Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Yifeng Zhao | 6851 | 99.20% | 1 | 16.67% |
Johan Jonker | 43 | 0.62% | 2 | 33.33% |
Christophe Jaillet | 9 | 0.13% | 1 | 16.67% |
Uwe Kleine-König | 2 | 0.03% | 1 | 16.67% |
Zou Wei | 1 | 0.01% | 1 | 16.67% |
Total | 6906 | 6 |
// SPDX-License-Identifier: GPL-2.0 OR MIT /* * Rockchip NAND Flash controller driver. * Copyright (C) 2020 Rockchip Inc. * Author: Yifeng Zhao <yifeng.zhao@rock-chips.com> */ #include <linux/clk.h> #include <linux/delay.h> #include <linux/dma-mapping.h> #include <linux/dmaengine.h> #include <linux/interrupt.h> #include <linux/iopoll.h> #include <linux/module.h> #include <linux/mtd/mtd.h> #include <linux/mtd/rawnand.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/slab.h> /* * NFC Page Data Layout: * 1024 bytes data + 4Bytes sys data + 28Bytes~124Bytes ECC data + * 1024 bytes data + 4Bytes sys data + 28Bytes~124Bytes ECC data + * ...... * NAND Page Data Layout: * 1024 * n data + m Bytes oob * Original Bad Block Mask Location: * First byte of oob(spare). * nand_chip->oob_poi data layout: * 4Bytes sys data + .... + 4Bytes sys data + ECC data. */ /* NAND controller register definition */ #define NFC_READ (0) #define NFC_WRITE (1) #define NFC_FMCTL (0x00) #define FMCTL_CE_SEL_M 0xFF #define FMCTL_CE_SEL(x) (1 << (x)) #define FMCTL_WP BIT(8) #define FMCTL_RDY BIT(9) #define NFC_FMWAIT (0x04) #define FLCTL_RST BIT(0) #define FLCTL_WR (1) /* 0: read, 1: write */ #define FLCTL_XFER_ST BIT(2) #define FLCTL_XFER_EN BIT(3) #define FLCTL_ACORRECT BIT(10) /* Auto correct error bits. */ #define FLCTL_XFER_READY BIT(20) #define FLCTL_XFER_SECTOR (22) #define FLCTL_TOG_FIX BIT(29) #define BCHCTL_BANK_M (7 << 5) #define BCHCTL_BANK (5) #define DMA_ST BIT(0) #define DMA_WR (1) /* 0: write, 1: read */ #define DMA_EN BIT(2) #define DMA_AHB_SIZE (3) /* 0: 1, 1: 2, 2: 4 */ #define DMA_BURST_SIZE (6) /* 0: 1, 3: 4, 5: 8, 7: 16 */ #define DMA_INC_NUM (9) /* 1 - 16 */ #define ECC_ERR_CNT(x, e) ((((x) >> (e).low) & (e).low_mask) |\ (((x) >> (e).high) & (e).high_mask) << (e).low_bn) #define INT_DMA BIT(0) #define NFC_BANK (0x800) #define NFC_BANK_STEP (0x100) #define BANK_DATA (0x00) #define BANK_ADDR (0x04) #define BANK_CMD (0x08) #define NFC_SRAM0 (0x1000) #define NFC_SRAM1 (0x1400) #define NFC_SRAM_SIZE (0x400) #define NFC_TIMEOUT (500000) #define NFC_MAX_OOB_PER_STEP 128 #define NFC_MIN_OOB_PER_STEP 64 #define MAX_DATA_SIZE 0xFFFC #define MAX_ADDRESS_CYC 6 #define NFC_ECC_MAX_MODES 4 #define NFC_MAX_NSELS (8) /* Some Socs only have 1 or 2 CSs. */ #define NFC_SYS_DATA_SIZE (4) /* 4 bytes sys data in oob pre 1024 data.*/ #define RK_DEFAULT_CLOCK_RATE (150 * 1000 * 1000) /* 150 Mhz */ #define ACCTIMING(csrw, rwpw, rwcs) ((csrw) << 12 | (rwpw) << 5 | (rwcs)) enum nfc_type { NFC_V6, NFC_V8, NFC_V9, }; /** * struct rk_ecc_cnt_status: represent a ecc status data. * @err_flag_bit: error flag bit index at register. * @low: ECC count low bit index at register. * @low_mask: mask bit. * @low_bn: ECC count low bit number. * @high: ECC count high bit index at register. * @high_mask: mask bit */ struct ecc_cnt_status { u8 err_flag_bit; u8 low; u8 low_mask; u8 low_bn; u8 high; u8 high_mask; }; /** * @type: NFC version * @ecc_strengths: ECC strengths * @ecc_cfgs: ECC config values * @flctl_off: FLCTL register offset * @bchctl_off: BCHCTL register offset * @dma_data_buf_off: DMA_DATA_BUF register offset * @dma_oob_buf_off: DMA_OOB_BUF register offset * @dma_cfg_off: DMA_CFG register offset * @dma_st_off: DMA_ST register offset * @bch_st_off: BCG_ST register offset * @randmz_off: RANDMZ register offset * @int_en_off: interrupt enable register offset * @int_clr_off: interrupt clean register offset * @int_st_off: interrupt status register offset * @oob0_off: oob0 register offset * @oob1_off: oob1 register offset * @ecc0: represent ECC0 status data * @ecc1: represent ECC1 status data */ struct nfc_cfg { enum nfc_type type; u8 ecc_strengths[NFC_ECC_MAX_MODES]; u32 ecc_cfgs[NFC_ECC_MAX_MODES]; u32 flctl_off; u32 bchctl_off; u32 dma_cfg_off; u32 dma_data_buf_off; u32 dma_oob_buf_off; u32 dma_st_off; u32 bch_st_off; u32 randmz_off; u32 int_en_off; u32 int_clr_off; u32 int_st_off; u32 oob0_off; u32 oob1_off; struct ecc_cnt_status ecc0; struct ecc_cnt_status ecc1; }; struct rk_nfc_nand_chip { struct list_head node; struct nand_chip chip; u16 boot_blks; u16 metadata_size; u32 boot_ecc; u32 timing; u8 nsels; u8 sels[] __counted_by(nsels); }; struct rk_nfc { struct nand_controller controller; const struct nfc_cfg *cfg; struct device *dev; struct clk *nfc_clk; struct clk *ahb_clk; void __iomem *regs; u32 selected_bank; u32 band_offset; u32 cur_ecc; u32 cur_timing; struct completion done; struct list_head chips; u8 *page_buf; u32 *oob_buf; u32 page_buf_size; u32 oob_buf_size; unsigned long assigned_cs; }; static inline struct rk_nfc_nand_chip *rk_nfc_to_rknand(struct nand_chip *chip) { return container_of(chip, struct rk_nfc_nand_chip, chip); } static inline u8 *rk_nfc_buf_to_data_ptr(struct nand_chip *chip, const u8 *p, int i) { return (u8 *)p + i * chip->ecc.size; } static inline u8 *rk_nfc_buf_to_oob_ptr(struct nand_chip *chip, int i) { u8 *poi; poi = chip->oob_poi + i * NFC_SYS_DATA_SIZE; return poi; } static inline u8 *rk_nfc_buf_to_oob_ecc_ptr(struct nand_chip *chip, int i) { struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip); u8 *poi; poi = chip->oob_poi + rknand->metadata_size + chip->ecc.bytes * i; return poi; } static inline int rk_nfc_data_len(struct nand_chip *chip) { return chip->ecc.size + chip->ecc.bytes + NFC_SYS_DATA_SIZE; } static inline u8 *rk_nfc_data_ptr(struct nand_chip *chip, int i) { struct rk_nfc *nfc = nand_get_controller_data(chip); return nfc->page_buf + i * rk_nfc_data_len(chip); } static inline u8 *rk_nfc_oob_ptr(struct nand_chip *chip, int i) { struct rk_nfc *nfc = nand_get_controller_data(chip); return nfc->page_buf + i * rk_nfc_data_len(chip) + chip->ecc.size; } static int rk_nfc_hw_ecc_setup(struct nand_chip *chip, u32 strength) { struct rk_nfc *nfc = nand_get_controller_data(chip); u32 reg, i; for (i = 0; i < NFC_ECC_MAX_MODES; i++) { if (strength == nfc->cfg->ecc_strengths[i]) { reg = nfc->cfg->ecc_cfgs[i]; break; } } if (i >= NFC_ECC_MAX_MODES) return -EINVAL; writel(reg, nfc->regs + nfc->cfg->bchctl_off); /* Save chip ECC setting */ nfc->cur_ecc = strength; return 0; } static void rk_nfc_select_chip(struct nand_chip *chip, int cs) { struct rk_nfc *nfc = nand_get_controller_data(chip); struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip); struct nand_ecc_ctrl *ecc = &chip->ecc; u32 val; if (cs < 0) { nfc->selected_bank = -1; /* Deselect the currently selected target. */ val = readl_relaxed(nfc->regs + NFC_FMCTL); val &= ~FMCTL_CE_SEL_M; writel(val, nfc->regs + NFC_FMCTL); return; } nfc->selected_bank = rknand->sels[cs]; nfc->band_offset = NFC_BANK + nfc->selected_bank * NFC_BANK_STEP; val = readl_relaxed(nfc->regs + NFC_FMCTL); val &= ~FMCTL_CE_SEL_M; val |= FMCTL_CE_SEL(nfc->selected_bank); writel(val, nfc->regs + NFC_FMCTL); /* * Compare current chip timing with selected chip timing and * change if needed. */ if (nfc->cur_timing != rknand->timing) { writel(rknand->timing, nfc->regs + NFC_FMWAIT); nfc->cur_timing = rknand->timing; } /* * Compare current chip ECC setting with selected chip ECC setting and * change if needed. */ if (nfc->cur_ecc != ecc->strength) rk_nfc_hw_ecc_setup(chip, ecc->strength); } static inline int rk_nfc_wait_ioready(struct rk_nfc *nfc) { int rc; u32 val; rc = readl_relaxed_poll_timeout(nfc->regs + NFC_FMCTL, val, val & FMCTL_RDY, 10, NFC_TIMEOUT); return rc; } static void rk_nfc_read_buf(struct rk_nfc *nfc, u8 *buf, int len) { int i; for (i = 0; i < len; i++) buf[i] = readb_relaxed(nfc->regs + nfc->band_offset + BANK_DATA); } static void rk_nfc_write_buf(struct rk_nfc *nfc, const u8 *buf, int len) { int i; for (i = 0; i < len; i++) writeb(buf[i], nfc->regs + nfc->band_offset + BANK_DATA); } static int rk_nfc_cmd(struct nand_chip *chip, const struct nand_subop *subop) { struct rk_nfc *nfc = nand_get_controller_data(chip); unsigned int i, j, remaining, start; int reg_offset = nfc->band_offset; u8 *inbuf = NULL; const u8 *outbuf; u32 cnt = 0; int ret = 0; for (i = 0; i < subop->ninstrs; i++) { const struct nand_op_instr *instr = &subop->instrs[i]; switch (instr->type) { case NAND_OP_CMD_INSTR: writeb(instr->ctx.cmd.opcode, nfc->regs + reg_offset + BANK_CMD); break; case NAND_OP_ADDR_INSTR: remaining = nand_subop_get_num_addr_cyc(subop, i); start = nand_subop_get_addr_start_off(subop, i); for (j = 0; j < 8 && j + start < remaining; j++) writeb(instr->ctx.addr.addrs[j + start], nfc->regs + reg_offset + BANK_ADDR); break; case NAND_OP_DATA_IN_INSTR: case NAND_OP_DATA_OUT_INSTR: start = nand_subop_get_data_start_off(subop, i); cnt = nand_subop_get_data_len(subop, i); if (instr->type == NAND_OP_DATA_OUT_INSTR) { outbuf = instr->ctx.data.buf.out + start; rk_nfc_write_buf(nfc, outbuf, cnt); } else { inbuf = instr->ctx.data.buf.in + start; rk_nfc_read_buf(nfc, inbuf, cnt); } break; case NAND_OP_WAITRDY_INSTR: if (rk_nfc_wait_ioready(nfc) < 0) { ret = -ETIMEDOUT; dev_err(nfc->dev, "IO not ready\n"); } break; } } return ret; } static const struct nand_op_parser rk_nfc_op_parser = NAND_OP_PARSER( NAND_OP_PARSER_PATTERN( rk_nfc_cmd, NAND_OP_PARSER_PAT_CMD_ELEM(true), NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC), NAND_OP_PARSER_PAT_CMD_ELEM(true), NAND_OP_PARSER_PAT_WAITRDY_ELEM(true), NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, MAX_DATA_SIZE)), NAND_OP_PARSER_PATTERN( rk_nfc_cmd, NAND_OP_PARSER_PAT_CMD_ELEM(true), NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC), NAND_OP_PARSER_PAT_DATA_OUT_ELEM(true, MAX_DATA_SIZE), NAND_OP_PARSER_PAT_CMD_ELEM(true), NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)), ); static int rk_nfc_exec_op(struct nand_chip *chip, const struct nand_operation *op, bool check_only) { if (!check_only) rk_nfc_select_chip(chip, op->cs); return nand_op_parser_exec_op(chip, &rk_nfc_op_parser, op, check_only); } static int rk_nfc_setup_interface(struct nand_chip *chip, int target, const struct nand_interface_config *conf) { struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip); struct rk_nfc *nfc = nand_get_controller_data(chip); const struct nand_sdr_timings *timings; u32 rate, tc2rw, trwpw, trw2c; u32 temp; if (target < 0) return 0; timings = nand_get_sdr_timings(conf); if (IS_ERR(timings)) return -EOPNOTSUPP; if (IS_ERR(nfc->nfc_clk)) rate = clk_get_rate(nfc->ahb_clk); else rate = clk_get_rate(nfc->nfc_clk); /* Turn clock rate into kHz. */ rate /= 1000; tc2rw = 1; trw2c = 1; trwpw = max(timings->tWC_min, timings->tRC_min) / 1000; trwpw = DIV_ROUND_UP(trwpw * rate, 1000000); temp = timings->tREA_max / 1000; temp = DIV_ROUND_UP(temp * rate, 1000000); if (trwpw < temp) trwpw = temp; /* * ACCON: access timing control register * ------------------------------------- * 31:18: reserved * 17:12: csrw, clock cycles from the falling edge of CSn to the * falling edge of RDn or WRn * 11:11: reserved * 10:05: rwpw, the width of RDn or WRn in processor clock cycles * 04:00: rwcs, clock cycles from the rising edge of RDn or WRn to the * rising edge of CSn */ /* Save chip timing */ rknand->timing = ACCTIMING(tc2rw, trwpw, trw2c); return 0; } static void rk_nfc_xfer_start(struct rk_nfc *nfc, u8 rw, u8 n_KB, dma_addr_t dma_data, dma_addr_t dma_oob) { u32 dma_reg, fl_reg, bch_reg; dma_reg = DMA_ST | ((!rw) << DMA_WR) | DMA_EN | (2 << DMA_AHB_SIZE) | (7 << DMA_BURST_SIZE) | (16 << DMA_INC_NUM); fl_reg = (rw << FLCTL_WR) | FLCTL_XFER_EN | FLCTL_ACORRECT | (n_KB << FLCTL_XFER_SECTOR) | FLCTL_TOG_FIX; if (nfc->cfg->type == NFC_V6 || nfc->cfg->type == NFC_V8) { bch_reg = readl_relaxed(nfc->regs + nfc->cfg->bchctl_off); bch_reg = (bch_reg & (~BCHCTL_BANK_M)) | (nfc->selected_bank << BCHCTL_BANK); writel(bch_reg, nfc->regs + nfc->cfg->bchctl_off); } writel(dma_reg, nfc->regs + nfc->cfg->dma_cfg_off); writel((u32)dma_data, nfc->regs + nfc->cfg->dma_data_buf_off); writel((u32)dma_oob, nfc->regs + nfc->cfg->dma_oob_buf_off); writel(fl_reg, nfc->regs + nfc->cfg->flctl_off); fl_reg |= FLCTL_XFER_ST; writel(fl_reg, nfc->regs + nfc->cfg->flctl_off); } static int rk_nfc_wait_for_xfer_done(struct rk_nfc *nfc) { void __iomem *ptr; u32 reg; ptr = nfc->regs + nfc->cfg->flctl_off; return readl_relaxed_poll_timeout(ptr, reg, reg & FLCTL_XFER_READY, 10, NFC_TIMEOUT); } static int rk_nfc_write_page_raw(struct nand_chip *chip, const u8 *buf, int oob_on, int page) { struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip); struct rk_nfc *nfc = nand_get_controller_data(chip); struct mtd_info *mtd = nand_to_mtd(chip); struct nand_ecc_ctrl *ecc = &chip->ecc; int i, pages_per_blk; pages_per_blk = mtd->erasesize / mtd->writesize; if ((chip->options & NAND_IS_BOOT_MEDIUM) && (page < (pages_per_blk * rknand->boot_blks)) && rknand->boot_ecc != ecc->strength) { /* * There's currently no method to notify the MTD framework that * a different ECC strength is in use for the boot blocks. */ return -EIO; } if (!buf) memset(nfc->page_buf, 0xff, mtd->writesize + mtd->oobsize); for (i = 0; i < ecc->steps; i++) { /* Copy data to the NFC buffer. */ if (buf) memcpy(rk_nfc_data_ptr(chip, i), rk_nfc_buf_to_data_ptr(chip, buf, i), ecc->size); /* * The first four bytes of OOB are reserved for the * boot ROM. In some debugging cases, such as with a * read, erase and write back test these 4 bytes stored * in OOB also need to be written back. * * The function nand_block_bad detects bad blocks like: * * bad = chip->oob_poi[chip->badblockpos]; * * chip->badblockpos == 0 for a large page NAND Flash, * so chip->oob_poi[0] is the bad block mask (BBM). * * The OOB data layout on the NFC is: * * PA0 PA1 PA2 PA3 | BBM OOB1 OOB2 OOB3 | ... * * or * * 0xFF 0xFF 0xFF 0xFF | BBM OOB1 OOB2 OOB3 | ... * * The code here just swaps the first 4 bytes with the last * 4 bytes without losing any data. * * The chip->oob_poi data layout: * * BBM OOB1 OOB2 OOB3 |......| PA0 PA1 PA2 PA3 * * The rk_nfc_ooblayout_free() function already has reserved * these 4 bytes together with 2 bytes for BBM * by reducing it's length: * * oob_region->length = rknand->metadata_size - NFC_SYS_DATA_SIZE - 2; */ if (!i) memcpy(rk_nfc_oob_ptr(chip, i), rk_nfc_buf_to_oob_ptr(chip, ecc->steps - 1), NFC_SYS_DATA_SIZE); else memcpy(rk_nfc_oob_ptr(chip, i), rk_nfc_buf_to_oob_ptr(chip, i - 1), NFC_SYS_DATA_SIZE); /* Copy ECC data to the NFC buffer. */ memcpy(rk_nfc_oob_ptr(chip, i) + NFC_SYS_DATA_SIZE, rk_nfc_buf_to_oob_ecc_ptr(chip, i), ecc->bytes); } nand_prog_page_begin_op(chip, page, 0, NULL, 0); rk_nfc_write_buf(nfc, buf, mtd->writesize + mtd->oobsize); return nand_prog_page_end_op(chip); } static int rk_nfc_write_page_hwecc(struct nand_chip *chip, const u8 *buf, int oob_on, int page) { struct mtd_info *mtd = nand_to_mtd(chip); struct rk_nfc *nfc = nand_get_controller_data(chip); struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip); struct nand_ecc_ctrl *ecc = &chip->ecc; int oob_step = (ecc->bytes > 60) ? NFC_MAX_OOB_PER_STEP : NFC_MIN_OOB_PER_STEP; int pages_per_blk = mtd->erasesize / mtd->writesize; int ret = 0, i, boot_rom_mode = 0; dma_addr_t dma_data, dma_oob; u32 tmp; u8 *oob; nand_prog_page_begin_op(chip, page, 0, NULL, 0); if (buf) memcpy(nfc->page_buf, buf, mtd->writesize); else memset(nfc->page_buf, 0xFF, mtd->writesize); /* * The first blocks (4, 8 or 16 depending on the device) are used * by the boot ROM and the first 32 bits of OOB need to link to * the next page address in the same block. We can't directly copy * OOB data from the MTD framework, because this page address * conflicts for example with the bad block marker (BBM), * so we shift all OOB data including the BBM with 4 byte positions. * As a consequence the OOB size available to the MTD framework is * also reduced with 4 bytes. * * PA0 PA1 PA2 PA3 | BBM OOB1 OOB2 OOB3 | ... * * If a NAND is not a boot medium or the page is not a boot block, * the first 4 bytes are left untouched by writing 0xFF to them. * * 0xFF 0xFF 0xFF 0xFF | BBM OOB1 OOB2 OOB3 | ... * * The code here just swaps the first 4 bytes with the last * 4 bytes without losing any data. * * The chip->oob_poi data layout: * * BBM OOB1 OOB2 OOB3 |......| PA0 PA1 PA2 PA3 * * Configure the ECC algorithm supported by the boot ROM. */ if ((page < (pages_per_blk * rknand->boot_blks)) && (chip->options & NAND_IS_BOOT_MEDIUM)) { boot_rom_mode = 1; if (rknand->boot_ecc != ecc->strength) rk_nfc_hw_ecc_setup(chip, rknand->boot_ecc); } for (i = 0; i < ecc->steps; i++) { if (!i) oob = chip->oob_poi + (ecc->steps - 1) * NFC_SYS_DATA_SIZE; else oob = chip->oob_poi + (i - 1) * NFC_SYS_DATA_SIZE; tmp = oob[0] | oob[1] << 8 | oob[2] << 16 | oob[3] << 24; if (nfc->cfg->type == NFC_V9) nfc->oob_buf[i] = tmp; else nfc->oob_buf[i * (oob_step / 4)] = tmp; } dma_data = dma_map_single(nfc->dev, (void *)nfc->page_buf, mtd->writesize, DMA_TO_DEVICE); dma_oob = dma_map_single(nfc->dev, nfc->oob_buf, ecc->steps * oob_step, DMA_TO_DEVICE); reinit_completion(&nfc->done); writel(INT_DMA, nfc->regs + nfc->cfg->int_en_off); rk_nfc_xfer_start(nfc, NFC_WRITE, ecc->steps, dma_data, dma_oob); ret = wait_for_completion_timeout(&nfc->done, msecs_to_jiffies(100)); if (!ret) dev_warn(nfc->dev, "write: wait dma done timeout.\n"); /* * Whether the DMA transfer is completed or not. The driver * needs to check the NFC`s status register to see if the data * transfer was completed. */ ret = rk_nfc_wait_for_xfer_done(nfc); dma_unmap_single(nfc->dev, dma_data, mtd->writesize, DMA_TO_DEVICE); dma_unmap_single(nfc->dev, dma_oob, ecc->steps * oob_step, DMA_TO_DEVICE); if (boot_rom_mode && rknand->boot_ecc != ecc->strength) rk_nfc_hw_ecc_setup(chip, ecc->strength); if (ret) { dev_err(nfc->dev, "write: wait transfer done timeout.\n"); return -ETIMEDOUT; } return nand_prog_page_end_op(chip); } static int rk_nfc_write_oob(struct nand_chip *chip, int page) { return rk_nfc_write_page_hwecc(chip, NULL, 1, page); } static int rk_nfc_read_page_raw(struct nand_chip *chip, u8 *buf, int oob_on, int page) { struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip); struct rk_nfc *nfc = nand_get_controller_data(chip); struct mtd_info *mtd = nand_to_mtd(chip); struct nand_ecc_ctrl *ecc = &chip->ecc; int i, pages_per_blk; pages_per_blk = mtd->erasesize / mtd->writesize; if ((chip->options & NAND_IS_BOOT_MEDIUM) && (page < (pages_per_blk * rknand->boot_blks)) && rknand->boot_ecc != ecc->strength) { /* * There's currently no method to notify the MTD framework that * a different ECC strength is in use for the boot blocks. */ return -EIO; } nand_read_page_op(chip, page, 0, NULL, 0); rk_nfc_read_buf(nfc, nfc->page_buf, mtd->writesize + mtd->oobsize); for (i = 0; i < ecc->steps; i++) { /* * The first four bytes of OOB are reserved for the * boot ROM. In some debugging cases, such as with a read, * erase and write back test, these 4 bytes also must be * saved somewhere, otherwise this information will be * lost during a write back. */ if (!i) memcpy(rk_nfc_buf_to_oob_ptr(chip, ecc->steps - 1), rk_nfc_oob_ptr(chip, i), NFC_SYS_DATA_SIZE); else memcpy(rk_nfc_buf_to_oob_ptr(chip, i - 1), rk_nfc_oob_ptr(chip, i), NFC_SYS_DATA_SIZE); /* Copy ECC data from the NFC buffer. */ memcpy(rk_nfc_buf_to_oob_ecc_ptr(chip, i), rk_nfc_oob_ptr(chip, i) + NFC_SYS_DATA_SIZE, ecc->bytes); /* Copy data from the NFC buffer. */ if (buf) memcpy(rk_nfc_buf_to_data_ptr(chip, buf, i), rk_nfc_data_ptr(chip, i), ecc->size); } return 0; } static int rk_nfc_read_page_hwecc(struct nand_chip *chip, u8 *buf, int oob_on, int page) { struct mtd_info *mtd = nand_to_mtd(chip); struct rk_nfc *nfc = nand_get_controller_data(chip); struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip); struct nand_ecc_ctrl *ecc = &chip->ecc; int oob_step = (ecc->bytes > 60) ? NFC_MAX_OOB_PER_STEP : NFC_MIN_OOB_PER_STEP; int pages_per_blk = mtd->erasesize / mtd->writesize; dma_addr_t dma_data, dma_oob; int ret = 0, i, cnt, boot_rom_mode = 0; int max_bitflips = 0, bch_st, ecc_fail = 0; u8 *oob; u32 tmp; nand_read_page_op(chip, page, 0, NULL, 0); dma_data = dma_map_single(nfc->dev, nfc->page_buf, mtd->writesize, DMA_FROM_DEVICE); dma_oob = dma_map_single(nfc->dev, nfc->oob_buf, ecc->steps * oob_step, DMA_FROM_DEVICE); /* * The first blocks (4, 8 or 16 depending on the device) * are used by the boot ROM. * Configure the ECC algorithm supported by the boot ROM. */ if ((page < (pages_per_blk * rknand->boot_blks)) && (chip->options & NAND_IS_BOOT_MEDIUM)) { boot_rom_mode = 1; if (rknand->boot_ecc != ecc->strength) rk_nfc_hw_ecc_setup(chip, rknand->boot_ecc); } reinit_completion(&nfc->done); writel(INT_DMA, nfc->regs + nfc->cfg->int_en_off); rk_nfc_xfer_start(nfc, NFC_READ, ecc->steps, dma_data, dma_oob); ret = wait_for_completion_timeout(&nfc->done, msecs_to_jiffies(100)); if (!ret) dev_warn(nfc->dev, "read: wait dma done timeout.\n"); /* * Whether the DMA transfer is completed or not. The driver * needs to check the NFC`s status register to see if the data * transfer was completed. */ ret = rk_nfc_wait_for_xfer_done(nfc); dma_unmap_single(nfc->dev, dma_data, mtd->writesize, DMA_FROM_DEVICE); dma_unmap_single(nfc->dev, dma_oob, ecc->steps * oob_step, DMA_FROM_DEVICE); if (ret) { ret = -ETIMEDOUT; dev_err(nfc->dev, "read: wait transfer done timeout.\n"); goto timeout_err; } for (i = 0; i < ecc->steps; i++) { if (!i) oob = chip->oob_poi + (ecc->steps - 1) * NFC_SYS_DATA_SIZE; else oob = chip->oob_poi + (i - 1) * NFC_SYS_DATA_SIZE; if (nfc->cfg->type == NFC_V9) tmp = nfc->oob_buf[i]; else tmp = nfc->oob_buf[i * (oob_step / 4)]; *oob++ = (u8)tmp; *oob++ = (u8)(tmp >> 8); *oob++ = (u8)(tmp >> 16); *oob++ = (u8)(tmp >> 24); } for (i = 0; i < (ecc->steps / 2); i++) { bch_st = readl_relaxed(nfc->regs + nfc->cfg->bch_st_off + i * 4); if (bch_st & BIT(nfc->cfg->ecc0.err_flag_bit) || bch_st & BIT(nfc->cfg->ecc1.err_flag_bit)) { mtd->ecc_stats.failed++; ecc_fail = 1; } else { cnt = ECC_ERR_CNT(bch_st, nfc->cfg->ecc0); mtd->ecc_stats.corrected += cnt; max_bitflips = max_t(u32, max_bitflips, cnt); cnt = ECC_ERR_CNT(bch_st, nfc->cfg->ecc1); mtd->ecc_stats.corrected += cnt; max_bitflips = max_t(u32, max_bitflips, cnt); } } if (buf) memcpy(buf, nfc->page_buf, mtd->writesize); timeout_err: if (boot_rom_mode && rknand->boot_ecc != ecc->strength) rk_nfc_hw_ecc_setup(chip, ecc->strength); if (ret) return ret; if (ecc_fail) { dev_err(nfc->dev, "read page: %x ecc error!\n", page); return 0; } return max_bitflips; } static int rk_nfc_read_oob(struct nand_chip *chip, int page) { return rk_nfc_read_page_hwecc(chip, NULL, 1, page); } static inline void rk_nfc_hw_init(struct rk_nfc *nfc) { /* Disable flash wp. */ writel(FMCTL_WP, nfc->regs + NFC_FMCTL); /* Config default timing 40ns at 150 Mhz NFC clock. */ writel(0x1081, nfc->regs + NFC_FMWAIT); nfc->cur_timing = 0x1081; /* Disable randomizer and DMA. */ writel(0, nfc->regs + nfc->cfg->randmz_off); writel(0, nfc->regs + nfc->cfg->dma_cfg_off); writel(FLCTL_RST, nfc->regs + nfc->cfg->flctl_off); } static irqreturn_t rk_nfc_irq(int irq, void *id) { struct rk_nfc *nfc = id; u32 sta, ien; sta = readl_relaxed(nfc->regs + nfc->cfg->int_st_off); ien = readl_relaxed(nfc->regs + nfc->cfg->int_en_off); if (!(sta & ien)) return IRQ_NONE; writel(sta, nfc->regs + nfc->cfg->int_clr_off); writel(~sta & ien, nfc->regs + nfc->cfg->int_en_off); complete(&nfc->done); return IRQ_HANDLED; } static int rk_nfc_enable_clks(struct device *dev, struct rk_nfc *nfc) { int ret; if (!IS_ERR(nfc->nfc_clk)) { ret = clk_prepare_enable(nfc->nfc_clk); if (ret) { dev_err(dev, "failed to enable NFC clk\n"); return ret; } } ret = clk_prepare_enable(nfc->ahb_clk); if (ret) { dev_err(dev, "failed to enable ahb clk\n"); clk_disable_unprepare(nfc->nfc_clk); return ret; } return 0; } static void rk_nfc_disable_clks(struct rk_nfc *nfc) { clk_disable_unprepare(nfc->nfc_clk); clk_disable_unprepare(nfc->ahb_clk); } static int rk_nfc_ooblayout_free(struct mtd_info *mtd, int section, struct mtd_oob_region *oob_region) { struct nand_chip *chip = mtd_to_nand(mtd); struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip); if (section) return -ERANGE; oob_region->length = rknand->metadata_size - NFC_SYS_DATA_SIZE - 2; oob_region->offset = 2; return 0; } static int rk_nfc_ooblayout_ecc(struct mtd_info *mtd, int section, struct mtd_oob_region *oob_region) { struct nand_chip *chip = mtd_to_nand(mtd); struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip); if (section) return -ERANGE; oob_region->length = mtd->oobsize - rknand->metadata_size; oob_region->offset = rknand->metadata_size; return 0; } static const struct mtd_ooblayout_ops rk_nfc_ooblayout_ops = { .free = rk_nfc_ooblayout_free, .ecc = rk_nfc_ooblayout_ecc, }; static int rk_nfc_ecc_init(struct device *dev, struct mtd_info *mtd) { struct nand_chip *chip = mtd_to_nand(mtd); struct rk_nfc *nfc = nand_get_controller_data(chip); struct nand_ecc_ctrl *ecc = &chip->ecc; const u8 *strengths = nfc->cfg->ecc_strengths; u8 max_strength, nfc_max_strength; int i; nfc_max_strength = nfc->cfg->ecc_strengths[0]; /* If optional dt settings not present. */ if (!ecc->size || !ecc->strength || ecc->strength > nfc_max_strength) { chip->ecc.size = 1024; ecc->steps = mtd->writesize / ecc->size; /* * HW ECC always requests the number of ECC bytes per 1024 byte * blocks. The first 4 OOB bytes are reserved for sys data. */ max_strength = ((mtd->oobsize / ecc->steps) - 4) * 8 / fls(8 * 1024); if (max_strength > nfc_max_strength) max_strength = nfc_max_strength; for (i = 0; i < 4; i++) { if (max_strength >= strengths[i]) break; } if (i >= 4) { dev_err(nfc->dev, "unsupported ECC strength\n"); return -EOPNOTSUPP; } ecc->strength = strengths[i]; } ecc->steps = mtd->writesize / ecc->size; ecc->bytes = DIV_ROUND_UP(ecc->strength * fls(8 * chip->ecc.size), 8); return 0; } static int rk_nfc_attach_chip(struct nand_chip *chip) { struct mtd_info *mtd = nand_to_mtd(chip); struct device *dev = mtd->dev.parent; struct rk_nfc *nfc = nand_get_controller_data(chip); struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip); struct nand_ecc_ctrl *ecc = &chip->ecc; int new_page_len, new_oob_len; void *buf; int ret; if (chip->options & NAND_BUSWIDTH_16) { dev_err(dev, "16 bits bus width not supported"); return -EINVAL; } if (ecc->engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST) return 0; ret = rk_nfc_ecc_init(dev, mtd); if (ret) return ret; rknand->metadata_size = NFC_SYS_DATA_SIZE * ecc->steps; if (rknand->metadata_size < NFC_SYS_DATA_SIZE + 2) { dev_err(dev, "driver needs at least %d bytes of meta data\n", NFC_SYS_DATA_SIZE + 2); return -EIO; } /* Check buffer first, avoid duplicate alloc buffer. */ new_page_len = mtd->writesize + mtd->oobsize; if (nfc->page_buf && new_page_len > nfc->page_buf_size) { buf = krealloc(nfc->page_buf, new_page_len, GFP_KERNEL | GFP_DMA); if (!buf) return -ENOMEM; nfc->page_buf = buf; nfc->page_buf_size = new_page_len; } new_oob_len = ecc->steps * NFC_MAX_OOB_PER_STEP; if (nfc->oob_buf && new_oob_len > nfc->oob_buf_size) { buf = krealloc(nfc->oob_buf, new_oob_len, GFP_KERNEL | GFP_DMA); if (!buf) { kfree(nfc->page_buf); nfc->page_buf = NULL; return -ENOMEM; } nfc->oob_buf = buf; nfc->oob_buf_size = new_oob_len; } if (!nfc->page_buf) { nfc->page_buf = kzalloc(new_page_len, GFP_KERNEL | GFP_DMA); if (!nfc->page_buf) return -ENOMEM; nfc->page_buf_size = new_page_len; } if (!nfc->oob_buf) { nfc->oob_buf = kzalloc(new_oob_len, GFP_KERNEL | GFP_DMA); if (!nfc->oob_buf) { kfree(nfc->page_buf); nfc->page_buf = NULL; return -ENOMEM; } nfc->oob_buf_size = new_oob_len; } chip->ecc.write_page_raw = rk_nfc_write_page_raw; chip->ecc.write_page = rk_nfc_write_page_hwecc; chip->ecc.write_oob = rk_nfc_write_oob; chip->ecc.read_page_raw = rk_nfc_read_page_raw; chip->ecc.read_page = rk_nfc_read_page_hwecc; chip->ecc.read_oob = rk_nfc_read_oob; return 0; } static const struct nand_controller_ops rk_nfc_controller_ops = { .attach_chip = rk_nfc_attach_chip, .exec_op = rk_nfc_exec_op, .setup_interface = rk_nfc_setup_interface, }; static int rk_nfc_nand_chip_init(struct device *dev, struct rk_nfc *nfc, struct device_node *np) { struct rk_nfc_nand_chip *rknand; struct nand_chip *chip; struct mtd_info *mtd; int nsels; u32 tmp; int ret; int i; if (!of_get_property(np, "reg", &nsels)) return -ENODEV; nsels /= sizeof(u32); if (!nsels || nsels > NFC_MAX_NSELS) { dev_err(dev, "invalid reg property size %d\n", nsels); return -EINVAL; } rknand = devm_kzalloc(dev, struct_size(rknand, sels, nsels), GFP_KERNEL); if (!rknand) return -ENOMEM; rknand->nsels = nsels; for (i = 0; i < nsels; i++) { ret = of_property_read_u32_index(np, "reg", i, &tmp); if (ret) { dev_err(dev, "reg property failure : %d\n", ret); return ret; } if (tmp >= NFC_MAX_NSELS) { dev_err(dev, "invalid CS: %u\n", tmp); return -EINVAL; } if (test_and_set_bit(tmp, &nfc->assigned_cs)) { dev_err(dev, "CS %u already assigned\n", tmp); return -EINVAL; } rknand->sels[i] = tmp; } chip = &rknand->chip; chip->controller = &nfc->controller; nand_set_flash_node(chip, np); nand_set_controller_data(chip, nfc); chip->options |= NAND_USES_DMA | NAND_NO_SUBPAGE_WRITE; chip->bbt_options = NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB; /* Set default mode in case dt entry is missing. */ chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; mtd = nand_to_mtd(chip); mtd->owner = THIS_MODULE; mtd->dev.parent = dev; if (!mtd->name) { dev_err(nfc->dev, "NAND label property is mandatory\n"); return -EINVAL; } mtd_set_ooblayout(mtd, &rk_nfc_ooblayout_ops); rk_nfc_hw_init(nfc); ret = nand_scan(chip, nsels); if (ret) return ret; if (chip->options & NAND_IS_BOOT_MEDIUM) { ret = of_property_read_u32(np, "rockchip,boot-blks", &tmp); rknand->boot_blks = ret ? 0 : tmp; ret = of_property_read_u32(np, "rockchip,boot-ecc-strength", &tmp); rknand->boot_ecc = ret ? chip->ecc.strength : tmp; } ret = mtd_device_register(mtd, NULL, 0); if (ret) { dev_err(dev, "MTD parse partition error\n"); nand_cleanup(chip); return ret; } list_add_tail(&rknand->node, &nfc->chips); return 0; } static void rk_nfc_chips_cleanup(struct rk_nfc *nfc) { struct rk_nfc_nand_chip *rknand, *tmp; struct nand_chip *chip; int ret; list_for_each_entry_safe(rknand, tmp, &nfc->chips, node) { chip = &rknand->chip; ret = mtd_device_unregister(nand_to_mtd(chip)); WARN_ON(ret); nand_cleanup(chip); list_del(&rknand->node); } } static int rk_nfc_nand_chips_init(struct device *dev, struct rk_nfc *nfc) { struct device_node *np = dev->of_node, *nand_np; int nchips = of_get_child_count(np); int ret; if (!nchips || nchips > NFC_MAX_NSELS) { dev_err(nfc->dev, "incorrect number of NAND chips (%d)\n", nchips); return -EINVAL; } for_each_child_of_node(np, nand_np) { ret = rk_nfc_nand_chip_init(dev, nfc, nand_np); if (ret) { of_node_put(nand_np); rk_nfc_chips_cleanup(nfc); return ret; } } return 0; } static struct nfc_cfg nfc_v6_cfg = { .type = NFC_V6, .ecc_strengths = {60, 40, 24, 16}, .ecc_cfgs = { 0x00040011, 0x00040001, 0x00000011, 0x00000001, }, .flctl_off = 0x08, .bchctl_off = 0x0C, .dma_cfg_off = 0x10, .dma_data_buf_off = 0x14, .dma_oob_buf_off = 0x18, .dma_st_off = 0x1C, .bch_st_off = 0x20, .randmz_off = 0x150, .int_en_off = 0x16C, .int_clr_off = 0x170, .int_st_off = 0x174, .oob0_off = 0x200, .oob1_off = 0x230, .ecc0 = { .err_flag_bit = 2, .low = 3, .low_mask = 0x1F, .low_bn = 5, .high = 27, .high_mask = 0x1, }, .ecc1 = { .err_flag_bit = 15, .low = 16, .low_mask = 0x1F, .low_bn = 5, .high = 29, .high_mask = 0x1, }, }; static struct nfc_cfg nfc_v8_cfg = { .type = NFC_V8, .ecc_strengths = {16, 16, 16, 16}, .ecc_cfgs = { 0x00000001, 0x00000001, 0x00000001, 0x00000001, }, .flctl_off = 0x08, .bchctl_off = 0x0C, .dma_cfg_off = 0x10, .dma_data_buf_off = 0x14, .dma_oob_buf_off = 0x18, .dma_st_off = 0x1C, .bch_st_off = 0x20, .randmz_off = 0x150, .int_en_off = 0x16C, .int_clr_off = 0x170, .int_st_off = 0x174, .oob0_off = 0x200, .oob1_off = 0x230, .ecc0 = { .err_flag_bit = 2, .low = 3, .low_mask = 0x1F, .low_bn = 5, .high = 27, .high_mask = 0x1, }, .ecc1 = { .err_flag_bit = 15, .low = 16, .low_mask = 0x1F, .low_bn = 5, .high = 29, .high_mask = 0x1, }, }; static struct nfc_cfg nfc_v9_cfg = { .type = NFC_V9, .ecc_strengths = {70, 60, 40, 16}, .ecc_cfgs = { 0x00000001, 0x06000001, 0x04000001, 0x02000001, }, .flctl_off = 0x10, .bchctl_off = 0x20, .dma_cfg_off = 0x30, .dma_data_buf_off = 0x34, .dma_oob_buf_off = 0x38, .dma_st_off = 0x3C, .bch_st_off = 0x150, .randmz_off = 0x208, .int_en_off = 0x120, .int_clr_off = 0x124, .int_st_off = 0x128, .oob0_off = 0x200, .oob1_off = 0x204, .ecc0 = { .err_flag_bit = 2, .low = 3, .low_mask = 0x7F, .low_bn = 7, .high = 0, .high_mask = 0x0, }, .ecc1 = { .err_flag_bit = 18, .low = 19, .low_mask = 0x7F, .low_bn = 7, .high = 0, .high_mask = 0x0, }, }; static const struct of_device_id rk_nfc_id_table[] = { { .compatible = "rockchip,px30-nfc", .data = &nfc_v9_cfg }, { .compatible = "rockchip,rk2928-nfc", .data = &nfc_v6_cfg }, { .compatible = "rockchip,rv1108-nfc", .data = &nfc_v8_cfg }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, rk_nfc_id_table); static int rk_nfc_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct rk_nfc *nfc; int ret, irq; nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL); if (!nfc) return -ENOMEM; nand_controller_init(&nfc->controller); INIT_LIST_HEAD(&nfc->chips); nfc->controller.ops = &rk_nfc_controller_ops; nfc->cfg = of_device_get_match_data(dev); nfc->dev = dev; init_completion(&nfc->done); nfc->regs = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(nfc->regs)) { ret = PTR_ERR(nfc->regs); goto release_nfc; } nfc->nfc_clk = devm_clk_get(dev, "nfc"); if (IS_ERR(nfc->nfc_clk)) { dev_dbg(dev, "no NFC clk\n"); /* Some earlier models, such as rk3066, have no NFC clk. */ } nfc->ahb_clk = devm_clk_get(dev, "ahb"); if (IS_ERR(nfc->ahb_clk)) { dev_err(dev, "no ahb clk\n"); ret = PTR_ERR(nfc->ahb_clk); goto release_nfc; } ret = rk_nfc_enable_clks(dev, nfc); if (ret) goto release_nfc; irq = platform_get_irq(pdev, 0); if (irq < 0) { ret = -EINVAL; goto clk_disable; } writel(0, nfc->regs + nfc->cfg->int_en_off); ret = devm_request_irq(dev, irq, rk_nfc_irq, 0x0, "rk-nand", nfc); if (ret) { dev_err(dev, "failed to request NFC irq\n"); goto clk_disable; } platform_set_drvdata(pdev, nfc); ret = rk_nfc_nand_chips_init(dev, nfc); if (ret) { dev_err(dev, "failed to init NAND chips\n"); goto clk_disable; } return 0; clk_disable: rk_nfc_disable_clks(nfc); release_nfc: return ret; } static void rk_nfc_remove(struct platform_device *pdev) { struct rk_nfc *nfc = platform_get_drvdata(pdev); kfree(nfc->page_buf); kfree(nfc->oob_buf); rk_nfc_chips_cleanup(nfc); rk_nfc_disable_clks(nfc); } static int __maybe_unused rk_nfc_suspend(struct device *dev) { struct rk_nfc *nfc = dev_get_drvdata(dev); rk_nfc_disable_clks(nfc); return 0; } static int __maybe_unused rk_nfc_resume(struct device *dev) { struct rk_nfc *nfc = dev_get_drvdata(dev); struct rk_nfc_nand_chip *rknand; struct nand_chip *chip; int ret; u32 i; ret = rk_nfc_enable_clks(dev, nfc); if (ret) return ret; /* Reset NAND chip if VCC was powered off. */ list_for_each_entry(rknand, &nfc->chips, node) { chip = &rknand->chip; for (i = 0; i < rknand->nsels; i++) nand_reset(chip, i); } return 0; } static const struct dev_pm_ops rk_nfc_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(rk_nfc_suspend, rk_nfc_resume) }; static struct platform_driver rk_nfc_driver = { .probe = rk_nfc_probe, .remove_new = rk_nfc_remove, .driver = { .name = "rockchip-nfc", .of_match_table = rk_nfc_id_table, .pm = &rk_nfc_pm_ops, }, }; module_platform_driver(rk_nfc_driver); MODULE_LICENSE("Dual MIT/GPL"); MODULE_AUTHOR("Yifeng Zhao <yifeng.zhao@rock-chips.com>"); MODULE_DESCRIPTION("Rockchip Nand Flash Controller Driver"); MODULE_ALIAS("platform:rockchip-nand-controller");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1