Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Mason Yang | 2632 | 98.43% | 1 | 16.67% |
Miquel Raynal | 33 | 1.23% | 3 | 50.00% |
Boris Brezillon | 7 | 0.26% | 1 | 16.67% |
Uwe Kleine-König | 2 | 0.07% | 1 | 16.67% |
Total | 2674 | 6 |
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2019 Macronix International Co., Ltd. * * Author: * Mason Yang <masonccyang@mxic.com.tw> */ #include <linux/clk.h> #include <linux/io.h> #include <linux/iopoll.h> #include <linux/interrupt.h> #include <linux/module.h> #include <linux/mtd/mtd.h> #include <linux/mtd/nand-ecc-sw-hamming.h> #include <linux/mtd/rawnand.h> #include <linux/platform_device.h> #include "internals.h" #define HC_CFG 0x0 #define HC_CFG_IF_CFG(x) ((x) << 27) #define HC_CFG_DUAL_SLAVE BIT(31) #define HC_CFG_INDIVIDUAL BIT(30) #define HC_CFG_NIO(x) (((x) / 4) << 27) #define HC_CFG_TYPE(s, t) ((t) << (23 + ((s) * 2))) #define HC_CFG_TYPE_SPI_NOR 0 #define HC_CFG_TYPE_SPI_NAND 1 #define HC_CFG_TYPE_SPI_RAM 2 #define HC_CFG_TYPE_RAW_NAND 3 #define HC_CFG_SLV_ACT(x) ((x) << 21) #define HC_CFG_CLK_PH_EN BIT(20) #define HC_CFG_CLK_POL_INV BIT(19) #define HC_CFG_BIG_ENDIAN BIT(18) #define HC_CFG_DATA_PASS BIT(17) #define HC_CFG_IDLE_SIO_LVL(x) ((x) << 16) #define HC_CFG_MAN_START_EN BIT(3) #define HC_CFG_MAN_START BIT(2) #define HC_CFG_MAN_CS_EN BIT(1) #define HC_CFG_MAN_CS_ASSERT BIT(0) #define INT_STS 0x4 #define INT_STS_EN 0x8 #define INT_SIG_EN 0xc #define INT_STS_ALL GENMASK(31, 0) #define INT_RDY_PIN BIT(26) #define INT_RDY_SR BIT(25) #define INT_LNR_SUSP BIT(24) #define INT_ECC_ERR BIT(17) #define INT_CRC_ERR BIT(16) #define INT_LWR_DIS BIT(12) #define INT_LRD_DIS BIT(11) #define INT_SDMA_INT BIT(10) #define INT_DMA_FINISH BIT(9) #define INT_RX_NOT_FULL BIT(3) #define INT_RX_NOT_EMPTY BIT(2) #define INT_TX_NOT_FULL BIT(1) #define INT_TX_EMPTY BIT(0) #define HC_EN 0x10 #define HC_EN_BIT BIT(0) #define TXD(x) (0x14 + ((x) * 4)) #define RXD 0x24 #define SS_CTRL(s) (0x30 + ((s) * 4)) #define LRD_CFG 0x44 #define LWR_CFG 0x80 #define RWW_CFG 0x70 #define OP_READ BIT(23) #define OP_DUMMY_CYC(x) ((x) << 17) #define OP_ADDR_BYTES(x) ((x) << 14) #define OP_CMD_BYTES(x) (((x) - 1) << 13) #define OP_OCTA_CRC_EN BIT(12) #define OP_DQS_EN BIT(11) #define OP_ENHC_EN BIT(10) #define OP_PREAMBLE_EN BIT(9) #define OP_DATA_DDR BIT(8) #define OP_DATA_BUSW(x) ((x) << 6) #define OP_ADDR_DDR BIT(5) #define OP_ADDR_BUSW(x) ((x) << 3) #define OP_CMD_DDR BIT(2) #define OP_CMD_BUSW(x) (x) #define OP_BUSW_1 0 #define OP_BUSW_2 1 #define OP_BUSW_4 2 #define OP_BUSW_8 3 #define OCTA_CRC 0x38 #define OCTA_CRC_IN_EN(s) BIT(3 + ((s) * 16)) #define OCTA_CRC_CHUNK(s, x) ((fls((x) / 32)) << (1 + ((s) * 16))) #define OCTA_CRC_OUT_EN(s) BIT(0 + ((s) * 16)) #define ONFI_DIN_CNT(s) (0x3c + (s)) #define LRD_CTRL 0x48 #define RWW_CTRL 0x74 #define LWR_CTRL 0x84 #define LMODE_EN BIT(31) #define LMODE_SLV_ACT(x) ((x) << 21) #define LMODE_CMD1(x) ((x) << 8) #define LMODE_CMD0(x) (x) #define LRD_ADDR 0x4c #define LWR_ADDR 0x88 #define LRD_RANGE 0x50 #define LWR_RANGE 0x8c #define AXI_SLV_ADDR 0x54 #define DMAC_RD_CFG 0x58 #define DMAC_WR_CFG 0x94 #define DMAC_CFG_PERIPH_EN BIT(31) #define DMAC_CFG_ALLFLUSH_EN BIT(30) #define DMAC_CFG_LASTFLUSH_EN BIT(29) #define DMAC_CFG_QE(x) (((x) + 1) << 16) #define DMAC_CFG_BURST_LEN(x) (((x) + 1) << 12) #define DMAC_CFG_BURST_SZ(x) ((x) << 8) #define DMAC_CFG_DIR_READ BIT(1) #define DMAC_CFG_START BIT(0) #define DMAC_RD_CNT 0x5c #define DMAC_WR_CNT 0x98 #define SDMA_ADDR 0x60 #define DMAM_CFG 0x64 #define DMAM_CFG_START BIT(31) #define DMAM_CFG_CONT BIT(30) #define DMAM_CFG_SDMA_GAP(x) (fls((x) / 8192) << 2) #define DMAM_CFG_DIR_READ BIT(1) #define DMAM_CFG_EN BIT(0) #define DMAM_CNT 0x68 #define LNR_TIMER_TH 0x6c #define RDM_CFG0 0x78 #define RDM_CFG0_POLY(x) (x) #define RDM_CFG1 0x7c #define RDM_CFG1_RDM_EN BIT(31) #define RDM_CFG1_SEED(x) (x) #define LWR_SUSP_CTRL 0x90 #define LWR_SUSP_CTRL_EN BIT(31) #define DMAS_CTRL 0x9c #define DMAS_CTRL_EN BIT(31) #define DMAS_CTRL_DIR_READ BIT(30) #define DATA_STROB 0xa0 #define DATA_STROB_EDO_EN BIT(2) #define DATA_STROB_INV_POL BIT(1) #define DATA_STROB_DELAY_2CYC BIT(0) #define IDLY_CODE(x) (0xa4 + ((x) * 4)) #define IDLY_CODE_VAL(x, v) ((v) << (((x) % 4) * 8)) #define GPIO 0xc4 #define GPIO_PT(x) BIT(3 + ((x) * 16)) #define GPIO_RESET(x) BIT(2 + ((x) * 16)) #define GPIO_HOLDB(x) BIT(1 + ((x) * 16)) #define GPIO_WPB(x) BIT((x) * 16) #define HC_VER 0xd0 #define HW_TEST(x) (0xe0 + ((x) * 4)) #define MXIC_NFC_MAX_CLK_HZ 50000000 #define IRQ_TIMEOUT 1000 struct mxic_nand_ctlr { struct clk *ps_clk; struct clk *send_clk; struct clk *send_dly_clk; struct completion complete; void __iomem *regs; struct nand_controller controller; struct device *dev; struct nand_chip chip; }; static int mxic_nfc_clk_enable(struct mxic_nand_ctlr *nfc) { int ret; ret = clk_prepare_enable(nfc->ps_clk); if (ret) return ret; ret = clk_prepare_enable(nfc->send_clk); if (ret) goto err_ps_clk; ret = clk_prepare_enable(nfc->send_dly_clk); if (ret) goto err_send_dly_clk; return ret; err_send_dly_clk: clk_disable_unprepare(nfc->send_clk); err_ps_clk: clk_disable_unprepare(nfc->ps_clk); return ret; } static void mxic_nfc_clk_disable(struct mxic_nand_ctlr *nfc) { clk_disable_unprepare(nfc->send_clk); clk_disable_unprepare(nfc->send_dly_clk); clk_disable_unprepare(nfc->ps_clk); } static void mxic_nfc_set_input_delay(struct mxic_nand_ctlr *nfc, u8 idly_code) { writel(IDLY_CODE_VAL(0, idly_code) | IDLY_CODE_VAL(1, idly_code) | IDLY_CODE_VAL(2, idly_code) | IDLY_CODE_VAL(3, idly_code), nfc->regs + IDLY_CODE(0)); writel(IDLY_CODE_VAL(4, idly_code) | IDLY_CODE_VAL(5, idly_code) | IDLY_CODE_VAL(6, idly_code) | IDLY_CODE_VAL(7, idly_code), nfc->regs + IDLY_CODE(1)); } static int mxic_nfc_clk_setup(struct mxic_nand_ctlr *nfc, unsigned long freq) { int ret; ret = clk_set_rate(nfc->send_clk, freq); if (ret) return ret; ret = clk_set_rate(nfc->send_dly_clk, freq); if (ret) return ret; /* * A constant delay range from 0x0 ~ 0x1F for input delay, * the unit is 78 ps, the max input delay is 2.418 ns. */ mxic_nfc_set_input_delay(nfc, 0xf); /* * Phase degree = 360 * freq * output-delay * where output-delay is a constant value 1 ns in FPGA. * * Get Phase degree = 360 * freq * 1 ns * = 360 * freq * 1 sec / 1000000000 * = 9 * freq / 25000000 */ ret = clk_set_phase(nfc->send_dly_clk, 9 * freq / 25000000); if (ret) return ret; return 0; } static int mxic_nfc_set_freq(struct mxic_nand_ctlr *nfc, unsigned long freq) { int ret; if (freq > MXIC_NFC_MAX_CLK_HZ) freq = MXIC_NFC_MAX_CLK_HZ; mxic_nfc_clk_disable(nfc); ret = mxic_nfc_clk_setup(nfc, freq); if (ret) return ret; ret = mxic_nfc_clk_enable(nfc); if (ret) return ret; return 0; } static irqreturn_t mxic_nfc_isr(int irq, void *dev_id) { struct mxic_nand_ctlr *nfc = dev_id; u32 sts; sts = readl(nfc->regs + INT_STS); if (sts & INT_RDY_PIN) complete(&nfc->complete); else return IRQ_NONE; return IRQ_HANDLED; } static void mxic_nfc_hw_init(struct mxic_nand_ctlr *nfc) { writel(HC_CFG_NIO(8) | HC_CFG_TYPE(1, HC_CFG_TYPE_RAW_NAND) | HC_CFG_SLV_ACT(0) | HC_CFG_MAN_CS_EN | HC_CFG_IDLE_SIO_LVL(1), nfc->regs + HC_CFG); writel(INT_STS_ALL, nfc->regs + INT_STS_EN); writel(INT_RDY_PIN, nfc->regs + INT_SIG_EN); writel(0x0, nfc->regs + ONFI_DIN_CNT(0)); writel(0, nfc->regs + LRD_CFG); writel(0, nfc->regs + LRD_CTRL); writel(0x0, nfc->regs + HC_EN); } static void mxic_nfc_cs_enable(struct mxic_nand_ctlr *nfc) { writel(readl(nfc->regs + HC_CFG) | HC_CFG_MAN_CS_EN, nfc->regs + HC_CFG); writel(HC_CFG_MAN_CS_ASSERT | readl(nfc->regs + HC_CFG), nfc->regs + HC_CFG); } static void mxic_nfc_cs_disable(struct mxic_nand_ctlr *nfc) { writel(~HC_CFG_MAN_CS_ASSERT & readl(nfc->regs + HC_CFG), nfc->regs + HC_CFG); } static int mxic_nfc_wait_ready(struct nand_chip *chip) { struct mxic_nand_ctlr *nfc = nand_get_controller_data(chip); int ret; ret = wait_for_completion_timeout(&nfc->complete, msecs_to_jiffies(IRQ_TIMEOUT)); if (!ret) { dev_err(nfc->dev, "nand device timeout\n"); return -ETIMEDOUT; } return 0; } static int mxic_nfc_data_xfer(struct mxic_nand_ctlr *nfc, const void *txbuf, void *rxbuf, unsigned int len) { unsigned int pos = 0; while (pos < len) { unsigned int nbytes = len - pos; u32 data = 0xffffffff; u32 sts; int ret; if (nbytes > 4) nbytes = 4; if (txbuf) memcpy(&data, txbuf + pos, nbytes); ret = readl_poll_timeout(nfc->regs + INT_STS, sts, sts & INT_TX_EMPTY, 0, USEC_PER_SEC); if (ret) return ret; writel(data, nfc->regs + TXD(nbytes % 4)); ret = readl_poll_timeout(nfc->regs + INT_STS, sts, sts & INT_TX_EMPTY, 0, USEC_PER_SEC); if (ret) return ret; ret = readl_poll_timeout(nfc->regs + INT_STS, sts, sts & INT_RX_NOT_EMPTY, 0, USEC_PER_SEC); if (ret) return ret; data = readl(nfc->regs + RXD); if (rxbuf) { data >>= (8 * (4 - nbytes)); memcpy(rxbuf + pos, &data, nbytes); } if (readl(nfc->regs + INT_STS) & INT_RX_NOT_EMPTY) dev_warn(nfc->dev, "RX FIFO not empty\n"); pos += nbytes; } return 0; } static int mxic_nfc_exec_op(struct nand_chip *chip, const struct nand_operation *op, bool check_only) { struct mxic_nand_ctlr *nfc = nand_get_controller_data(chip); const struct nand_op_instr *instr = NULL; int ret = 0; unsigned int op_id; if (check_only) return 0; mxic_nfc_cs_enable(nfc); init_completion(&nfc->complete); for (op_id = 0; op_id < op->ninstrs; op_id++) { instr = &op->instrs[op_id]; switch (instr->type) { case NAND_OP_CMD_INSTR: writel(0, nfc->regs + HC_EN); writel(HC_EN_BIT, nfc->regs + HC_EN); writel(OP_CMD_BUSW(OP_BUSW_8) | OP_DUMMY_CYC(0x3F) | OP_CMD_BYTES(0), nfc->regs + SS_CTRL(0)); ret = mxic_nfc_data_xfer(nfc, &instr->ctx.cmd.opcode, NULL, 1); break; case NAND_OP_ADDR_INSTR: writel(OP_ADDR_BUSW(OP_BUSW_8) | OP_DUMMY_CYC(0x3F) | OP_ADDR_BYTES(instr->ctx.addr.naddrs), nfc->regs + SS_CTRL(0)); ret = mxic_nfc_data_xfer(nfc, instr->ctx.addr.addrs, NULL, instr->ctx.addr.naddrs); break; case NAND_OP_DATA_IN_INSTR: writel(0x0, nfc->regs + ONFI_DIN_CNT(0)); writel(OP_DATA_BUSW(OP_BUSW_8) | OP_DUMMY_CYC(0x3F) | OP_READ, nfc->regs + SS_CTRL(0)); ret = mxic_nfc_data_xfer(nfc, NULL, instr->ctx.data.buf.in, instr->ctx.data.len); break; case NAND_OP_DATA_OUT_INSTR: writel(instr->ctx.data.len, nfc->regs + ONFI_DIN_CNT(0)); writel(OP_DATA_BUSW(OP_BUSW_8) | OP_DUMMY_CYC(0x3F), nfc->regs + SS_CTRL(0)); ret = mxic_nfc_data_xfer(nfc, instr->ctx.data.buf.out, NULL, instr->ctx.data.len); break; case NAND_OP_WAITRDY_INSTR: ret = mxic_nfc_wait_ready(chip); break; } } mxic_nfc_cs_disable(nfc); return ret; } static int mxic_nfc_setup_interface(struct nand_chip *chip, int chipnr, const struct nand_interface_config *conf) { struct mxic_nand_ctlr *nfc = nand_get_controller_data(chip); const struct nand_sdr_timings *sdr; unsigned long freq; int ret; sdr = nand_get_sdr_timings(conf); if (IS_ERR(sdr)) return PTR_ERR(sdr); if (chipnr == NAND_DATA_IFACE_CHECK_ONLY) return 0; freq = NSEC_PER_SEC / (sdr->tRC_min / 1000); ret = mxic_nfc_set_freq(nfc, freq); if (ret) dev_err(nfc->dev, "set freq:%ld failed\n", freq); if (sdr->tRC_min < 30000) writel(DATA_STROB_EDO_EN, nfc->regs + DATA_STROB); return 0; } static const struct nand_controller_ops mxic_nand_controller_ops = { .exec_op = mxic_nfc_exec_op, .setup_interface = mxic_nfc_setup_interface, }; static int mxic_nfc_probe(struct platform_device *pdev) { struct device_node *nand_np, *np = pdev->dev.of_node; struct mtd_info *mtd; struct mxic_nand_ctlr *nfc; struct nand_chip *nand_chip; int err; int irq; nfc = devm_kzalloc(&pdev->dev, sizeof(struct mxic_nand_ctlr), GFP_KERNEL); if (!nfc) return -ENOMEM; nfc->ps_clk = devm_clk_get(&pdev->dev, "ps"); if (IS_ERR(nfc->ps_clk)) return PTR_ERR(nfc->ps_clk); nfc->send_clk = devm_clk_get(&pdev->dev, "send"); if (IS_ERR(nfc->send_clk)) return PTR_ERR(nfc->send_clk); nfc->send_dly_clk = devm_clk_get(&pdev->dev, "send_dly"); if (IS_ERR(nfc->send_dly_clk)) return PTR_ERR(nfc->send_dly_clk); nfc->regs = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(nfc->regs)) return PTR_ERR(nfc->regs); nand_chip = &nfc->chip; mtd = nand_to_mtd(nand_chip); mtd->dev.parent = &pdev->dev; for_each_child_of_node(np, nand_np) nand_set_flash_node(nand_chip, nand_np); nand_chip->priv = nfc; nfc->dev = &pdev->dev; nfc->controller.ops = &mxic_nand_controller_ops; nand_controller_init(&nfc->controller); nand_chip->controller = &nfc->controller; irq = platform_get_irq(pdev, 0); if (irq < 0) return irq; mxic_nfc_hw_init(nfc); err = devm_request_irq(&pdev->dev, irq, mxic_nfc_isr, 0, "mxic-nfc", nfc); if (err) goto fail; err = nand_scan(nand_chip, 1); if (err) goto fail; err = mtd_device_register(mtd, NULL, 0); if (err) goto fail; platform_set_drvdata(pdev, nfc); return 0; fail: mxic_nfc_clk_disable(nfc); return err; } static void mxic_nfc_remove(struct platform_device *pdev) { struct mxic_nand_ctlr *nfc = platform_get_drvdata(pdev); struct nand_chip *chip = &nfc->chip; int ret; ret = mtd_device_unregister(nand_to_mtd(chip)); WARN_ON(ret); nand_cleanup(chip); mxic_nfc_clk_disable(nfc); } static const struct of_device_id mxic_nfc_of_ids[] = { { .compatible = "mxic,multi-itfc-v009-nand-controller", }, {}, }; MODULE_DEVICE_TABLE(of, mxic_nfc_of_ids); static struct platform_driver mxic_nfc_driver = { .probe = mxic_nfc_probe, .remove_new = mxic_nfc_remove, .driver = { .name = "mxic-nfc", .of_match_table = mxic_nfc_of_ids, }, }; module_platform_driver(mxic_nfc_driver); MODULE_AUTHOR("Mason Yang <masonccyang@mxic.com.tw>"); MODULE_DESCRIPTION("Macronix raw NAND controller driver"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1