Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Oleksij Rempel | 4724 | 97.38% | 1 | 11.11% |
Daniel Drake | 82 | 1.69% | 3 | 33.33% |
Kamlesh Gurudasani | 22 | 0.45% | 1 | 11.11% |
Yang Yingliang | 9 | 0.19% | 1 | 11.11% |
Christophe Jaillet | 7 | 0.14% | 1 | 11.11% |
Doug Anderson | 5 | 0.10% | 1 | 11.11% |
Yangtao Li | 2 | 0.04% | 1 | 11.11% |
Total | 4851 | 9 |
// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (C) 2018 Oleksij Rempel <linux@rempel-privat.de> * * Driver for Alcor Micro AU6601 and AU6621 controllers */ /* Note: this driver was created without any documentation. Based * on sniffing, testing and in some cases mimic of original driver. * As soon as some one with documentation or more experience in SD/MMC, or * reverse engineering then me, please review this driver and question every * thing what I did. 2018 Oleksij Rempel <linux@rempel-privat.de> */ #include <linux/delay.h> #include <linux/pci.h> #include <linux/module.h> #include <linux/io.h> #include <linux/pm.h> #include <linux/irq.h> #include <linux/interrupt.h> #include <linux/platform_device.h> #include <linux/mmc/host.h> #include <linux/mmc/mmc.h> #include <linux/alcor_pci.h> enum alcor_cookie { COOKIE_UNMAPPED, COOKIE_PRE_MAPPED, COOKIE_MAPPED, }; struct alcor_pll_conf { unsigned int clk_src_freq; unsigned int clk_src_reg; unsigned int min_div; unsigned int max_div; }; struct alcor_sdmmc_host { struct device *dev; struct alcor_pci_priv *alcor_pci; struct mmc_request *mrq; struct mmc_command *cmd; struct mmc_data *data; unsigned int dma_on:1; struct mutex cmd_mutex; struct delayed_work timeout_work; struct sg_mapping_iter sg_miter; /* SG state for PIO */ struct scatterlist *sg; unsigned int blocks; /* remaining PIO blocks */ int sg_count; u32 irq_status_sd; unsigned char cur_power_mode; }; static const struct alcor_pll_conf alcor_pll_cfg[] = { /* MHZ, CLK src, max div, min div */ { 31250000, AU6601_CLK_31_25_MHZ, 1, 511}, { 48000000, AU6601_CLK_48_MHZ, 1, 511}, {125000000, AU6601_CLK_125_MHZ, 1, 511}, {384000000, AU6601_CLK_384_MHZ, 1, 511}, }; static inline void alcor_rmw8(struct alcor_sdmmc_host *host, unsigned int addr, u8 clear, u8 set) { struct alcor_pci_priv *priv = host->alcor_pci; u32 var; var = alcor_read8(priv, addr); var &= ~clear; var |= set; alcor_write8(priv, var, addr); } /* As soon as irqs are masked, some status updates may be missed. * Use this with care. */ static inline void alcor_mask_sd_irqs(struct alcor_sdmmc_host *host) { struct alcor_pci_priv *priv = host->alcor_pci; alcor_write32(priv, 0, AU6601_REG_INT_ENABLE); } static inline void alcor_unmask_sd_irqs(struct alcor_sdmmc_host *host) { struct alcor_pci_priv *priv = host->alcor_pci; alcor_write32(priv, AU6601_INT_CMD_MASK | AU6601_INT_DATA_MASK | AU6601_INT_CARD_INSERT | AU6601_INT_CARD_REMOVE | AU6601_INT_OVER_CURRENT_ERR, AU6601_REG_INT_ENABLE); } static void alcor_reset(struct alcor_sdmmc_host *host, u8 val) { struct alcor_pci_priv *priv = host->alcor_pci; int i; alcor_write8(priv, val | AU6601_BUF_CTRL_RESET, AU6601_REG_SW_RESET); for (i = 0; i < 100; i++) { if (!(alcor_read8(priv, AU6601_REG_SW_RESET) & val)) return; udelay(50); } dev_err(host->dev, "%s: timeout\n", __func__); } /* * Perform DMA I/O of a single page. */ static void alcor_data_set_dma(struct alcor_sdmmc_host *host) { struct alcor_pci_priv *priv = host->alcor_pci; u32 addr; if (!host->sg_count) return; if (!host->sg) { dev_err(host->dev, "have blocks, but no SG\n"); return; } if (!sg_dma_len(host->sg)) { dev_err(host->dev, "DMA SG len == 0\n"); return; } addr = (u32)sg_dma_address(host->sg); alcor_write32(priv, addr, AU6601_REG_SDMA_ADDR); host->sg = sg_next(host->sg); host->sg_count--; } static void alcor_trigger_data_transfer(struct alcor_sdmmc_host *host) { struct alcor_pci_priv *priv = host->alcor_pci; struct mmc_data *data = host->data; u8 ctrl = 0; if (data->flags & MMC_DATA_WRITE) ctrl |= AU6601_DATA_WRITE; if (data->host_cookie == COOKIE_MAPPED) { /* * For DMA transfers, this function is called just once, * at the start of the operation. The hardware can only * perform DMA I/O on a single page at a time, so here * we kick off the transfer with the first page, and expect * subsequent pages to be transferred upon IRQ events * indicating that the single-page DMA was completed. */ alcor_data_set_dma(host); ctrl |= AU6601_DATA_DMA_MODE; host->dma_on = 1; alcor_write32(priv, data->sg_count * 0x1000, AU6601_REG_BLOCK_SIZE); } else { /* * For PIO transfers, we break down each operation * into several sector-sized transfers. When one sector has * complete, the IRQ handler will call this function again * to kick off the transfer of the next sector. */ alcor_write32(priv, data->blksz, AU6601_REG_BLOCK_SIZE); } alcor_write8(priv, ctrl | AU6601_DATA_START_XFER, AU6601_DATA_XFER_CTRL); } static void alcor_trf_block_pio(struct alcor_sdmmc_host *host, bool read) { struct alcor_pci_priv *priv = host->alcor_pci; size_t blksize, len; u8 *buf; if (!host->blocks) return; if (host->dma_on) { dev_err(host->dev, "configured DMA but got PIO request.\n"); return; } if (!!(host->data->flags & MMC_DATA_READ) != read) { dev_err(host->dev, "got unexpected direction %i != %i\n", !!(host->data->flags & MMC_DATA_READ), read); } if (!sg_miter_next(&host->sg_miter)) return; blksize = host->data->blksz; len = min(host->sg_miter.length, blksize); dev_dbg(host->dev, "PIO, %s block size: 0x%zx\n", read ? "read" : "write", blksize); host->sg_miter.consumed = len; host->blocks--; buf = host->sg_miter.addr; if (read) ioread32_rep(priv->iobase + AU6601_REG_BUFFER, buf, len >> 2); else iowrite32_rep(priv->iobase + AU6601_REG_BUFFER, buf, len >> 2); sg_miter_stop(&host->sg_miter); } static void alcor_prepare_sg_miter(struct alcor_sdmmc_host *host) { unsigned int flags = SG_MITER_ATOMIC; struct mmc_data *data = host->data; if (data->flags & MMC_DATA_READ) flags |= SG_MITER_TO_SG; else flags |= SG_MITER_FROM_SG; sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags); } static void alcor_prepare_data(struct alcor_sdmmc_host *host, struct mmc_command *cmd) { struct alcor_pci_priv *priv = host->alcor_pci; struct mmc_data *data = cmd->data; if (!data) return; host->data = data; host->data->bytes_xfered = 0; host->blocks = data->blocks; host->sg = data->sg; host->sg_count = data->sg_count; dev_dbg(host->dev, "prepare DATA: sg %i, blocks: %i\n", host->sg_count, host->blocks); if (data->host_cookie != COOKIE_MAPPED) alcor_prepare_sg_miter(host); alcor_write8(priv, 0, AU6601_DATA_XFER_CTRL); } static void alcor_send_cmd(struct alcor_sdmmc_host *host, struct mmc_command *cmd, bool set_timeout) { struct alcor_pci_priv *priv = host->alcor_pci; unsigned long timeout = 0; u8 ctrl = 0; host->cmd = cmd; alcor_prepare_data(host, cmd); dev_dbg(host->dev, "send CMD. opcode: 0x%02x, arg; 0x%08x\n", cmd->opcode, cmd->arg); alcor_write8(priv, cmd->opcode | 0x40, AU6601_REG_CMD_OPCODE); alcor_write32be(priv, cmd->arg, AU6601_REG_CMD_ARG); switch (mmc_resp_type(cmd)) { case MMC_RSP_NONE: ctrl = AU6601_CMD_NO_RESP; break; case MMC_RSP_R1: ctrl = AU6601_CMD_6_BYTE_CRC; break; case MMC_RSP_R1B: ctrl = AU6601_CMD_6_BYTE_CRC | AU6601_CMD_STOP_WAIT_RDY; break; case MMC_RSP_R2: ctrl = AU6601_CMD_17_BYTE_CRC; break; case MMC_RSP_R3: ctrl = AU6601_CMD_6_BYTE_WO_CRC; break; default: dev_err(host->dev, "%s: cmd->flag (0x%02x) is not valid\n", mmc_hostname(mmc_from_priv(host)), mmc_resp_type(cmd)); break; } if (set_timeout) { if (!cmd->data && cmd->busy_timeout) timeout = cmd->busy_timeout; else timeout = 10000; schedule_delayed_work(&host->timeout_work, msecs_to_jiffies(timeout)); } dev_dbg(host->dev, "xfer ctrl: 0x%02x; timeout: %lu\n", ctrl, timeout); alcor_write8(priv, ctrl | AU6601_CMD_START_XFER, AU6601_CMD_XFER_CTRL); } static void alcor_request_complete(struct alcor_sdmmc_host *host, bool cancel_timeout) { struct mmc_request *mrq; /* * If this work gets rescheduled while running, it will * be run again afterwards but without any active request. */ if (!host->mrq) return; if (cancel_timeout) cancel_delayed_work(&host->timeout_work); mrq = host->mrq; host->mrq = NULL; host->cmd = NULL; host->data = NULL; host->dma_on = 0; mmc_request_done(mmc_from_priv(host), mrq); } static void alcor_finish_data(struct alcor_sdmmc_host *host) { struct mmc_data *data; data = host->data; host->data = NULL; host->dma_on = 0; /* * The specification states that the block count register must * be updated, but it does not specify at what point in the * data flow. That makes the register entirely useless to read * back so we have to assume that nothing made it to the card * in the event of an error. */ if (data->error) data->bytes_xfered = 0; else data->bytes_xfered = data->blksz * data->blocks; /* * Need to send CMD12 if - * a) open-ended multiblock transfer (no CMD23) * b) error in multiblock transfer */ if (data->stop && (data->error || !host->mrq->sbc)) { /* * The controller needs a reset of internal state machines * upon error conditions. */ if (data->error) alcor_reset(host, AU6601_RESET_CMD | AU6601_RESET_DATA); alcor_unmask_sd_irqs(host); alcor_send_cmd(host, data->stop, false); return; } alcor_request_complete(host, 1); } static void alcor_err_irq(struct alcor_sdmmc_host *host, u32 intmask) { dev_dbg(host->dev, "ERR IRQ %x\n", intmask); if (host->cmd) { if (intmask & AU6601_INT_CMD_TIMEOUT_ERR) host->cmd->error = -ETIMEDOUT; else host->cmd->error = -EILSEQ; } if (host->data) { if (intmask & AU6601_INT_DATA_TIMEOUT_ERR) host->data->error = -ETIMEDOUT; else host->data->error = -EILSEQ; host->data->bytes_xfered = 0; } alcor_reset(host, AU6601_RESET_CMD | AU6601_RESET_DATA); alcor_request_complete(host, 1); } static int alcor_cmd_irq_done(struct alcor_sdmmc_host *host, u32 intmask) { struct alcor_pci_priv *priv = host->alcor_pci; intmask &= AU6601_INT_CMD_END; if (!intmask) return true; /* got CMD_END but no CMD is in progress, wake thread an process the * error */ if (!host->cmd) return false; if (host->cmd->flags & MMC_RSP_PRESENT) { struct mmc_command *cmd = host->cmd; cmd->resp[0] = alcor_read32be(priv, AU6601_REG_CMD_RSP0); dev_dbg(host->dev, "RSP0: 0x%04x\n", cmd->resp[0]); if (host->cmd->flags & MMC_RSP_136) { cmd->resp[1] = alcor_read32be(priv, AU6601_REG_CMD_RSP1); cmd->resp[2] = alcor_read32be(priv, AU6601_REG_CMD_RSP2); cmd->resp[3] = alcor_read32be(priv, AU6601_REG_CMD_RSP3); dev_dbg(host->dev, "RSP1,2,3: 0x%04x 0x%04x 0x%04x\n", cmd->resp[1], cmd->resp[2], cmd->resp[3]); } } host->cmd->error = 0; /* Processed actual command. */ if (!host->data) return false; alcor_trigger_data_transfer(host); host->cmd = NULL; return true; } static void alcor_cmd_irq_thread(struct alcor_sdmmc_host *host, u32 intmask) { intmask &= AU6601_INT_CMD_END; if (!intmask) return; if (!host->cmd && intmask & AU6601_INT_CMD_END) { dev_dbg(host->dev, "Got command interrupt 0x%08x even though no command operation was in progress.\n", intmask); } /* Processed actual command. */ if (!host->data) alcor_request_complete(host, 1); else alcor_trigger_data_transfer(host); host->cmd = NULL; } static int alcor_data_irq_done(struct alcor_sdmmc_host *host, u32 intmask) { u32 tmp; intmask &= AU6601_INT_DATA_MASK; /* nothing here to do */ if (!intmask) return 1; /* we was too fast and got DATA_END after it was processed? * lets ignore it for now. */ if (!host->data && intmask == AU6601_INT_DATA_END) return 1; /* looks like an error, so lets handle it. */ if (!host->data) return 0; tmp = intmask & (AU6601_INT_READ_BUF_RDY | AU6601_INT_WRITE_BUF_RDY | AU6601_INT_DMA_END); switch (tmp) { case 0: break; case AU6601_INT_READ_BUF_RDY: alcor_trf_block_pio(host, true); return 1; case AU6601_INT_WRITE_BUF_RDY: alcor_trf_block_pio(host, false); return 1; case AU6601_INT_DMA_END: if (!host->sg_count) break; alcor_data_set_dma(host); break; default: dev_err(host->dev, "Got READ_BUF_RDY and WRITE_BUF_RDY at same time\n"); break; } if (intmask & AU6601_INT_DATA_END) { if (!host->dma_on && host->blocks) { alcor_trigger_data_transfer(host); return 1; } else { return 0; } } return 1; } static void alcor_data_irq_thread(struct alcor_sdmmc_host *host, u32 intmask) { intmask &= AU6601_INT_DATA_MASK; if (!intmask) return; if (!host->data) { dev_dbg(host->dev, "Got data interrupt 0x%08x even though no data operation was in progress.\n", intmask); alcor_reset(host, AU6601_RESET_DATA); return; } if (alcor_data_irq_done(host, intmask)) return; if ((intmask & AU6601_INT_DATA_END) || !host->blocks || (host->dma_on && !host->sg_count)) alcor_finish_data(host); } static void alcor_cd_irq(struct alcor_sdmmc_host *host, u32 intmask) { dev_dbg(host->dev, "card %s\n", intmask & AU6601_INT_CARD_REMOVE ? "removed" : "inserted"); if (host->mrq) { dev_dbg(host->dev, "cancel all pending tasks.\n"); if (host->data) host->data->error = -ENOMEDIUM; if (host->cmd) host->cmd->error = -ENOMEDIUM; else host->mrq->cmd->error = -ENOMEDIUM; alcor_request_complete(host, 1); } mmc_detect_change(mmc_from_priv(host), msecs_to_jiffies(1)); } static irqreturn_t alcor_irq_thread(int irq, void *d) { struct alcor_sdmmc_host *host = d; irqreturn_t ret = IRQ_HANDLED; u32 intmask, tmp; mutex_lock(&host->cmd_mutex); intmask = host->irq_status_sd; /* some thing bad */ if (unlikely(!intmask || AU6601_INT_ALL_MASK == intmask)) { dev_dbg(host->dev, "unexpected IRQ: 0x%04x\n", intmask); ret = IRQ_NONE; goto exit; } tmp = intmask & (AU6601_INT_CMD_MASK | AU6601_INT_DATA_MASK); if (tmp) { if (tmp & AU6601_INT_ERROR_MASK) alcor_err_irq(host, tmp); else { alcor_cmd_irq_thread(host, tmp); alcor_data_irq_thread(host, tmp); } intmask &= ~(AU6601_INT_CMD_MASK | AU6601_INT_DATA_MASK); } if (intmask & (AU6601_INT_CARD_INSERT | AU6601_INT_CARD_REMOVE)) { alcor_cd_irq(host, intmask); intmask &= ~(AU6601_INT_CARD_INSERT | AU6601_INT_CARD_REMOVE); } if (intmask & AU6601_INT_OVER_CURRENT_ERR) { dev_warn(host->dev, "warning: over current detected!\n"); intmask &= ~AU6601_INT_OVER_CURRENT_ERR; } if (intmask) dev_dbg(host->dev, "got not handled IRQ: 0x%04x\n", intmask); exit: mutex_unlock(&host->cmd_mutex); alcor_unmask_sd_irqs(host); return ret; } static irqreturn_t alcor_irq(int irq, void *d) { struct alcor_sdmmc_host *host = d; struct alcor_pci_priv *priv = host->alcor_pci; u32 status, tmp; irqreturn_t ret; int cmd_done, data_done; status = alcor_read32(priv, AU6601_REG_INT_STATUS); if (!status) return IRQ_NONE; alcor_write32(priv, status, AU6601_REG_INT_STATUS); tmp = status & (AU6601_INT_READ_BUF_RDY | AU6601_INT_WRITE_BUF_RDY | AU6601_INT_DATA_END | AU6601_INT_DMA_END | AU6601_INT_CMD_END); if (tmp == status) { cmd_done = alcor_cmd_irq_done(host, tmp); data_done = alcor_data_irq_done(host, tmp); /* use fast path for simple tasks */ if (cmd_done && data_done) { ret = IRQ_HANDLED; goto alcor_irq_done; } } host->irq_status_sd = status; ret = IRQ_WAKE_THREAD; alcor_mask_sd_irqs(host); alcor_irq_done: return ret; } static void alcor_set_clock(struct alcor_sdmmc_host *host, unsigned int clock) { struct alcor_pci_priv *priv = host->alcor_pci; int i, diff = 0x7fffffff, tmp_clock = 0; u16 clk_src = 0; u8 clk_div = 0; if (clock == 0) { alcor_write16(priv, 0, AU6601_CLK_SELECT); return; } for (i = 0; i < ARRAY_SIZE(alcor_pll_cfg); i++) { unsigned int tmp_div, tmp_diff; const struct alcor_pll_conf *cfg = &alcor_pll_cfg[i]; tmp_div = DIV_ROUND_UP(cfg->clk_src_freq, clock); if (cfg->min_div > tmp_div || tmp_div > cfg->max_div) continue; tmp_clock = DIV_ROUND_UP(cfg->clk_src_freq, tmp_div); tmp_diff = abs(clock - tmp_clock); if (tmp_diff < diff) { diff = tmp_diff; clk_src = cfg->clk_src_reg; clk_div = tmp_div; } } clk_src |= ((clk_div - 1) << 8); clk_src |= AU6601_CLK_ENABLE; dev_dbg(host->dev, "set freq %d cal freq %d, use div %d, mod %x\n", clock, tmp_clock, clk_div, clk_src); alcor_write16(priv, clk_src, AU6601_CLK_SELECT); } static void alcor_set_timing(struct mmc_host *mmc, struct mmc_ios *ios) { struct alcor_sdmmc_host *host = mmc_priv(mmc); if (ios->timing == MMC_TIMING_LEGACY) { alcor_rmw8(host, AU6601_CLK_DELAY, AU6601_CLK_POSITIVE_EDGE_ALL, 0); } else { alcor_rmw8(host, AU6601_CLK_DELAY, 0, AU6601_CLK_POSITIVE_EDGE_ALL); } } static void alcor_set_bus_width(struct mmc_host *mmc, struct mmc_ios *ios) { struct alcor_sdmmc_host *host = mmc_priv(mmc); struct alcor_pci_priv *priv = host->alcor_pci; if (ios->bus_width == MMC_BUS_WIDTH_1) { alcor_write8(priv, 0, AU6601_REG_BUS_CTRL); } else if (ios->bus_width == MMC_BUS_WIDTH_4) { alcor_write8(priv, AU6601_BUS_WIDTH_4BIT, AU6601_REG_BUS_CTRL); } else dev_err(host->dev, "Unknown BUS mode\n"); } static int alcor_card_busy(struct mmc_host *mmc) { struct alcor_sdmmc_host *host = mmc_priv(mmc); struct alcor_pci_priv *priv = host->alcor_pci; u8 status; /* Check whether dat[0:3] low */ status = alcor_read8(priv, AU6601_DATA_PIN_STATE); return !(status & AU6601_BUS_STAT_DAT_MASK); } static int alcor_get_cd(struct mmc_host *mmc) { struct alcor_sdmmc_host *host = mmc_priv(mmc); struct alcor_pci_priv *priv = host->alcor_pci; u8 detect; detect = alcor_read8(priv, AU6601_DETECT_STATUS) & AU6601_DETECT_STATUS_M; /* check if card is present then send command and data */ return (detect == AU6601_SD_DETECTED); } static int alcor_get_ro(struct mmc_host *mmc) { struct alcor_sdmmc_host *host = mmc_priv(mmc); struct alcor_pci_priv *priv = host->alcor_pci; u8 status; /* get write protect pin status */ status = alcor_read8(priv, AU6601_INTERFACE_MODE_CTRL); return !!(status & AU6601_SD_CARD_WP); } static void alcor_request(struct mmc_host *mmc, struct mmc_request *mrq) { struct alcor_sdmmc_host *host = mmc_priv(mmc); mutex_lock(&host->cmd_mutex); host->mrq = mrq; /* check if card is present then send command and data */ if (alcor_get_cd(mmc)) alcor_send_cmd(host, mrq->cmd, true); else { mrq->cmd->error = -ENOMEDIUM; alcor_request_complete(host, 1); } mutex_unlock(&host->cmd_mutex); } static void alcor_pre_req(struct mmc_host *mmc, struct mmc_request *mrq) { struct alcor_sdmmc_host *host = mmc_priv(mmc); struct mmc_data *data = mrq->data; struct mmc_command *cmd = mrq->cmd; struct scatterlist *sg; unsigned int i, sg_len; if (!data || !cmd) return; data->host_cookie = COOKIE_UNMAPPED; /* FIXME: looks like the DMA engine works only with CMD18 */ if (cmd->opcode != MMC_READ_MULTIPLE_BLOCK && cmd->opcode != MMC_WRITE_MULTIPLE_BLOCK) return; /* * We don't do DMA on "complex" transfers, i.e. with * non-word-aligned buffers or lengths. A future improvement * could be made to use temporary DMA bounce-buffers when these * requirements are not met. * * Also, we don't bother with all the DMA setup overhead for * short transfers. */ if (data->blocks * data->blksz < AU6601_MAX_DMA_BLOCK_SIZE) return; if (data->blksz & 3) return; for_each_sg(data->sg, sg, data->sg_len, i) { if (sg->length != AU6601_MAX_DMA_BLOCK_SIZE) return; if (sg->offset != 0) return; } /* This data might be unmapped at this time */ sg_len = dma_map_sg(host->dev, data->sg, data->sg_len, mmc_get_dma_dir(data)); if (sg_len) data->host_cookie = COOKIE_MAPPED; data->sg_count = sg_len; } static void alcor_post_req(struct mmc_host *mmc, struct mmc_request *mrq, int err) { struct alcor_sdmmc_host *host = mmc_priv(mmc); struct mmc_data *data = mrq->data; if (!data) return; if (data->host_cookie == COOKIE_MAPPED) { dma_unmap_sg(host->dev, data->sg, data->sg_len, mmc_get_dma_dir(data)); } data->host_cookie = COOKIE_UNMAPPED; } static void alcor_set_power_mode(struct mmc_host *mmc, struct mmc_ios *ios) { struct alcor_sdmmc_host *host = mmc_priv(mmc); struct alcor_pci_priv *priv = host->alcor_pci; switch (ios->power_mode) { case MMC_POWER_OFF: alcor_set_clock(host, ios->clock); /* set all pins to input */ alcor_write8(priv, 0, AU6601_OUTPUT_ENABLE); /* turn of VDD */ alcor_write8(priv, 0, AU6601_POWER_CONTROL); break; case MMC_POWER_UP: break; case MMC_POWER_ON: /* This is most trickiest part. The order and timings of * instructions seems to play important role. Any changes may * confuse internal state engine if this HW. * FIXME: If we will ever get access to documentation, then this * part should be reviewed again. */ /* enable SD card mode */ alcor_write8(priv, AU6601_SD_CARD, AU6601_ACTIVE_CTRL); /* set signal voltage to 3.3V */ alcor_write8(priv, 0, AU6601_OPT); /* no documentation about clk delay, for now just try to mimic * original driver. */ alcor_write8(priv, 0x20, AU6601_CLK_DELAY); /* set BUS width to 1 bit */ alcor_write8(priv, 0, AU6601_REG_BUS_CTRL); /* set CLK first time */ alcor_set_clock(host, ios->clock); /* power on VDD */ alcor_write8(priv, AU6601_SD_CARD, AU6601_POWER_CONTROL); /* wait until the CLK will get stable */ mdelay(20); /* set CLK again, mimic original driver. */ alcor_set_clock(host, ios->clock); /* enable output */ alcor_write8(priv, AU6601_SD_CARD, AU6601_OUTPUT_ENABLE); /* The clk will not work on au6621. We need to trigger data * transfer. */ alcor_write8(priv, AU6601_DATA_WRITE, AU6601_DATA_XFER_CTRL); /* configure timeout. Not clear what exactly it means. */ alcor_write8(priv, 0x7d, AU6601_TIME_OUT_CTRL); mdelay(100); break; default: dev_err(host->dev, "Unknown power parameter\n"); } } static void alcor_set_ios(struct mmc_host *mmc, struct mmc_ios *ios) { struct alcor_sdmmc_host *host = mmc_priv(mmc); mutex_lock(&host->cmd_mutex); dev_dbg(host->dev, "set ios. bus width: %x, power mode: %x\n", ios->bus_width, ios->power_mode); if (ios->power_mode != host->cur_power_mode) { alcor_set_power_mode(mmc, ios); host->cur_power_mode = ios->power_mode; } else { alcor_set_timing(mmc, ios); alcor_set_bus_width(mmc, ios); alcor_set_clock(host, ios->clock); } mutex_unlock(&host->cmd_mutex); } static int alcor_signal_voltage_switch(struct mmc_host *mmc, struct mmc_ios *ios) { struct alcor_sdmmc_host *host = mmc_priv(mmc); mutex_lock(&host->cmd_mutex); switch (ios->signal_voltage) { case MMC_SIGNAL_VOLTAGE_330: alcor_rmw8(host, AU6601_OPT, AU6601_OPT_SD_18V, 0); break; case MMC_SIGNAL_VOLTAGE_180: alcor_rmw8(host, AU6601_OPT, 0, AU6601_OPT_SD_18V); break; default: /* No signal voltage switch required */ break; } mutex_unlock(&host->cmd_mutex); return 0; } static const struct mmc_host_ops alcor_sdc_ops = { .card_busy = alcor_card_busy, .get_cd = alcor_get_cd, .get_ro = alcor_get_ro, .post_req = alcor_post_req, .pre_req = alcor_pre_req, .request = alcor_request, .set_ios = alcor_set_ios, .start_signal_voltage_switch = alcor_signal_voltage_switch, }; static void alcor_timeout_timer(struct work_struct *work) { struct delayed_work *d = to_delayed_work(work); struct alcor_sdmmc_host *host = container_of(d, struct alcor_sdmmc_host, timeout_work); mutex_lock(&host->cmd_mutex); dev_dbg(host->dev, "triggered timeout\n"); if (host->mrq) { dev_err(host->dev, "Timeout waiting for hardware interrupt.\n"); if (host->data) { host->data->error = -ETIMEDOUT; } else { if (host->cmd) host->cmd->error = -ETIMEDOUT; else host->mrq->cmd->error = -ETIMEDOUT; } alcor_reset(host, AU6601_RESET_CMD | AU6601_RESET_DATA); alcor_request_complete(host, 0); } mutex_unlock(&host->cmd_mutex); } static void alcor_hw_init(struct alcor_sdmmc_host *host) { struct alcor_pci_priv *priv = host->alcor_pci; struct alcor_dev_cfg *cfg = priv->cfg; /* FIXME: This part is a mimics HW init of original driver. * If we will ever get access to documentation, then this part * should be reviewed again. */ /* reset command state engine */ alcor_reset(host, AU6601_RESET_CMD); alcor_write8(priv, 0, AU6601_DMA_BOUNDARY); /* enable sd card mode */ alcor_write8(priv, AU6601_SD_CARD, AU6601_ACTIVE_CTRL); /* set BUS width to 1 bit */ alcor_write8(priv, 0, AU6601_REG_BUS_CTRL); /* reset data state engine */ alcor_reset(host, AU6601_RESET_DATA); /* Not sure if a voodoo with AU6601_DMA_BOUNDARY is really needed */ alcor_write8(priv, 0, AU6601_DMA_BOUNDARY); alcor_write8(priv, 0, AU6601_INTERFACE_MODE_CTRL); /* not clear what we are doing here. */ alcor_write8(priv, 0x44, AU6601_PAD_DRIVE0); alcor_write8(priv, 0x44, AU6601_PAD_DRIVE1); alcor_write8(priv, 0x00, AU6601_PAD_DRIVE2); /* for 6601 - dma_boundary; for 6621 - dma_page_cnt * exact meaning of this register is not clear. */ alcor_write8(priv, cfg->dma, AU6601_DMA_BOUNDARY); /* make sure all pins are set to input and VDD is off */ alcor_write8(priv, 0, AU6601_OUTPUT_ENABLE); alcor_write8(priv, 0, AU6601_POWER_CONTROL); alcor_write8(priv, AU6601_DETECT_EN, AU6601_DETECT_STATUS); /* now we should be safe to enable IRQs */ alcor_unmask_sd_irqs(host); } static void alcor_hw_uninit(struct alcor_sdmmc_host *host) { struct alcor_pci_priv *priv = host->alcor_pci; alcor_mask_sd_irqs(host); alcor_reset(host, AU6601_RESET_CMD | AU6601_RESET_DATA); alcor_write8(priv, 0, AU6601_DETECT_STATUS); alcor_write8(priv, 0, AU6601_OUTPUT_ENABLE); alcor_write8(priv, 0, AU6601_POWER_CONTROL); alcor_write8(priv, 0, AU6601_OPT); } static void alcor_init_mmc(struct alcor_sdmmc_host *host) { struct mmc_host *mmc = mmc_from_priv(host); mmc->f_min = AU6601_MIN_CLOCK; mmc->f_max = AU6601_MAX_CLOCK; mmc->ocr_avail = MMC_VDD_33_34; mmc->caps = MMC_CAP_4_BIT_DATA | MMC_CAP_SD_HIGHSPEED | MMC_CAP_UHS_SDR12 | MMC_CAP_UHS_SDR25 | MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_SDR104 | MMC_CAP_UHS_DDR50; mmc->caps2 = MMC_CAP2_NO_SDIO; mmc->ops = &alcor_sdc_ops; /* The hardware does DMA data transfer of 4096 bytes to/from a single * buffer address. Scatterlists are not supported at the hardware * level, however we can work with them at the driver level, * provided that each segment is exactly 4096 bytes in size. * Upon DMA completion of a single segment (signalled via IRQ), we * immediately proceed to transfer the next segment from the * scatterlist. * * The overall request is limited to 240 sectors, matching the * original vendor driver. */ mmc->max_segs = AU6601_MAX_DMA_SEGMENTS; mmc->max_seg_size = AU6601_MAX_DMA_BLOCK_SIZE; mmc->max_blk_count = 240; mmc->max_req_size = mmc->max_blk_count * mmc->max_blk_size; dma_set_max_seg_size(host->dev, mmc->max_seg_size); } static int alcor_pci_sdmmc_drv_probe(struct platform_device *pdev) { struct alcor_pci_priv *priv = pdev->dev.platform_data; struct mmc_host *mmc; struct alcor_sdmmc_host *host; int ret; mmc = mmc_alloc_host(sizeof(*host), &pdev->dev); if (!mmc) { dev_err(&pdev->dev, "Can't allocate MMC\n"); return -ENOMEM; } host = mmc_priv(mmc); host->dev = &pdev->dev; host->cur_power_mode = MMC_POWER_UNDEFINED; host->alcor_pci = priv; /* make sure irqs are disabled */ alcor_write32(priv, 0, AU6601_REG_INT_ENABLE); alcor_write32(priv, 0, AU6601_MS_INT_ENABLE); ret = devm_request_threaded_irq(&pdev->dev, priv->irq, alcor_irq, alcor_irq_thread, IRQF_SHARED, DRV_NAME_ALCOR_PCI_SDMMC, host); if (ret) { dev_err(&pdev->dev, "Failed to get irq for data line\n"); goto free_host; } mutex_init(&host->cmd_mutex); INIT_DELAYED_WORK(&host->timeout_work, alcor_timeout_timer); alcor_init_mmc(host); alcor_hw_init(host); dev_set_drvdata(&pdev->dev, host); ret = mmc_add_host(mmc); if (ret) goto free_host; return 0; free_host: mmc_free_host(mmc); return ret; } static void alcor_pci_sdmmc_drv_remove(struct platform_device *pdev) { struct alcor_sdmmc_host *host = dev_get_drvdata(&pdev->dev); struct mmc_host *mmc = mmc_from_priv(host); if (cancel_delayed_work_sync(&host->timeout_work)) alcor_request_complete(host, 0); alcor_hw_uninit(host); mmc_remove_host(mmc); mmc_free_host(mmc); } #ifdef CONFIG_PM_SLEEP static int alcor_pci_sdmmc_suspend(struct device *dev) { struct alcor_sdmmc_host *host = dev_get_drvdata(dev); if (cancel_delayed_work_sync(&host->timeout_work)) alcor_request_complete(host, 0); alcor_hw_uninit(host); return 0; } static int alcor_pci_sdmmc_resume(struct device *dev) { struct alcor_sdmmc_host *host = dev_get_drvdata(dev); alcor_hw_init(host); return 0; } #endif /* CONFIG_PM_SLEEP */ static SIMPLE_DEV_PM_OPS(alcor_mmc_pm_ops, alcor_pci_sdmmc_suspend, alcor_pci_sdmmc_resume); static const struct platform_device_id alcor_pci_sdmmc_ids[] = { { .name = DRV_NAME_ALCOR_PCI_SDMMC, }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(platform, alcor_pci_sdmmc_ids); static struct platform_driver alcor_pci_sdmmc_driver = { .probe = alcor_pci_sdmmc_drv_probe, .remove_new = alcor_pci_sdmmc_drv_remove, .id_table = alcor_pci_sdmmc_ids, .driver = { .name = DRV_NAME_ALCOR_PCI_SDMMC, .probe_type = PROBE_PREFER_ASYNCHRONOUS, .pm = &alcor_mmc_pm_ops }, }; module_platform_driver(alcor_pci_sdmmc_driver); MODULE_AUTHOR("Oleksij Rempel <linux@rempel-privat.de>"); MODULE_DESCRIPTION("PCI driver for Alcor Micro AU6601 Secure Digital Host Controller Interface"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1