Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Artem B. Bityutskiy | 4119 | 66.35% | 41 | 50.62% |
Boris Brezillon | 972 | 15.66% | 6 | 7.41% |
Richard Weinberger | 960 | 15.46% | 16 | 19.75% |
Wang YanQing | 42 | 0.68% | 1 | 1.23% |
Tatyana Brokhman | 28 | 0.45% | 1 | 1.23% |
Christoph Hellwig | 27 | 0.43% | 1 | 1.23% |
Joel Reardon | 15 | 0.24% | 1 | 1.23% |
Kees Cook | 10 | 0.16% | 1 | 1.23% |
Kyungmin Park | 8 | 0.13% | 1 | 1.23% |
Geert Uytterhoeven | 7 | 0.11% | 1 | 1.23% |
Brian Norris | 6 | 0.10% | 3 | 3.70% |
Jeff Garzik | 3 | 0.05% | 1 | 1.23% |
Thomas Gleixner | 2 | 0.03% | 1 | 1.23% |
Bhavesh Parekh | 2 | 0.03% | 1 | 1.23% |
Adrian Hunter | 2 | 0.03% | 1 | 1.23% |
Lee Jones | 2 | 0.03% | 1 | 1.23% |
Randy Dunlap | 1 | 0.02% | 1 | 1.23% |
Jilin Yuan | 1 | 0.02% | 1 | 1.23% |
Anand Gadiyar | 1 | 0.02% | 1 | 1.23% |
Total | 6208 | 81 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (c) International Business Machines Corp., 2006 * * Author: Artem Bityutskiy (Битюцкий Артём) */ /* * The UBI Eraseblock Association (EBA) sub-system. * * This sub-system is responsible for I/O to/from logical eraseblock. * * Although in this implementation the EBA table is fully kept and managed in * RAM, which assumes poor scalability, it might be (partially) maintained on * flash in future implementations. * * The EBA sub-system implements per-logical eraseblock locking. Before * accessing a logical eraseblock it is locked for reading or writing. The * per-logical eraseblock locking is implemented by means of the lock tree. The * lock tree is an RB-tree which refers all the currently locked logical * eraseblocks. The lock tree elements are &struct ubi_ltree_entry objects. * They are indexed by (@vol_id, @lnum) pairs. * * EBA also maintains the global sequence counter which is incremented each * time a logical eraseblock is mapped to a physical eraseblock and it is * stored in the volume identifier header. This means that each VID header has * a unique sequence number. The sequence number is only increased an we assume * 64 bits is enough to never overflow. */ #include <linux/slab.h> #include <linux/crc32.h> #include <linux/err.h> #include "ubi.h" /** * struct ubi_eba_entry - structure encoding a single LEB -> PEB association * @pnum: the physical eraseblock number attached to the LEB * * This structure is encoding a LEB -> PEB association. Note that the LEB * number is not stored here, because it is the index used to access the * entries table. */ struct ubi_eba_entry { int pnum; }; /** * struct ubi_eba_table - LEB -> PEB association information * @entries: the LEB to PEB mapping (one entry per LEB). * * This structure is private to the EBA logic and should be kept here. * It is encoding the LEB to PEB association table, and is subject to * changes. */ struct ubi_eba_table { struct ubi_eba_entry *entries; }; /** * ubi_next_sqnum - get next sequence number. * @ubi: UBI device description object * * This function returns next sequence number to use, which is just the current * global sequence counter value. It also increases the global sequence * counter. */ unsigned long long ubi_next_sqnum(struct ubi_device *ubi) { unsigned long long sqnum; spin_lock(&ubi->ltree_lock); sqnum = ubi->global_sqnum++; spin_unlock(&ubi->ltree_lock); return sqnum; } /** * ubi_get_compat - get compatibility flags of a volume. * @ubi: UBI device description object * @vol_id: volume ID * * This function returns compatibility flags for an internal volume. User * volumes have no compatibility flags, so %0 is returned. */ static int ubi_get_compat(const struct ubi_device *ubi, int vol_id) { if (vol_id == UBI_LAYOUT_VOLUME_ID) return UBI_LAYOUT_VOLUME_COMPAT; return 0; } /** * ubi_eba_get_ldesc - get information about a LEB * @vol: volume description object * @lnum: logical eraseblock number * @ldesc: the LEB descriptor to fill * * Used to query information about a specific LEB. * It is currently only returning the physical position of the LEB, but will be * extended to provide more information. */ void ubi_eba_get_ldesc(struct ubi_volume *vol, int lnum, struct ubi_eba_leb_desc *ldesc) { ldesc->lnum = lnum; ldesc->pnum = vol->eba_tbl->entries[lnum].pnum; } /** * ubi_eba_create_table - allocate a new EBA table and initialize it with all * LEBs unmapped * @vol: volume containing the EBA table to copy * @nentries: number of entries in the table * * Allocate a new EBA table and initialize it with all LEBs unmapped. * Returns a valid pointer if it succeed, an ERR_PTR() otherwise. */ struct ubi_eba_table *ubi_eba_create_table(struct ubi_volume *vol, int nentries) { struct ubi_eba_table *tbl; int err = -ENOMEM; int i; tbl = kzalloc(sizeof(*tbl), GFP_KERNEL); if (!tbl) return ERR_PTR(-ENOMEM); tbl->entries = kmalloc_array(nentries, sizeof(*tbl->entries), GFP_KERNEL); if (!tbl->entries) goto err; for (i = 0; i < nentries; i++) tbl->entries[i].pnum = UBI_LEB_UNMAPPED; return tbl; err: kfree(tbl); return ERR_PTR(err); } /** * ubi_eba_destroy_table - destroy an EBA table * @tbl: the table to destroy * * Destroy an EBA table. */ void ubi_eba_destroy_table(struct ubi_eba_table *tbl) { if (!tbl) return; kfree(tbl->entries); kfree(tbl); } /** * ubi_eba_copy_table - copy the EBA table attached to vol into another table * @vol: volume containing the EBA table to copy * @dst: destination * @nentries: number of entries to copy * * Copy the EBA table stored in vol into the one pointed by dst. */ void ubi_eba_copy_table(struct ubi_volume *vol, struct ubi_eba_table *dst, int nentries) { struct ubi_eba_table *src; int i; ubi_assert(dst && vol && vol->eba_tbl); src = vol->eba_tbl; for (i = 0; i < nentries; i++) dst->entries[i].pnum = src->entries[i].pnum; } /** * ubi_eba_replace_table - assign a new EBA table to a volume * @vol: volume containing the EBA table to copy * @tbl: new EBA table * * Assign a new EBA table to the volume and release the old one. */ void ubi_eba_replace_table(struct ubi_volume *vol, struct ubi_eba_table *tbl) { ubi_eba_destroy_table(vol->eba_tbl); vol->eba_tbl = tbl; } /** * ltree_lookup - look up the lock tree. * @ubi: UBI device description object * @vol_id: volume ID * @lnum: logical eraseblock number * * This function returns a pointer to the corresponding &struct ubi_ltree_entry * object if the logical eraseblock is locked and %NULL if it is not. * @ubi->ltree_lock has to be locked. */ static struct ubi_ltree_entry *ltree_lookup(struct ubi_device *ubi, int vol_id, int lnum) { struct rb_node *p; p = ubi->ltree.rb_node; while (p) { struct ubi_ltree_entry *le; le = rb_entry(p, struct ubi_ltree_entry, rb); if (vol_id < le->vol_id) p = p->rb_left; else if (vol_id > le->vol_id) p = p->rb_right; else { if (lnum < le->lnum) p = p->rb_left; else if (lnum > le->lnum) p = p->rb_right; else return le; } } return NULL; } /** * ltree_add_entry - add new entry to the lock tree. * @ubi: UBI device description object * @vol_id: volume ID * @lnum: logical eraseblock number * * This function adds new entry for logical eraseblock (@vol_id, @lnum) to the * lock tree. If such entry is already there, its usage counter is increased. * Returns pointer to the lock tree entry or %-ENOMEM if memory allocation * failed. */ static struct ubi_ltree_entry *ltree_add_entry(struct ubi_device *ubi, int vol_id, int lnum) { struct ubi_ltree_entry *le, *le1, *le_free; le = kmalloc(sizeof(struct ubi_ltree_entry), GFP_NOFS); if (!le) return ERR_PTR(-ENOMEM); le->users = 0; init_rwsem(&le->mutex); le->vol_id = vol_id; le->lnum = lnum; spin_lock(&ubi->ltree_lock); le1 = ltree_lookup(ubi, vol_id, lnum); if (le1) { /* * This logical eraseblock is already locked. The newly * allocated lock entry is not needed. */ le_free = le; le = le1; } else { struct rb_node **p, *parent = NULL; /* * No lock entry, add the newly allocated one to the * @ubi->ltree RB-tree. */ le_free = NULL; p = &ubi->ltree.rb_node; while (*p) { parent = *p; le1 = rb_entry(parent, struct ubi_ltree_entry, rb); if (vol_id < le1->vol_id) p = &(*p)->rb_left; else if (vol_id > le1->vol_id) p = &(*p)->rb_right; else { ubi_assert(lnum != le1->lnum); if (lnum < le1->lnum) p = &(*p)->rb_left; else p = &(*p)->rb_right; } } rb_link_node(&le->rb, parent, p); rb_insert_color(&le->rb, &ubi->ltree); } le->users += 1; spin_unlock(&ubi->ltree_lock); kfree(le_free); return le; } /** * leb_read_lock - lock logical eraseblock for reading. * @ubi: UBI device description object * @vol_id: volume ID * @lnum: logical eraseblock number * * This function locks a logical eraseblock for reading. Returns zero in case * of success and a negative error code in case of failure. */ static int leb_read_lock(struct ubi_device *ubi, int vol_id, int lnum) { struct ubi_ltree_entry *le; le = ltree_add_entry(ubi, vol_id, lnum); if (IS_ERR(le)) return PTR_ERR(le); down_read(&le->mutex); return 0; } /** * leb_read_unlock - unlock logical eraseblock. * @ubi: UBI device description object * @vol_id: volume ID * @lnum: logical eraseblock number */ static void leb_read_unlock(struct ubi_device *ubi, int vol_id, int lnum) { struct ubi_ltree_entry *le; spin_lock(&ubi->ltree_lock); le = ltree_lookup(ubi, vol_id, lnum); le->users -= 1; ubi_assert(le->users >= 0); up_read(&le->mutex); if (le->users == 0) { rb_erase(&le->rb, &ubi->ltree); kfree(le); } spin_unlock(&ubi->ltree_lock); } /** * leb_write_lock - lock logical eraseblock for writing. * @ubi: UBI device description object * @vol_id: volume ID * @lnum: logical eraseblock number * * This function locks a logical eraseblock for writing. Returns zero in case * of success and a negative error code in case of failure. */ static int leb_write_lock(struct ubi_device *ubi, int vol_id, int lnum) { struct ubi_ltree_entry *le; le = ltree_add_entry(ubi, vol_id, lnum); if (IS_ERR(le)) return PTR_ERR(le); down_write(&le->mutex); return 0; } /** * leb_write_trylock - try to lock logical eraseblock for writing. * @ubi: UBI device description object * @vol_id: volume ID * @lnum: logical eraseblock number * * This function locks a logical eraseblock for writing if there is no * contention and does nothing if there is contention. Returns %0 in case of * success, %1 in case of contention, and a negative error code in case of * failure. */ static int leb_write_trylock(struct ubi_device *ubi, int vol_id, int lnum) { struct ubi_ltree_entry *le; le = ltree_add_entry(ubi, vol_id, lnum); if (IS_ERR(le)) return PTR_ERR(le); if (down_write_trylock(&le->mutex)) return 0; /* Contention, cancel */ spin_lock(&ubi->ltree_lock); le->users -= 1; ubi_assert(le->users >= 0); if (le->users == 0) { rb_erase(&le->rb, &ubi->ltree); kfree(le); } spin_unlock(&ubi->ltree_lock); return 1; } /** * leb_write_unlock - unlock logical eraseblock. * @ubi: UBI device description object * @vol_id: volume ID * @lnum: logical eraseblock number */ static void leb_write_unlock(struct ubi_device *ubi, int vol_id, int lnum) { struct ubi_ltree_entry *le; spin_lock(&ubi->ltree_lock); le = ltree_lookup(ubi, vol_id, lnum); le->users -= 1; ubi_assert(le->users >= 0); up_write(&le->mutex); if (le->users == 0) { rb_erase(&le->rb, &ubi->ltree); kfree(le); } spin_unlock(&ubi->ltree_lock); } /** * ubi_eba_is_mapped - check if a LEB is mapped. * @vol: volume description object * @lnum: logical eraseblock number * * This function returns true if the LEB is mapped, false otherwise. */ bool ubi_eba_is_mapped(struct ubi_volume *vol, int lnum) { return vol->eba_tbl->entries[lnum].pnum >= 0; } /** * ubi_eba_unmap_leb - un-map logical eraseblock. * @ubi: UBI device description object * @vol: volume description object * @lnum: logical eraseblock number * * This function un-maps logical eraseblock @lnum and schedules corresponding * physical eraseblock for erasure. Returns zero in case of success and a * negative error code in case of failure. */ int ubi_eba_unmap_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum) { int err, pnum, vol_id = vol->vol_id; if (ubi->ro_mode) return -EROFS; err = leb_write_lock(ubi, vol_id, lnum); if (err) return err; pnum = vol->eba_tbl->entries[lnum].pnum; if (pnum < 0) /* This logical eraseblock is already unmapped */ goto out_unlock; dbg_eba("erase LEB %d:%d, PEB %d", vol_id, lnum, pnum); down_read(&ubi->fm_eba_sem); vol->eba_tbl->entries[lnum].pnum = UBI_LEB_UNMAPPED; up_read(&ubi->fm_eba_sem); err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 0); out_unlock: leb_write_unlock(ubi, vol_id, lnum); return err; } #ifdef CONFIG_MTD_UBI_FASTMAP /** * check_mapping - check and fixup a mapping * @ubi: UBI device description object * @vol: volume description object * @lnum: logical eraseblock number * @pnum: physical eraseblock number * * Checks whether a given mapping is valid. Fastmap cannot track LEB unmap * operations, if such an operation is interrupted the mapping still looks * good, but upon first read an ECC is reported to the upper layer. * Normaly during the full-scan at attach time this is fixed, for Fastmap * we have to deal with it while reading. * If the PEB behind a LEB shows this symthom we change the mapping to * %UBI_LEB_UNMAPPED and schedule the PEB for erasure. * * Returns 0 on success, negative error code in case of failure. */ static int check_mapping(struct ubi_device *ubi, struct ubi_volume *vol, int lnum, int *pnum) { int err; struct ubi_vid_io_buf *vidb; struct ubi_vid_hdr *vid_hdr; if (!ubi->fast_attach) return 0; if (!vol->checkmap || test_bit(lnum, vol->checkmap)) return 0; vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS); if (!vidb) return -ENOMEM; err = ubi_io_read_vid_hdr(ubi, *pnum, vidb, 0); if (err > 0 && err != UBI_IO_BITFLIPS) { int torture = 0; switch (err) { case UBI_IO_FF: case UBI_IO_FF_BITFLIPS: case UBI_IO_BAD_HDR: case UBI_IO_BAD_HDR_EBADMSG: break; default: ubi_assert(0); } if (err == UBI_IO_BAD_HDR_EBADMSG || err == UBI_IO_FF_BITFLIPS) torture = 1; down_read(&ubi->fm_eba_sem); vol->eba_tbl->entries[lnum].pnum = UBI_LEB_UNMAPPED; up_read(&ubi->fm_eba_sem); ubi_wl_put_peb(ubi, vol->vol_id, lnum, *pnum, torture); *pnum = UBI_LEB_UNMAPPED; } else if (err < 0) { ubi_err(ubi, "unable to read VID header back from PEB %i: %i", *pnum, err); goto out_free; } else { int found_vol_id, found_lnum; ubi_assert(err == 0 || err == UBI_IO_BITFLIPS); vid_hdr = ubi_get_vid_hdr(vidb); found_vol_id = be32_to_cpu(vid_hdr->vol_id); found_lnum = be32_to_cpu(vid_hdr->lnum); if (found_lnum != lnum || found_vol_id != vol->vol_id) { ubi_err(ubi, "EBA mismatch! PEB %i is LEB %i:%i instead of LEB %i:%i", *pnum, found_vol_id, found_lnum, vol->vol_id, lnum); ubi_ro_mode(ubi); err = -EINVAL; goto out_free; } } set_bit(lnum, vol->checkmap); err = 0; out_free: ubi_free_vid_buf(vidb); return err; } #else static int check_mapping(struct ubi_device *ubi, struct ubi_volume *vol, int lnum, int *pnum) { return 0; } #endif /** * ubi_eba_read_leb - read data. * @ubi: UBI device description object * @vol: volume description object * @lnum: logical eraseblock number * @buf: buffer to store the read data * @offset: offset from where to read * @len: how many bytes to read * @check: data CRC check flag * * If the logical eraseblock @lnum is unmapped, @buf is filled with 0xFF * bytes. The @check flag only makes sense for static volumes and forces * eraseblock data CRC checking. * * In case of success this function returns zero. In case of a static volume, * if data CRC mismatches - %-EBADMSG is returned. %-EBADMSG may also be * returned for any volume type if an ECC error was detected by the MTD device * driver. Other negative error cored may be returned in case of other errors. */ int ubi_eba_read_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum, void *buf, int offset, int len, int check) { int err, pnum, scrub = 0, vol_id = vol->vol_id; struct ubi_vid_io_buf *vidb; struct ubi_vid_hdr *vid_hdr; uint32_t crc; err = leb_read_lock(ubi, vol_id, lnum); if (err) return err; pnum = vol->eba_tbl->entries[lnum].pnum; if (pnum >= 0) { err = check_mapping(ubi, vol, lnum, &pnum); if (err < 0) goto out_unlock; } if (pnum == UBI_LEB_UNMAPPED) { /* * The logical eraseblock is not mapped, fill the whole buffer * with 0xFF bytes. The exception is static volumes for which * it is an error to read unmapped logical eraseblocks. */ dbg_eba("read %d bytes from offset %d of LEB %d:%d (unmapped)", len, offset, vol_id, lnum); leb_read_unlock(ubi, vol_id, lnum); ubi_assert(vol->vol_type != UBI_STATIC_VOLUME); memset(buf, 0xFF, len); return 0; } dbg_eba("read %d bytes from offset %d of LEB %d:%d, PEB %d", len, offset, vol_id, lnum, pnum); if (vol->vol_type == UBI_DYNAMIC_VOLUME) check = 0; retry: if (check) { vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS); if (!vidb) { err = -ENOMEM; goto out_unlock; } vid_hdr = ubi_get_vid_hdr(vidb); err = ubi_io_read_vid_hdr(ubi, pnum, vidb, 1); if (err && err != UBI_IO_BITFLIPS) { if (err > 0) { /* * The header is either absent or corrupted. * The former case means there is a bug - * switch to read-only mode just in case. * The latter case means a real corruption - we * may try to recover data. FIXME: but this is * not implemented. */ if (err == UBI_IO_BAD_HDR_EBADMSG || err == UBI_IO_BAD_HDR) { ubi_warn(ubi, "corrupted VID header at PEB %d, LEB %d:%d", pnum, vol_id, lnum); err = -EBADMSG; } else { /* * Ending up here in the non-Fastmap case * is a clear bug as the VID header had to * be present at scan time to have it referenced. * With fastmap the story is more complicated. * Fastmap has the mapping info without the need * of a full scan. So the LEB could have been * unmapped, Fastmap cannot know this and keeps * the LEB referenced. * This is valid and works as the layer above UBI * has to do bookkeeping about used/referenced * LEBs in any case. */ if (ubi->fast_attach) { err = -EBADMSG; } else { err = -EINVAL; ubi_ro_mode(ubi); } } } goto out_free; } else if (err == UBI_IO_BITFLIPS) scrub = 1; ubi_assert(lnum < be32_to_cpu(vid_hdr->used_ebs)); ubi_assert(len == be32_to_cpu(vid_hdr->data_size)); crc = be32_to_cpu(vid_hdr->data_crc); ubi_free_vid_buf(vidb); } err = ubi_io_read_data(ubi, buf, pnum, offset, len); if (err) { if (err == UBI_IO_BITFLIPS) scrub = 1; else if (mtd_is_eccerr(err)) { if (vol->vol_type == UBI_DYNAMIC_VOLUME) goto out_unlock; scrub = 1; if (!check) { ubi_msg(ubi, "force data checking"); check = 1; goto retry; } } else goto out_unlock; } if (check) { uint32_t crc1 = crc32(UBI_CRC32_INIT, buf, len); if (crc1 != crc) { ubi_warn(ubi, "CRC error: calculated %#08x, must be %#08x", crc1, crc); err = -EBADMSG; goto out_unlock; } } if (scrub) err = ubi_wl_scrub_peb(ubi, pnum); leb_read_unlock(ubi, vol_id, lnum); return err; out_free: ubi_free_vid_buf(vidb); out_unlock: leb_read_unlock(ubi, vol_id, lnum); return err; } /** * ubi_eba_read_leb_sg - read data into a scatter gather list. * @ubi: UBI device description object * @vol: volume description object * @lnum: logical eraseblock number * @sgl: UBI scatter gather list to store the read data * @offset: offset from where to read * @len: how many bytes to read * @check: data CRC check flag * * This function works exactly like ubi_eba_read_leb(). But instead of * storing the read data into a buffer it writes to an UBI scatter gather * list. */ int ubi_eba_read_leb_sg(struct ubi_device *ubi, struct ubi_volume *vol, struct ubi_sgl *sgl, int lnum, int offset, int len, int check) { int to_read; int ret; struct scatterlist *sg; for (;;) { ubi_assert(sgl->list_pos < UBI_MAX_SG_COUNT); sg = &sgl->sg[sgl->list_pos]; if (len < sg->length - sgl->page_pos) to_read = len; else to_read = sg->length - sgl->page_pos; ret = ubi_eba_read_leb(ubi, vol, lnum, sg_virt(sg) + sgl->page_pos, offset, to_read, check); if (ret < 0) return ret; offset += to_read; len -= to_read; if (!len) { sgl->page_pos += to_read; if (sgl->page_pos == sg->length) { sgl->list_pos++; sgl->page_pos = 0; } break; } sgl->list_pos++; sgl->page_pos = 0; } return ret; } /** * try_recover_peb - try to recover from write failure. * @vol: volume description object * @pnum: the physical eraseblock to recover * @lnum: logical eraseblock number * @buf: data which was not written because of the write failure * @offset: offset of the failed write * @len: how many bytes should have been written * @vidb: VID buffer * @retry: whether the caller should retry in case of failure * * This function is called in case of a write failure and moves all good data * from the potentially bad physical eraseblock to a good physical eraseblock. * This function also writes the data which was not written due to the failure. * Returns 0 in case of success, and a negative error code in case of failure. * In case of failure, the %retry parameter is set to false if this is a fatal * error (retrying won't help), and true otherwise. */ static int try_recover_peb(struct ubi_volume *vol, int pnum, int lnum, const void *buf, int offset, int len, struct ubi_vid_io_buf *vidb, bool *retry) { struct ubi_device *ubi = vol->ubi; struct ubi_vid_hdr *vid_hdr; int new_pnum, err, vol_id = vol->vol_id, data_size; uint32_t crc; *retry = false; new_pnum = ubi_wl_get_peb(ubi); if (new_pnum < 0) { err = new_pnum; goto out_put; } ubi_msg(ubi, "recover PEB %d, move data to PEB %d", pnum, new_pnum); err = ubi_io_read_vid_hdr(ubi, pnum, vidb, 1); if (err && err != UBI_IO_BITFLIPS) { if (err > 0) err = -EIO; goto out_put; } vid_hdr = ubi_get_vid_hdr(vidb); ubi_assert(vid_hdr->vol_type == UBI_VID_DYNAMIC); mutex_lock(&ubi->buf_mutex); memset(ubi->peb_buf + offset, 0xFF, len); /* Read everything before the area where the write failure happened */ if (offset > 0) { err = ubi_io_read_data(ubi, ubi->peb_buf, pnum, 0, offset); if (err && err != UBI_IO_BITFLIPS) goto out_unlock; } *retry = true; memcpy(ubi->peb_buf + offset, buf, len); data_size = offset + len; crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, data_size); vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); vid_hdr->copy_flag = 1; vid_hdr->data_size = cpu_to_be32(data_size); vid_hdr->data_crc = cpu_to_be32(crc); err = ubi_io_write_vid_hdr(ubi, new_pnum, vidb); if (err) goto out_unlock; err = ubi_io_write_data(ubi, ubi->peb_buf, new_pnum, 0, data_size); out_unlock: mutex_unlock(&ubi->buf_mutex); if (!err) vol->eba_tbl->entries[lnum].pnum = new_pnum; out_put: up_read(&ubi->fm_eba_sem); if (!err) { ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1); ubi_msg(ubi, "data was successfully recovered"); } else if (new_pnum >= 0) { /* * Bad luck? This physical eraseblock is bad too? Crud. Let's * try to get another one. */ ubi_wl_put_peb(ubi, vol_id, lnum, new_pnum, 1); ubi_warn(ubi, "failed to write to PEB %d", new_pnum); } return err; } /** * recover_peb - recover from write failure. * @ubi: UBI device description object * @pnum: the physical eraseblock to recover * @vol_id: volume ID * @lnum: logical eraseblock number * @buf: data which was not written because of the write failure * @offset: offset of the failed write * @len: how many bytes should have been written * * This function is called in case of a write failure and moves all good data * from the potentially bad physical eraseblock to a good physical eraseblock. * This function also writes the data which was not written due to the failure. * Returns 0 in case of success, and a negative error code in case of failure. * This function tries %UBI_IO_RETRIES before giving up. */ static int recover_peb(struct ubi_device *ubi, int pnum, int vol_id, int lnum, const void *buf, int offset, int len) { int err, idx = vol_id2idx(ubi, vol_id), tries; struct ubi_volume *vol = ubi->volumes[idx]; struct ubi_vid_io_buf *vidb; vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS); if (!vidb) return -ENOMEM; for (tries = 0; tries <= UBI_IO_RETRIES; tries++) { bool retry; err = try_recover_peb(vol, pnum, lnum, buf, offset, len, vidb, &retry); if (!err || !retry) break; ubi_msg(ubi, "try again"); } ubi_free_vid_buf(vidb); return err; } /** * try_write_vid_and_data - try to write VID header and data to a new PEB. * @vol: volume description object * @lnum: logical eraseblock number * @vidb: the VID buffer to write * @buf: buffer containing the data * @offset: where to start writing data * @len: how many bytes should be written * * This function tries to write VID header and data belonging to logical * eraseblock @lnum of volume @vol to a new physical eraseblock. Returns zero * in case of success and a negative error code in case of failure. * In case of error, it is possible that something was still written to the * flash media, but may be some garbage. */ static int try_write_vid_and_data(struct ubi_volume *vol, int lnum, struct ubi_vid_io_buf *vidb, const void *buf, int offset, int len) { struct ubi_device *ubi = vol->ubi; int pnum, opnum, err, err2, vol_id = vol->vol_id; pnum = ubi_wl_get_peb(ubi); if (pnum < 0) { err = pnum; goto out_put; } opnum = vol->eba_tbl->entries[lnum].pnum; dbg_eba("write VID hdr and %d bytes at offset %d of LEB %d:%d, PEB %d", len, offset, vol_id, lnum, pnum); err = ubi_io_write_vid_hdr(ubi, pnum, vidb); if (err) { ubi_warn(ubi, "failed to write VID header to LEB %d:%d, PEB %d", vol_id, lnum, pnum); goto out_put; } if (len) { err = ubi_io_write_data(ubi, buf, pnum, offset, len); if (err) { ubi_warn(ubi, "failed to write %d bytes at offset %d of LEB %d:%d, PEB %d", len, offset, vol_id, lnum, pnum); goto out_put; } } vol->eba_tbl->entries[lnum].pnum = pnum; out_put: up_read(&ubi->fm_eba_sem); if (err && pnum >= 0) { err2 = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1); if (err2) { ubi_warn(ubi, "failed to return physical eraseblock %d, error %d", pnum, err2); } } else if (!err && opnum >= 0) { err2 = ubi_wl_put_peb(ubi, vol_id, lnum, opnum, 0); if (err2) { ubi_warn(ubi, "failed to return physical eraseblock %d, error %d", opnum, err2); } } return err; } /** * ubi_eba_write_leb - write data to dynamic volume. * @ubi: UBI device description object * @vol: volume description object * @lnum: logical eraseblock number * @buf: the data to write * @offset: offset within the logical eraseblock where to write * @len: how many bytes to write * * This function writes data to logical eraseblock @lnum of a dynamic volume * @vol. Returns zero in case of success and a negative error code in case * of failure. In case of error, it is possible that something was still * written to the flash media, but may be some garbage. * This function retries %UBI_IO_RETRIES times before giving up. */ int ubi_eba_write_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum, const void *buf, int offset, int len) { int err, pnum, tries, vol_id = vol->vol_id; struct ubi_vid_io_buf *vidb; struct ubi_vid_hdr *vid_hdr; if (ubi->ro_mode) return -EROFS; err = leb_write_lock(ubi, vol_id, lnum); if (err) return err; pnum = vol->eba_tbl->entries[lnum].pnum; if (pnum >= 0) { err = check_mapping(ubi, vol, lnum, &pnum); if (err < 0) goto out; } if (pnum >= 0) { dbg_eba("write %d bytes at offset %d of LEB %d:%d, PEB %d", len, offset, vol_id, lnum, pnum); err = ubi_io_write_data(ubi, buf, pnum, offset, len); if (err) { ubi_warn(ubi, "failed to write data to PEB %d", pnum); if (err == -EIO && ubi->bad_allowed) err = recover_peb(ubi, pnum, vol_id, lnum, buf, offset, len); } goto out; } /* * The logical eraseblock is not mapped. We have to get a free physical * eraseblock and write the volume identifier header there first. */ vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS); if (!vidb) { leb_write_unlock(ubi, vol_id, lnum); return -ENOMEM; } vid_hdr = ubi_get_vid_hdr(vidb); vid_hdr->vol_type = UBI_VID_DYNAMIC; vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); vid_hdr->vol_id = cpu_to_be32(vol_id); vid_hdr->lnum = cpu_to_be32(lnum); vid_hdr->compat = ubi_get_compat(ubi, vol_id); vid_hdr->data_pad = cpu_to_be32(vol->data_pad); for (tries = 0; tries <= UBI_IO_RETRIES; tries++) { err = try_write_vid_and_data(vol, lnum, vidb, buf, offset, len); if (err != -EIO || !ubi->bad_allowed) break; /* * Fortunately, this is the first write operation to this * physical eraseblock, so just put it and request a new one. * We assume that if this physical eraseblock went bad, the * erase code will handle that. */ vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); ubi_msg(ubi, "try another PEB"); } ubi_free_vid_buf(vidb); out: if (err) ubi_ro_mode(ubi); leb_write_unlock(ubi, vol_id, lnum); return err; } /** * ubi_eba_write_leb_st - write data to static volume. * @ubi: UBI device description object * @vol: volume description object * @lnum: logical eraseblock number * @buf: data to write * @len: how many bytes to write * @used_ebs: how many logical eraseblocks will this volume contain * * This function writes data to logical eraseblock @lnum of static volume * @vol. The @used_ebs argument should contain total number of logical * eraseblock in this static volume. * * When writing to the last logical eraseblock, the @len argument doesn't have * to be aligned to the minimal I/O unit size. Instead, it has to be equivalent * to the real data size, although the @buf buffer has to contain the * alignment. In all other cases, @len has to be aligned. * * It is prohibited to write more than once to logical eraseblocks of static * volumes. This function returns zero in case of success and a negative error * code in case of failure. */ int ubi_eba_write_leb_st(struct ubi_device *ubi, struct ubi_volume *vol, int lnum, const void *buf, int len, int used_ebs) { int err, tries, data_size = len, vol_id = vol->vol_id; struct ubi_vid_io_buf *vidb; struct ubi_vid_hdr *vid_hdr; uint32_t crc; if (ubi->ro_mode) return -EROFS; if (lnum == used_ebs - 1) /* If this is the last LEB @len may be unaligned */ len = ALIGN(data_size, ubi->min_io_size); else ubi_assert(!(len & (ubi->min_io_size - 1))); vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS); if (!vidb) return -ENOMEM; vid_hdr = ubi_get_vid_hdr(vidb); err = leb_write_lock(ubi, vol_id, lnum); if (err) goto out; vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); vid_hdr->vol_id = cpu_to_be32(vol_id); vid_hdr->lnum = cpu_to_be32(lnum); vid_hdr->compat = ubi_get_compat(ubi, vol_id); vid_hdr->data_pad = cpu_to_be32(vol->data_pad); crc = crc32(UBI_CRC32_INIT, buf, data_size); vid_hdr->vol_type = UBI_VID_STATIC; vid_hdr->data_size = cpu_to_be32(data_size); vid_hdr->used_ebs = cpu_to_be32(used_ebs); vid_hdr->data_crc = cpu_to_be32(crc); ubi_assert(vol->eba_tbl->entries[lnum].pnum < 0); for (tries = 0; tries <= UBI_IO_RETRIES; tries++) { err = try_write_vid_and_data(vol, lnum, vidb, buf, 0, len); if (err != -EIO || !ubi->bad_allowed) break; vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); ubi_msg(ubi, "try another PEB"); } if (err) ubi_ro_mode(ubi); leb_write_unlock(ubi, vol_id, lnum); out: ubi_free_vid_buf(vidb); return err; } /* * ubi_eba_atomic_leb_change - change logical eraseblock atomically. * @ubi: UBI device description object * @vol: volume description object * @lnum: logical eraseblock number * @buf: data to write * @len: how many bytes to write * * This function changes the contents of a logical eraseblock atomically. @buf * has to contain new logical eraseblock data, and @len - the length of the * data, which has to be aligned. This function guarantees that in case of an * unclean reboot the old contents is preserved. Returns zero in case of * success and a negative error code in case of failure. * * UBI reserves one LEB for the "atomic LEB change" operation, so only one * LEB change may be done at a time. This is ensured by @ubi->alc_mutex. */ int ubi_eba_atomic_leb_change(struct ubi_device *ubi, struct ubi_volume *vol, int lnum, const void *buf, int len) { int err, tries, vol_id = vol->vol_id; struct ubi_vid_io_buf *vidb; struct ubi_vid_hdr *vid_hdr; uint32_t crc; if (ubi->ro_mode) return -EROFS; if (len == 0) { /* * Special case when data length is zero. In this case the LEB * has to be unmapped and mapped somewhere else. */ err = ubi_eba_unmap_leb(ubi, vol, lnum); if (err) return err; return ubi_eba_write_leb(ubi, vol, lnum, NULL, 0, 0); } vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS); if (!vidb) return -ENOMEM; vid_hdr = ubi_get_vid_hdr(vidb); mutex_lock(&ubi->alc_mutex); err = leb_write_lock(ubi, vol_id, lnum); if (err) goto out_mutex; vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); vid_hdr->vol_id = cpu_to_be32(vol_id); vid_hdr->lnum = cpu_to_be32(lnum); vid_hdr->compat = ubi_get_compat(ubi, vol_id); vid_hdr->data_pad = cpu_to_be32(vol->data_pad); crc = crc32(UBI_CRC32_INIT, buf, len); vid_hdr->vol_type = UBI_VID_DYNAMIC; vid_hdr->data_size = cpu_to_be32(len); vid_hdr->copy_flag = 1; vid_hdr->data_crc = cpu_to_be32(crc); dbg_eba("change LEB %d:%d", vol_id, lnum); for (tries = 0; tries <= UBI_IO_RETRIES; tries++) { err = try_write_vid_and_data(vol, lnum, vidb, buf, 0, len); if (err != -EIO || !ubi->bad_allowed) break; vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); ubi_msg(ubi, "try another PEB"); } /* * This flash device does not admit of bad eraseblocks or * something nasty and unexpected happened. Switch to read-only * mode just in case. */ if (err) ubi_ro_mode(ubi); leb_write_unlock(ubi, vol_id, lnum); out_mutex: mutex_unlock(&ubi->alc_mutex); ubi_free_vid_buf(vidb); return err; } /** * is_error_sane - check whether a read error is sane. * @err: code of the error happened during reading * * This is a helper function for 'ubi_eba_copy_leb()' which is called when we * cannot read data from the target PEB (an error @err happened). If the error * code is sane, then we treat this error as non-fatal. Otherwise the error is * fatal and UBI will be switched to R/O mode later. * * The idea is that we try not to switch to R/O mode if the read error is * something which suggests there was a real read problem. E.g., %-EIO. Or a * memory allocation failed (-%ENOMEM). Otherwise, it is safer to switch to R/O * mode, simply because we do not know what happened at the MTD level, and we * cannot handle this. E.g., the underlying driver may have become crazy, and * it is safer to switch to R/O mode to preserve the data. * * And bear in mind, this is about reading from the target PEB, i.e. the PEB * which we have just written. */ static int is_error_sane(int err) { if (err == -EIO || err == -ENOMEM || err == UBI_IO_BAD_HDR || err == UBI_IO_BAD_HDR_EBADMSG || err == -ETIMEDOUT) return 0; return 1; } /** * ubi_eba_copy_leb - copy logical eraseblock. * @ubi: UBI device description object * @from: physical eraseblock number from where to copy * @to: physical eraseblock number where to copy * @vidb: data structure from where the VID header is derived * * This function copies logical eraseblock from physical eraseblock @from to * physical eraseblock @to. The @vid_hdr buffer may be changed by this * function. Returns: * o %0 in case of success; * o %MOVE_CANCEL_RACE, %MOVE_TARGET_WR_ERR, %MOVE_TARGET_BITFLIPS, etc; * o a negative error code in case of failure. */ int ubi_eba_copy_leb(struct ubi_device *ubi, int from, int to, struct ubi_vid_io_buf *vidb) { int err, vol_id, lnum, data_size, aldata_size, idx; struct ubi_vid_hdr *vid_hdr = ubi_get_vid_hdr(vidb); struct ubi_volume *vol; uint32_t crc; ubi_assert(rwsem_is_locked(&ubi->fm_eba_sem)); vol_id = be32_to_cpu(vid_hdr->vol_id); lnum = be32_to_cpu(vid_hdr->lnum); dbg_wl("copy LEB %d:%d, PEB %d to PEB %d", vol_id, lnum, from, to); if (vid_hdr->vol_type == UBI_VID_STATIC) { data_size = be32_to_cpu(vid_hdr->data_size); aldata_size = ALIGN(data_size, ubi->min_io_size); } else data_size = aldata_size = ubi->leb_size - be32_to_cpu(vid_hdr->data_pad); idx = vol_id2idx(ubi, vol_id); spin_lock(&ubi->volumes_lock); /* * Note, we may race with volume deletion, which means that the volume * this logical eraseblock belongs to might be being deleted. Since the * volume deletion un-maps all the volume's logical eraseblocks, it will * be locked in 'ubi_wl_put_peb()' and wait for the WL worker to finish. */ vol = ubi->volumes[idx]; spin_unlock(&ubi->volumes_lock); if (!vol) { /* No need to do further work, cancel */ dbg_wl("volume %d is being removed, cancel", vol_id); return MOVE_CANCEL_RACE; } /* * We do not want anybody to write to this logical eraseblock while we * are moving it, so lock it. * * Note, we are using non-waiting locking here, because we cannot sleep * on the LEB, since it may cause deadlocks. Indeed, imagine a task is * unmapping the LEB which is mapped to the PEB we are going to move * (@from). This task locks the LEB and goes sleep in the * 'ubi_wl_put_peb()' function on the @ubi->move_mutex. In turn, we are * holding @ubi->move_mutex and go sleep on the LEB lock. So, if the * LEB is already locked, we just do not move it and return * %MOVE_RETRY. Note, we do not return %MOVE_CANCEL_RACE here because * we do not know the reasons of the contention - it may be just a * normal I/O on this LEB, so we want to re-try. */ err = leb_write_trylock(ubi, vol_id, lnum); if (err) { dbg_wl("contention on LEB %d:%d, cancel", vol_id, lnum); return MOVE_RETRY; } /* * The LEB might have been put meanwhile, and the task which put it is * probably waiting on @ubi->move_mutex. No need to continue the work, * cancel it. */ if (vol->eba_tbl->entries[lnum].pnum != from) { dbg_wl("LEB %d:%d is no longer mapped to PEB %d, mapped to PEB %d, cancel", vol_id, lnum, from, vol->eba_tbl->entries[lnum].pnum); err = MOVE_CANCEL_RACE; goto out_unlock_leb; } /* * OK, now the LEB is locked and we can safely start moving it. Since * this function utilizes the @ubi->peb_buf buffer which is shared * with some other functions - we lock the buffer by taking the * @ubi->buf_mutex. */ mutex_lock(&ubi->buf_mutex); dbg_wl("read %d bytes of data", aldata_size); err = ubi_io_read_data(ubi, ubi->peb_buf, from, 0, aldata_size); if (err && err != UBI_IO_BITFLIPS) { ubi_warn(ubi, "error %d while reading data from PEB %d", err, from); err = MOVE_SOURCE_RD_ERR; goto out_unlock_buf; } /* * Now we have got to calculate how much data we have to copy. In * case of a static volume it is fairly easy - the VID header contains * the data size. In case of a dynamic volume it is more difficult - we * have to read the contents, cut 0xFF bytes from the end and copy only * the first part. We must do this to avoid writing 0xFF bytes as it * may have some side-effects. And not only this. It is important not * to include those 0xFFs to CRC because later the they may be filled * by data. */ if (vid_hdr->vol_type == UBI_VID_DYNAMIC) aldata_size = data_size = ubi_calc_data_len(ubi, ubi->peb_buf, data_size); cond_resched(); crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, data_size); cond_resched(); /* * It may turn out to be that the whole @from physical eraseblock * contains only 0xFF bytes. Then we have to only write the VID header * and do not write any data. This also means we should not set * @vid_hdr->copy_flag, @vid_hdr->data_size, and @vid_hdr->data_crc. */ if (data_size > 0) { vid_hdr->copy_flag = 1; vid_hdr->data_size = cpu_to_be32(data_size); vid_hdr->data_crc = cpu_to_be32(crc); } vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); err = ubi_io_write_vid_hdr(ubi, to, vidb); if (err) { if (err == -EIO) err = MOVE_TARGET_WR_ERR; goto out_unlock_buf; } cond_resched(); /* Read the VID header back and check if it was written correctly */ err = ubi_io_read_vid_hdr(ubi, to, vidb, 1); if (err) { if (err != UBI_IO_BITFLIPS) { ubi_warn(ubi, "error %d while reading VID header back from PEB %d", err, to); if (is_error_sane(err)) err = MOVE_TARGET_RD_ERR; } else err = MOVE_TARGET_BITFLIPS; goto out_unlock_buf; } if (data_size > 0) { err = ubi_io_write_data(ubi, ubi->peb_buf, to, 0, aldata_size); if (err) { if (err == -EIO) err = MOVE_TARGET_WR_ERR; goto out_unlock_buf; } cond_resched(); } ubi_assert(vol->eba_tbl->entries[lnum].pnum == from); vol->eba_tbl->entries[lnum].pnum = to; out_unlock_buf: mutex_unlock(&ubi->buf_mutex); out_unlock_leb: leb_write_unlock(ubi, vol_id, lnum); return err; } /** * print_rsvd_warning - warn about not having enough reserved PEBs. * @ubi: UBI device description object * @ai: UBI attach info object * * This is a helper function for 'ubi_eba_init()' which is called when UBI * cannot reserve enough PEBs for bad block handling. This function makes a * decision whether we have to print a warning or not. The algorithm is as * follows: * o if this is a new UBI image, then just print the warning * o if this is an UBI image which has already been used for some time, print * a warning only if we can reserve less than 10% of the expected amount of * the reserved PEB. * * The idea is that when UBI is used, PEBs become bad, and the reserved pool * of PEBs becomes smaller, which is normal and we do not want to scare users * with a warning every time they attach the MTD device. This was an issue * reported by real users. */ static void print_rsvd_warning(struct ubi_device *ubi, struct ubi_attach_info *ai) { /* * The 1 << 18 (256KiB) number is picked randomly, just a reasonably * large number to distinguish between newly flashed and used images. */ if (ai->max_sqnum > (1 << 18)) { int min = ubi->beb_rsvd_level / 10; if (!min) min = 1; if (ubi->beb_rsvd_pebs > min) return; } ubi_warn(ubi, "cannot reserve enough PEBs for bad PEB handling, reserved %d, need %d", ubi->beb_rsvd_pebs, ubi->beb_rsvd_level); if (ubi->corr_peb_count) ubi_warn(ubi, "%d PEBs are corrupted and not used", ubi->corr_peb_count); } /** * self_check_eba - run a self check on the EBA table constructed by fastmap. * @ubi: UBI device description object * @ai_fastmap: UBI attach info object created by fastmap * @ai_scan: UBI attach info object created by scanning * * Returns < 0 in case of an internal error, 0 otherwise. * If a bad EBA table entry was found it will be printed out and * ubi_assert() triggers. */ int self_check_eba(struct ubi_device *ubi, struct ubi_attach_info *ai_fastmap, struct ubi_attach_info *ai_scan) { int i, j, num_volumes, ret = 0; int **scan_eba, **fm_eba; struct ubi_ainf_volume *av; struct ubi_volume *vol; struct ubi_ainf_peb *aeb; struct rb_node *rb; num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT; scan_eba = kmalloc_array(num_volumes, sizeof(*scan_eba), GFP_KERNEL); if (!scan_eba) return -ENOMEM; fm_eba = kmalloc_array(num_volumes, sizeof(*fm_eba), GFP_KERNEL); if (!fm_eba) { kfree(scan_eba); return -ENOMEM; } for (i = 0; i < num_volumes; i++) { vol = ubi->volumes[i]; if (!vol) continue; scan_eba[i] = kmalloc_array(vol->reserved_pebs, sizeof(**scan_eba), GFP_KERNEL); if (!scan_eba[i]) { ret = -ENOMEM; goto out_free; } fm_eba[i] = kmalloc_array(vol->reserved_pebs, sizeof(**fm_eba), GFP_KERNEL); if (!fm_eba[i]) { ret = -ENOMEM; goto out_free; } for (j = 0; j < vol->reserved_pebs; j++) scan_eba[i][j] = fm_eba[i][j] = UBI_LEB_UNMAPPED; av = ubi_find_av(ai_scan, idx2vol_id(ubi, i)); if (!av) continue; ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb) scan_eba[i][aeb->lnum] = aeb->pnum; av = ubi_find_av(ai_fastmap, idx2vol_id(ubi, i)); if (!av) continue; ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb) fm_eba[i][aeb->lnum] = aeb->pnum; for (j = 0; j < vol->reserved_pebs; j++) { if (scan_eba[i][j] != fm_eba[i][j]) { if (scan_eba[i][j] == UBI_LEB_UNMAPPED || fm_eba[i][j] == UBI_LEB_UNMAPPED) continue; ubi_err(ubi, "LEB:%i:%i is PEB:%i instead of %i!", vol->vol_id, j, fm_eba[i][j], scan_eba[i][j]); ubi_assert(0); } } } out_free: for (i = 0; i < num_volumes; i++) { if (!ubi->volumes[i]) continue; kfree(scan_eba[i]); kfree(fm_eba[i]); } kfree(scan_eba); kfree(fm_eba); return ret; } /** * ubi_eba_init - initialize the EBA sub-system using attaching information. * @ubi: UBI device description object * @ai: attaching information * * This function returns zero in case of success and a negative error code in * case of failure. */ int ubi_eba_init(struct ubi_device *ubi, struct ubi_attach_info *ai) { int i, err, num_volumes; struct ubi_ainf_volume *av; struct ubi_volume *vol; struct ubi_ainf_peb *aeb; struct rb_node *rb; dbg_eba("initialize EBA sub-system"); spin_lock_init(&ubi->ltree_lock); mutex_init(&ubi->alc_mutex); ubi->ltree = RB_ROOT; ubi->global_sqnum = ai->max_sqnum + 1; num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT; for (i = 0; i < num_volumes; i++) { struct ubi_eba_table *tbl; vol = ubi->volumes[i]; if (!vol) continue; cond_resched(); tbl = ubi_eba_create_table(vol, vol->reserved_pebs); if (IS_ERR(tbl)) { err = PTR_ERR(tbl); goto out_free; } ubi_eba_replace_table(vol, tbl); av = ubi_find_av(ai, idx2vol_id(ubi, i)); if (!av) continue; ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb) { if (aeb->lnum >= vol->reserved_pebs) { /* * This may happen in case of an unclean reboot * during re-size. */ ubi_move_aeb_to_list(av, aeb, &ai->erase); } else { struct ubi_eba_entry *entry; entry = &vol->eba_tbl->entries[aeb->lnum]; entry->pnum = aeb->pnum; } } } if (ubi->avail_pebs < EBA_RESERVED_PEBS) { ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)", ubi->avail_pebs, EBA_RESERVED_PEBS); if (ubi->corr_peb_count) ubi_err(ubi, "%d PEBs are corrupted and not used", ubi->corr_peb_count); err = -ENOSPC; goto out_free; } ubi->avail_pebs -= EBA_RESERVED_PEBS; ubi->rsvd_pebs += EBA_RESERVED_PEBS; if (ubi->bad_allowed) { ubi_calculate_reserved(ubi); if (ubi->avail_pebs < ubi->beb_rsvd_level) { /* No enough free physical eraseblocks */ ubi->beb_rsvd_pebs = ubi->avail_pebs; print_rsvd_warning(ubi, ai); } else ubi->beb_rsvd_pebs = ubi->beb_rsvd_level; ubi->avail_pebs -= ubi->beb_rsvd_pebs; ubi->rsvd_pebs += ubi->beb_rsvd_pebs; } dbg_eba("EBA sub-system is initialized"); return 0; out_free: for (i = 0; i < num_volumes; i++) { if (!ubi->volumes[i]) continue; ubi_eba_replace_table(ubi->volumes[i], NULL); } return err; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1