Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Stephane Grosjean | 3833 | 87.71% | 17 | 40.48% |
Vincent Mailhol | 193 | 4.42% | 3 | 7.14% |
Lukas Magel | 116 | 2.65% | 3 | 7.14% |
Marc Kleine-Budde | 92 | 2.11% | 4 | 9.52% |
Alexey Khoroshilov | 46 | 1.05% | 1 | 2.38% |
Arnd Bergmann | 43 | 0.98% | 2 | 4.76% |
추지호 | 12 | 0.27% | 1 | 2.38% |
Christopher R. Baker | 6 | 0.14% | 1 | 2.38% |
Oliver Hartkopp | 6 | 0.14% | 2 | 4.76% |
Colin Ian King | 6 | 0.14% | 1 | 2.38% |
Florian Westphal | 6 | 0.14% | 1 | 2.38% |
Pavel Skripkin | 3 | 0.07% | 1 | 2.38% |
Gustavo A. R. Silva | 2 | 0.05% | 1 | 2.38% |
Thomas Gleixner | 2 | 0.05% | 1 | 2.38% |
Randy Dunlap | 2 | 0.05% | 1 | 2.38% |
Wolfram Sang | 1 | 0.02% | 1 | 2.38% |
Johan Hovold | 1 | 0.02% | 1 | 2.38% |
Total | 4370 | 42 |
// SPDX-License-Identifier: GPL-2.0-only /* * CAN driver for PEAK System USB adapters * Derived from the PCAN project file driver/src/pcan_usb_core.c * * Copyright (C) 2003-2010 PEAK System-Technik GmbH * Copyright (C) 2010-2012 Stephane Grosjean <s.grosjean@peak-system.com> * * Many thanks to Klaus Hitschler <klaus.hitschler@gmx.de> */ #include <linux/device.h> #include <linux/ethtool.h> #include <linux/init.h> #include <linux/module.h> #include <linux/netdevice.h> #include <linux/signal.h> #include <linux/slab.h> #include <linux/sysfs.h> #include <linux/usb.h> #include <linux/can.h> #include <linux/can/dev.h> #include <linux/can/error.h> #include "pcan_usb_core.h" MODULE_AUTHOR("Stephane Grosjean <s.grosjean@peak-system.com>"); MODULE_DESCRIPTION("CAN driver for PEAK-System USB adapters"); MODULE_LICENSE("GPL v2"); /* Table of devices that work with this driver */ static const struct usb_device_id peak_usb_table[] = { { USB_DEVICE(PCAN_USB_VENDOR_ID, PCAN_USB_PRODUCT_ID), .driver_info = (kernel_ulong_t)&pcan_usb, }, { USB_DEVICE(PCAN_USB_VENDOR_ID, PCAN_USBPRO_PRODUCT_ID), .driver_info = (kernel_ulong_t)&pcan_usb_pro, }, { USB_DEVICE(PCAN_USB_VENDOR_ID, PCAN_USBFD_PRODUCT_ID), .driver_info = (kernel_ulong_t)&pcan_usb_fd, }, { USB_DEVICE(PCAN_USB_VENDOR_ID, PCAN_USBPROFD_PRODUCT_ID), .driver_info = (kernel_ulong_t)&pcan_usb_pro_fd, }, { USB_DEVICE(PCAN_USB_VENDOR_ID, PCAN_USBCHIP_PRODUCT_ID), .driver_info = (kernel_ulong_t)&pcan_usb_chip, }, { USB_DEVICE(PCAN_USB_VENDOR_ID, PCAN_USBX6_PRODUCT_ID), .driver_info = (kernel_ulong_t)&pcan_usb_x6, }, { /* Terminating entry */ } }; MODULE_DEVICE_TABLE(usb, peak_usb_table); static ssize_t can_channel_id_show(struct device *dev, struct device_attribute *attr, char *buf) { struct net_device *netdev = to_net_dev(dev); struct peak_usb_device *peak_dev = netdev_priv(netdev); return sysfs_emit(buf, "%08X\n", peak_dev->can_channel_id); } static DEVICE_ATTR_RO(can_channel_id); /* mutable to avoid cast in attribute_group */ static struct attribute *peak_usb_sysfs_attrs[] = { &dev_attr_can_channel_id.attr, NULL, }; static const struct attribute_group peak_usb_sysfs_group = { .name = "peak_usb", .attrs = peak_usb_sysfs_attrs, }; /* * dump memory */ #define DUMP_WIDTH 16 void pcan_dump_mem(const char *prompt, const void *p, int l) { pr_info("%s dumping %s (%d bytes):\n", PCAN_USB_DRIVER_NAME, prompt ? prompt : "memory", l); print_hex_dump(KERN_INFO, PCAN_USB_DRIVER_NAME " ", DUMP_PREFIX_NONE, DUMP_WIDTH, 1, p, l, false); } /* * initialize a time_ref object with usb adapter own settings */ void peak_usb_init_time_ref(struct peak_time_ref *time_ref, const struct peak_usb_adapter *adapter) { if (time_ref) { memset(time_ref, 0, sizeof(struct peak_time_ref)); time_ref->adapter = adapter; } } /* * sometimes, another now may be more recent than current one... */ void peak_usb_update_ts_now(struct peak_time_ref *time_ref, u32 ts_now) { time_ref->ts_dev_2 = ts_now; /* should wait at least two passes before computing */ if (ktime_to_ns(time_ref->tv_host) > 0) { u32 delta_ts = time_ref->ts_dev_2 - time_ref->ts_dev_1; if (time_ref->ts_dev_2 < time_ref->ts_dev_1) delta_ts &= (1 << time_ref->adapter->ts_used_bits) - 1; time_ref->ts_total += delta_ts; } } /* * register device timestamp as now */ void peak_usb_set_ts_now(struct peak_time_ref *time_ref, u32 ts_now) { if (ktime_to_ns(time_ref->tv_host_0) == 0) { /* use monotonic clock to correctly compute further deltas */ time_ref->tv_host_0 = ktime_get(); time_ref->tv_host = ktime_set(0, 0); } else { /* * delta_us should not be >= 2^32 => delta should be < 4294s * handle 32-bits wrapping here: if count of s. reaches 4200, * reset counters and change time base */ if (ktime_to_ns(time_ref->tv_host)) { ktime_t delta = ktime_sub(time_ref->tv_host, time_ref->tv_host_0); if (ktime_to_ns(delta) > (4200ull * NSEC_PER_SEC)) { time_ref->tv_host_0 = time_ref->tv_host; time_ref->ts_total = 0; } } time_ref->tv_host = ktime_get(); time_ref->tick_count++; } time_ref->ts_dev_1 = time_ref->ts_dev_2; peak_usb_update_ts_now(time_ref, ts_now); } /* * compute time according to current ts and time_ref data */ void peak_usb_get_ts_time(struct peak_time_ref *time_ref, u32 ts, ktime_t *time) { /* protect from getting time before setting now */ if (ktime_to_ns(time_ref->tv_host)) { u64 delta_us; s64 delta_ts = 0; /* General case: dev_ts_1 < dev_ts_2 < ts, with: * * - dev_ts_1 = previous sync timestamp * - dev_ts_2 = last sync timestamp * - ts = event timestamp * - ts_period = known sync period (theoretical) * ~ dev_ts2 - dev_ts1 * *but*: * * - time counters wrap (see adapter->ts_used_bits) * - sometimes, dev_ts_1 < ts < dev_ts2 * * "normal" case (sync time counters increase): * must take into account case when ts wraps (tsw) * * < ts_period > < > * | | | * ---+--------+----+-------0-+--+--> * ts_dev_1 | ts_dev_2 | * ts tsw */ if (time_ref->ts_dev_1 < time_ref->ts_dev_2) { /* case when event time (tsw) wraps */ if (ts < time_ref->ts_dev_1) delta_ts = BIT_ULL(time_ref->adapter->ts_used_bits); /* Otherwise, sync time counter (ts_dev_2) has wrapped: * handle case when event time (tsn) hasn't. * * < ts_period > < > * | | | * ---+--------+--0-+---------+--+--> * ts_dev_1 | ts_dev_2 | * tsn ts */ } else if (time_ref->ts_dev_1 < ts) { delta_ts = -BIT_ULL(time_ref->adapter->ts_used_bits); } /* add delay between last sync and event timestamps */ delta_ts += (signed int)(ts - time_ref->ts_dev_2); /* add time from beginning to last sync */ delta_ts += time_ref->ts_total; /* convert ticks number into microseconds */ delta_us = delta_ts * time_ref->adapter->us_per_ts_scale; delta_us >>= time_ref->adapter->us_per_ts_shift; *time = ktime_add_us(time_ref->tv_host_0, delta_us); } else { *time = ktime_get(); } } /* post received skb with native 64-bit hw timestamp */ int peak_usb_netif_rx_64(struct sk_buff *skb, u32 ts_low, u32 ts_high) { struct skb_shared_hwtstamps *hwts = skb_hwtstamps(skb); u64 ns_ts; ns_ts = (u64)ts_high << 32 | ts_low; ns_ts *= NSEC_PER_USEC; hwts->hwtstamp = ns_to_ktime(ns_ts); return netif_rx(skb); } /* * callback for bulk Rx urb */ static void peak_usb_read_bulk_callback(struct urb *urb) { struct peak_usb_device *dev = urb->context; struct net_device *netdev; int err; netdev = dev->netdev; if (!netif_device_present(netdev)) return; /* check reception status */ switch (urb->status) { case 0: /* success */ break; case -EILSEQ: case -ENOENT: case -ECONNRESET: case -ESHUTDOWN: return; default: if (net_ratelimit()) netdev_err(netdev, "Rx urb aborted (%d)\n", urb->status); goto resubmit_urb; } /* protect from any incoming empty msgs */ if ((urb->actual_length > 0) && (dev->adapter->dev_decode_buf)) { /* handle these kinds of msgs only if _start callback called */ if (dev->state & PCAN_USB_STATE_STARTED) { err = dev->adapter->dev_decode_buf(dev, urb); if (err) pcan_dump_mem("received usb message", urb->transfer_buffer, urb->transfer_buffer_length); } } resubmit_urb: usb_fill_bulk_urb(urb, dev->udev, usb_rcvbulkpipe(dev->udev, dev->ep_msg_in), urb->transfer_buffer, dev->adapter->rx_buffer_size, peak_usb_read_bulk_callback, dev); usb_anchor_urb(urb, &dev->rx_submitted); err = usb_submit_urb(urb, GFP_ATOMIC); if (!err) return; usb_unanchor_urb(urb); if (err == -ENODEV) netif_device_detach(netdev); else netdev_err(netdev, "failed resubmitting read bulk urb: %d\n", err); } /* * callback for bulk Tx urb */ static void peak_usb_write_bulk_callback(struct urb *urb) { struct peak_tx_urb_context *context = urb->context; struct peak_usb_device *dev; struct net_device *netdev; int tx_bytes; BUG_ON(!context); dev = context->dev; netdev = dev->netdev; atomic_dec(&dev->active_tx_urbs); if (!netif_device_present(netdev)) return; /* check tx status */ switch (urb->status) { case 0: /* prevent tx timeout */ netif_trans_update(netdev); break; case -EPROTO: case -ENOENT: case -ECONNRESET: case -ESHUTDOWN: break; default: if (net_ratelimit()) netdev_err(netdev, "Tx urb aborted (%d)\n", urb->status); break; } /* should always release echo skb and corresponding context */ tx_bytes = can_get_echo_skb(netdev, context->echo_index, NULL); context->echo_index = PCAN_USB_MAX_TX_URBS; if (!urb->status) { /* transmission complete */ netdev->stats.tx_packets++; netdev->stats.tx_bytes += tx_bytes; /* do wakeup tx queue in case of success only */ netif_wake_queue(netdev); } } /* * called by netdev to send one skb on the CAN interface. */ static netdev_tx_t peak_usb_ndo_start_xmit(struct sk_buff *skb, struct net_device *netdev) { struct peak_usb_device *dev = netdev_priv(netdev); struct peak_tx_urb_context *context = NULL; struct net_device_stats *stats = &netdev->stats; struct urb *urb; u8 *obuf; int i, err; size_t size = dev->adapter->tx_buffer_size; if (can_dev_dropped_skb(netdev, skb)) return NETDEV_TX_OK; for (i = 0; i < PCAN_USB_MAX_TX_URBS; i++) if (dev->tx_contexts[i].echo_index == PCAN_USB_MAX_TX_URBS) { context = dev->tx_contexts + i; break; } if (!context) { /* should not occur except during restart */ return NETDEV_TX_BUSY; } urb = context->urb; obuf = urb->transfer_buffer; err = dev->adapter->dev_encode_msg(dev, skb, obuf, &size); if (err) { if (net_ratelimit()) netdev_err(netdev, "packet dropped\n"); dev_kfree_skb(skb); stats->tx_dropped++; return NETDEV_TX_OK; } context->echo_index = i; usb_anchor_urb(urb, &dev->tx_submitted); can_put_echo_skb(skb, netdev, context->echo_index, 0); atomic_inc(&dev->active_tx_urbs); err = usb_submit_urb(urb, GFP_ATOMIC); if (err) { can_free_echo_skb(netdev, context->echo_index, NULL); usb_unanchor_urb(urb); /* this context is not used in fact */ context->echo_index = PCAN_USB_MAX_TX_URBS; atomic_dec(&dev->active_tx_urbs); switch (err) { case -ENODEV: netif_device_detach(netdev); break; default: netdev_warn(netdev, "tx urb submitting failed err=%d\n", err); fallthrough; case -ENOENT: /* cable unplugged */ stats->tx_dropped++; } } else { netif_trans_update(netdev); /* slow down tx path */ if (atomic_read(&dev->active_tx_urbs) >= PCAN_USB_MAX_TX_URBS) netif_stop_queue(netdev); } return NETDEV_TX_OK; } /* * start the CAN interface. * Rx and Tx urbs are allocated here. Rx urbs are submitted here. */ static int peak_usb_start(struct peak_usb_device *dev) { struct net_device *netdev = dev->netdev; int err, i; for (i = 0; i < PCAN_USB_MAX_RX_URBS; i++) { struct urb *urb; u8 *buf; /* create a URB, and a buffer for it, to receive usb messages */ urb = usb_alloc_urb(0, GFP_KERNEL); if (!urb) { err = -ENOMEM; break; } buf = kmalloc(dev->adapter->rx_buffer_size, GFP_KERNEL); if (!buf) { usb_free_urb(urb); err = -ENOMEM; break; } usb_fill_bulk_urb(urb, dev->udev, usb_rcvbulkpipe(dev->udev, dev->ep_msg_in), buf, dev->adapter->rx_buffer_size, peak_usb_read_bulk_callback, dev); /* ask last usb_free_urb() to also kfree() transfer_buffer */ urb->transfer_flags |= URB_FREE_BUFFER; usb_anchor_urb(urb, &dev->rx_submitted); err = usb_submit_urb(urb, GFP_KERNEL); if (err) { if (err == -ENODEV) netif_device_detach(dev->netdev); usb_unanchor_urb(urb); kfree(buf); usb_free_urb(urb); break; } /* drop reference, USB core will take care of freeing it */ usb_free_urb(urb); } /* did we submit any URBs? Warn if we was not able to submit all urbs */ if (i < PCAN_USB_MAX_RX_URBS) { if (i == 0) { netdev_err(netdev, "couldn't setup any rx URB\n"); return err; } netdev_warn(netdev, "rx performance may be slow\n"); } /* pre-alloc tx buffers and corresponding urbs */ for (i = 0; i < PCAN_USB_MAX_TX_URBS; i++) { struct peak_tx_urb_context *context; struct urb *urb; u8 *buf; /* create a URB and a buffer for it, to transmit usb messages */ urb = usb_alloc_urb(0, GFP_KERNEL); if (!urb) { err = -ENOMEM; break; } buf = kmalloc(dev->adapter->tx_buffer_size, GFP_KERNEL); if (!buf) { usb_free_urb(urb); err = -ENOMEM; break; } context = dev->tx_contexts + i; context->dev = dev; context->urb = urb; usb_fill_bulk_urb(urb, dev->udev, usb_sndbulkpipe(dev->udev, dev->ep_msg_out), buf, dev->adapter->tx_buffer_size, peak_usb_write_bulk_callback, context); /* ask last usb_free_urb() to also kfree() transfer_buffer */ urb->transfer_flags |= URB_FREE_BUFFER; } /* warn if we were not able to allocate enough tx contexts */ if (i < PCAN_USB_MAX_TX_URBS) { if (i == 0) { netdev_err(netdev, "couldn't setup any tx URB\n"); goto err_tx; } netdev_warn(netdev, "tx performance may be slow\n"); } if (dev->adapter->dev_start) { err = dev->adapter->dev_start(dev); if (err) goto err_adapter; } dev->state |= PCAN_USB_STATE_STARTED; /* can set bus on now */ if (dev->adapter->dev_set_bus) { err = dev->adapter->dev_set_bus(dev, 1); if (err) goto err_adapter; } dev->can.state = CAN_STATE_ERROR_ACTIVE; return 0; err_adapter: if (err == -ENODEV) netif_device_detach(dev->netdev); netdev_warn(netdev, "couldn't submit control: %d\n", err); for (i = 0; i < PCAN_USB_MAX_TX_URBS; i++) { usb_free_urb(dev->tx_contexts[i].urb); dev->tx_contexts[i].urb = NULL; } err_tx: usb_kill_anchored_urbs(&dev->rx_submitted); return err; } /* * called by netdev to open the corresponding CAN interface. */ static int peak_usb_ndo_open(struct net_device *netdev) { struct peak_usb_device *dev = netdev_priv(netdev); int err; /* common open */ err = open_candev(netdev); if (err) return err; /* finally start device */ err = peak_usb_start(dev); if (err) { netdev_err(netdev, "couldn't start device: %d\n", err); close_candev(netdev); return err; } netif_start_queue(netdev); return 0; } /* * unlink in-flight Rx and Tx urbs and free their memory. */ static void peak_usb_unlink_all_urbs(struct peak_usb_device *dev) { int i; /* free all Rx (submitted) urbs */ usb_kill_anchored_urbs(&dev->rx_submitted); /* free unsubmitted Tx urbs first */ for (i = 0; i < PCAN_USB_MAX_TX_URBS; i++) { struct urb *urb = dev->tx_contexts[i].urb; if (!urb || dev->tx_contexts[i].echo_index != PCAN_USB_MAX_TX_URBS) { /* * this urb is already released or always submitted, * let usb core free by itself */ continue; } usb_free_urb(urb); dev->tx_contexts[i].urb = NULL; } /* then free all submitted Tx urbs */ usb_kill_anchored_urbs(&dev->tx_submitted); atomic_set(&dev->active_tx_urbs, 0); } /* * called by netdev to close the corresponding CAN interface. */ static int peak_usb_ndo_stop(struct net_device *netdev) { struct peak_usb_device *dev = netdev_priv(netdev); dev->state &= ~PCAN_USB_STATE_STARTED; netif_stop_queue(netdev); close_candev(netdev); dev->can.state = CAN_STATE_STOPPED; /* unlink all pending urbs and free used memory */ peak_usb_unlink_all_urbs(dev); if (dev->adapter->dev_stop) dev->adapter->dev_stop(dev); /* can set bus off now */ if (dev->adapter->dev_set_bus) { int err = dev->adapter->dev_set_bus(dev, 0); if (err) return err; } return 0; } /* * handle end of waiting for the device to reset */ void peak_usb_restart_complete(struct peak_usb_device *dev) { /* finally MUST update can state */ dev->can.state = CAN_STATE_ERROR_ACTIVE; /* netdev queue can be awaken now */ netif_wake_queue(dev->netdev); } void peak_usb_async_complete(struct urb *urb) { kfree(urb->transfer_buffer); usb_free_urb(urb); } /* * device (auto-)restart mechanism runs in a timer context => * MUST handle restart with asynchronous usb transfers */ static int peak_usb_restart(struct peak_usb_device *dev) { struct urb *urb; int err; u8 *buf; /* * if device doesn't define any asynchronous restart handler, simply * wake the netdev queue up */ if (!dev->adapter->dev_restart_async) { peak_usb_restart_complete(dev); return 0; } /* first allocate a urb to handle the asynchronous steps */ urb = usb_alloc_urb(0, GFP_ATOMIC); if (!urb) return -ENOMEM; /* also allocate enough space for the commands to send */ buf = kmalloc(PCAN_USB_MAX_CMD_LEN, GFP_ATOMIC); if (!buf) { usb_free_urb(urb); return -ENOMEM; } /* call the device specific handler for the restart */ err = dev->adapter->dev_restart_async(dev, urb, buf); if (!err) return 0; kfree(buf); usb_free_urb(urb); return err; } /* * candev callback used to change CAN mode. * Warning: this is called from a timer context! */ static int peak_usb_set_mode(struct net_device *netdev, enum can_mode mode) { struct peak_usb_device *dev = netdev_priv(netdev); int err = 0; switch (mode) { case CAN_MODE_START: err = peak_usb_restart(dev); if (err) netdev_err(netdev, "couldn't start device (err %d)\n", err); break; default: return -EOPNOTSUPP; } return err; } /* * candev callback used to set device nominal/arbitration bitrate. */ static int peak_usb_set_bittiming(struct net_device *netdev) { struct peak_usb_device *dev = netdev_priv(netdev); const struct peak_usb_adapter *pa = dev->adapter; if (pa->dev_set_bittiming) { struct can_bittiming *bt = &dev->can.bittiming; int err = pa->dev_set_bittiming(dev, bt); if (err) netdev_info(netdev, "couldn't set bitrate (err %d)\n", err); return err; } return 0; } /* * candev callback used to set device data bitrate. */ static int peak_usb_set_data_bittiming(struct net_device *netdev) { struct peak_usb_device *dev = netdev_priv(netdev); const struct peak_usb_adapter *pa = dev->adapter; if (pa->dev_set_data_bittiming) { struct can_bittiming *bt = &dev->can.data_bittiming; int err = pa->dev_set_data_bittiming(dev, bt); if (err) netdev_info(netdev, "couldn't set data bitrate (err %d)\n", err); return err; } return 0; } static int peak_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) { struct hwtstamp_config hwts_cfg = { 0 }; switch (cmd) { case SIOCSHWTSTAMP: /* set */ if (copy_from_user(&hwts_cfg, ifr->ifr_data, sizeof(hwts_cfg))) return -EFAULT; if (hwts_cfg.tx_type == HWTSTAMP_TX_OFF && hwts_cfg.rx_filter == HWTSTAMP_FILTER_ALL) return 0; return -ERANGE; case SIOCGHWTSTAMP: /* get */ hwts_cfg.tx_type = HWTSTAMP_TX_OFF; hwts_cfg.rx_filter = HWTSTAMP_FILTER_ALL; if (copy_to_user(ifr->ifr_data, &hwts_cfg, sizeof(hwts_cfg))) return -EFAULT; return 0; default: return -EOPNOTSUPP; } } static const struct net_device_ops peak_usb_netdev_ops = { .ndo_open = peak_usb_ndo_open, .ndo_stop = peak_usb_ndo_stop, .ndo_eth_ioctl = peak_eth_ioctl, .ndo_start_xmit = peak_usb_ndo_start_xmit, .ndo_change_mtu = can_change_mtu, }; /* CAN-USB devices generally handle 32-bit CAN channel IDs. * In case one doesn't, then it have to overload this function. */ int peak_usb_get_eeprom_len(struct net_device *netdev) { return sizeof(u32); } /* Every CAN-USB device exports the dev_get_can_channel_id() operation. It is used * here to fill the data buffer with the user defined CAN channel ID. */ int peak_usb_get_eeprom(struct net_device *netdev, struct ethtool_eeprom *eeprom, u8 *data) { struct peak_usb_device *dev = netdev_priv(netdev); u32 ch_id; __le32 ch_id_le; int err; err = dev->adapter->dev_get_can_channel_id(dev, &ch_id); if (err) return err; /* ethtool operates on individual bytes. The byte order of the CAN * channel id in memory depends on the kernel architecture. We * convert the CAN channel id back to the native byte order of the PEAK * device itself to ensure that the order is consistent for all * host architectures. */ ch_id_le = cpu_to_le32(ch_id); memcpy(data, (u8 *)&ch_id_le + eeprom->offset, eeprom->len); /* update cached value */ dev->can_channel_id = ch_id; return err; } /* Every CAN-USB device exports the dev_get_can_channel_id()/dev_set_can_channel_id() * operations. They are used here to set the new user defined CAN channel ID. */ int peak_usb_set_eeprom(struct net_device *netdev, struct ethtool_eeprom *eeprom, u8 *data) { struct peak_usb_device *dev = netdev_priv(netdev); u32 ch_id; __le32 ch_id_le; int err; /* first, read the current user defined CAN channel ID */ err = dev->adapter->dev_get_can_channel_id(dev, &ch_id); if (err) { netdev_err(netdev, "Failed to init CAN channel id (err %d)\n", err); return err; } /* do update the value with user given bytes. * ethtool operates on individual bytes. The byte order of the CAN * channel ID in memory depends on the kernel architecture. We * convert the CAN channel ID back to the native byte order of the PEAK * device itself to ensure that the order is consistent for all * host architectures. */ ch_id_le = cpu_to_le32(ch_id); memcpy((u8 *)&ch_id_le + eeprom->offset, data, eeprom->len); ch_id = le32_to_cpu(ch_id_le); /* flash the new value now */ err = dev->adapter->dev_set_can_channel_id(dev, ch_id); if (err) { netdev_err(netdev, "Failed to write new CAN channel id (err %d)\n", err); return err; } /* update cached value with the new one */ dev->can_channel_id = ch_id; return 0; } int pcan_get_ts_info(struct net_device *dev, struct ethtool_ts_info *info) { info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE | SOF_TIMESTAMPING_RX_SOFTWARE | SOF_TIMESTAMPING_SOFTWARE | SOF_TIMESTAMPING_RX_HARDWARE | SOF_TIMESTAMPING_RAW_HARDWARE; info->phc_index = -1; info->tx_types = BIT(HWTSTAMP_TX_OFF); info->rx_filters = BIT(HWTSTAMP_FILTER_ALL); return 0; } /* * create one device which is attached to CAN controller #ctrl_idx of the * usb adapter. */ static int peak_usb_create_dev(const struct peak_usb_adapter *peak_usb_adapter, struct usb_interface *intf, int ctrl_idx) { struct usb_device *usb_dev = interface_to_usbdev(intf); int sizeof_candev = peak_usb_adapter->sizeof_dev_private; struct peak_usb_device *dev; struct net_device *netdev; int i, err; u16 tmp16; if (sizeof_candev < sizeof(struct peak_usb_device)) sizeof_candev = sizeof(struct peak_usb_device); netdev = alloc_candev(sizeof_candev, PCAN_USB_MAX_TX_URBS); if (!netdev) { dev_err(&intf->dev, "%s: couldn't alloc candev\n", PCAN_USB_DRIVER_NAME); return -ENOMEM; } dev = netdev_priv(netdev); /* allocate a buffer large enough to send commands */ dev->cmd_buf = kzalloc(PCAN_USB_MAX_CMD_LEN, GFP_KERNEL); if (!dev->cmd_buf) { err = -ENOMEM; goto lbl_free_candev; } dev->udev = usb_dev; dev->netdev = netdev; dev->adapter = peak_usb_adapter; dev->ctrl_idx = ctrl_idx; dev->state = PCAN_USB_STATE_CONNECTED; dev->ep_msg_in = peak_usb_adapter->ep_msg_in; dev->ep_msg_out = peak_usb_adapter->ep_msg_out[ctrl_idx]; dev->can.clock = peak_usb_adapter->clock; dev->can.bittiming_const = peak_usb_adapter->bittiming_const; dev->can.do_set_bittiming = peak_usb_set_bittiming; dev->can.data_bittiming_const = peak_usb_adapter->data_bittiming_const; dev->can.do_set_data_bittiming = peak_usb_set_data_bittiming; dev->can.do_set_mode = peak_usb_set_mode; dev->can.do_get_berr_counter = peak_usb_adapter->do_get_berr_counter; dev->can.ctrlmode_supported = peak_usb_adapter->ctrlmode_supported; netdev->netdev_ops = &peak_usb_netdev_ops; netdev->flags |= IFF_ECHO; /* we support local echo */ /* add ethtool support */ netdev->ethtool_ops = peak_usb_adapter->ethtool_ops; /* register peak_usb sysfs files */ netdev->sysfs_groups[0] = &peak_usb_sysfs_group; init_usb_anchor(&dev->rx_submitted); init_usb_anchor(&dev->tx_submitted); atomic_set(&dev->active_tx_urbs, 0); for (i = 0; i < PCAN_USB_MAX_TX_URBS; i++) dev->tx_contexts[i].echo_index = PCAN_USB_MAX_TX_URBS; dev->prev_siblings = usb_get_intfdata(intf); usb_set_intfdata(intf, dev); SET_NETDEV_DEV(netdev, &intf->dev); netdev->dev_id = ctrl_idx; err = register_candev(netdev); if (err) { dev_err(&intf->dev, "couldn't register CAN device: %d\n", err); goto lbl_restore_intf_data; } if (dev->prev_siblings) (dev->prev_siblings)->next_siblings = dev; /* keep hw revision into the netdevice */ tmp16 = le16_to_cpu(usb_dev->descriptor.bcdDevice); dev->device_rev = tmp16 >> 8; if (dev->adapter->dev_init) { err = dev->adapter->dev_init(dev); if (err) goto lbl_unregister_candev; } /* set bus off */ if (dev->adapter->dev_set_bus) { err = dev->adapter->dev_set_bus(dev, 0); if (err) goto adap_dev_free; } /* get CAN channel id early */ dev->adapter->dev_get_can_channel_id(dev, &dev->can_channel_id); netdev_info(netdev, "attached to %s channel %u (device 0x%08X)\n", peak_usb_adapter->name, ctrl_idx, dev->can_channel_id); return 0; adap_dev_free: if (dev->adapter->dev_free) dev->adapter->dev_free(dev); lbl_unregister_candev: unregister_candev(netdev); lbl_restore_intf_data: usb_set_intfdata(intf, dev->prev_siblings); kfree(dev->cmd_buf); lbl_free_candev: free_candev(netdev); return err; } /* * called by the usb core when the device is unplugged from the system */ static void peak_usb_disconnect(struct usb_interface *intf) { struct peak_usb_device *dev; struct peak_usb_device *dev_prev_siblings; /* unregister as many netdev devices as siblings */ for (dev = usb_get_intfdata(intf); dev; dev = dev_prev_siblings) { struct net_device *netdev = dev->netdev; char name[IFNAMSIZ]; dev_prev_siblings = dev->prev_siblings; dev->state &= ~PCAN_USB_STATE_CONNECTED; strscpy(name, netdev->name, IFNAMSIZ); unregister_candev(netdev); kfree(dev->cmd_buf); dev->next_siblings = NULL; if (dev->adapter->dev_free) dev->adapter->dev_free(dev); free_candev(netdev); dev_info(&intf->dev, "%s removed\n", name); } usb_set_intfdata(intf, NULL); } /* * probe function for new PEAK-System devices */ static int peak_usb_probe(struct usb_interface *intf, const struct usb_device_id *id) { const struct peak_usb_adapter *peak_usb_adapter; int i, err = -ENOMEM; /* get corresponding PCAN-USB adapter */ peak_usb_adapter = (const struct peak_usb_adapter *)id->driver_info; /* got corresponding adapter: check if it handles current interface */ if (peak_usb_adapter->intf_probe) { err = peak_usb_adapter->intf_probe(intf); if (err) return err; } for (i = 0; i < peak_usb_adapter->ctrl_count; i++) { err = peak_usb_create_dev(peak_usb_adapter, intf, i); if (err) { /* deregister already created devices */ peak_usb_disconnect(intf); break; } } return err; } /* usb specific object needed to register this driver with the usb subsystem */ static struct usb_driver peak_usb_driver = { .name = PCAN_USB_DRIVER_NAME, .disconnect = peak_usb_disconnect, .probe = peak_usb_probe, .id_table = peak_usb_table, }; static int __init peak_usb_init(void) { int err; /* register this driver with the USB subsystem */ err = usb_register(&peak_usb_driver); if (err) pr_err("%s: usb_register failed (err %d)\n", PCAN_USB_DRIVER_NAME, err); return err; } static int peak_usb_do_device_exit(struct device *d, void *arg) { struct usb_interface *intf = to_usb_interface(d); struct peak_usb_device *dev; /* stop as many netdev devices as siblings */ for (dev = usb_get_intfdata(intf); dev; dev = dev->prev_siblings) { struct net_device *netdev = dev->netdev; if (netif_device_present(netdev)) if (dev->adapter->dev_exit) dev->adapter->dev_exit(dev); } return 0; } static void __exit peak_usb_exit(void) { int err; /* last chance do send any synchronous commands here */ err = driver_for_each_device(&peak_usb_driver.drvwrap.driver, NULL, NULL, peak_usb_do_device_exit); if (err) pr_err("%s: failed to stop all can devices (err %d)\n", PCAN_USB_DRIVER_NAME, err); /* deregister this driver with the USB subsystem */ usb_deregister(&peak_usb_driver); pr_info("%s: PCAN-USB interfaces driver unloaded\n", PCAN_USB_DRIVER_NAME); } module_init(peak_usb_init); module_exit(peak_usb_exit);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1