vq.memory == V4L2_MEMORY_MMAP && i >= startindex) break; } if (!vout->smsshado_virt_addr[i]) { for (j = 0; j < i; j++) { omap_vout_free_buffer( vout->smsshado_virt_addr[j], vout->smsshado_size); vout->smsshado_virt_addr[j] = 0; vout->smsshado_phy_addr[j] = 0; } *count = 0; return -ENOMEM; } memset((void *)(long)vout->smsshado_virt_addr[i], 0, vout->smsshado_size); } return 0; } /* * Wakes up the application once the DMA transfer to VRFB space is completed. */ static void omap_vout_vrfb_dma_tx_callback(void *data) { struct vid_vrfb_dma *t = (struct vid_vrfb_dma *) data; t->tx_status = 1; wake_up_interruptible(&t->wait); } /* * Free VRFB buffers */ void omap_vout_free_vrfb_buffers(struct omap_vout_device *vout) { int j; for (j = 0; j < VRFB_NUM_BUFS; j++) { if (vout->smsshado_virt_addr[j]) { omap_vout_free_buffer(vout->smsshado_virt_addr[j], vout->smsshado_size); vout->smsshado_virt_addr[j] = 0; vout->smsshado_phy_addr[j] = 0; } } } int omap_vout_setup_vrfb_bufs(struct platform_device *pdev, int vid_num, bool static_vrfb_allocation) { int ret = 0, i, j; struct omap_vout_device *vout; struct video_device *vfd; dma_cap_mask_t mask; int image_width, image_height; int vrfb_num_bufs = VRFB_NUM_BUFS; struct v4l2_device *v4l2_dev = platform_get_drvdata(pdev); struct omap2video_device *vid_dev = container_of(v4l2_dev, struct omap2video_device, v4l2_dev); vout = vid_dev->vouts[vid_num]; vfd = vout->vfd; for (i = 0; i < VRFB_NUM_BUFS; i++) { if (omap_vrfb_request_ctx(&vout->vrfb_context[i])) { dev_info(&pdev->dev, ": VRFB allocation failed\n"); for (j = 0; j < i; j++) omap_vrfb_release_ctx(&vout->vrfb_context[j]); return -ENOMEM; } } /* Calculate VRFB memory size */ /* allocate for worst case size */ image_width = VID_MAX_WIDTH / TILE_SIZE; if (VID_MAX_WIDTH % TILE_SIZE) image_width++; image_width = image_width * TILE_SIZE; image_height = VID_MAX_HEIGHT / TILE_SIZE; if (VID_MAX_HEIGHT % TILE_SIZE) image_height++; image_height = image_height * TILE_SIZE; vout->smsshado_size = PAGE_ALIGN(image_width * image_height * 2 * 2); /* * Request and Initialize DMA, for DMA based VRFB transfer */ dma_cap_zero(mask); dma_cap_set(DMA_INTERLEAVE, mask); vout->vrfb_dma_tx.chan = dma_request_chan_by_mask(&mask); if (IS_ERR(vout->vrfb_dma_tx.chan)) { vout->vrfb_dma_tx.req_status = DMA_CHAN_NOT_ALLOTED; } else { size_t xt_size = sizeof(struct dma_interleaved_template) + sizeof(struct data_chunk); vout->vrfb_dma_tx.xt = kzalloc(xt_size, GFP_KERNEL); if (!vout->vrfb_dma_tx.xt) { dma_release_channel(vout->vrfb_dma_tx.chan); vout->vrfb_dma_tx.req_status = DMA_CHAN_NOT_ALLOTED; } } if (vout->vrfb_dma_tx.req_status == DMA_CHAN_NOT_ALLOTED) dev_info(&pdev->dev, ": failed to allocate DMA Channel for video%d\n", vfd->minor); init_waitqueue_head(&vout->vrfb_dma_tx.wait); /* * statically allocated the VRFB buffer is done through * command line arguments */ if (static_vrfb_allocation) { if (omap_vout_allocate_vrfb_buffers(vout, &vrfb_num_bufs, -1)) { ret = -ENOMEM; goto release_vrfb_ctx; } vout->vrfb_static_allocation = true; } return 0; release_vrfb_ctx: for (j = 0; j < VRFB_NUM_BUFS; j++) omap_vrfb_release_ctx(&vout->vrfb_context[j]); return ret; } /* * Release the VRFB context once the module exits */ void omap_vout_release_vrfb(struct omap_vout_device *vout) { int i; for (i = 0; i < VRFB_NUM_BUFS; i++) omap_vrfb_release_ctx(&vout->vrfb_context[i]); if (vout->vrfb_dma_tx.req_status == DMA_CHAN_ALLOTED) { vout->vrfb_dma_tx.req_status = DMA_CHAN_NOT_ALLOTED; kfree(vout->vrfb_dma_tx.xt); dmaengine_terminate_sync(vout->vrfb_dma_tx.chan); dma_release_channel(vout->vrfb_dma_tx.chan); } } /* * Allocate the buffers for the VRFB space. Data is copied from V4L2 * buffers to the VRFB buffers using the DMA engine. */ int omap_vout_vrfb_buffer_setup(struct omap_vout_device *vout, unsigned int *count, unsigned int startindex) { int i; bool yuv_mode; if (!is_rotation_enabled(vout)) return 0; /* If rotation is enabled, allocate memory for VRFB space also */ *count = *count > VRFB_NUM_BUFS ? VRFB_NUM_BUFS : *count; /* Allocate the VRFB buffers only if the buffers are not * allocated during init time. */ if (!vout->vrfb_static_allocation) if (omap_vout_allocate_vrfb_buffers(vout, count, startindex)) return -ENOMEM; if (vout->dss_mode == OMAP_DSS_COLOR_YUV2 || vout->dss_mode == OMAP_DSS_COLOR_UYVY) yuv_mode = true; else yuv_mode = false; for (i = 0; i < *count; i++) omap_vrfb_setup(&vout->vrfb_context[i], vout->smsshado_phy_addr[i], vout->pix.width, vout->pix.height, vout->bpp, yuv_mode); return 0; } int omap_vout_prepare_vrfb(struct omap_vout_device *vout, struct vb2_buffer *vb) { struct dma_async_tx_descriptor *tx; enum dma_ctrl_flags flags = DMA_PREP_INTERRUPT | DMA_CTRL_ACK; struct dma_chan *chan = vout->vrfb_dma_tx.chan; struct dma_interleaved_template *xt = vout->vrfb_dma_tx.xt; dma_cookie_t cookie; dma_addr_t buf_phy_addr = vb2_dma_contig_plane_dma_addr(vb, 0); enum dma_status status; enum dss_rotation rotation; size_t dst_icg; u32 pixsize; if (!is_rotation_enabled(vout)) return 0; /* If rotation is enabled, copy input buffer into VRFB * memory space using DMA. We are copying input buffer * into VRFB memory space of desired angle and DSS will * read image VRFB memory for 0 degree angle */ pixsize = vout->bpp * vout->vrfb_bpp; dst_icg = MAX_PIXELS_PER_LINE * pixsize - vout->pix.width * vout->bpp; xt->src_start = buf_phy_addr; xt->dst_start = vout->vrfb_context[vb->index].paddr[0]; xt->numf = vout->pix.height; xt->frame_size = 1; xt->sgl[0].size = vout->pix.width * vout->bpp; xt->sgl[0].icg = dst_icg; xt->dir = DMA_MEM_TO_MEM; xt->src_sgl = false; xt->src_inc = true; xt->dst_sgl = true; xt->dst_inc = true; tx = dmaengine_prep_interleaved_dma(chan, xt, flags); if (tx == NULL) { pr_err("%s: DMA interleaved prep error\n", __func__); return -EINVAL; } tx->callback = omap_vout_vrfb_dma_tx_callback; tx->callback_param = &vout->vrfb_dma_tx; cookie = dmaengine_submit(tx); if (dma_submit_error(cookie)) { pr_err("%s: dmaengine_submit failed (%d)\n", __func__, cookie); return -EINVAL; } vout->vrfb_dma_tx.tx_status = 0; dma_async_issue_pending(chan); wait_event_interruptible_timeout(vout->vrfb_dma_tx.wait, vout->vrfb_dma_tx.tx_status == 1, VRFB_TX_TIMEOUT); status = dma_async_is_tx_complete(chan, cookie, NULL, NULL); if (vout->vrfb_dma_tx.tx_status == 0) { pr_err("%s: Timeout while waiting for DMA\n", __func__); dmaengine_terminate_sync(chan); return -EINVAL; } else if (status != DMA_COMPLETE) { pr_err("%s: DMA completion %s status\n", __func__, status == DMA_ERROR ? "error" : "busy"); dmaengine_terminate_sync(chan); return -EINVAL; } /* Store buffers physical address into an array. Addresses * from this array will be used to configure DSS */ rotation = calc_rotation(vout); vout->queued_buf_addr[vb->index] = vout->vrfb_context[vb->index].paddr[rotation]; return 0; } /* * Calculate the buffer offsets from which the streaming should * start. This offset calculation is mainly required because of * the VRFB 32 pixels alignment with rotation. */ void omap_vout_calculate_vrfb_offset(struct omap_vout_device *vout) { enum dss_rotation rotation; bool mirroring = vout->mirror; struct v4l2_rect *crop = &vout->crop; struct v4l2_pix_format *pix = &vout->pix; int *cropped_offset = &vout->cropped_offset; int vr_ps = 1, ps = 2, temp_ps = 2; int offset = 0, ctop = 0, cleft = 0, line_length = 0; rotation = calc_rotation(vout); if (V4L2_PIX_FMT_YUYV == pix->pixelformat || V4L2_PIX_FMT_UYVY == pix->pixelformat) { if (is_rotation_enabled(vout)) { /* * ps - Actual pixel size for YUYV/UYVY for * VRFB/Mirroring is 4 bytes * vr_ps - Virtually pixel size for YUYV/UYVY is * 2 bytes */ ps = 4; vr_ps = 2; } else { ps = 2; /* otherwise the pixel size is 2 byte */ } } else if (V4L2_PIX_FMT_RGB32 == pix->pixelformat) { ps = 4; } else if (V4L2_PIX_FMT_RGB24 == pix->pixelformat) { ps = 3; } vout->ps = ps; vout->vr_ps = vr_ps; if (is_rotation_enabled(vout)) { line_length = MAX_PIXELS_PER_LINE; ctop = (pix->height - crop->height) - crop->top; cleft = (pix->width - crop->width) - crop->left; } else { line_length = pix->width; } vout->line_length = line_length; switch (rotation) { case dss_rotation_90_degree: offset = vout->vrfb_context[0].yoffset * vout->vrfb_context[0].bytespp; temp_ps = ps / vr_ps; if (!mirroring) { *cropped_offset = offset + line_length * temp_ps * cleft + crop->top * temp_ps; } else { *cropped_offset = offset + line_length * temp_ps * cleft + crop->top * temp_ps + (line_length * ((crop->width / (vr_ps)) - 1) * ps); } break; case dss_rotation_180_degree: offset = ((MAX_PIXELS_PER_LINE * vout->vrfb_context[0].yoffset * vout->vrfb_context[0].bytespp) + (vout->vrfb_context[0].xoffset * vout->vrfb_context[0].bytespp)); if (!mirroring) { *cropped_offset = offset + (line_length * ps * ctop) + (cleft / vr_ps) * ps; } else { *cropped_offset = offset + (line_length * ps * ctop) + (cleft / vr_ps) * ps + (line_length * (crop->height - 1) * ps); } break; case dss_rotation_270_degree: offset = MAX_PIXELS_PER_LINE * vout->vrfb_context[0].xoffset * vout->vrfb_context[0].bytespp; temp_ps = ps / vr_ps; if (!mirroring) { *cropped_offset = offset + line_length * temp_ps * crop->left + ctop * ps; } else { *cropped_offset = offset + line_length * temp_ps * crop->left + ctop * ps + (line_length * ((crop->width / vr_ps) - 1) * ps); } break; case dss_rotation_0_degree: if (!mirroring) { *cropped_offset = (line_length * ps) * crop->top + (crop->left / vr_ps) * ps; } else { *cropped_offset = (line_length * ps) * crop->top + (crop->left / vr_ps) * ps + (line_length * (crop->height - 1) * ps); } break; default: *cropped_offset = (line_length * ps * crop->top) / vr_ps + (crop->left * ps) / vr_ps + ((crop->width / vr_ps) - 1) * ps; break; } }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1