Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Masahiro Yamada | 5507 | 83.09% | 51 | 54.84% |
Jason Roberts | 531 | 8.01% | 1 | 1.08% |
Miquel Raynal | 306 | 4.62% | 8 | 8.60% |
Boris Brezillon | 150 | 2.26% | 13 | 13.98% |
Chuanxiao Dong | 42 | 0.63% | 8 | 8.60% |
Jamie Iles | 23 | 0.35% | 4 | 4.30% |
Dinh Nguyen | 18 | 0.27% | 1 | 1.08% |
Arvind Yadav | 14 | 0.21% | 1 | 1.08% |
Jesse Chan | 12 | 0.18% | 1 | 1.08% |
Graham Moore | 8 | 0.12% | 1 | 1.08% |
Marek Vašut | 7 | 0.11% | 1 | 1.08% |
Huang Shijie | 5 | 0.08% | 1 | 1.08% |
Mike Dunn | 3 | 0.05% | 1 | 1.08% |
Josh Wu | 2 | 0.03% | 1 | 1.08% |
Total | 6628 | 93 |
// SPDX-License-Identifier: GPL-2.0 /* * NAND Flash Controller Device Driver * Copyright © 2009-2010, Intel Corporation and its suppliers. * * Copyright (c) 2017-2019 Socionext Inc. * Reworked by Masahiro Yamada <yamada.masahiro@socionext.com> */ #include <linux/bitfield.h> #include <linux/completion.h> #include <linux/dma-mapping.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/module.h> #include <linux/mtd/mtd.h> #include <linux/mtd/rawnand.h> #include <linux/slab.h> #include <linux/spinlock.h> #include "denali.h" #define DENALI_NAND_NAME "denali-nand" /* for Indexed Addressing */ #define DENALI_INDEXED_CTRL 0x00 #define DENALI_INDEXED_DATA 0x10 #define DENALI_MAP00 (0 << 26) /* direct access to buffer */ #define DENALI_MAP01 (1 << 26) /* read/write pages in PIO */ #define DENALI_MAP10 (2 << 26) /* high-level control plane */ #define DENALI_MAP11 (3 << 26) /* direct controller access */ /* MAP11 access cycle type */ #define DENALI_MAP11_CMD ((DENALI_MAP11) | 0) /* command cycle */ #define DENALI_MAP11_ADDR ((DENALI_MAP11) | 1) /* address cycle */ #define DENALI_MAP11_DATA ((DENALI_MAP11) | 2) /* data cycle */ #define DENALI_BANK(denali) ((denali)->active_bank << 24) #define DENALI_INVALID_BANK -1 static struct denali_chip *to_denali_chip(struct nand_chip *chip) { return container_of(chip, struct denali_chip, chip); } static struct denali_controller *to_denali_controller(struct nand_chip *chip) { return container_of(chip->controller, struct denali_controller, controller); } /* * Direct Addressing - the slave address forms the control information (command * type, bank, block, and page address). The slave data is the actual data to * be transferred. This mode requires 28 bits of address region allocated. */ static u32 denali_direct_read(struct denali_controller *denali, u32 addr) { return ioread32(denali->host + addr); } static void denali_direct_write(struct denali_controller *denali, u32 addr, u32 data) { iowrite32(data, denali->host + addr); } /* * Indexed Addressing - address translation module intervenes in passing the * control information. This mode reduces the required address range. The * control information and transferred data are latched by the registers in * the translation module. */ static u32 denali_indexed_read(struct denali_controller *denali, u32 addr) { iowrite32(addr, denali->host + DENALI_INDEXED_CTRL); return ioread32(denali->host + DENALI_INDEXED_DATA); } static void denali_indexed_write(struct denali_controller *denali, u32 addr, u32 data) { iowrite32(addr, denali->host + DENALI_INDEXED_CTRL); iowrite32(data, denali->host + DENALI_INDEXED_DATA); } static void denali_enable_irq(struct denali_controller *denali) { int i; for (i = 0; i < denali->nbanks; i++) iowrite32(U32_MAX, denali->reg + INTR_EN(i)); iowrite32(GLOBAL_INT_EN_FLAG, denali->reg + GLOBAL_INT_ENABLE); } static void denali_disable_irq(struct denali_controller *denali) { int i; for (i = 0; i < denali->nbanks; i++) iowrite32(0, denali->reg + INTR_EN(i)); iowrite32(0, denali->reg + GLOBAL_INT_ENABLE); } static void denali_clear_irq(struct denali_controller *denali, int bank, u32 irq_status) { /* write one to clear bits */ iowrite32(irq_status, denali->reg + INTR_STATUS(bank)); } static void denali_clear_irq_all(struct denali_controller *denali) { int i; for (i = 0; i < denali->nbanks; i++) denali_clear_irq(denali, i, U32_MAX); } static irqreturn_t denali_isr(int irq, void *dev_id) { struct denali_controller *denali = dev_id; irqreturn_t ret = IRQ_NONE; u32 irq_status; int i; spin_lock(&denali->irq_lock); for (i = 0; i < denali->nbanks; i++) { irq_status = ioread32(denali->reg + INTR_STATUS(i)); if (irq_status) ret = IRQ_HANDLED; denali_clear_irq(denali, i, irq_status); if (i != denali->active_bank) continue; denali->irq_status |= irq_status; if (denali->irq_status & denali->irq_mask) complete(&denali->complete); } spin_unlock(&denali->irq_lock); return ret; } static void denali_reset_irq(struct denali_controller *denali) { unsigned long flags; spin_lock_irqsave(&denali->irq_lock, flags); denali->irq_status = 0; denali->irq_mask = 0; spin_unlock_irqrestore(&denali->irq_lock, flags); } static u32 denali_wait_for_irq(struct denali_controller *denali, u32 irq_mask) { unsigned long time_left, flags; u32 irq_status; spin_lock_irqsave(&denali->irq_lock, flags); irq_status = denali->irq_status; if (irq_mask & irq_status) { /* return immediately if the IRQ has already happened. */ spin_unlock_irqrestore(&denali->irq_lock, flags); return irq_status; } denali->irq_mask = irq_mask; reinit_completion(&denali->complete); spin_unlock_irqrestore(&denali->irq_lock, flags); time_left = wait_for_completion_timeout(&denali->complete, msecs_to_jiffies(1000)); if (!time_left) { dev_err(denali->dev, "timeout while waiting for irq 0x%x\n", irq_mask); return 0; } return denali->irq_status; } static void denali_select_target(struct nand_chip *chip, int cs) { struct denali_controller *denali = to_denali_controller(chip); struct denali_chip_sel *sel = &to_denali_chip(chip)->sels[cs]; struct mtd_info *mtd = nand_to_mtd(chip); denali->active_bank = sel->bank; iowrite32(1 << (chip->phys_erase_shift - chip->page_shift), denali->reg + PAGES_PER_BLOCK); iowrite32(chip->options & NAND_BUSWIDTH_16 ? 1 : 0, denali->reg + DEVICE_WIDTH); iowrite32(mtd->writesize, denali->reg + DEVICE_MAIN_AREA_SIZE); iowrite32(mtd->oobsize, denali->reg + DEVICE_SPARE_AREA_SIZE); iowrite32(chip->options & NAND_ROW_ADDR_3 ? 0 : TWO_ROW_ADDR_CYCLES__FLAG, denali->reg + TWO_ROW_ADDR_CYCLES); iowrite32(FIELD_PREP(ECC_CORRECTION__ERASE_THRESHOLD, 1) | FIELD_PREP(ECC_CORRECTION__VALUE, chip->ecc.strength), denali->reg + ECC_CORRECTION); iowrite32(chip->ecc.size, denali->reg + CFG_DATA_BLOCK_SIZE); iowrite32(chip->ecc.size, denali->reg + CFG_LAST_DATA_BLOCK_SIZE); iowrite32(chip->ecc.steps, denali->reg + CFG_NUM_DATA_BLOCKS); if (chip->options & NAND_KEEP_TIMINGS) return; /* update timing registers unless NAND_KEEP_TIMINGS is set */ iowrite32(sel->hwhr2_and_we_2_re, denali->reg + TWHR2_AND_WE_2_RE); iowrite32(sel->tcwaw_and_addr_2_data, denali->reg + TCWAW_AND_ADDR_2_DATA); iowrite32(sel->re_2_we, denali->reg + RE_2_WE); iowrite32(sel->acc_clks, denali->reg + ACC_CLKS); iowrite32(sel->rdwr_en_lo_cnt, denali->reg + RDWR_EN_LO_CNT); iowrite32(sel->rdwr_en_hi_cnt, denali->reg + RDWR_EN_HI_CNT); iowrite32(sel->cs_setup_cnt, denali->reg + CS_SETUP_CNT); iowrite32(sel->re_2_re, denali->reg + RE_2_RE); } static int denali_change_column(struct nand_chip *chip, unsigned int offset, void *buf, unsigned int len, bool write) { if (write) return nand_change_write_column_op(chip, offset, buf, len, false); else return nand_change_read_column_op(chip, offset, buf, len, false); } static int denali_payload_xfer(struct nand_chip *chip, void *buf, bool write) { struct denali_controller *denali = to_denali_controller(chip); struct mtd_info *mtd = nand_to_mtd(chip); struct nand_ecc_ctrl *ecc = &chip->ecc; int writesize = mtd->writesize; int oob_skip = denali->oob_skip_bytes; int ret, i, pos, len; for (i = 0; i < ecc->steps; i++) { pos = i * (ecc->size + ecc->bytes); len = ecc->size; if (pos >= writesize) { pos += oob_skip; } else if (pos + len > writesize) { /* This chunk overwraps the BBM area. Must be split */ ret = denali_change_column(chip, pos, buf, writesize - pos, write); if (ret) return ret; buf += writesize - pos; len -= writesize - pos; pos = writesize + oob_skip; } ret = denali_change_column(chip, pos, buf, len, write); if (ret) return ret; buf += len; } return 0; } static int denali_oob_xfer(struct nand_chip *chip, void *buf, bool write) { struct denali_controller *denali = to_denali_controller(chip); struct mtd_info *mtd = nand_to_mtd(chip); struct nand_ecc_ctrl *ecc = &chip->ecc; int writesize = mtd->writesize; int oobsize = mtd->oobsize; int oob_skip = denali->oob_skip_bytes; int ret, i, pos, len; /* BBM at the beginning of the OOB area */ ret = denali_change_column(chip, writesize, buf, oob_skip, write); if (ret) return ret; buf += oob_skip; for (i = 0; i < ecc->steps; i++) { pos = ecc->size + i * (ecc->size + ecc->bytes); if (i == ecc->steps - 1) /* The last chunk includes OOB free */ len = writesize + oobsize - pos - oob_skip; else len = ecc->bytes; if (pos >= writesize) { pos += oob_skip; } else if (pos + len > writesize) { /* This chunk overwraps the BBM area. Must be split */ ret = denali_change_column(chip, pos, buf, writesize - pos, write); if (ret) return ret; buf += writesize - pos; len -= writesize - pos; pos = writesize + oob_skip; } ret = denali_change_column(chip, pos, buf, len, write); if (ret) return ret; buf += len; } return 0; } static int denali_read_raw(struct nand_chip *chip, void *buf, void *oob_buf, int page) { int ret; if (!buf && !oob_buf) return -EINVAL; ret = nand_read_page_op(chip, page, 0, NULL, 0); if (ret) return ret; if (buf) { ret = denali_payload_xfer(chip, buf, false); if (ret) return ret; } if (oob_buf) { ret = denali_oob_xfer(chip, oob_buf, false); if (ret) return ret; } return 0; } static int denali_write_raw(struct nand_chip *chip, const void *buf, const void *oob_buf, int page) { int ret; if (!buf && !oob_buf) return -EINVAL; ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0); if (ret) return ret; if (buf) { ret = denali_payload_xfer(chip, (void *)buf, true); if (ret) return ret; } if (oob_buf) { ret = denali_oob_xfer(chip, (void *)oob_buf, true); if (ret) return ret; } return nand_prog_page_end_op(chip); } static int denali_read_page_raw(struct nand_chip *chip, u8 *buf, int oob_required, int page) { return denali_read_raw(chip, buf, oob_required ? chip->oob_poi : NULL, page); } static int denali_write_page_raw(struct nand_chip *chip, const u8 *buf, int oob_required, int page) { return denali_write_raw(chip, buf, oob_required ? chip->oob_poi : NULL, page); } static int denali_read_oob(struct nand_chip *chip, int page) { return denali_read_raw(chip, NULL, chip->oob_poi, page); } static int denali_write_oob(struct nand_chip *chip, int page) { return denali_write_raw(chip, NULL, chip->oob_poi, page); } static int denali_check_erased_page(struct nand_chip *chip, u8 *buf, unsigned long uncor_ecc_flags, unsigned int max_bitflips) { struct denali_controller *denali = to_denali_controller(chip); struct mtd_ecc_stats *ecc_stats = &nand_to_mtd(chip)->ecc_stats; struct nand_ecc_ctrl *ecc = &chip->ecc; u8 *ecc_code = chip->oob_poi + denali->oob_skip_bytes; int i, stat; for (i = 0; i < ecc->steps; i++) { if (!(uncor_ecc_flags & BIT(i))) continue; stat = nand_check_erased_ecc_chunk(buf, ecc->size, ecc_code, ecc->bytes, NULL, 0, ecc->strength); if (stat < 0) { ecc_stats->failed++; } else { ecc_stats->corrected += stat; max_bitflips = max_t(unsigned int, max_bitflips, stat); } buf += ecc->size; ecc_code += ecc->bytes; } return max_bitflips; } static int denali_hw_ecc_fixup(struct nand_chip *chip, unsigned long *uncor_ecc_flags) { struct denali_controller *denali = to_denali_controller(chip); struct mtd_ecc_stats *ecc_stats = &nand_to_mtd(chip)->ecc_stats; int bank = denali->active_bank; u32 ecc_cor; unsigned int max_bitflips; ecc_cor = ioread32(denali->reg + ECC_COR_INFO(bank)); ecc_cor >>= ECC_COR_INFO__SHIFT(bank); if (ecc_cor & ECC_COR_INFO__UNCOR_ERR) { /* * This flag is set when uncorrectable error occurs at least in * one ECC sector. We can not know "how many sectors", or * "which sector(s)". We need erase-page check for all sectors. */ *uncor_ecc_flags = GENMASK(chip->ecc.steps - 1, 0); return 0; } max_bitflips = FIELD_GET(ECC_COR_INFO__MAX_ERRORS, ecc_cor); /* * The register holds the maximum of per-sector corrected bitflips. * This is suitable for the return value of the ->read_page() callback. * Unfortunately, we can not know the total number of corrected bits in * the page. Increase the stats by max_bitflips. (compromised solution) */ ecc_stats->corrected += max_bitflips; return max_bitflips; } static int denali_sw_ecc_fixup(struct nand_chip *chip, unsigned long *uncor_ecc_flags, u8 *buf) { struct denali_controller *denali = to_denali_controller(chip); struct mtd_ecc_stats *ecc_stats = &nand_to_mtd(chip)->ecc_stats; unsigned int ecc_size = chip->ecc.size; unsigned int bitflips = 0; unsigned int max_bitflips = 0; u32 err_addr, err_cor_info; unsigned int err_byte, err_sector, err_device; u8 err_cor_value; unsigned int prev_sector = 0; u32 irq_status; denali_reset_irq(denali); do { err_addr = ioread32(denali->reg + ECC_ERROR_ADDRESS); err_sector = FIELD_GET(ECC_ERROR_ADDRESS__SECTOR, err_addr); err_byte = FIELD_GET(ECC_ERROR_ADDRESS__OFFSET, err_addr); err_cor_info = ioread32(denali->reg + ERR_CORRECTION_INFO); err_cor_value = FIELD_GET(ERR_CORRECTION_INFO__BYTE, err_cor_info); err_device = FIELD_GET(ERR_CORRECTION_INFO__DEVICE, err_cor_info); /* reset the bitflip counter when crossing ECC sector */ if (err_sector != prev_sector) bitflips = 0; if (err_cor_info & ERR_CORRECTION_INFO__UNCOR) { /* * Check later if this is a real ECC error, or * an erased sector. */ *uncor_ecc_flags |= BIT(err_sector); } else if (err_byte < ecc_size) { /* * If err_byte is larger than ecc_size, means error * happened in OOB, so we ignore it. It's no need for * us to correct it err_device is represented the NAND * error bits are happened in if there are more than * one NAND connected. */ int offset; unsigned int flips_in_byte; offset = (err_sector * ecc_size + err_byte) * denali->devs_per_cs + err_device; /* correct the ECC error */ flips_in_byte = hweight8(buf[offset] ^ err_cor_value); buf[offset] ^= err_cor_value; ecc_stats->corrected += flips_in_byte; bitflips += flips_in_byte; max_bitflips = max(max_bitflips, bitflips); } prev_sector = err_sector; } while (!(err_cor_info & ERR_CORRECTION_INFO__LAST_ERR)); /* * Once handle all ECC errors, controller will trigger an * ECC_TRANSACTION_DONE interrupt. */ irq_status = denali_wait_for_irq(denali, INTR__ECC_TRANSACTION_DONE); if (!(irq_status & INTR__ECC_TRANSACTION_DONE)) return -EIO; return max_bitflips; } static void denali_setup_dma64(struct denali_controller *denali, dma_addr_t dma_addr, int page, bool write) { u32 mode; const int page_count = 1; mode = DENALI_MAP10 | DENALI_BANK(denali) | page; /* DMA is a three step process */ /* * 1. setup transfer type, interrupt when complete, * burst len = 64 bytes, the number of pages */ denali->host_write(denali, mode, 0x01002000 | (64 << 16) | (write ? BIT(8) : 0) | page_count); /* 2. set memory low address */ denali->host_write(denali, mode, lower_32_bits(dma_addr)); /* 3. set memory high address */ denali->host_write(denali, mode, upper_32_bits(dma_addr)); } static void denali_setup_dma32(struct denali_controller *denali, dma_addr_t dma_addr, int page, bool write) { u32 mode; const int page_count = 1; mode = DENALI_MAP10 | DENALI_BANK(denali); /* DMA is a four step process */ /* 1. setup transfer type and # of pages */ denali->host_write(denali, mode | page, 0x2000 | (write ? BIT(8) : 0) | page_count); /* 2. set memory high address bits 23:8 */ denali->host_write(denali, mode | ((dma_addr >> 16) << 8), 0x2200); /* 3. set memory low address bits 23:8 */ denali->host_write(denali, mode | ((dma_addr & 0xffff) << 8), 0x2300); /* 4. interrupt when complete, burst len = 64 bytes */ denali->host_write(denali, mode | 0x14000, 0x2400); } static int denali_pio_read(struct denali_controller *denali, u32 *buf, size_t size, int page) { u32 addr = DENALI_MAP01 | DENALI_BANK(denali) | page; u32 irq_status, ecc_err_mask; int i; if (denali->caps & DENALI_CAP_HW_ECC_FIXUP) ecc_err_mask = INTR__ECC_UNCOR_ERR; else ecc_err_mask = INTR__ECC_ERR; denali_reset_irq(denali); for (i = 0; i < size / 4; i++) buf[i] = denali->host_read(denali, addr); irq_status = denali_wait_for_irq(denali, INTR__PAGE_XFER_INC); if (!(irq_status & INTR__PAGE_XFER_INC)) return -EIO; if (irq_status & INTR__ERASED_PAGE) memset(buf, 0xff, size); return irq_status & ecc_err_mask ? -EBADMSG : 0; } static int denali_pio_write(struct denali_controller *denali, const u32 *buf, size_t size, int page) { u32 addr = DENALI_MAP01 | DENALI_BANK(denali) | page; u32 irq_status; int i; denali_reset_irq(denali); for (i = 0; i < size / 4; i++) denali->host_write(denali, addr, buf[i]); irq_status = denali_wait_for_irq(denali, INTR__PROGRAM_COMP | INTR__PROGRAM_FAIL); if (!(irq_status & INTR__PROGRAM_COMP)) return -EIO; return 0; } static int denali_pio_xfer(struct denali_controller *denali, void *buf, size_t size, int page, bool write) { if (write) return denali_pio_write(denali, buf, size, page); else return denali_pio_read(denali, buf, size, page); } static int denali_dma_xfer(struct denali_controller *denali, void *buf, size_t size, int page, bool write) { dma_addr_t dma_addr; u32 irq_mask, irq_status, ecc_err_mask; enum dma_data_direction dir = write ? DMA_TO_DEVICE : DMA_FROM_DEVICE; int ret = 0; dma_addr = dma_map_single(denali->dev, buf, size, dir); if (dma_mapping_error(denali->dev, dma_addr)) { dev_dbg(denali->dev, "Failed to DMA-map buffer. Trying PIO.\n"); return denali_pio_xfer(denali, buf, size, page, write); } if (write) { /* * INTR__PROGRAM_COMP is never asserted for the DMA transfer. * We can use INTR__DMA_CMD_COMP instead. This flag is asserted * when the page program is completed. */ irq_mask = INTR__DMA_CMD_COMP | INTR__PROGRAM_FAIL; ecc_err_mask = 0; } else if (denali->caps & DENALI_CAP_HW_ECC_FIXUP) { irq_mask = INTR__DMA_CMD_COMP; ecc_err_mask = INTR__ECC_UNCOR_ERR; } else { irq_mask = INTR__DMA_CMD_COMP; ecc_err_mask = INTR__ECC_ERR; } iowrite32(DMA_ENABLE__FLAG, denali->reg + DMA_ENABLE); /* * The ->setup_dma() hook kicks DMA by using the data/command * interface, which belongs to a different AXI port from the * register interface. Read back the register to avoid a race. */ ioread32(denali->reg + DMA_ENABLE); denali_reset_irq(denali); denali->setup_dma(denali, dma_addr, page, write); irq_status = denali_wait_for_irq(denali, irq_mask); if (!(irq_status & INTR__DMA_CMD_COMP)) ret = -EIO; else if (irq_status & ecc_err_mask) ret = -EBADMSG; iowrite32(0, denali->reg + DMA_ENABLE); dma_unmap_single(denali->dev, dma_addr, size, dir); if (irq_status & INTR__ERASED_PAGE) memset(buf, 0xff, size); return ret; } static int denali_page_xfer(struct nand_chip *chip, void *buf, size_t size, int page, bool write) { struct denali_controller *denali = to_denali_controller(chip); denali_select_target(chip, chip->cur_cs); if (denali->dma_avail) return denali_dma_xfer(denali, buf, size, page, write); else return denali_pio_xfer(denali, buf, size, page, write); } static int denali_read_page(struct nand_chip *chip, u8 *buf, int oob_required, int page) { struct denali_controller *denali = to_denali_controller(chip); struct mtd_info *mtd = nand_to_mtd(chip); unsigned long uncor_ecc_flags = 0; int stat = 0; int ret; ret = denali_page_xfer(chip, buf, mtd->writesize, page, false); if (ret && ret != -EBADMSG) return ret; if (denali->caps & DENALI_CAP_HW_ECC_FIXUP) stat = denali_hw_ecc_fixup(chip, &uncor_ecc_flags); else if (ret == -EBADMSG) stat = denali_sw_ecc_fixup(chip, &uncor_ecc_flags, buf); if (stat < 0) return stat; if (uncor_ecc_flags) { ret = denali_read_oob(chip, page); if (ret) return ret; stat = denali_check_erased_page(chip, buf, uncor_ecc_flags, stat); } return stat; } static int denali_write_page(struct nand_chip *chip, const u8 *buf, int oob_required, int page) { struct mtd_info *mtd = nand_to_mtd(chip); return denali_page_xfer(chip, (void *)buf, mtd->writesize, page, true); } static int denali_setup_interface(struct nand_chip *chip, int chipnr, const struct nand_interface_config *conf) { static const unsigned int data_setup_on_host = 10000; struct denali_controller *denali = to_denali_controller(chip); struct denali_chip_sel *sel; const struct nand_sdr_timings *timings; unsigned long t_x, mult_x; int acc_clks, re_2_we, re_2_re, we_2_re, addr_2_data; int rdwr_en_lo, rdwr_en_hi, rdwr_en_lo_hi, cs_setup; int addr_2_data_mask; u32 tmp; timings = nand_get_sdr_timings(conf); if (IS_ERR(timings)) return PTR_ERR(timings); /* clk_x period in picoseconds */ t_x = DIV_ROUND_DOWN_ULL(1000000000000ULL, denali->clk_x_rate); if (!t_x) return -EINVAL; /* * The bus interface clock, clk_x, is phase aligned with the core clock. * The clk_x is an integral multiple N of the core clk. The value N is * configured at IP delivery time, and its available value is 4, 5, 6. */ mult_x = DIV_ROUND_CLOSEST_ULL(denali->clk_x_rate, denali->clk_rate); if (mult_x < 4 || mult_x > 6) return -EINVAL; if (chipnr == NAND_DATA_IFACE_CHECK_ONLY) return 0; sel = &to_denali_chip(chip)->sels[chipnr]; /* tRWH -> RE_2_WE */ re_2_we = DIV_ROUND_UP(timings->tRHW_min, t_x); re_2_we = min_t(int, re_2_we, RE_2_WE__VALUE); tmp = ioread32(denali->reg + RE_2_WE); tmp &= ~RE_2_WE__VALUE; tmp |= FIELD_PREP(RE_2_WE__VALUE, re_2_we); sel->re_2_we = tmp; /* tRHZ -> RE_2_RE */ re_2_re = DIV_ROUND_UP(timings->tRHZ_max, t_x); re_2_re = min_t(int, re_2_re, RE_2_RE__VALUE); tmp = ioread32(denali->reg + RE_2_RE); tmp &= ~RE_2_RE__VALUE; tmp |= FIELD_PREP(RE_2_RE__VALUE, re_2_re); sel->re_2_re = tmp; /* * tCCS, tWHR -> WE_2_RE * * With WE_2_RE properly set, the Denali controller automatically takes * care of the delay; the driver need not set NAND_WAIT_TCCS. */ we_2_re = DIV_ROUND_UP(max(timings->tCCS_min, timings->tWHR_min), t_x); we_2_re = min_t(int, we_2_re, TWHR2_AND_WE_2_RE__WE_2_RE); tmp = ioread32(denali->reg + TWHR2_AND_WE_2_RE); tmp &= ~TWHR2_AND_WE_2_RE__WE_2_RE; tmp |= FIELD_PREP(TWHR2_AND_WE_2_RE__WE_2_RE, we_2_re); sel->hwhr2_and_we_2_re = tmp; /* tADL -> ADDR_2_DATA */ /* for older versions, ADDR_2_DATA is only 6 bit wide */ addr_2_data_mask = TCWAW_AND_ADDR_2_DATA__ADDR_2_DATA; if (denali->revision < 0x0501) addr_2_data_mask >>= 1; addr_2_data = DIV_ROUND_UP(timings->tADL_min, t_x); addr_2_data = min_t(int, addr_2_data, addr_2_data_mask); tmp = ioread32(denali->reg + TCWAW_AND_ADDR_2_DATA); tmp &= ~TCWAW_AND_ADDR_2_DATA__ADDR_2_DATA; tmp |= FIELD_PREP(TCWAW_AND_ADDR_2_DATA__ADDR_2_DATA, addr_2_data); sel->tcwaw_and_addr_2_data = tmp; /* tREH, tWH -> RDWR_EN_HI_CNT */ rdwr_en_hi = DIV_ROUND_UP(max(timings->tREH_min, timings->tWH_min), t_x); rdwr_en_hi = min_t(int, rdwr_en_hi, RDWR_EN_HI_CNT__VALUE); tmp = ioread32(denali->reg + RDWR_EN_HI_CNT); tmp &= ~RDWR_EN_HI_CNT__VALUE; tmp |= FIELD_PREP(RDWR_EN_HI_CNT__VALUE, rdwr_en_hi); sel->rdwr_en_hi_cnt = tmp; /* * tREA -> ACC_CLKS * tRP, tWP, tRHOH, tRC, tWC -> RDWR_EN_LO_CNT */ /* * Determine the minimum of acc_clks to meet the setup timing when * capturing the incoming data. * * The delay on the chip side is well-defined as tREA, but we need to * take additional delay into account. This includes a certain degree * of unknowledge, such as signal propagation delays on the PCB and * in the SoC, load capacity of the I/O pins, etc. */ acc_clks = DIV_ROUND_UP(timings->tREA_max + data_setup_on_host, t_x); /* Determine the minimum of rdwr_en_lo_cnt from RE#/WE# pulse width */ rdwr_en_lo = DIV_ROUND_UP(max(timings->tRP_min, timings->tWP_min), t_x); /* Extend rdwr_en_lo to meet the data hold timing */ rdwr_en_lo = max_t(int, rdwr_en_lo, acc_clks - timings->tRHOH_min / t_x); /* Extend rdwr_en_lo to meet the requirement for RE#/WE# cycle time */ rdwr_en_lo_hi = DIV_ROUND_UP(max(timings->tRC_min, timings->tWC_min), t_x); rdwr_en_lo = max(rdwr_en_lo, rdwr_en_lo_hi - rdwr_en_hi); rdwr_en_lo = min_t(int, rdwr_en_lo, RDWR_EN_LO_CNT__VALUE); /* Center the data latch timing for extra safety */ acc_clks = (acc_clks + rdwr_en_lo + DIV_ROUND_UP(timings->tRHOH_min, t_x)) / 2; acc_clks = min_t(int, acc_clks, ACC_CLKS__VALUE); tmp = ioread32(denali->reg + ACC_CLKS); tmp &= ~ACC_CLKS__VALUE; tmp |= FIELD_PREP(ACC_CLKS__VALUE, acc_clks); sel->acc_clks = tmp; tmp = ioread32(denali->reg + RDWR_EN_LO_CNT); tmp &= ~RDWR_EN_LO_CNT__VALUE; tmp |= FIELD_PREP(RDWR_EN_LO_CNT__VALUE, rdwr_en_lo); sel->rdwr_en_lo_cnt = tmp; /* tCS, tCEA -> CS_SETUP_CNT */ cs_setup = max3((int)DIV_ROUND_UP(timings->tCS_min, t_x) - rdwr_en_lo, (int)DIV_ROUND_UP(timings->tCEA_max, t_x) - acc_clks, 0); cs_setup = min_t(int, cs_setup, CS_SETUP_CNT__VALUE); tmp = ioread32(denali->reg + CS_SETUP_CNT); tmp &= ~CS_SETUP_CNT__VALUE; tmp |= FIELD_PREP(CS_SETUP_CNT__VALUE, cs_setup); sel->cs_setup_cnt = tmp; return 0; } int denali_calc_ecc_bytes(int step_size, int strength) { /* BCH code. Denali requires ecc.bytes to be multiple of 2 */ return DIV_ROUND_UP(strength * fls(step_size * 8), 16) * 2; } EXPORT_SYMBOL(denali_calc_ecc_bytes); static int denali_ooblayout_ecc(struct mtd_info *mtd, int section, struct mtd_oob_region *oobregion) { struct nand_chip *chip = mtd_to_nand(mtd); struct denali_controller *denali = to_denali_controller(chip); if (section > 0) return -ERANGE; oobregion->offset = denali->oob_skip_bytes; oobregion->length = chip->ecc.total; return 0; } static int denali_ooblayout_free(struct mtd_info *mtd, int section, struct mtd_oob_region *oobregion) { struct nand_chip *chip = mtd_to_nand(mtd); struct denali_controller *denali = to_denali_controller(chip); if (section > 0) return -ERANGE; oobregion->offset = chip->ecc.total + denali->oob_skip_bytes; oobregion->length = mtd->oobsize - oobregion->offset; return 0; } static const struct mtd_ooblayout_ops denali_ooblayout_ops = { .ecc = denali_ooblayout_ecc, .free = denali_ooblayout_free, }; static int denali_multidev_fixup(struct nand_chip *chip) { struct denali_controller *denali = to_denali_controller(chip); struct mtd_info *mtd = nand_to_mtd(chip); struct nand_memory_organization *memorg; memorg = nanddev_get_memorg(&chip->base); /* * Support for multi device: * When the IP configuration is x16 capable and two x8 chips are * connected in parallel, DEVICES_CONNECTED should be set to 2. * In this case, the core framework knows nothing about this fact, * so we should tell it the _logical_ pagesize and anything necessary. */ denali->devs_per_cs = ioread32(denali->reg + DEVICES_CONNECTED); /* * On some SoCs, DEVICES_CONNECTED is not auto-detected. * For those, DEVICES_CONNECTED is left to 0. Set 1 if it is the case. */ if (denali->devs_per_cs == 0) { denali->devs_per_cs = 1; iowrite32(1, denali->reg + DEVICES_CONNECTED); } if (denali->devs_per_cs == 1) return 0; if (denali->devs_per_cs != 2) { dev_err(denali->dev, "unsupported number of devices %d\n", denali->devs_per_cs); return -EINVAL; } /* 2 chips in parallel */ memorg->pagesize <<= 1; memorg->oobsize <<= 1; mtd->size <<= 1; mtd->erasesize <<= 1; mtd->writesize <<= 1; mtd->oobsize <<= 1; chip->page_shift += 1; chip->phys_erase_shift += 1; chip->bbt_erase_shift += 1; chip->chip_shift += 1; chip->pagemask <<= 1; chip->ecc.size <<= 1; chip->ecc.bytes <<= 1; chip->ecc.strength <<= 1; denali->oob_skip_bytes <<= 1; return 0; } static int denali_attach_chip(struct nand_chip *chip) { struct denali_controller *denali = to_denali_controller(chip); struct mtd_info *mtd = nand_to_mtd(chip); int ret; ret = nand_ecc_choose_conf(chip, denali->ecc_caps, mtd->oobsize - denali->oob_skip_bytes); if (ret) { dev_err(denali->dev, "Failed to setup ECC settings.\n"); return ret; } dev_dbg(denali->dev, "chosen ECC settings: step=%d, strength=%d, bytes=%d\n", chip->ecc.size, chip->ecc.strength, chip->ecc.bytes); ret = denali_multidev_fixup(chip); if (ret) return ret; return 0; } static void denali_exec_in8(struct denali_controller *denali, u32 type, u8 *buf, unsigned int len) { int i; for (i = 0; i < len; i++) buf[i] = denali->host_read(denali, type | DENALI_BANK(denali)); } static void denali_exec_in16(struct denali_controller *denali, u32 type, u8 *buf, unsigned int len) { u32 data; int i; for (i = 0; i < len; i += 2) { data = denali->host_read(denali, type | DENALI_BANK(denali)); /* bit 31:24 and 15:8 are used for DDR */ buf[i] = data; buf[i + 1] = data >> 16; } } static void denali_exec_in(struct denali_controller *denali, u32 type, u8 *buf, unsigned int len, bool width16) { if (width16) denali_exec_in16(denali, type, buf, len); else denali_exec_in8(denali, type, buf, len); } static void denali_exec_out8(struct denali_controller *denali, u32 type, const u8 *buf, unsigned int len) { int i; for (i = 0; i < len; i++) denali->host_write(denali, type | DENALI_BANK(denali), buf[i]); } static void denali_exec_out16(struct denali_controller *denali, u32 type, const u8 *buf, unsigned int len) { int i; for (i = 0; i < len; i += 2) denali->host_write(denali, type | DENALI_BANK(denali), buf[i + 1] << 16 | buf[i]); } static void denali_exec_out(struct denali_controller *denali, u32 type, const u8 *buf, unsigned int len, bool width16) { if (width16) denali_exec_out16(denali, type, buf, len); else denali_exec_out8(denali, type, buf, len); } static int denali_exec_waitrdy(struct denali_controller *denali) { u32 irq_stat; /* R/B# pin transitioned from low to high? */ irq_stat = denali_wait_for_irq(denali, INTR__INT_ACT); /* Just in case nand_operation has multiple NAND_OP_WAITRDY_INSTR. */ denali_reset_irq(denali); return irq_stat & INTR__INT_ACT ? 0 : -EIO; } static int denali_exec_instr(struct nand_chip *chip, const struct nand_op_instr *instr) { struct denali_controller *denali = to_denali_controller(chip); switch (instr->type) { case NAND_OP_CMD_INSTR: denali_exec_out8(denali, DENALI_MAP11_CMD, &instr->ctx.cmd.opcode, 1); return 0; case NAND_OP_ADDR_INSTR: denali_exec_out8(denali, DENALI_MAP11_ADDR, instr->ctx.addr.addrs, instr->ctx.addr.naddrs); return 0; case NAND_OP_DATA_IN_INSTR: denali_exec_in(denali, DENALI_MAP11_DATA, instr->ctx.data.buf.in, instr->ctx.data.len, !instr->ctx.data.force_8bit && chip->options & NAND_BUSWIDTH_16); return 0; case NAND_OP_DATA_OUT_INSTR: denali_exec_out(denali, DENALI_MAP11_DATA, instr->ctx.data.buf.out, instr->ctx.data.len, !instr->ctx.data.force_8bit && chip->options & NAND_BUSWIDTH_16); return 0; case NAND_OP_WAITRDY_INSTR: return denali_exec_waitrdy(denali); default: WARN_ONCE(1, "unsupported NAND instruction type: %d\n", instr->type); return -EINVAL; } } static int denali_exec_op(struct nand_chip *chip, const struct nand_operation *op, bool check_only) { int i, ret; if (check_only) return 0; denali_select_target(chip, op->cs); /* * Some commands contain NAND_OP_WAITRDY_INSTR. * irq must be cleared here to catch the R/B# interrupt there. */ denali_reset_irq(to_denali_controller(chip)); for (i = 0; i < op->ninstrs; i++) { ret = denali_exec_instr(chip, &op->instrs[i]); if (ret) return ret; } return 0; } static const struct nand_controller_ops denali_controller_ops = { .attach_chip = denali_attach_chip, .exec_op = denali_exec_op, .setup_interface = denali_setup_interface, }; int denali_chip_init(struct denali_controller *denali, struct denali_chip *dchip) { struct nand_chip *chip = &dchip->chip; struct mtd_info *mtd = nand_to_mtd(chip); struct denali_chip *dchip2; int i, j, ret; chip->controller = &denali->controller; /* sanity checks for bank numbers */ for (i = 0; i < dchip->nsels; i++) { unsigned int bank = dchip->sels[i].bank; if (bank >= denali->nbanks) { dev_err(denali->dev, "unsupported bank %d\n", bank); return -EINVAL; } for (j = 0; j < i; j++) { if (bank == dchip->sels[j].bank) { dev_err(denali->dev, "bank %d is assigned twice in the same chip\n", bank); return -EINVAL; } } list_for_each_entry(dchip2, &denali->chips, node) { for (j = 0; j < dchip2->nsels; j++) { if (bank == dchip2->sels[j].bank) { dev_err(denali->dev, "bank %d is already used\n", bank); return -EINVAL; } } } } mtd->dev.parent = denali->dev; /* * Fallback to the default name if DT did not give "label" property. * Use "label" property if multiple chips are connected. */ if (!mtd->name && list_empty(&denali->chips)) mtd->name = "denali-nand"; if (denali->dma_avail) { chip->options |= NAND_USES_DMA; chip->buf_align = 16; } /* clk rate info is needed for setup_interface */ if (!denali->clk_rate || !denali->clk_x_rate) chip->options |= NAND_KEEP_TIMINGS; chip->bbt_options |= NAND_BBT_USE_FLASH; chip->bbt_options |= NAND_BBT_NO_OOB; chip->options |= NAND_NO_SUBPAGE_WRITE; chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; chip->ecc.placement = NAND_ECC_PLACEMENT_INTERLEAVED; chip->ecc.read_page = denali_read_page; chip->ecc.write_page = denali_write_page; chip->ecc.read_page_raw = denali_read_page_raw; chip->ecc.write_page_raw = denali_write_page_raw; chip->ecc.read_oob = denali_read_oob; chip->ecc.write_oob = denali_write_oob; mtd_set_ooblayout(mtd, &denali_ooblayout_ops); ret = nand_scan(chip, dchip->nsels); if (ret) return ret; ret = mtd_device_register(mtd, NULL, 0); if (ret) { dev_err(denali->dev, "Failed to register MTD: %d\n", ret); goto cleanup_nand; } list_add_tail(&dchip->node, &denali->chips); return 0; cleanup_nand: nand_cleanup(chip); return ret; } EXPORT_SYMBOL_GPL(denali_chip_init); int denali_init(struct denali_controller *denali) { u32 features = ioread32(denali->reg + FEATURES); int ret; nand_controller_init(&denali->controller); denali->controller.ops = &denali_controller_ops; init_completion(&denali->complete); spin_lock_init(&denali->irq_lock); INIT_LIST_HEAD(&denali->chips); denali->active_bank = DENALI_INVALID_BANK; /* * The REVISION register may not be reliable. Platforms are allowed to * override it. */ if (!denali->revision) denali->revision = swab16(ioread32(denali->reg + REVISION)); denali->nbanks = 1 << FIELD_GET(FEATURES__N_BANKS, features); /* the encoding changed from rev 5.0 to 5.1 */ if (denali->revision < 0x0501) denali->nbanks <<= 1; if (features & FEATURES__DMA) denali->dma_avail = true; if (denali->dma_avail) { int dma_bit = denali->caps & DENALI_CAP_DMA_64BIT ? 64 : 32; ret = dma_set_mask(denali->dev, DMA_BIT_MASK(dma_bit)); if (ret) { dev_info(denali->dev, "Failed to set DMA mask. Disabling DMA.\n"); denali->dma_avail = false; } } if (denali->dma_avail) { if (denali->caps & DENALI_CAP_DMA_64BIT) denali->setup_dma = denali_setup_dma64; else denali->setup_dma = denali_setup_dma32; } if (features & FEATURES__INDEX_ADDR) { denali->host_read = denali_indexed_read; denali->host_write = denali_indexed_write; } else { denali->host_read = denali_direct_read; denali->host_write = denali_direct_write; } /* * Set how many bytes should be skipped before writing data in OOB. * If a platform requests a non-zero value, set it to the register. * Otherwise, read the value out, expecting it has already been set up * by firmware. */ if (denali->oob_skip_bytes) iowrite32(denali->oob_skip_bytes, denali->reg + SPARE_AREA_SKIP_BYTES); else denali->oob_skip_bytes = ioread32(denali->reg + SPARE_AREA_SKIP_BYTES); iowrite32(0, denali->reg + TRANSFER_SPARE_REG); iowrite32(GENMASK(denali->nbanks - 1, 0), denali->reg + RB_PIN_ENABLED); iowrite32(CHIP_EN_DONT_CARE__FLAG, denali->reg + CHIP_ENABLE_DONT_CARE); iowrite32(ECC_ENABLE__FLAG, denali->reg + ECC_ENABLE); iowrite32(0xffff, denali->reg + SPARE_AREA_MARKER); iowrite32(WRITE_PROTECT__FLAG, denali->reg + WRITE_PROTECT); denali_clear_irq_all(denali); ret = devm_request_irq(denali->dev, denali->irq, denali_isr, IRQF_SHARED, DENALI_NAND_NAME, denali); if (ret) { dev_err(denali->dev, "Unable to request IRQ\n"); return ret; } denali_enable_irq(denali); return 0; } EXPORT_SYMBOL(denali_init); void denali_remove(struct denali_controller *denali) { struct denali_chip *dchip, *tmp; struct nand_chip *chip; int ret; list_for_each_entry_safe(dchip, tmp, &denali->chips, node) { chip = &dchip->chip; ret = mtd_device_unregister(nand_to_mtd(chip)); WARN_ON(ret); nand_cleanup(chip); list_del(&dchip->node); } denali_disable_irq(denali); } EXPORT_SYMBOL(denali_remove); MODULE_DESCRIPTION("Driver core for Denali NAND controller"); MODULE_AUTHOR("Intel Corporation and its suppliers"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1