Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Christian Gromm | 4815 | 90.64% | 65 | 72.22% |
Andrey Shvetsov | 416 | 7.83% | 9 | 10.00% |
Colin Ian King | 30 | 0.56% | 1 | 1.11% |
Kees Cook | 14 | 0.26% | 1 | 1.11% |
Adrian Remonda | 6 | 0.11% | 1 | 1.11% |
Eric Salem | 4 | 0.08% | 1 | 1.11% |
Eva Rachel Retuya | 3 | 0.06% | 1 | 1.11% |
Sandhya Bankar | 3 | 0.06% | 1 | 1.11% |
Ravi Eluri | 3 | 0.06% | 1 | 1.11% |
Randy Dunlap | 3 | 0.06% | 1 | 1.11% |
Muhammad Falak R Wani | 3 | 0.06% | 1 | 1.11% |
Amitoj Kaur Chawla | 3 | 0.06% | 1 | 1.11% |
Johan Hovold | 2 | 0.04% | 1 | 1.11% |
Jing Yao | 2 | 0.04% | 1 | 1.11% |
Alex Briskin | 2 | 0.04% | 1 | 1.11% |
Arvind Yadav | 1 | 0.02% | 1 | 1.11% |
Ramiro Oliveira | 1 | 0.02% | 1 | 1.11% |
Greg Kroah-Hartman | 1 | 0.02% | 1 | 1.11% |
Total | 5312 | 90 |
// SPDX-License-Identifier: GPL-2.0 /* * usb.c - Hardware dependent module for USB * * Copyright (C) 2013-2015 Microchip Technology Germany II GmbH & Co. KG */ #include <linux/module.h> #include <linux/fs.h> #include <linux/usb.h> #include <linux/slab.h> #include <linux/init.h> #include <linux/cdev.h> #include <linux/device.h> #include <linux/list.h> #include <linux/completion.h> #include <linux/mutex.h> #include <linux/spinlock.h> #include <linux/interrupt.h> #include <linux/workqueue.h> #include <linux/sysfs.h> #include <linux/dma-mapping.h> #include <linux/etherdevice.h> #include <linux/uaccess.h> #include <linux/most.h> #define USB_MTU 512 #define NO_ISOCHRONOUS_URB 0 #define AV_PACKETS_PER_XACT 2 #define BUF_CHAIN_SIZE 0xFFFF #define MAX_NUM_ENDPOINTS 30 #define MAX_SUFFIX_LEN 10 #define MAX_STRING_LEN 80 #define MAX_BUF_SIZE 0xFFFF #define USB_VENDOR_ID_SMSC 0x0424 /* VID: SMSC */ #define USB_DEV_ID_BRDG 0xC001 /* PID: USB Bridge */ #define USB_DEV_ID_OS81118 0xCF18 /* PID: USB OS81118 */ #define USB_DEV_ID_OS81119 0xCF19 /* PID: USB OS81119 */ #define USB_DEV_ID_OS81210 0xCF30 /* PID: USB OS81210 */ /* DRCI Addresses */ #define DRCI_REG_NI_STATE 0x0100 #define DRCI_REG_PACKET_BW 0x0101 #define DRCI_REG_NODE_ADDR 0x0102 #define DRCI_REG_NODE_POS 0x0103 #define DRCI_REG_MEP_FILTER 0x0140 #define DRCI_REG_HASH_TBL0 0x0141 #define DRCI_REG_HASH_TBL1 0x0142 #define DRCI_REG_HASH_TBL2 0x0143 #define DRCI_REG_HASH_TBL3 0x0144 #define DRCI_REG_HW_ADDR_HI 0x0145 #define DRCI_REG_HW_ADDR_MI 0x0146 #define DRCI_REG_HW_ADDR_LO 0x0147 #define DRCI_REG_BASE 0x1100 #define DRCI_COMMAND 0x02 #define DRCI_READ_REQ 0xA0 #define DRCI_WRITE_REQ 0xA1 /** * struct most_dci_obj - Direct Communication Interface * @kobj:position in sysfs * @usb_device: pointer to the usb device * @reg_addr: register address for arbitrary DCI access */ struct most_dci_obj { struct device dev; struct usb_device *usb_device; u16 reg_addr; }; #define to_dci_obj(p) container_of(p, struct most_dci_obj, dev) struct most_dev; struct clear_hold_work { struct work_struct ws; struct most_dev *mdev; unsigned int channel; int pipe; }; #define to_clear_hold_work(w) container_of(w, struct clear_hold_work, ws) /** * struct most_dev - holds all usb interface specific stuff * @usb_device: pointer to usb device * @iface: hardware interface * @cap: channel capabilities * @conf: channel configuration * @dci: direct communication interface of hardware * @ep_address: endpoint address table * @description: device description * @suffix: suffix for channel name * @channel_lock: synchronize channel access * @padding_active: indicates channel uses padding * @is_channel_healthy: health status table of each channel * @busy_urbs: list of anchored items * @io_mutex: synchronize I/O with disconnect * @link_stat_timer: timer for link status reports * @poll_work_obj: work for polling link status */ struct most_dev { struct device dev; struct usb_device *usb_device; struct most_interface iface; struct most_channel_capability *cap; struct most_channel_config *conf; struct most_dci_obj *dci; u8 *ep_address; char description[MAX_STRING_LEN]; char suffix[MAX_NUM_ENDPOINTS][MAX_SUFFIX_LEN]; spinlock_t channel_lock[MAX_NUM_ENDPOINTS]; /* sync channel access */ bool padding_active[MAX_NUM_ENDPOINTS]; bool is_channel_healthy[MAX_NUM_ENDPOINTS]; struct clear_hold_work clear_work[MAX_NUM_ENDPOINTS]; struct usb_anchor *busy_urbs; struct mutex io_mutex; struct timer_list link_stat_timer; struct work_struct poll_work_obj; void (*on_netinfo)(struct most_interface *most_iface, unsigned char link_state, unsigned char *addrs); }; #define to_mdev(d) container_of(d, struct most_dev, iface) #define to_mdev_from_dev(d) container_of(d, struct most_dev, dev) #define to_mdev_from_work(w) container_of(w, struct most_dev, poll_work_obj) static void wq_clear_halt(struct work_struct *wq_obj); static void wq_netinfo(struct work_struct *wq_obj); /** * drci_rd_reg - read a DCI register * @dev: usb device * @reg: register address * @buf: buffer to store data * * This is reads data from INIC's direct register communication interface */ static inline int drci_rd_reg(struct usb_device *dev, u16 reg, u16 *buf) { int retval; __le16 *dma_buf; u8 req_type = USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE; dma_buf = kzalloc(sizeof(*dma_buf), GFP_KERNEL); if (!dma_buf) return -ENOMEM; retval = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), DRCI_READ_REQ, req_type, 0x0000, reg, dma_buf, sizeof(*dma_buf), USB_CTRL_GET_TIMEOUT); *buf = le16_to_cpu(*dma_buf); kfree(dma_buf); if (retval < 0) return retval; return 0; } /** * drci_wr_reg - write a DCI register * @dev: usb device * @reg: register address * @data: data to write * * This is writes data to INIC's direct register communication interface */ static inline int drci_wr_reg(struct usb_device *dev, u16 reg, u16 data) { return usb_control_msg(dev, usb_sndctrlpipe(dev, 0), DRCI_WRITE_REQ, USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE, data, reg, NULL, 0, USB_CTRL_SET_TIMEOUT); } static inline int start_sync_ep(struct usb_device *usb_dev, u16 ep) { return drci_wr_reg(usb_dev, DRCI_REG_BASE + DRCI_COMMAND + ep * 16, 1); } /** * get_stream_frame_size - calculate frame size of current configuration * @dev: device structure * @cfg: channel configuration */ static unsigned int get_stream_frame_size(struct device *dev, struct most_channel_config *cfg) { unsigned int frame_size; unsigned int sub_size = cfg->subbuffer_size; if (!sub_size) { dev_warn(dev, "Misconfig: Subbuffer size zero.\n"); return 0; } switch (cfg->data_type) { case MOST_CH_ISOC: frame_size = AV_PACKETS_PER_XACT * sub_size; break; case MOST_CH_SYNC: if (cfg->packets_per_xact == 0) { dev_warn(dev, "Misconfig: Packets per XACT zero\n"); frame_size = 0; } else if (cfg->packets_per_xact == 0xFF) { frame_size = (USB_MTU / sub_size) * sub_size; } else { frame_size = cfg->packets_per_xact * sub_size; } break; default: dev_warn(dev, "Query frame size of non-streaming channel\n"); frame_size = 0; break; } return frame_size; } /** * hdm_poison_channel - mark buffers of this channel as invalid * @iface: pointer to the interface * @channel: channel ID * * This unlinks all URBs submitted to the HCD, * calls the associated completion function of the core and removes * them from the list. * * Returns 0 on success or error code otherwise. */ static int hdm_poison_channel(struct most_interface *iface, int channel) { struct most_dev *mdev = to_mdev(iface); unsigned long flags; spinlock_t *lock; /* temp. lock */ if (channel < 0 || channel >= iface->num_channels) { dev_warn(&mdev->usb_device->dev, "Channel ID out of range.\n"); return -ECHRNG; } lock = mdev->channel_lock + channel; spin_lock_irqsave(lock, flags); mdev->is_channel_healthy[channel] = false; spin_unlock_irqrestore(lock, flags); cancel_work_sync(&mdev->clear_work[channel].ws); mutex_lock(&mdev->io_mutex); usb_kill_anchored_urbs(&mdev->busy_urbs[channel]); if (mdev->padding_active[channel]) mdev->padding_active[channel] = false; if (mdev->conf[channel].data_type == MOST_CH_ASYNC) { del_timer_sync(&mdev->link_stat_timer); cancel_work_sync(&mdev->poll_work_obj); } mutex_unlock(&mdev->io_mutex); return 0; } /** * hdm_add_padding - add padding bytes * @mdev: most device * @channel: channel ID * @mbo: buffer object * * This inserts the INIC hardware specific padding bytes into a streaming * channel's buffer */ static int hdm_add_padding(struct most_dev *mdev, int channel, struct mbo *mbo) { struct most_channel_config *conf = &mdev->conf[channel]; unsigned int frame_size = get_stream_frame_size(&mdev->dev, conf); unsigned int j, num_frames; if (!frame_size) return -EINVAL; num_frames = mbo->buffer_length / frame_size; if (num_frames < 1) { dev_err(&mdev->usb_device->dev, "Missed minimal transfer unit.\n"); return -EINVAL; } for (j = num_frames - 1; j > 0; j--) memmove(mbo->virt_address + j * USB_MTU, mbo->virt_address + j * frame_size, frame_size); mbo->buffer_length = num_frames * USB_MTU; return 0; } /** * hdm_remove_padding - remove padding bytes * @mdev: most device * @channel: channel ID * @mbo: buffer object * * This takes the INIC hardware specific padding bytes off a streaming * channel's buffer. */ static int hdm_remove_padding(struct most_dev *mdev, int channel, struct mbo *mbo) { struct most_channel_config *const conf = &mdev->conf[channel]; unsigned int frame_size = get_stream_frame_size(&mdev->dev, conf); unsigned int j, num_frames; if (!frame_size) return -EINVAL; num_frames = mbo->processed_length / USB_MTU; for (j = 1; j < num_frames; j++) memmove(mbo->virt_address + frame_size * j, mbo->virt_address + USB_MTU * j, frame_size); mbo->processed_length = frame_size * num_frames; return 0; } /** * hdm_write_completion - completion function for submitted Tx URBs * @urb: the URB that has been completed * * This checks the status of the completed URB. In case the URB has been * unlinked before, it is immediately freed. On any other error the MBO * transfer flag is set. On success it frees allocated resources and calls * the completion function. * * Context: interrupt! */ static void hdm_write_completion(struct urb *urb) { struct mbo *mbo = urb->context; struct most_dev *mdev = to_mdev(mbo->ifp); unsigned int channel = mbo->hdm_channel_id; spinlock_t *lock = mdev->channel_lock + channel; unsigned long flags; spin_lock_irqsave(lock, flags); mbo->processed_length = 0; mbo->status = MBO_E_INVAL; if (likely(mdev->is_channel_healthy[channel])) { switch (urb->status) { case 0: case -ESHUTDOWN: mbo->processed_length = urb->actual_length; mbo->status = MBO_SUCCESS; break; case -EPIPE: dev_warn(&mdev->usb_device->dev, "Broken pipe on ep%02x\n", mdev->ep_address[channel]); mdev->is_channel_healthy[channel] = false; mdev->clear_work[channel].pipe = urb->pipe; schedule_work(&mdev->clear_work[channel].ws); break; case -ENODEV: case -EPROTO: mbo->status = MBO_E_CLOSE; break; } } spin_unlock_irqrestore(lock, flags); if (likely(mbo->complete)) mbo->complete(mbo); usb_free_urb(urb); } /** * hdm_read_completion - completion function for submitted Rx URBs * @urb: the URB that has been completed * * This checks the status of the completed URB. In case the URB has been * unlinked before it is immediately freed. On any other error the MBO transfer * flag is set. On success it frees allocated resources, removes * padding bytes -if necessary- and calls the completion function. * * Context: interrupt! */ static void hdm_read_completion(struct urb *urb) { struct mbo *mbo = urb->context; struct most_dev *mdev = to_mdev(mbo->ifp); unsigned int channel = mbo->hdm_channel_id; struct device *dev = &mdev->usb_device->dev; spinlock_t *lock = mdev->channel_lock + channel; unsigned long flags; spin_lock_irqsave(lock, flags); mbo->processed_length = 0; mbo->status = MBO_E_INVAL; if (likely(mdev->is_channel_healthy[channel])) { switch (urb->status) { case 0: case -ESHUTDOWN: mbo->processed_length = urb->actual_length; mbo->status = MBO_SUCCESS; if (mdev->padding_active[channel] && hdm_remove_padding(mdev, channel, mbo)) { mbo->processed_length = 0; mbo->status = MBO_E_INVAL; } break; case -EPIPE: dev_warn(dev, "Broken pipe on ep%02x\n", mdev->ep_address[channel]); mdev->is_channel_healthy[channel] = false; mdev->clear_work[channel].pipe = urb->pipe; schedule_work(&mdev->clear_work[channel].ws); break; case -ENODEV: case -EPROTO: mbo->status = MBO_E_CLOSE; break; case -EOVERFLOW: dev_warn(dev, "Babble on ep%02x\n", mdev->ep_address[channel]); break; } } spin_unlock_irqrestore(lock, flags); if (likely(mbo->complete)) mbo->complete(mbo); usb_free_urb(urb); } /** * hdm_enqueue - receive a buffer to be used for data transfer * @iface: interface to enqueue to * @channel: ID of the channel * @mbo: pointer to the buffer object * * This allocates a new URB and fills it according to the channel * that is being used for transmission of data. Before the URB is * submitted it is stored in the private anchor list. * * Returns 0 on success. On any error the URB is freed and a error code * is returned. * * Context: Could in _some_ cases be interrupt! */ static int hdm_enqueue(struct most_interface *iface, int channel, struct mbo *mbo) { struct most_dev *mdev = to_mdev(iface); struct most_channel_config *conf; int retval = 0; struct urb *urb; unsigned long length; void *virt_address; if (!mbo) return -EINVAL; if (iface->num_channels <= channel || channel < 0) return -ECHRNG; urb = usb_alloc_urb(NO_ISOCHRONOUS_URB, GFP_KERNEL); if (!urb) return -ENOMEM; conf = &mdev->conf[channel]; mutex_lock(&mdev->io_mutex); if (!mdev->usb_device) { retval = -ENODEV; goto err_free_urb; } if ((conf->direction & MOST_CH_TX) && mdev->padding_active[channel] && hdm_add_padding(mdev, channel, mbo)) { retval = -EINVAL; goto err_free_urb; } urb->transfer_dma = mbo->bus_address; virt_address = mbo->virt_address; length = mbo->buffer_length; if (conf->direction & MOST_CH_TX) { usb_fill_bulk_urb(urb, mdev->usb_device, usb_sndbulkpipe(mdev->usb_device, mdev->ep_address[channel]), virt_address, length, hdm_write_completion, mbo); if (conf->data_type != MOST_CH_ISOC && conf->data_type != MOST_CH_SYNC) urb->transfer_flags |= URB_ZERO_PACKET; } else { usb_fill_bulk_urb(urb, mdev->usb_device, usb_rcvbulkpipe(mdev->usb_device, mdev->ep_address[channel]), virt_address, length + conf->extra_len, hdm_read_completion, mbo); } urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; usb_anchor_urb(urb, &mdev->busy_urbs[channel]); retval = usb_submit_urb(urb, GFP_KERNEL); if (retval) { dev_err(&mdev->usb_device->dev, "URB submit failed with error %d.\n", retval); goto err_unanchor_urb; } mutex_unlock(&mdev->io_mutex); return 0; err_unanchor_urb: usb_unanchor_urb(urb); err_free_urb: usb_free_urb(urb); mutex_unlock(&mdev->io_mutex); return retval; } static void *hdm_dma_alloc(struct mbo *mbo, u32 size) { struct most_dev *mdev = to_mdev(mbo->ifp); return usb_alloc_coherent(mdev->usb_device, size, GFP_KERNEL, &mbo->bus_address); } static void hdm_dma_free(struct mbo *mbo, u32 size) { struct most_dev *mdev = to_mdev(mbo->ifp); usb_free_coherent(mdev->usb_device, size, mbo->virt_address, mbo->bus_address); } /** * hdm_configure_channel - receive channel configuration from core * @iface: interface * @channel: channel ID * @conf: structure that holds the configuration information * * The attached network interface controller (NIC) supports a padding mode * to avoid short packets on USB, hence increasing the performance due to a * lower interrupt load. This mode is default for synchronous data and can * be switched on for isochronous data. In case padding is active the * driver needs to know the frame size of the payload in order to calculate * the number of bytes it needs to pad when transmitting or to cut off when * receiving data. * */ static int hdm_configure_channel(struct most_interface *iface, int channel, struct most_channel_config *conf) { unsigned int num_frames; unsigned int frame_size; struct most_dev *mdev = to_mdev(iface); struct device *dev = &mdev->usb_device->dev; if (!conf) { dev_err(dev, "Bad config pointer.\n"); return -EINVAL; } if (channel < 0 || channel >= iface->num_channels) { dev_err(dev, "Channel ID out of range.\n"); return -EINVAL; } mdev->is_channel_healthy[channel] = true; mdev->clear_work[channel].channel = channel; mdev->clear_work[channel].mdev = mdev; INIT_WORK(&mdev->clear_work[channel].ws, wq_clear_halt); if (!conf->num_buffers || !conf->buffer_size) { dev_err(dev, "Misconfig: buffer size or #buffers zero.\n"); return -EINVAL; } if (conf->data_type != MOST_CH_SYNC && !(conf->data_type == MOST_CH_ISOC && conf->packets_per_xact != 0xFF)) { mdev->padding_active[channel] = false; /* * Since the NIC's padding mode is not going to be * used, we can skip the frame size calculations and * move directly on to exit. */ goto exit; } mdev->padding_active[channel] = true; frame_size = get_stream_frame_size(&mdev->dev, conf); if (frame_size == 0 || frame_size > USB_MTU) { dev_warn(dev, "Misconfig: frame size wrong\n"); return -EINVAL; } num_frames = conf->buffer_size / frame_size; if (conf->buffer_size % frame_size) { u16 old_size = conf->buffer_size; conf->buffer_size = num_frames * frame_size; dev_warn(dev, "%s: fixed buffer size (%d -> %d)\n", mdev->suffix[channel], old_size, conf->buffer_size); } /* calculate extra length to comply w/ HW padding */ conf->extra_len = num_frames * (USB_MTU - frame_size); exit: mdev->conf[channel] = *conf; if (conf->data_type == MOST_CH_ASYNC) { u16 ep = mdev->ep_address[channel]; if (start_sync_ep(mdev->usb_device, ep) < 0) dev_warn(dev, "sync for ep%02x failed", ep); } return 0; } /** * hdm_request_netinfo - request network information * @iface: pointer to interface * @channel: channel ID * * This is used as trigger to set up the link status timer that * polls for the NI state of the INIC every 2 seconds. * */ static void hdm_request_netinfo(struct most_interface *iface, int channel, void (*on_netinfo)(struct most_interface *, unsigned char, unsigned char *)) { struct most_dev *mdev = to_mdev(iface); mdev->on_netinfo = on_netinfo; if (!on_netinfo) return; mdev->link_stat_timer.expires = jiffies + HZ; mod_timer(&mdev->link_stat_timer, mdev->link_stat_timer.expires); } /** * link_stat_timer_handler - schedule work obtaining mac address and link status * @t: pointer to timer_list which holds a pointer to the USB device instance * * The handler runs in interrupt context. That's why we need to defer the * tasks to a work queue. */ static void link_stat_timer_handler(struct timer_list *t) { struct most_dev *mdev = from_timer(mdev, t, link_stat_timer); schedule_work(&mdev->poll_work_obj); mdev->link_stat_timer.expires = jiffies + (2 * HZ); add_timer(&mdev->link_stat_timer); } /** * wq_netinfo - work queue function to deliver latest networking information * @wq_obj: object that holds data for our deferred work to do * * This retrieves the network interface status of the USB INIC */ static void wq_netinfo(struct work_struct *wq_obj) { struct most_dev *mdev = to_mdev_from_work(wq_obj); struct usb_device *usb_device = mdev->usb_device; struct device *dev = &usb_device->dev; u16 hi, mi, lo, link; u8 hw_addr[6]; if (drci_rd_reg(usb_device, DRCI_REG_HW_ADDR_HI, &hi)) { dev_err(dev, "Vendor request 'hw_addr_hi' failed\n"); return; } if (drci_rd_reg(usb_device, DRCI_REG_HW_ADDR_MI, &mi)) { dev_err(dev, "Vendor request 'hw_addr_mid' failed\n"); return; } if (drci_rd_reg(usb_device, DRCI_REG_HW_ADDR_LO, &lo)) { dev_err(dev, "Vendor request 'hw_addr_low' failed\n"); return; } if (drci_rd_reg(usb_device, DRCI_REG_NI_STATE, &link)) { dev_err(dev, "Vendor request 'link status' failed\n"); return; } hw_addr[0] = hi >> 8; hw_addr[1] = hi; hw_addr[2] = mi >> 8; hw_addr[3] = mi; hw_addr[4] = lo >> 8; hw_addr[5] = lo; if (mdev->on_netinfo) mdev->on_netinfo(&mdev->iface, link, hw_addr); } /** * wq_clear_halt - work queue function * @wq_obj: work_struct object to execute * * This sends a clear_halt to the given USB pipe. */ static void wq_clear_halt(struct work_struct *wq_obj) { struct clear_hold_work *clear_work = to_clear_hold_work(wq_obj); struct most_dev *mdev = clear_work->mdev; unsigned int channel = clear_work->channel; int pipe = clear_work->pipe; int snd_pipe; int peer; mutex_lock(&mdev->io_mutex); most_stop_enqueue(&mdev->iface, channel); usb_kill_anchored_urbs(&mdev->busy_urbs[channel]); if (usb_clear_halt(mdev->usb_device, pipe)) dev_warn(&mdev->usb_device->dev, "Failed to reset endpoint.\n"); /* If the functional Stall condition has been set on an * asynchronous rx channel, we need to clear the tx channel * too, since the hardware runs its clean-up sequence on both * channels, as they are physically one on the network. * * The USB interface that exposes the asynchronous channels * contains always two endpoints, and two only. */ if (mdev->conf[channel].data_type == MOST_CH_ASYNC && mdev->conf[channel].direction == MOST_CH_RX) { if (channel == 0) peer = 1; else peer = 0; snd_pipe = usb_sndbulkpipe(mdev->usb_device, mdev->ep_address[peer]); usb_clear_halt(mdev->usb_device, snd_pipe); } mdev->is_channel_healthy[channel] = true; most_resume_enqueue(&mdev->iface, channel); mutex_unlock(&mdev->io_mutex); } /* * hdm_usb_fops - file operation table for USB driver */ static const struct file_operations hdm_usb_fops = { .owner = THIS_MODULE, }; /* * usb_device_id - ID table for HCD device probing */ static const struct usb_device_id usbid[] = { { USB_DEVICE(USB_VENDOR_ID_SMSC, USB_DEV_ID_BRDG), }, { USB_DEVICE(USB_VENDOR_ID_SMSC, USB_DEV_ID_OS81118), }, { USB_DEVICE(USB_VENDOR_ID_SMSC, USB_DEV_ID_OS81119), }, { USB_DEVICE(USB_VENDOR_ID_SMSC, USB_DEV_ID_OS81210), }, { } /* Terminating entry */ }; struct regs { const char *name; u16 reg; }; static const struct regs ro_regs[] = { { "ni_state", DRCI_REG_NI_STATE }, { "packet_bandwidth", DRCI_REG_PACKET_BW }, { "node_address", DRCI_REG_NODE_ADDR }, { "node_position", DRCI_REG_NODE_POS }, }; static const struct regs rw_regs[] = { { "mep_filter", DRCI_REG_MEP_FILTER }, { "mep_hash0", DRCI_REG_HASH_TBL0 }, { "mep_hash1", DRCI_REG_HASH_TBL1 }, { "mep_hash2", DRCI_REG_HASH_TBL2 }, { "mep_hash3", DRCI_REG_HASH_TBL3 }, { "mep_eui48_hi", DRCI_REG_HW_ADDR_HI }, { "mep_eui48_mi", DRCI_REG_HW_ADDR_MI }, { "mep_eui48_lo", DRCI_REG_HW_ADDR_LO }, }; static int get_stat_reg_addr(const struct regs *regs, int size, const char *name, u16 *reg_addr) { int i; for (i = 0; i < size; i++) { if (sysfs_streq(name, regs[i].name)) { *reg_addr = regs[i].reg; return 0; } } return -EINVAL; } #define get_static_reg_addr(regs, name, reg_addr) \ get_stat_reg_addr(regs, ARRAY_SIZE(regs), name, reg_addr) static ssize_t value_show(struct device *dev, struct device_attribute *attr, char *buf) { const char *name = attr->attr.name; struct most_dci_obj *dci_obj = to_dci_obj(dev); u16 val; u16 reg_addr; int err; if (sysfs_streq(name, "arb_address")) return sysfs_emit(buf, "%04x\n", dci_obj->reg_addr); if (sysfs_streq(name, "arb_value")) reg_addr = dci_obj->reg_addr; else if (get_static_reg_addr(ro_regs, name, ®_addr) && get_static_reg_addr(rw_regs, name, ®_addr)) return -EINVAL; err = drci_rd_reg(dci_obj->usb_device, reg_addr, &val); if (err < 0) return err; return sysfs_emit(buf, "%04x\n", val); } static ssize_t value_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { u16 val; u16 reg_addr; const char *name = attr->attr.name; struct most_dci_obj *dci_obj = to_dci_obj(dev); struct usb_device *usb_dev = dci_obj->usb_device; int err; err = kstrtou16(buf, 16, &val); if (err) return err; if (sysfs_streq(name, "arb_address")) { dci_obj->reg_addr = val; return count; } if (sysfs_streq(name, "arb_value")) err = drci_wr_reg(usb_dev, dci_obj->reg_addr, val); else if (sysfs_streq(name, "sync_ep")) err = start_sync_ep(usb_dev, val); else if (!get_static_reg_addr(rw_regs, name, ®_addr)) err = drci_wr_reg(usb_dev, reg_addr, val); else return -EINVAL; if (err < 0) return err; return count; } static DEVICE_ATTR(ni_state, 0444, value_show, NULL); static DEVICE_ATTR(packet_bandwidth, 0444, value_show, NULL); static DEVICE_ATTR(node_address, 0444, value_show, NULL); static DEVICE_ATTR(node_position, 0444, value_show, NULL); static DEVICE_ATTR(sync_ep, 0200, NULL, value_store); static DEVICE_ATTR(mep_filter, 0644, value_show, value_store); static DEVICE_ATTR(mep_hash0, 0644, value_show, value_store); static DEVICE_ATTR(mep_hash1, 0644, value_show, value_store); static DEVICE_ATTR(mep_hash2, 0644, value_show, value_store); static DEVICE_ATTR(mep_hash3, 0644, value_show, value_store); static DEVICE_ATTR(mep_eui48_hi, 0644, value_show, value_store); static DEVICE_ATTR(mep_eui48_mi, 0644, value_show, value_store); static DEVICE_ATTR(mep_eui48_lo, 0644, value_show, value_store); static DEVICE_ATTR(arb_address, 0644, value_show, value_store); static DEVICE_ATTR(arb_value, 0644, value_show, value_store); static struct attribute *dci_attrs[] = { &dev_attr_ni_state.attr, &dev_attr_packet_bandwidth.attr, &dev_attr_node_address.attr, &dev_attr_node_position.attr, &dev_attr_sync_ep.attr, &dev_attr_mep_filter.attr, &dev_attr_mep_hash0.attr, &dev_attr_mep_hash1.attr, &dev_attr_mep_hash2.attr, &dev_attr_mep_hash3.attr, &dev_attr_mep_eui48_hi.attr, &dev_attr_mep_eui48_mi.attr, &dev_attr_mep_eui48_lo.attr, &dev_attr_arb_address.attr, &dev_attr_arb_value.attr, NULL, }; ATTRIBUTE_GROUPS(dci); static void release_dci(struct device *dev) { struct most_dci_obj *dci = to_dci_obj(dev); put_device(dev->parent); kfree(dci); } static void release_mdev(struct device *dev) { struct most_dev *mdev = to_mdev_from_dev(dev); kfree(mdev); } /** * hdm_probe - probe function of USB device driver * @interface: Interface of the attached USB device * @id: Pointer to the USB ID table. * * This allocates and initializes the device instance, adds the new * entry to the internal list, scans the USB descriptors and registers * the interface with the core. * Additionally, the DCI objects are created and the hardware is sync'd. * * Return 0 on success. In case of an error a negative number is returned. */ static int hdm_probe(struct usb_interface *interface, const struct usb_device_id *id) { struct usb_host_interface *usb_iface_desc = interface->cur_altsetting; struct usb_device *usb_dev = interface_to_usbdev(interface); struct device *dev = &usb_dev->dev; struct most_dev *mdev; unsigned int i; unsigned int num_endpoints; struct most_channel_capability *tmp_cap; struct usb_endpoint_descriptor *ep_desc; int ret = -ENOMEM; mdev = kzalloc(sizeof(*mdev), GFP_KERNEL); if (!mdev) return -ENOMEM; usb_set_intfdata(interface, mdev); num_endpoints = usb_iface_desc->desc.bNumEndpoints; if (num_endpoints > MAX_NUM_ENDPOINTS) { kfree(mdev); return -EINVAL; } mutex_init(&mdev->io_mutex); INIT_WORK(&mdev->poll_work_obj, wq_netinfo); timer_setup(&mdev->link_stat_timer, link_stat_timer_handler, 0); mdev->usb_device = usb_dev; mdev->link_stat_timer.expires = jiffies + (2 * HZ); mdev->iface.mod = hdm_usb_fops.owner; mdev->iface.dev = &mdev->dev; mdev->iface.driver_dev = &interface->dev; mdev->iface.interface = ITYPE_USB; mdev->iface.configure = hdm_configure_channel; mdev->iface.request_netinfo = hdm_request_netinfo; mdev->iface.enqueue = hdm_enqueue; mdev->iface.poison_channel = hdm_poison_channel; mdev->iface.dma_alloc = hdm_dma_alloc; mdev->iface.dma_free = hdm_dma_free; mdev->iface.description = mdev->description; mdev->iface.num_channels = num_endpoints; snprintf(mdev->description, sizeof(mdev->description), "%d-%s:%d.%d", usb_dev->bus->busnum, usb_dev->devpath, usb_dev->config->desc.bConfigurationValue, usb_iface_desc->desc.bInterfaceNumber); mdev->dev.init_name = mdev->description; mdev->dev.parent = &interface->dev; mdev->dev.release = release_mdev; mdev->conf = kcalloc(num_endpoints, sizeof(*mdev->conf), GFP_KERNEL); if (!mdev->conf) goto err_free_mdev; mdev->cap = kcalloc(num_endpoints, sizeof(*mdev->cap), GFP_KERNEL); if (!mdev->cap) goto err_free_conf; mdev->iface.channel_vector = mdev->cap; mdev->ep_address = kcalloc(num_endpoints, sizeof(*mdev->ep_address), GFP_KERNEL); if (!mdev->ep_address) goto err_free_cap; mdev->busy_urbs = kcalloc(num_endpoints, sizeof(*mdev->busy_urbs), GFP_KERNEL); if (!mdev->busy_urbs) goto err_free_ep_address; tmp_cap = mdev->cap; for (i = 0; i < num_endpoints; i++) { ep_desc = &usb_iface_desc->endpoint[i].desc; mdev->ep_address[i] = ep_desc->bEndpointAddress; mdev->padding_active[i] = false; mdev->is_channel_healthy[i] = true; snprintf(&mdev->suffix[i][0], MAX_SUFFIX_LEN, "ep%02x", mdev->ep_address[i]); tmp_cap->name_suffix = &mdev->suffix[i][0]; tmp_cap->buffer_size_packet = MAX_BUF_SIZE; tmp_cap->buffer_size_streaming = MAX_BUF_SIZE; tmp_cap->num_buffers_packet = BUF_CHAIN_SIZE; tmp_cap->num_buffers_streaming = BUF_CHAIN_SIZE; tmp_cap->data_type = MOST_CH_CONTROL | MOST_CH_ASYNC | MOST_CH_ISOC | MOST_CH_SYNC; if (usb_endpoint_dir_in(ep_desc)) tmp_cap->direction = MOST_CH_RX; else tmp_cap->direction = MOST_CH_TX; tmp_cap++; init_usb_anchor(&mdev->busy_urbs[i]); spin_lock_init(&mdev->channel_lock[i]); } dev_dbg(dev, "claimed gadget: Vendor=%4.4x ProdID=%4.4x Bus=%02x Device=%02x\n", le16_to_cpu(usb_dev->descriptor.idVendor), le16_to_cpu(usb_dev->descriptor.idProduct), usb_dev->bus->busnum, usb_dev->devnum); dev_dbg(dev, "device path: /sys/bus/usb/devices/%d-%s:%d.%d\n", usb_dev->bus->busnum, usb_dev->devpath, usb_dev->config->desc.bConfigurationValue, usb_iface_desc->desc.bInterfaceNumber); ret = most_register_interface(&mdev->iface); if (ret) goto err_free_busy_urbs; mutex_lock(&mdev->io_mutex); if (le16_to_cpu(usb_dev->descriptor.idProduct) == USB_DEV_ID_OS81118 || le16_to_cpu(usb_dev->descriptor.idProduct) == USB_DEV_ID_OS81119 || le16_to_cpu(usb_dev->descriptor.idProduct) == USB_DEV_ID_OS81210) { mdev->dci = kzalloc(sizeof(*mdev->dci), GFP_KERNEL); if (!mdev->dci) { mutex_unlock(&mdev->io_mutex); most_deregister_interface(&mdev->iface); ret = -ENOMEM; goto err_free_busy_urbs; } mdev->dci->dev.init_name = "dci"; mdev->dci->dev.parent = get_device(mdev->iface.dev); mdev->dci->dev.groups = dci_groups; mdev->dci->dev.release = release_dci; if (device_register(&mdev->dci->dev)) { mutex_unlock(&mdev->io_mutex); most_deregister_interface(&mdev->iface); ret = -ENOMEM; goto err_free_dci; } mdev->dci->usb_device = mdev->usb_device; } mutex_unlock(&mdev->io_mutex); return 0; err_free_dci: put_device(&mdev->dci->dev); err_free_busy_urbs: kfree(mdev->busy_urbs); err_free_ep_address: kfree(mdev->ep_address); err_free_cap: kfree(mdev->cap); err_free_conf: kfree(mdev->conf); err_free_mdev: put_device(&mdev->dev); return ret; } /** * hdm_disconnect - disconnect function of USB device driver * @interface: Interface of the attached USB device * * This deregisters the interface with the core, removes the kernel timer * and frees resources. * * Context: hub kernel thread */ static void hdm_disconnect(struct usb_interface *interface) { struct most_dev *mdev = usb_get_intfdata(interface); mutex_lock(&mdev->io_mutex); usb_set_intfdata(interface, NULL); mdev->usb_device = NULL; mutex_unlock(&mdev->io_mutex); del_timer_sync(&mdev->link_stat_timer); cancel_work_sync(&mdev->poll_work_obj); if (mdev->dci) device_unregister(&mdev->dci->dev); most_deregister_interface(&mdev->iface); kfree(mdev->busy_urbs); kfree(mdev->cap); kfree(mdev->conf); kfree(mdev->ep_address); put_device(&mdev->dci->dev); put_device(&mdev->dev); } static int hdm_suspend(struct usb_interface *interface, pm_message_t message) { struct most_dev *mdev = usb_get_intfdata(interface); int i; mutex_lock(&mdev->io_mutex); for (i = 0; i < mdev->iface.num_channels; i++) { most_stop_enqueue(&mdev->iface, i); usb_kill_anchored_urbs(&mdev->busy_urbs[i]); } mutex_unlock(&mdev->io_mutex); return 0; } static int hdm_resume(struct usb_interface *interface) { struct most_dev *mdev = usb_get_intfdata(interface); int i; mutex_lock(&mdev->io_mutex); for (i = 0; i < mdev->iface.num_channels; i++) most_resume_enqueue(&mdev->iface, i); mutex_unlock(&mdev->io_mutex); return 0; } static struct usb_driver hdm_usb = { .name = "hdm_usb", .id_table = usbid, .probe = hdm_probe, .disconnect = hdm_disconnect, .resume = hdm_resume, .suspend = hdm_suspend, }; module_usb_driver(hdm_usb); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Christian Gromm <christian.gromm@microchip.com>"); MODULE_DESCRIPTION("HDM_4_USB");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1