Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Tony Prisk | 4358 | 97.32% | 1 | 5.26% |
Axel Lin | 53 | 1.18% | 4 | 21.05% |
Arvind Yadav | 11 | 0.25% | 1 | 5.26% |
Bean Huo | 11 | 0.25% | 1 | 5.26% |
Yang Yingliang | 11 | 0.25% | 1 | 5.26% |
Rob Herring | 8 | 0.18% | 1 | 5.26% |
Doug Anderson | 5 | 0.11% | 1 | 5.26% |
Ulf Hansson | 5 | 0.11% | 2 | 10.53% |
Wolfram Sang | 4 | 0.09% | 1 | 5.26% |
Alexandru Gheorghiu | 3 | 0.07% | 1 | 5.26% |
Christophe Jaillet | 3 | 0.07% | 1 | 5.26% |
Thomas Gleixner | 2 | 0.04% | 1 | 5.26% |
Yangtao Li | 2 | 0.04% | 1 | 5.26% |
Julia Lawall | 1 | 0.02% | 1 | 5.26% |
Fabian Frederick | 1 | 0.02% | 1 | 5.26% |
Total | 4478 | 19 |
// SPDX-License-Identifier: GPL-2.0-only /* * WM8505/WM8650 SD/MMC Host Controller * * Copyright (C) 2010 Tony Prisk * Copyright (C) 2008 WonderMedia Technologies, Inc. */ #include <linux/init.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/ioport.h> #include <linux/errno.h> #include <linux/dma-mapping.h> #include <linux/delay.h> #include <linux/io.h> #include <linux/irq.h> #include <linux/clk.h> #include <linux/interrupt.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/of_irq.h> #include <linux/mmc/host.h> #include <linux/mmc/mmc.h> #include <linux/mmc/sd.h> #include <asm/byteorder.h> #define DRIVER_NAME "wmt-sdhc" /* MMC/SD controller registers */ #define SDMMC_CTLR 0x00 #define SDMMC_CMD 0x01 #define SDMMC_RSPTYPE 0x02 #define SDMMC_ARG 0x04 #define SDMMC_BUSMODE 0x08 #define SDMMC_BLKLEN 0x0C #define SDMMC_BLKCNT 0x0E #define SDMMC_RSP 0x10 #define SDMMC_CBCR 0x20 #define SDMMC_INTMASK0 0x24 #define SDMMC_INTMASK1 0x25 #define SDMMC_STS0 0x28 #define SDMMC_STS1 0x29 #define SDMMC_STS2 0x2A #define SDMMC_STS3 0x2B #define SDMMC_RSPTIMEOUT 0x2C #define SDMMC_CLK 0x30 /* VT8500 only */ #define SDMMC_EXTCTRL 0x34 #define SDMMC_SBLKLEN 0x38 #define SDMMC_DMATIMEOUT 0x3C /* SDMMC_CTLR bit fields */ #define CTLR_CMD_START 0x01 #define CTLR_CMD_WRITE 0x04 #define CTLR_FIFO_RESET 0x08 /* SDMMC_BUSMODE bit fields */ #define BM_SPI_MODE 0x01 #define BM_FOURBIT_MODE 0x02 #define BM_EIGHTBIT_MODE 0x04 #define BM_SD_OFF 0x10 #define BM_SPI_CS 0x20 #define BM_SD_POWER 0x40 #define BM_SOFT_RESET 0x80 /* SDMMC_BLKLEN bit fields */ #define BLKL_CRCERR_ABORT 0x0800 #define BLKL_CD_POL_HIGH 0x1000 #define BLKL_GPI_CD 0x2000 #define BLKL_DATA3_CD 0x4000 #define BLKL_INT_ENABLE 0x8000 /* SDMMC_INTMASK0 bit fields */ #define INT0_MBLK_TRAN_DONE_INT_EN 0x10 #define INT0_BLK_TRAN_DONE_INT_EN 0x20 #define INT0_CD_INT_EN 0x40 #define INT0_DI_INT_EN 0x80 /* SDMMC_INTMASK1 bit fields */ #define INT1_CMD_RES_TRAN_DONE_INT_EN 0x02 #define INT1_CMD_RES_TOUT_INT_EN 0x04 #define INT1_MBLK_AUTO_STOP_INT_EN 0x08 #define INT1_DATA_TOUT_INT_EN 0x10 #define INT1_RESCRC_ERR_INT_EN 0x20 #define INT1_RCRC_ERR_INT_EN 0x40 #define INT1_WCRC_ERR_INT_EN 0x80 /* SDMMC_STS0 bit fields */ #define STS0_WRITE_PROTECT 0x02 #define STS0_CD_DATA3 0x04 #define STS0_CD_GPI 0x08 #define STS0_MBLK_DONE 0x10 #define STS0_BLK_DONE 0x20 #define STS0_CARD_DETECT 0x40 #define STS0_DEVICE_INS 0x80 /* SDMMC_STS1 bit fields */ #define STS1_SDIO_INT 0x01 #define STS1_CMDRSP_DONE 0x02 #define STS1_RSP_TIMEOUT 0x04 #define STS1_AUTOSTOP_DONE 0x08 #define STS1_DATA_TIMEOUT 0x10 #define STS1_RSP_CRC_ERR 0x20 #define STS1_RCRC_ERR 0x40 #define STS1_WCRC_ERR 0x80 /* SDMMC_STS2 bit fields */ #define STS2_CMD_RES_BUSY 0x10 #define STS2_DATARSP_BUSY 0x20 #define STS2_DIS_FORCECLK 0x80 /* SDMMC_EXTCTRL bit fields */ #define EXT_EIGHTBIT 0x04 /* MMC/SD DMA Controller Registers */ #define SDDMA_GCR 0x100 #define SDDMA_IER 0x104 #define SDDMA_ISR 0x108 #define SDDMA_DESPR 0x10C #define SDDMA_RBR 0x110 #define SDDMA_DAR 0x114 #define SDDMA_BAR 0x118 #define SDDMA_CPR 0x11C #define SDDMA_CCR 0x120 /* SDDMA_GCR bit fields */ #define DMA_GCR_DMA_EN 0x00000001 #define DMA_GCR_SOFT_RESET 0x00000100 /* SDDMA_IER bit fields */ #define DMA_IER_INT_EN 0x00000001 /* SDDMA_ISR bit fields */ #define DMA_ISR_INT_STS 0x00000001 /* SDDMA_RBR bit fields */ #define DMA_RBR_FORMAT 0x40000000 #define DMA_RBR_END 0x80000000 /* SDDMA_CCR bit fields */ #define DMA_CCR_RUN 0x00000080 #define DMA_CCR_IF_TO_PERIPHERAL 0x00000000 #define DMA_CCR_PERIPHERAL_TO_IF 0x00400000 /* SDDMA_CCR event status */ #define DMA_CCR_EVT_NO_STATUS 0x00000000 #define DMA_CCR_EVT_UNDERRUN 0x00000001 #define DMA_CCR_EVT_OVERRUN 0x00000002 #define DMA_CCR_EVT_DESP_READ 0x00000003 #define DMA_CCR_EVT_DATA_RW 0x00000004 #define DMA_CCR_EVT_EARLY_END 0x00000005 #define DMA_CCR_EVT_SUCCESS 0x0000000F #define PDMA_READ 0x00 #define PDMA_WRITE 0x01 #define WMT_SD_POWER_OFF 0 #define WMT_SD_POWER_ON 1 struct wmt_dma_descriptor { u32 flags; u32 data_buffer_addr; u32 branch_addr; u32 reserved1; }; struct wmt_mci_caps { unsigned int f_min; unsigned int f_max; u32 ocr_avail; u32 caps; u32 max_seg_size; u32 max_segs; u32 max_blk_size; }; struct wmt_mci_priv { struct mmc_host *mmc; void __iomem *sdmmc_base; int irq_regular; int irq_dma; void *dma_desc_buffer; dma_addr_t dma_desc_device_addr; struct completion cmdcomp; struct completion datacomp; struct completion *comp_cmd; struct completion *comp_dma; struct mmc_request *req; struct mmc_command *cmd; struct clk *clk_sdmmc; struct device *dev; u8 power_inverted; u8 cd_inverted; }; static void wmt_set_sd_power(struct wmt_mci_priv *priv, int enable) { u32 reg_tmp = readb(priv->sdmmc_base + SDMMC_BUSMODE); if (enable ^ priv->power_inverted) reg_tmp &= ~BM_SD_OFF; else reg_tmp |= BM_SD_OFF; writeb(reg_tmp, priv->sdmmc_base + SDMMC_BUSMODE); } static void wmt_mci_read_response(struct mmc_host *mmc) { struct wmt_mci_priv *priv; int idx1, idx2; u8 tmp_resp; u32 response; priv = mmc_priv(mmc); for (idx1 = 0; idx1 < 4; idx1++) { response = 0; for (idx2 = 0; idx2 < 4; idx2++) { if ((idx1 == 3) && (idx2 == 3)) tmp_resp = readb(priv->sdmmc_base + SDMMC_RSP); else tmp_resp = readb(priv->sdmmc_base + SDMMC_RSP + (idx1*4) + idx2 + 1); response |= (tmp_resp << (idx2 * 8)); } priv->cmd->resp[idx1] = cpu_to_be32(response); } } static void wmt_mci_start_command(struct wmt_mci_priv *priv) { u32 reg_tmp; reg_tmp = readb(priv->sdmmc_base + SDMMC_CTLR); writeb(reg_tmp | CTLR_CMD_START, priv->sdmmc_base + SDMMC_CTLR); } static int wmt_mci_send_command(struct mmc_host *mmc, u8 command, u8 cmdtype, u32 arg, u8 rsptype) { struct wmt_mci_priv *priv; u32 reg_tmp; priv = mmc_priv(mmc); /* write command, arg, resptype registers */ writeb(command, priv->sdmmc_base + SDMMC_CMD); writel(arg, priv->sdmmc_base + SDMMC_ARG); writeb(rsptype, priv->sdmmc_base + SDMMC_RSPTYPE); /* reset response FIFO */ reg_tmp = readb(priv->sdmmc_base + SDMMC_CTLR); writeb(reg_tmp | CTLR_FIFO_RESET, priv->sdmmc_base + SDMMC_CTLR); /* ensure clock enabled - VT3465 */ wmt_set_sd_power(priv, WMT_SD_POWER_ON); /* clear status bits */ writeb(0xFF, priv->sdmmc_base + SDMMC_STS0); writeb(0xFF, priv->sdmmc_base + SDMMC_STS1); writeb(0xFF, priv->sdmmc_base + SDMMC_STS2); writeb(0xFF, priv->sdmmc_base + SDMMC_STS3); /* set command type */ reg_tmp = readb(priv->sdmmc_base + SDMMC_CTLR); writeb((reg_tmp & 0x0F) | (cmdtype << 4), priv->sdmmc_base + SDMMC_CTLR); return 0; } static void wmt_mci_disable_dma(struct wmt_mci_priv *priv) { writel(DMA_ISR_INT_STS, priv->sdmmc_base + SDDMA_ISR); writel(0, priv->sdmmc_base + SDDMA_IER); } static void wmt_complete_data_request(struct wmt_mci_priv *priv) { struct mmc_request *req; req = priv->req; req->data->bytes_xfered = req->data->blksz * req->data->blocks; /* unmap the DMA pages used for write data */ if (req->data->flags & MMC_DATA_WRITE) dma_unmap_sg(mmc_dev(priv->mmc), req->data->sg, req->data->sg_len, DMA_TO_DEVICE); else dma_unmap_sg(mmc_dev(priv->mmc), req->data->sg, req->data->sg_len, DMA_FROM_DEVICE); /* Check if the DMA ISR returned a data error */ if ((req->cmd->error) || (req->data->error)) mmc_request_done(priv->mmc, req); else { wmt_mci_read_response(priv->mmc); if (!req->data->stop) { /* single-block read/write requests end here */ mmc_request_done(priv->mmc, req); } else { /* * we change the priv->cmd variable so the response is * stored in the stop struct rather than the original * calling command struct */ priv->comp_cmd = &priv->cmdcomp; init_completion(priv->comp_cmd); priv->cmd = req->data->stop; wmt_mci_send_command(priv->mmc, req->data->stop->opcode, 7, req->data->stop->arg, 9); wmt_mci_start_command(priv); } } } static irqreturn_t wmt_mci_dma_isr(int irq_num, void *data) { struct wmt_mci_priv *priv; int status; priv = (struct wmt_mci_priv *)data; status = readl(priv->sdmmc_base + SDDMA_CCR) & 0x0F; if (status != DMA_CCR_EVT_SUCCESS) { dev_err(priv->dev, "DMA Error: Status = %d\n", status); priv->req->data->error = -ETIMEDOUT; complete(priv->comp_dma); return IRQ_HANDLED; } priv->req->data->error = 0; wmt_mci_disable_dma(priv); complete(priv->comp_dma); if (priv->comp_cmd) { if (completion_done(priv->comp_cmd)) { /* * if the command (regular) interrupt has already * completed, finish off the request otherwise we wait * for the command interrupt and finish from there. */ wmt_complete_data_request(priv); } } return IRQ_HANDLED; } static irqreturn_t wmt_mci_regular_isr(int irq_num, void *data) { struct wmt_mci_priv *priv; u32 status0; u32 status1; u32 status2; u32 reg_tmp; int cmd_done; priv = (struct wmt_mci_priv *)data; cmd_done = 0; status0 = readb(priv->sdmmc_base + SDMMC_STS0); status1 = readb(priv->sdmmc_base + SDMMC_STS1); status2 = readb(priv->sdmmc_base + SDMMC_STS2); /* Check for card insertion */ reg_tmp = readb(priv->sdmmc_base + SDMMC_INTMASK0); if ((reg_tmp & INT0_DI_INT_EN) && (status0 & STS0_DEVICE_INS)) { mmc_detect_change(priv->mmc, 0); if (priv->cmd) priv->cmd->error = -ETIMEDOUT; if (priv->comp_cmd) complete(priv->comp_cmd); if (priv->comp_dma) { wmt_mci_disable_dma(priv); complete(priv->comp_dma); } writeb(STS0_DEVICE_INS, priv->sdmmc_base + SDMMC_STS0); return IRQ_HANDLED; } if ((!priv->req->data) || ((priv->req->data->stop) && (priv->cmd == priv->req->data->stop))) { /* handle non-data & stop_transmission requests */ if (status1 & STS1_CMDRSP_DONE) { priv->cmd->error = 0; cmd_done = 1; } else if ((status1 & STS1_RSP_TIMEOUT) || (status1 & STS1_DATA_TIMEOUT)) { priv->cmd->error = -ETIMEDOUT; cmd_done = 1; } if (cmd_done) { priv->comp_cmd = NULL; if (!priv->cmd->error) wmt_mci_read_response(priv->mmc); priv->cmd = NULL; mmc_request_done(priv->mmc, priv->req); } } else { /* handle data requests */ if (status1 & STS1_CMDRSP_DONE) { if (priv->cmd) priv->cmd->error = 0; if (priv->comp_cmd) complete(priv->comp_cmd); } if ((status1 & STS1_RSP_TIMEOUT) || (status1 & STS1_DATA_TIMEOUT)) { if (priv->cmd) priv->cmd->error = -ETIMEDOUT; if (priv->comp_cmd) complete(priv->comp_cmd); if (priv->comp_dma) { wmt_mci_disable_dma(priv); complete(priv->comp_dma); } } if (priv->comp_dma) { /* * If the dma interrupt has already completed, finish * off the request; otherwise we wait for the DMA * interrupt and finish from there. */ if (completion_done(priv->comp_dma)) wmt_complete_data_request(priv); } } writeb(status0, priv->sdmmc_base + SDMMC_STS0); writeb(status1, priv->sdmmc_base + SDMMC_STS1); writeb(status2, priv->sdmmc_base + SDMMC_STS2); return IRQ_HANDLED; } static void wmt_reset_hardware(struct mmc_host *mmc) { struct wmt_mci_priv *priv; u32 reg_tmp; priv = mmc_priv(mmc); /* reset controller */ reg_tmp = readb(priv->sdmmc_base + SDMMC_BUSMODE); writeb(reg_tmp | BM_SOFT_RESET, priv->sdmmc_base + SDMMC_BUSMODE); /* reset response FIFO */ reg_tmp = readb(priv->sdmmc_base + SDMMC_CTLR); writeb(reg_tmp | CTLR_FIFO_RESET, priv->sdmmc_base + SDMMC_CTLR); /* enable GPI pin to detect card */ writew(BLKL_INT_ENABLE | BLKL_GPI_CD, priv->sdmmc_base + SDMMC_BLKLEN); /* clear interrupt status */ writeb(0xFF, priv->sdmmc_base + SDMMC_STS0); writeb(0xFF, priv->sdmmc_base + SDMMC_STS1); /* setup interrupts */ writeb(INT0_CD_INT_EN | INT0_DI_INT_EN, priv->sdmmc_base + SDMMC_INTMASK0); writeb(INT1_DATA_TOUT_INT_EN | INT1_CMD_RES_TRAN_DONE_INT_EN | INT1_CMD_RES_TOUT_INT_EN, priv->sdmmc_base + SDMMC_INTMASK1); /* set the DMA timeout */ writew(8191, priv->sdmmc_base + SDMMC_DMATIMEOUT); /* auto clock freezing enable */ reg_tmp = readb(priv->sdmmc_base + SDMMC_STS2); writeb(reg_tmp | STS2_DIS_FORCECLK, priv->sdmmc_base + SDMMC_STS2); /* set a default clock speed of 400Khz */ clk_set_rate(priv->clk_sdmmc, 400000); } static int wmt_dma_init(struct mmc_host *mmc) { struct wmt_mci_priv *priv; priv = mmc_priv(mmc); writel(DMA_GCR_SOFT_RESET, priv->sdmmc_base + SDDMA_GCR); writel(DMA_GCR_DMA_EN, priv->sdmmc_base + SDDMA_GCR); if ((readl(priv->sdmmc_base + SDDMA_GCR) & DMA_GCR_DMA_EN) != 0) return 0; else return 1; } static void wmt_dma_init_descriptor(struct wmt_dma_descriptor *desc, u16 req_count, u32 buffer_addr, u32 branch_addr, int end) { desc->flags = 0x40000000 | req_count; if (end) desc->flags |= 0x80000000; desc->data_buffer_addr = buffer_addr; desc->branch_addr = branch_addr; } static void wmt_dma_config(struct mmc_host *mmc, u32 descaddr, u8 dir) { struct wmt_mci_priv *priv; u32 reg_tmp; priv = mmc_priv(mmc); /* Enable DMA Interrupts */ writel(DMA_IER_INT_EN, priv->sdmmc_base + SDDMA_IER); /* Write DMA Descriptor Pointer Register */ writel(descaddr, priv->sdmmc_base + SDDMA_DESPR); writel(0x00, priv->sdmmc_base + SDDMA_CCR); if (dir == PDMA_WRITE) { reg_tmp = readl(priv->sdmmc_base + SDDMA_CCR); writel(reg_tmp & DMA_CCR_IF_TO_PERIPHERAL, priv->sdmmc_base + SDDMA_CCR); } else { reg_tmp = readl(priv->sdmmc_base + SDDMA_CCR); writel(reg_tmp | DMA_CCR_PERIPHERAL_TO_IF, priv->sdmmc_base + SDDMA_CCR); } } static void wmt_dma_start(struct wmt_mci_priv *priv) { u32 reg_tmp; reg_tmp = readl(priv->sdmmc_base + SDDMA_CCR); writel(reg_tmp | DMA_CCR_RUN, priv->sdmmc_base + SDDMA_CCR); } static void wmt_mci_request(struct mmc_host *mmc, struct mmc_request *req) { struct wmt_mci_priv *priv; struct wmt_dma_descriptor *desc; u8 command; u8 cmdtype; u32 arg; u8 rsptype; u32 reg_tmp; struct scatterlist *sg; int i; int sg_cnt; int offset; u32 dma_address; int desc_cnt; priv = mmc_priv(mmc); priv->req = req; /* * Use the cmd variable to pass a pointer to the resp[] structure * This is required on multi-block requests to pass the pointer to the * stop command */ priv->cmd = req->cmd; command = req->cmd->opcode; arg = req->cmd->arg; rsptype = mmc_resp_type(req->cmd); cmdtype = 0; /* rsptype=7 only valid for SPI commands - should be =2 for SD */ if (rsptype == 7) rsptype = 2; /* rsptype=21 is R1B, convert for controller */ if (rsptype == 21) rsptype = 9; if (!req->data) { wmt_mci_send_command(mmc, command, cmdtype, arg, rsptype); wmt_mci_start_command(priv); /* completion is now handled in the regular_isr() */ } if (req->data) { priv->comp_cmd = &priv->cmdcomp; init_completion(priv->comp_cmd); wmt_dma_init(mmc); /* set controller data length */ reg_tmp = readw(priv->sdmmc_base + SDMMC_BLKLEN); writew((reg_tmp & 0xF800) | (req->data->blksz - 1), priv->sdmmc_base + SDMMC_BLKLEN); /* set controller block count */ writew(req->data->blocks, priv->sdmmc_base + SDMMC_BLKCNT); desc = (struct wmt_dma_descriptor *)priv->dma_desc_buffer; if (req->data->flags & MMC_DATA_WRITE) { sg_cnt = dma_map_sg(mmc_dev(mmc), req->data->sg, req->data->sg_len, DMA_TO_DEVICE); cmdtype = 1; if (req->data->blocks > 1) cmdtype = 3; } else { sg_cnt = dma_map_sg(mmc_dev(mmc), req->data->sg, req->data->sg_len, DMA_FROM_DEVICE); cmdtype = 2; if (req->data->blocks > 1) cmdtype = 4; } dma_address = priv->dma_desc_device_addr + 16; desc_cnt = 0; for_each_sg(req->data->sg, sg, sg_cnt, i) { offset = 0; while (offset < sg_dma_len(sg)) { wmt_dma_init_descriptor(desc, req->data->blksz, sg_dma_address(sg)+offset, dma_address, 0); desc++; desc_cnt++; offset += req->data->blksz; dma_address += 16; if (desc_cnt == req->data->blocks) break; } } desc--; desc->flags |= 0x80000000; if (req->data->flags & MMC_DATA_WRITE) wmt_dma_config(mmc, priv->dma_desc_device_addr, PDMA_WRITE); else wmt_dma_config(mmc, priv->dma_desc_device_addr, PDMA_READ); wmt_mci_send_command(mmc, command, cmdtype, arg, rsptype); priv->comp_dma = &priv->datacomp; init_completion(priv->comp_dma); wmt_dma_start(priv); wmt_mci_start_command(priv); } } static void wmt_mci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios) { struct wmt_mci_priv *priv; u32 busmode, extctrl; priv = mmc_priv(mmc); if (ios->power_mode == MMC_POWER_UP) { wmt_reset_hardware(mmc); wmt_set_sd_power(priv, WMT_SD_POWER_ON); } if (ios->power_mode == MMC_POWER_OFF) wmt_set_sd_power(priv, WMT_SD_POWER_OFF); if (ios->clock != 0) clk_set_rate(priv->clk_sdmmc, ios->clock); busmode = readb(priv->sdmmc_base + SDMMC_BUSMODE); extctrl = readb(priv->sdmmc_base + SDMMC_EXTCTRL); busmode &= ~(BM_EIGHTBIT_MODE | BM_FOURBIT_MODE); extctrl &= ~EXT_EIGHTBIT; switch (ios->bus_width) { case MMC_BUS_WIDTH_8: busmode |= BM_EIGHTBIT_MODE; extctrl |= EXT_EIGHTBIT; break; case MMC_BUS_WIDTH_4: busmode |= BM_FOURBIT_MODE; break; case MMC_BUS_WIDTH_1: break; } writeb(busmode, priv->sdmmc_base + SDMMC_BUSMODE); writeb(extctrl, priv->sdmmc_base + SDMMC_EXTCTRL); } static int wmt_mci_get_ro(struct mmc_host *mmc) { struct wmt_mci_priv *priv = mmc_priv(mmc); return !(readb(priv->sdmmc_base + SDMMC_STS0) & STS0_WRITE_PROTECT); } static int wmt_mci_get_cd(struct mmc_host *mmc) { struct wmt_mci_priv *priv = mmc_priv(mmc); u32 cd = (readb(priv->sdmmc_base + SDMMC_STS0) & STS0_CD_GPI) >> 3; return !(cd ^ priv->cd_inverted); } static const struct mmc_host_ops wmt_mci_ops = { .request = wmt_mci_request, .set_ios = wmt_mci_set_ios, .get_ro = wmt_mci_get_ro, .get_cd = wmt_mci_get_cd, }; /* Controller capabilities */ static struct wmt_mci_caps wm8505_caps = { .f_min = 390425, .f_max = 50000000, .ocr_avail = MMC_VDD_32_33 | MMC_VDD_33_34, .caps = MMC_CAP_4_BIT_DATA | MMC_CAP_MMC_HIGHSPEED | MMC_CAP_SD_HIGHSPEED, .max_seg_size = 65024, .max_segs = 128, .max_blk_size = 2048, }; static const struct of_device_id wmt_mci_dt_ids[] = { { .compatible = "wm,wm8505-sdhc", .data = &wm8505_caps }, { /* Sentinel */ }, }; static int wmt_mci_probe(struct platform_device *pdev) { struct mmc_host *mmc; struct wmt_mci_priv *priv; struct device_node *np = pdev->dev.of_node; const struct wmt_mci_caps *wmt_caps; int ret; int regular_irq, dma_irq; wmt_caps = of_device_get_match_data(&pdev->dev); if (!wmt_caps) { dev_err(&pdev->dev, "Controller capabilities data missing\n"); return -EFAULT; } if (!np) { dev_err(&pdev->dev, "Missing SDMMC description in devicetree\n"); return -EFAULT; } regular_irq = irq_of_parse_and_map(np, 0); dma_irq = irq_of_parse_and_map(np, 1); if (!regular_irq || !dma_irq) { dev_err(&pdev->dev, "Getting IRQs failed!\n"); ret = -ENXIO; goto fail1; } mmc = mmc_alloc_host(sizeof(struct wmt_mci_priv), &pdev->dev); if (!mmc) { dev_err(&pdev->dev, "Failed to allocate mmc_host\n"); ret = -ENOMEM; goto fail1; } mmc->ops = &wmt_mci_ops; mmc->f_min = wmt_caps->f_min; mmc->f_max = wmt_caps->f_max; mmc->ocr_avail = wmt_caps->ocr_avail; mmc->caps = wmt_caps->caps; mmc->max_seg_size = wmt_caps->max_seg_size; mmc->max_segs = wmt_caps->max_segs; mmc->max_blk_size = wmt_caps->max_blk_size; mmc->max_req_size = (16*512*mmc->max_segs); mmc->max_blk_count = mmc->max_req_size / 512; priv = mmc_priv(mmc); priv->mmc = mmc; priv->dev = &pdev->dev; priv->power_inverted = 0; priv->cd_inverted = 0; priv->power_inverted = of_property_read_bool(np, "sdon-inverted"); priv->cd_inverted = of_property_read_bool(np, "cd-inverted"); priv->sdmmc_base = of_iomap(np, 0); if (!priv->sdmmc_base) { dev_err(&pdev->dev, "Failed to map IO space\n"); ret = -ENOMEM; goto fail2; } priv->irq_regular = regular_irq; priv->irq_dma = dma_irq; ret = request_irq(regular_irq, wmt_mci_regular_isr, 0, "sdmmc", priv); if (ret) { dev_err(&pdev->dev, "Register regular IRQ fail\n"); goto fail3; } ret = request_irq(dma_irq, wmt_mci_dma_isr, 0, "sdmmc", priv); if (ret) { dev_err(&pdev->dev, "Register DMA IRQ fail\n"); goto fail4; } /* alloc some DMA buffers for descriptors/transfers */ priv->dma_desc_buffer = dma_alloc_coherent(&pdev->dev, mmc->max_blk_count * 16, &priv->dma_desc_device_addr, GFP_KERNEL); if (!priv->dma_desc_buffer) { dev_err(&pdev->dev, "DMA alloc fail\n"); ret = -EPERM; goto fail5; } platform_set_drvdata(pdev, mmc); priv->clk_sdmmc = of_clk_get(np, 0); if (IS_ERR(priv->clk_sdmmc)) { dev_err(&pdev->dev, "Error getting clock\n"); ret = PTR_ERR(priv->clk_sdmmc); goto fail5_and_a_half; } ret = clk_prepare_enable(priv->clk_sdmmc); if (ret) goto fail6; /* configure the controller to a known 'ready' state */ wmt_reset_hardware(mmc); ret = mmc_add_host(mmc); if (ret) goto fail7; dev_info(&pdev->dev, "WMT SDHC Controller initialized\n"); return 0; fail7: clk_disable_unprepare(priv->clk_sdmmc); fail6: clk_put(priv->clk_sdmmc); fail5_and_a_half: dma_free_coherent(&pdev->dev, mmc->max_blk_count * 16, priv->dma_desc_buffer, priv->dma_desc_device_addr); fail5: free_irq(dma_irq, priv); fail4: free_irq(regular_irq, priv); fail3: iounmap(priv->sdmmc_base); fail2: mmc_free_host(mmc); fail1: return ret; } static void wmt_mci_remove(struct platform_device *pdev) { struct mmc_host *mmc; struct wmt_mci_priv *priv; struct resource *res; u32 reg_tmp; mmc = platform_get_drvdata(pdev); priv = mmc_priv(mmc); /* reset SD controller */ reg_tmp = readb(priv->sdmmc_base + SDMMC_BUSMODE); writel(reg_tmp | BM_SOFT_RESET, priv->sdmmc_base + SDMMC_BUSMODE); reg_tmp = readw(priv->sdmmc_base + SDMMC_BLKLEN); writew(reg_tmp & ~(0xA000), priv->sdmmc_base + SDMMC_BLKLEN); writeb(0xFF, priv->sdmmc_base + SDMMC_STS0); writeb(0xFF, priv->sdmmc_base + SDMMC_STS1); /* release the dma buffers */ dma_free_coherent(&pdev->dev, priv->mmc->max_blk_count * 16, priv->dma_desc_buffer, priv->dma_desc_device_addr); mmc_remove_host(mmc); free_irq(priv->irq_regular, priv); free_irq(priv->irq_dma, priv); iounmap(priv->sdmmc_base); clk_disable_unprepare(priv->clk_sdmmc); clk_put(priv->clk_sdmmc); res = platform_get_resource(pdev, IORESOURCE_MEM, 0); release_mem_region(res->start, resource_size(res)); mmc_free_host(mmc); dev_info(&pdev->dev, "WMT MCI device removed\n"); } #ifdef CONFIG_PM static int wmt_mci_suspend(struct device *dev) { u32 reg_tmp; struct mmc_host *mmc = dev_get_drvdata(dev); struct wmt_mci_priv *priv; if (!mmc) return 0; priv = mmc_priv(mmc); reg_tmp = readb(priv->sdmmc_base + SDMMC_BUSMODE); writeb(reg_tmp | BM_SOFT_RESET, priv->sdmmc_base + SDMMC_BUSMODE); reg_tmp = readw(priv->sdmmc_base + SDMMC_BLKLEN); writew(reg_tmp & 0x5FFF, priv->sdmmc_base + SDMMC_BLKLEN); writeb(0xFF, priv->sdmmc_base + SDMMC_STS0); writeb(0xFF, priv->sdmmc_base + SDMMC_STS1); clk_disable(priv->clk_sdmmc); return 0; } static int wmt_mci_resume(struct device *dev) { u32 reg_tmp; struct mmc_host *mmc = dev_get_drvdata(dev); struct wmt_mci_priv *priv; if (mmc) { priv = mmc_priv(mmc); clk_enable(priv->clk_sdmmc); reg_tmp = readb(priv->sdmmc_base + SDMMC_BUSMODE); writeb(reg_tmp | BM_SOFT_RESET, priv->sdmmc_base + SDMMC_BUSMODE); reg_tmp = readw(priv->sdmmc_base + SDMMC_BLKLEN); writew(reg_tmp | (BLKL_GPI_CD | BLKL_INT_ENABLE), priv->sdmmc_base + SDMMC_BLKLEN); reg_tmp = readb(priv->sdmmc_base + SDMMC_INTMASK0); writeb(reg_tmp | INT0_DI_INT_EN, priv->sdmmc_base + SDMMC_INTMASK0); } return 0; } static const struct dev_pm_ops wmt_mci_pm = { .suspend = wmt_mci_suspend, .resume = wmt_mci_resume, }; #define wmt_mci_pm_ops (&wmt_mci_pm) #else /* !CONFIG_PM */ #define wmt_mci_pm_ops NULL #endif static struct platform_driver wmt_mci_driver = { .probe = wmt_mci_probe, .remove_new = wmt_mci_remove, .driver = { .name = DRIVER_NAME, .probe_type = PROBE_PREFER_ASYNCHRONOUS, .pm = wmt_mci_pm_ops, .of_match_table = wmt_mci_dt_ids, }, }; module_platform_driver(wmt_mci_driver); MODULE_DESCRIPTION("Wondermedia MMC/SD Driver"); MODULE_AUTHOR("Tony Prisk"); MODULE_LICENSE("GPL v2"); MODULE_DEVICE_TABLE(of, wmt_mci_dt_ids);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1