Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Adam Thomson | 2172 | 99.09% | 3 | 30.00% |
Wolfram Sang | 10 | 0.46% | 1 | 10.00% |
Krzysztof Kozlowski | 3 | 0.14% | 2 | 20.00% |
Rikard Falkeborn | 3 | 0.14% | 1 | 10.00% |
Thomas Gleixner | 2 | 0.09% | 1 | 10.00% |
Uwe Kleine-König | 2 | 0.09% | 2 | 20.00% |
Total | 2192 | 10 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * DA9150 Core MFD Driver * * Copyright (c) 2014 Dialog Semiconductor * * Author: Adam Thomson <Adam.Thomson.Opensource@diasemi.com> */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/i2c.h> #include <linux/regmap.h> #include <linux/slab.h> #include <linux/irq.h> #include <linux/interrupt.h> #include <linux/mfd/core.h> #include <linux/mfd/da9150/core.h> #include <linux/mfd/da9150/registers.h> /* Raw device access, used for QIF */ static int da9150_i2c_read_device(struct i2c_client *client, u8 addr, int count, u8 *buf) { struct i2c_msg xfer; int ret; /* * Read is split into two transfers as device expects STOP/START rather * than repeated start to carry out this kind of access. */ /* Write address */ xfer.addr = client->addr; xfer.flags = 0; xfer.len = 1; xfer.buf = &addr; ret = i2c_transfer(client->adapter, &xfer, 1); if (ret != 1) { if (ret < 0) return ret; else return -EIO; } /* Read data */ xfer.addr = client->addr; xfer.flags = I2C_M_RD; xfer.len = count; xfer.buf = buf; ret = i2c_transfer(client->adapter, &xfer, 1); if (ret == 1) return 0; else if (ret < 0) return ret; else return -EIO; } static int da9150_i2c_write_device(struct i2c_client *client, u8 addr, int count, const u8 *buf) { struct i2c_msg xfer; u8 *reg_data; int ret; reg_data = kzalloc(1 + count, GFP_KERNEL); if (!reg_data) return -ENOMEM; reg_data[0] = addr; memcpy(®_data[1], buf, count); /* Write address & data */ xfer.addr = client->addr; xfer.flags = 0; xfer.len = 1 + count; xfer.buf = reg_data; ret = i2c_transfer(client->adapter, &xfer, 1); kfree(reg_data); if (ret == 1) return 0; else if (ret < 0) return ret; else return -EIO; } static bool da9150_volatile_reg(struct device *dev, unsigned int reg) { switch (reg) { case DA9150_PAGE_CON: case DA9150_STATUS_A: case DA9150_STATUS_B: case DA9150_STATUS_C: case DA9150_STATUS_D: case DA9150_STATUS_E: case DA9150_STATUS_F: case DA9150_STATUS_G: case DA9150_STATUS_H: case DA9150_STATUS_I: case DA9150_STATUS_J: case DA9150_STATUS_K: case DA9150_STATUS_L: case DA9150_STATUS_N: case DA9150_FAULT_LOG_A: case DA9150_FAULT_LOG_B: case DA9150_EVENT_E: case DA9150_EVENT_F: case DA9150_EVENT_G: case DA9150_EVENT_H: case DA9150_CONTROL_B: case DA9150_CONTROL_C: case DA9150_GPADC_MAN: case DA9150_GPADC_RES_A: case DA9150_GPADC_RES_B: case DA9150_ADETVB_CFG_C: case DA9150_ADETD_STAT: case DA9150_ADET_CMPSTAT: case DA9150_ADET_CTRL_A: case DA9150_PPR_TCTR_B: case DA9150_COREBTLD_STAT_A: case DA9150_CORE_DATA_A: case DA9150_CORE_DATA_B: case DA9150_CORE_DATA_C: case DA9150_CORE_DATA_D: case DA9150_CORE2WIRE_STAT_A: case DA9150_FW_CTRL_C: case DA9150_FG_CTRL_B: case DA9150_FW_CTRL_B: case DA9150_GPADC_CMAN: case DA9150_GPADC_CRES_A: case DA9150_GPADC_CRES_B: case DA9150_CC_ICHG_RES_A: case DA9150_CC_ICHG_RES_B: case DA9150_CC_IAVG_RES_A: case DA9150_CC_IAVG_RES_B: case DA9150_TAUX_CTRL_A: case DA9150_TAUX_VALUE_H: case DA9150_TAUX_VALUE_L: case DA9150_TBAT_RES_A: case DA9150_TBAT_RES_B: return true; default: return false; } } static const struct regmap_range_cfg da9150_range_cfg[] = { { .range_min = DA9150_PAGE_CON, .range_max = DA9150_TBAT_RES_B, .selector_reg = DA9150_PAGE_CON, .selector_mask = DA9150_I2C_PAGE_MASK, .selector_shift = DA9150_I2C_PAGE_SHIFT, .window_start = 0, .window_len = 256, }, }; static const struct regmap_config da9150_regmap_config = { .reg_bits = 8, .val_bits = 8, .ranges = da9150_range_cfg, .num_ranges = ARRAY_SIZE(da9150_range_cfg), .max_register = DA9150_TBAT_RES_B, .cache_type = REGCACHE_RBTREE, .volatile_reg = da9150_volatile_reg, }; void da9150_read_qif(struct da9150 *da9150, u8 addr, int count, u8 *buf) { int ret; ret = da9150_i2c_read_device(da9150->core_qif, addr, count, buf); if (ret < 0) dev_err(da9150->dev, "Failed to read from QIF 0x%x: %d\n", addr, ret); } EXPORT_SYMBOL_GPL(da9150_read_qif); void da9150_write_qif(struct da9150 *da9150, u8 addr, int count, const u8 *buf) { int ret; ret = da9150_i2c_write_device(da9150->core_qif, addr, count, buf); if (ret < 0) dev_err(da9150->dev, "Failed to write to QIF 0x%x: %d\n", addr, ret); } EXPORT_SYMBOL_GPL(da9150_write_qif); u8 da9150_reg_read(struct da9150 *da9150, u16 reg) { int val, ret; ret = regmap_read(da9150->regmap, reg, &val); if (ret) dev_err(da9150->dev, "Failed to read from reg 0x%x: %d\n", reg, ret); return (u8) val; } EXPORT_SYMBOL_GPL(da9150_reg_read); void da9150_reg_write(struct da9150 *da9150, u16 reg, u8 val) { int ret; ret = regmap_write(da9150->regmap, reg, val); if (ret) dev_err(da9150->dev, "Failed to write to reg 0x%x: %d\n", reg, ret); } EXPORT_SYMBOL_GPL(da9150_reg_write); void da9150_set_bits(struct da9150 *da9150, u16 reg, u8 mask, u8 val) { int ret; ret = regmap_update_bits(da9150->regmap, reg, mask, val); if (ret) dev_err(da9150->dev, "Failed to set bits in reg 0x%x: %d\n", reg, ret); } EXPORT_SYMBOL_GPL(da9150_set_bits); void da9150_bulk_read(struct da9150 *da9150, u16 reg, int count, u8 *buf) { int ret; ret = regmap_bulk_read(da9150->regmap, reg, buf, count); if (ret) dev_err(da9150->dev, "Failed to bulk read from reg 0x%x: %d\n", reg, ret); } EXPORT_SYMBOL_GPL(da9150_bulk_read); void da9150_bulk_write(struct da9150 *da9150, u16 reg, int count, const u8 *buf) { int ret; ret = regmap_raw_write(da9150->regmap, reg, buf, count); if (ret) dev_err(da9150->dev, "Failed to bulk write to reg 0x%x %d\n", reg, ret); } EXPORT_SYMBOL_GPL(da9150_bulk_write); static const struct regmap_irq da9150_irqs[] = { [DA9150_IRQ_VBUS] = { .reg_offset = 0, .mask = DA9150_E_VBUS_MASK, }, [DA9150_IRQ_CHG] = { .reg_offset = 0, .mask = DA9150_E_CHG_MASK, }, [DA9150_IRQ_TCLASS] = { .reg_offset = 0, .mask = DA9150_E_TCLASS_MASK, }, [DA9150_IRQ_TJUNC] = { .reg_offset = 0, .mask = DA9150_E_TJUNC_MASK, }, [DA9150_IRQ_VFAULT] = { .reg_offset = 0, .mask = DA9150_E_VFAULT_MASK, }, [DA9150_IRQ_CONF] = { .reg_offset = 1, .mask = DA9150_E_CONF_MASK, }, [DA9150_IRQ_DAT] = { .reg_offset = 1, .mask = DA9150_E_DAT_MASK, }, [DA9150_IRQ_DTYPE] = { .reg_offset = 1, .mask = DA9150_E_DTYPE_MASK, }, [DA9150_IRQ_ID] = { .reg_offset = 1, .mask = DA9150_E_ID_MASK, }, [DA9150_IRQ_ADP] = { .reg_offset = 1, .mask = DA9150_E_ADP_MASK, }, [DA9150_IRQ_SESS_END] = { .reg_offset = 1, .mask = DA9150_E_SESS_END_MASK, }, [DA9150_IRQ_SESS_VLD] = { .reg_offset = 1, .mask = DA9150_E_SESS_VLD_MASK, }, [DA9150_IRQ_FG] = { .reg_offset = 2, .mask = DA9150_E_FG_MASK, }, [DA9150_IRQ_GP] = { .reg_offset = 2, .mask = DA9150_E_GP_MASK, }, [DA9150_IRQ_TBAT] = { .reg_offset = 2, .mask = DA9150_E_TBAT_MASK, }, [DA9150_IRQ_GPIOA] = { .reg_offset = 2, .mask = DA9150_E_GPIOA_MASK, }, [DA9150_IRQ_GPIOB] = { .reg_offset = 2, .mask = DA9150_E_GPIOB_MASK, }, [DA9150_IRQ_GPIOC] = { .reg_offset = 2, .mask = DA9150_E_GPIOC_MASK, }, [DA9150_IRQ_GPIOD] = { .reg_offset = 2, .mask = DA9150_E_GPIOD_MASK, }, [DA9150_IRQ_GPADC] = { .reg_offset = 2, .mask = DA9150_E_GPADC_MASK, }, [DA9150_IRQ_WKUP] = { .reg_offset = 3, .mask = DA9150_E_WKUP_MASK, }, }; static const struct regmap_irq_chip da9150_regmap_irq_chip = { .name = "da9150_irq", .status_base = DA9150_EVENT_E, .mask_base = DA9150_IRQ_MASK_E, .ack_base = DA9150_EVENT_E, .num_regs = DA9150_NUM_IRQ_REGS, .irqs = da9150_irqs, .num_irqs = ARRAY_SIZE(da9150_irqs), }; static const struct resource da9150_gpadc_resources[] = { DEFINE_RES_IRQ_NAMED(DA9150_IRQ_GPADC, "GPADC"), }; static const struct resource da9150_charger_resources[] = { DEFINE_RES_IRQ_NAMED(DA9150_IRQ_CHG, "CHG_STATUS"), DEFINE_RES_IRQ_NAMED(DA9150_IRQ_TJUNC, "CHG_TJUNC"), DEFINE_RES_IRQ_NAMED(DA9150_IRQ_VFAULT, "CHG_VFAULT"), DEFINE_RES_IRQ_NAMED(DA9150_IRQ_VBUS, "CHG_VBUS"), }; static const struct resource da9150_fg_resources[] = { DEFINE_RES_IRQ_NAMED(DA9150_IRQ_FG, "FG"), }; enum da9150_dev_idx { DA9150_GPADC_IDX = 0, DA9150_CHARGER_IDX, DA9150_FG_IDX, }; static struct mfd_cell da9150_devs[] = { [DA9150_GPADC_IDX] = { .name = "da9150-gpadc", .of_compatible = "dlg,da9150-gpadc", .resources = da9150_gpadc_resources, .num_resources = ARRAY_SIZE(da9150_gpadc_resources), }, [DA9150_CHARGER_IDX] = { .name = "da9150-charger", .of_compatible = "dlg,da9150-charger", .resources = da9150_charger_resources, .num_resources = ARRAY_SIZE(da9150_charger_resources), }, [DA9150_FG_IDX] = { .name = "da9150-fuel-gauge", .of_compatible = "dlg,da9150-fuel-gauge", .resources = da9150_fg_resources, .num_resources = ARRAY_SIZE(da9150_fg_resources), }, }; static int da9150_probe(struct i2c_client *client) { struct da9150 *da9150; struct da9150_pdata *pdata = dev_get_platdata(&client->dev); int qif_addr; int ret; da9150 = devm_kzalloc(&client->dev, sizeof(*da9150), GFP_KERNEL); if (!da9150) return -ENOMEM; da9150->dev = &client->dev; da9150->irq = client->irq; i2c_set_clientdata(client, da9150); da9150->regmap = devm_regmap_init_i2c(client, &da9150_regmap_config); if (IS_ERR(da9150->regmap)) { ret = PTR_ERR(da9150->regmap); dev_err(da9150->dev, "Failed to allocate register map: %d\n", ret); return ret; } /* Setup secondary I2C interface for QIF access */ qif_addr = da9150_reg_read(da9150, DA9150_CORE2WIRE_CTRL_A); qif_addr = (qif_addr & DA9150_CORE_BASE_ADDR_MASK) >> 1; qif_addr |= DA9150_QIF_I2C_ADDR_LSB; da9150->core_qif = i2c_new_dummy_device(client->adapter, qif_addr); if (IS_ERR(da9150->core_qif)) { dev_err(da9150->dev, "Failed to attach QIF client\n"); return PTR_ERR(da9150->core_qif); } i2c_set_clientdata(da9150->core_qif, da9150); if (pdata) { da9150->irq_base = pdata->irq_base; da9150_devs[DA9150_FG_IDX].platform_data = pdata->fg_pdata; da9150_devs[DA9150_FG_IDX].pdata_size = sizeof(struct da9150_fg_pdata); } else { da9150->irq_base = -1; } ret = regmap_add_irq_chip(da9150->regmap, da9150->irq, IRQF_TRIGGER_LOW | IRQF_ONESHOT, da9150->irq_base, &da9150_regmap_irq_chip, &da9150->regmap_irq_data); if (ret) { dev_err(da9150->dev, "Failed to add regmap irq chip: %d\n", ret); goto regmap_irq_fail; } da9150->irq_base = regmap_irq_chip_get_base(da9150->regmap_irq_data); enable_irq_wake(da9150->irq); ret = mfd_add_devices(da9150->dev, -1, da9150_devs, ARRAY_SIZE(da9150_devs), NULL, da9150->irq_base, NULL); if (ret) { dev_err(da9150->dev, "Failed to add child devices: %d\n", ret); goto mfd_fail; } return 0; mfd_fail: regmap_del_irq_chip(da9150->irq, da9150->regmap_irq_data); regmap_irq_fail: i2c_unregister_device(da9150->core_qif); return ret; } static void da9150_remove(struct i2c_client *client) { struct da9150 *da9150 = i2c_get_clientdata(client); regmap_del_irq_chip(da9150->irq, da9150->regmap_irq_data); mfd_remove_devices(da9150->dev); i2c_unregister_device(da9150->core_qif); } static void da9150_shutdown(struct i2c_client *client) { struct da9150 *da9150 = i2c_get_clientdata(client); /* Make sure we have a wakup source for the device */ da9150_set_bits(da9150, DA9150_CONFIG_D, DA9150_WKUP_PM_EN_MASK, DA9150_WKUP_PM_EN_MASK); /* Set device to DISABLED mode */ da9150_set_bits(da9150, DA9150_CONTROL_C, DA9150_DISABLE_MASK, DA9150_DISABLE_MASK); } static const struct i2c_device_id da9150_i2c_id[] = { { "da9150", }, { } }; MODULE_DEVICE_TABLE(i2c, da9150_i2c_id); static const struct of_device_id da9150_of_match[] = { { .compatible = "dlg,da9150", }, { } }; MODULE_DEVICE_TABLE(of, da9150_of_match); static struct i2c_driver da9150_driver = { .driver = { .name = "da9150", .of_match_table = da9150_of_match, }, .probe = da9150_probe, .remove = da9150_remove, .shutdown = da9150_shutdown, .id_table = da9150_i2c_id, }; module_i2c_driver(da9150_driver); MODULE_DESCRIPTION("MFD Core Driver for DA9150"); MODULE_AUTHOR("Adam Thomson <Adam.Thomson.Opensource@diasemi.com>"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1