Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Christian Eggers | 3685 | 67.79% | 8 | 29.63% |
Arun Ramadoss | 1607 | 29.56% | 12 | 44.44% |
Woojung Huh | 113 | 2.08% | 1 | 3.70% |
Tristram Ha | 13 | 0.24% | 2 | 7.41% |
Dan Carpenter | 13 | 0.24% | 1 | 3.70% |
Marek Vašut | 3 | 0.06% | 1 | 3.70% |
Florian Fainelli | 1 | 0.02% | 1 | 3.70% |
Robert Hancock | 1 | 0.02% | 1 | 3.70% |
Total | 5436 | 27 |
// SPDX-License-Identifier: GPL-2.0 /* Microchip KSZ PTP Implementation * * Copyright (C) 2020 ARRI Lighting * Copyright (C) 2022 Microchip Technology Inc. */ #include <linux/dsa/ksz_common.h> #include <linux/irq.h> #include <linux/irqdomain.h> #include <linux/kernel.h> #include <linux/ptp_classify.h> #include <linux/ptp_clock_kernel.h> #include "ksz_common.h" #include "ksz_ptp.h" #include "ksz_ptp_reg.h" #define ptp_caps_to_data(d) container_of((d), struct ksz_ptp_data, caps) #define ptp_data_to_ksz_dev(d) container_of((d), struct ksz_device, ptp_data) #define work_to_xmit_work(w) \ container_of((w), struct ksz_deferred_xmit_work, work) /* Sub-nanoseconds-adj,max * sub-nanoseconds / 40ns * 1ns * = (2^30-1) * (2 ^ 32) / 40 ns * 1 ns = 6249999 */ #define KSZ_MAX_DRIFT_CORR 6249999 #define KSZ_MAX_PULSE_WIDTH 125000000LL #define KSZ_PTP_INC_NS 40ULL /* HW clock is incremented every 40 ns (by 40) */ #define KSZ_PTP_SUBNS_BITS 32 #define KSZ_PTP_INT_START 13 static int ksz_ptp_tou_gpio(struct ksz_device *dev) { int ret; if (!is_lan937x(dev)) return 0; ret = ksz_rmw32(dev, REG_PTP_CTRL_STAT__4, GPIO_OUT, GPIO_OUT); if (ret) return ret; ret = ksz_rmw32(dev, REG_SW_GLOBAL_LED_OVR__4, LED_OVR_1 | LED_OVR_2, LED_OVR_1 | LED_OVR_2); if (ret) return ret; return ksz_rmw32(dev, REG_SW_GLOBAL_LED_SRC__4, LED_SRC_PTP_GPIO_1 | LED_SRC_PTP_GPIO_2, LED_SRC_PTP_GPIO_1 | LED_SRC_PTP_GPIO_2); } static int ksz_ptp_tou_reset(struct ksz_device *dev, u8 unit) { u32 data; int ret; /* Reset trigger unit (clears TRIGGER_EN, but not GPIOSTATx) */ ret = ksz_rmw32(dev, REG_PTP_CTRL_STAT__4, TRIG_RESET, TRIG_RESET); data = FIELD_PREP(TRIG_DONE_M, BIT(unit)); ret = ksz_write32(dev, REG_PTP_TRIG_STATUS__4, data); if (ret) return ret; data = FIELD_PREP(TRIG_INT_M, BIT(unit)); ret = ksz_write32(dev, REG_PTP_INT_STATUS__4, data); if (ret) return ret; /* Clear reset and set GPIO direction */ return ksz_rmw32(dev, REG_PTP_CTRL_STAT__4, (TRIG_RESET | TRIG_ENABLE), 0); } static int ksz_ptp_tou_pulse_verify(u64 pulse_ns) { u32 data; if (pulse_ns & 0x3) return -EINVAL; data = (pulse_ns / 8); if (!FIELD_FIT(TRIG_PULSE_WIDTH_M, data)) return -ERANGE; return 0; } static int ksz_ptp_tou_target_time_set(struct ksz_device *dev, struct timespec64 const *ts) { int ret; /* Hardware has only 32 bit */ if ((ts->tv_sec & 0xffffffff) != ts->tv_sec) return -EINVAL; ret = ksz_write32(dev, REG_TRIG_TARGET_NANOSEC, ts->tv_nsec); if (ret) return ret; ret = ksz_write32(dev, REG_TRIG_TARGET_SEC, ts->tv_sec); if (ret) return ret; return 0; } static int ksz_ptp_tou_start(struct ksz_device *dev, u8 unit) { u32 data; int ret; ret = ksz_rmw32(dev, REG_PTP_CTRL_STAT__4, TRIG_ENABLE, TRIG_ENABLE); if (ret) return ret; /* Check error flag: * - the ACTIVE flag is NOT cleared an error! */ ret = ksz_read32(dev, REG_PTP_TRIG_STATUS__4, &data); if (ret) return ret; if (FIELD_GET(TRIG_ERROR_M, data) & (1 << unit)) { dev_err(dev->dev, "%s: Trigger unit%d error!\n", __func__, unit); ret = -EIO; /* Unit will be reset on next access */ return ret; } return 0; } static int ksz_ptp_configure_perout(struct ksz_device *dev, u32 cycle_width_ns, u32 pulse_width_ns, struct timespec64 const *target_time, u8 index) { u32 data; int ret; data = FIELD_PREP(TRIG_NOTIFY, 1) | FIELD_PREP(TRIG_GPO_M, index) | FIELD_PREP(TRIG_PATTERN_M, TRIG_POS_PERIOD); ret = ksz_write32(dev, REG_TRIG_CTRL__4, data); if (ret) return ret; ret = ksz_write32(dev, REG_TRIG_CYCLE_WIDTH, cycle_width_ns); if (ret) return ret; /* Set cycle count 0 - Infinite */ ret = ksz_rmw32(dev, REG_TRIG_CYCLE_CNT, TRIG_CYCLE_CNT_M, 0); if (ret) return ret; data = (pulse_width_ns / 8); ret = ksz_write32(dev, REG_TRIG_PULSE_WIDTH__4, data); if (ret) return ret; ret = ksz_ptp_tou_target_time_set(dev, target_time); if (ret) return ret; return 0; } static int ksz_ptp_enable_perout(struct ksz_device *dev, struct ptp_perout_request const *request, int on) { struct ksz_ptp_data *ptp_data = &dev->ptp_data; u64 req_pulse_width_ns; u64 cycle_width_ns; u64 pulse_width_ns; int pin = 0; u32 data32; int ret; if (request->flags & ~PTP_PEROUT_DUTY_CYCLE) return -EOPNOTSUPP; if (ptp_data->tou_mode != KSZ_PTP_TOU_PEROUT && ptp_data->tou_mode != KSZ_PTP_TOU_IDLE) return -EBUSY; pin = ptp_find_pin(ptp_data->clock, PTP_PF_PEROUT, request->index); if (pin < 0) return -EINVAL; data32 = FIELD_PREP(PTP_GPIO_INDEX, pin) | FIELD_PREP(PTP_TOU_INDEX, request->index); ret = ksz_rmw32(dev, REG_PTP_UNIT_INDEX__4, PTP_GPIO_INDEX | PTP_TOU_INDEX, data32); if (ret) return ret; ret = ksz_ptp_tou_reset(dev, request->index); if (ret) return ret; if (!on) { ptp_data->tou_mode = KSZ_PTP_TOU_IDLE; return 0; } ptp_data->perout_target_time_first.tv_sec = request->start.sec; ptp_data->perout_target_time_first.tv_nsec = request->start.nsec; ptp_data->perout_period.tv_sec = request->period.sec; ptp_data->perout_period.tv_nsec = request->period.nsec; cycle_width_ns = timespec64_to_ns(&ptp_data->perout_period); if ((cycle_width_ns & TRIG_CYCLE_WIDTH_M) != cycle_width_ns) return -EINVAL; if (request->flags & PTP_PEROUT_DUTY_CYCLE) { pulse_width_ns = request->on.sec * NSEC_PER_SEC + request->on.nsec; } else { /* Use a duty cycle of 50%. Maximum pulse width supported by the * hardware is a little bit more than 125 ms. */ req_pulse_width_ns = (request->period.sec * NSEC_PER_SEC + request->period.nsec) / 2; pulse_width_ns = min_t(u64, req_pulse_width_ns, KSZ_MAX_PULSE_WIDTH); } ret = ksz_ptp_tou_pulse_verify(pulse_width_ns); if (ret) return ret; ret = ksz_ptp_configure_perout(dev, cycle_width_ns, pulse_width_ns, &ptp_data->perout_target_time_first, pin); if (ret) return ret; ret = ksz_ptp_tou_gpio(dev); if (ret) return ret; ret = ksz_ptp_tou_start(dev, request->index); if (ret) return ret; ptp_data->tou_mode = KSZ_PTP_TOU_PEROUT; return 0; } static int ksz_ptp_enable_mode(struct ksz_device *dev) { struct ksz_tagger_data *tagger_data = ksz_tagger_data(dev->ds); struct ksz_ptp_data *ptp_data = &dev->ptp_data; struct ksz_port *prt; struct dsa_port *dp; bool tag_en = false; int ret; dsa_switch_for_each_user_port(dp, dev->ds) { prt = &dev->ports[dp->index]; if (prt->hwts_tx_en || prt->hwts_rx_en) { tag_en = true; break; } } if (tag_en) { ret = ptp_schedule_worker(ptp_data->clock, 0); if (ret) return ret; } else { ptp_cancel_worker_sync(ptp_data->clock); } tagger_data->hwtstamp_set_state(dev->ds, tag_en); return ksz_rmw16(dev, REG_PTP_MSG_CONF1, PTP_ENABLE, tag_en ? PTP_ENABLE : 0); } /* The function is return back the capability of timestamping feature when * requested through ethtool -T <interface> utility */ int ksz_get_ts_info(struct dsa_switch *ds, int port, struct ethtool_ts_info *ts) { struct ksz_device *dev = ds->priv; struct ksz_ptp_data *ptp_data; ptp_data = &dev->ptp_data; if (!ptp_data->clock) return -ENODEV; ts->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE | SOF_TIMESTAMPING_RX_HARDWARE | SOF_TIMESTAMPING_RAW_HARDWARE; ts->tx_types = BIT(HWTSTAMP_TX_OFF) | BIT(HWTSTAMP_TX_ONESTEP_P2P); if (is_lan937x(dev)) ts->tx_types |= BIT(HWTSTAMP_TX_ON); ts->rx_filters = BIT(HWTSTAMP_FILTER_NONE) | BIT(HWTSTAMP_FILTER_PTP_V2_L4_EVENT) | BIT(HWTSTAMP_FILTER_PTP_V2_L2_EVENT) | BIT(HWTSTAMP_FILTER_PTP_V2_EVENT); ts->phc_index = ptp_clock_index(ptp_data->clock); return 0; } int ksz_hwtstamp_get(struct dsa_switch *ds, int port, struct ifreq *ifr) { struct ksz_device *dev = ds->priv; struct hwtstamp_config *config; struct ksz_port *prt; prt = &dev->ports[port]; config = &prt->tstamp_config; return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ? -EFAULT : 0; } static int ksz_set_hwtstamp_config(struct ksz_device *dev, struct ksz_port *prt, struct hwtstamp_config *config) { int ret; if (config->flags) return -EINVAL; switch (config->tx_type) { case HWTSTAMP_TX_OFF: prt->ptpmsg_irq[KSZ_SYNC_MSG].ts_en = false; prt->ptpmsg_irq[KSZ_XDREQ_MSG].ts_en = false; prt->ptpmsg_irq[KSZ_PDRES_MSG].ts_en = false; prt->hwts_tx_en = false; break; case HWTSTAMP_TX_ONESTEP_P2P: prt->ptpmsg_irq[KSZ_SYNC_MSG].ts_en = false; prt->ptpmsg_irq[KSZ_XDREQ_MSG].ts_en = true; prt->ptpmsg_irq[KSZ_PDRES_MSG].ts_en = false; prt->hwts_tx_en = true; ret = ksz_rmw16(dev, REG_PTP_MSG_CONF1, PTP_1STEP, PTP_1STEP); if (ret) return ret; break; case HWTSTAMP_TX_ON: if (!is_lan937x(dev)) return -ERANGE; prt->ptpmsg_irq[KSZ_SYNC_MSG].ts_en = true; prt->ptpmsg_irq[KSZ_XDREQ_MSG].ts_en = true; prt->ptpmsg_irq[KSZ_PDRES_MSG].ts_en = true; prt->hwts_tx_en = true; ret = ksz_rmw16(dev, REG_PTP_MSG_CONF1, PTP_1STEP, 0); if (ret) return ret; break; default: return -ERANGE; } switch (config->rx_filter) { case HWTSTAMP_FILTER_NONE: prt->hwts_rx_en = false; break; case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: config->rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT; prt->hwts_rx_en = true; break; case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: config->rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT; prt->hwts_rx_en = true; break; case HWTSTAMP_FILTER_PTP_V2_EVENT: case HWTSTAMP_FILTER_PTP_V2_SYNC: config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; prt->hwts_rx_en = true; break; default: config->rx_filter = HWTSTAMP_FILTER_NONE; return -ERANGE; } return ksz_ptp_enable_mode(dev); } int ksz_hwtstamp_set(struct dsa_switch *ds, int port, struct ifreq *ifr) { struct ksz_device *dev = ds->priv; struct hwtstamp_config config; struct ksz_port *prt; int ret; prt = &dev->ports[port]; if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) return -EFAULT; ret = ksz_set_hwtstamp_config(dev, prt, &config); if (ret) return ret; memcpy(&prt->tstamp_config, &config, sizeof(config)); if (copy_to_user(ifr->ifr_data, &config, sizeof(config))) return -EFAULT; return 0; } static ktime_t ksz_tstamp_reconstruct(struct ksz_device *dev, ktime_t tstamp) { struct timespec64 ptp_clock_time; struct ksz_ptp_data *ptp_data; struct timespec64 diff; struct timespec64 ts; ptp_data = &dev->ptp_data; ts = ktime_to_timespec64(tstamp); spin_lock_bh(&ptp_data->clock_lock); ptp_clock_time = ptp_data->clock_time; spin_unlock_bh(&ptp_data->clock_lock); /* calculate full time from partial time stamp */ ts.tv_sec = (ptp_clock_time.tv_sec & ~3) | ts.tv_sec; /* find nearest possible point in time */ diff = timespec64_sub(ts, ptp_clock_time); if (diff.tv_sec > 2) ts.tv_sec -= 4; else if (diff.tv_sec < -2) ts.tv_sec += 4; return timespec64_to_ktime(ts); } bool ksz_port_rxtstamp(struct dsa_switch *ds, int port, struct sk_buff *skb, unsigned int type) { struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb); struct ksz_device *dev = ds->priv; struct ptp_header *ptp_hdr; struct ksz_port *prt; u8 ptp_msg_type; ktime_t tstamp; s64 correction; prt = &dev->ports[port]; tstamp = KSZ_SKB_CB(skb)->tstamp; memset(hwtstamps, 0, sizeof(*hwtstamps)); hwtstamps->hwtstamp = ksz_tstamp_reconstruct(dev, tstamp); if (prt->tstamp_config.tx_type != HWTSTAMP_TX_ONESTEP_P2P) goto out; ptp_hdr = ptp_parse_header(skb, type); if (!ptp_hdr) goto out; ptp_msg_type = ptp_get_msgtype(ptp_hdr, type); if (ptp_msg_type != PTP_MSGTYPE_PDELAY_REQ) goto out; /* Only subtract the partial time stamp from the correction field. When * the hardware adds the egress time stamp to the correction field of * the PDelay_Resp message on tx, also only the partial time stamp will * be added. */ correction = (s64)get_unaligned_be64(&ptp_hdr->correction); correction -= ktime_to_ns(tstamp) << 16; ptp_header_update_correction(skb, type, ptp_hdr, correction); out: return false; } void ksz_port_txtstamp(struct dsa_switch *ds, int port, struct sk_buff *skb) { struct ksz_device *dev = ds->priv; struct ptp_header *hdr; struct sk_buff *clone; struct ksz_port *prt; unsigned int type; u8 ptp_msg_type; prt = &dev->ports[port]; if (!prt->hwts_tx_en) return; type = ptp_classify_raw(skb); if (type == PTP_CLASS_NONE) return; hdr = ptp_parse_header(skb, type); if (!hdr) return; ptp_msg_type = ptp_get_msgtype(hdr, type); switch (ptp_msg_type) { case PTP_MSGTYPE_SYNC: if (prt->tstamp_config.tx_type == HWTSTAMP_TX_ONESTEP_P2P) return; break; case PTP_MSGTYPE_PDELAY_REQ: break; case PTP_MSGTYPE_PDELAY_RESP: if (prt->tstamp_config.tx_type == HWTSTAMP_TX_ONESTEP_P2P) { KSZ_SKB_CB(skb)->ptp_type = type; KSZ_SKB_CB(skb)->update_correction = true; return; } break; default: return; } clone = skb_clone_sk(skb); if (!clone) return; /* caching the value to be used in tag_ksz.c */ KSZ_SKB_CB(skb)->clone = clone; } static void ksz_ptp_txtstamp_skb(struct ksz_device *dev, struct ksz_port *prt, struct sk_buff *skb) { struct skb_shared_hwtstamps hwtstamps = {}; int ret; /* timeout must include DSA conduit to transmit data, tstamp latency, * IRQ latency and time for reading the time stamp. */ ret = wait_for_completion_timeout(&prt->tstamp_msg_comp, msecs_to_jiffies(100)); if (!ret) return; hwtstamps.hwtstamp = prt->tstamp_msg; skb_complete_tx_timestamp(skb, &hwtstamps); } void ksz_port_deferred_xmit(struct kthread_work *work) { struct ksz_deferred_xmit_work *xmit_work = work_to_xmit_work(work); struct sk_buff *clone, *skb = xmit_work->skb; struct dsa_switch *ds = xmit_work->dp->ds; struct ksz_device *dev = ds->priv; struct ksz_port *prt; prt = &dev->ports[xmit_work->dp->index]; clone = KSZ_SKB_CB(skb)->clone; skb_shinfo(clone)->tx_flags |= SKBTX_IN_PROGRESS; reinit_completion(&prt->tstamp_msg_comp); dsa_enqueue_skb(skb, skb->dev); ksz_ptp_txtstamp_skb(dev, prt, clone); kfree(xmit_work); } static int _ksz_ptp_gettime(struct ksz_device *dev, struct timespec64 *ts) { u32 nanoseconds; u32 seconds; u8 phase; int ret; /* Copy current PTP clock into shadow registers and read */ ret = ksz_rmw16(dev, REG_PTP_CLK_CTRL, PTP_READ_TIME, PTP_READ_TIME); if (ret) return ret; ret = ksz_read8(dev, REG_PTP_RTC_SUB_NANOSEC__2, &phase); if (ret) return ret; ret = ksz_read32(dev, REG_PTP_RTC_NANOSEC, &nanoseconds); if (ret) return ret; ret = ksz_read32(dev, REG_PTP_RTC_SEC, &seconds); if (ret) return ret; ts->tv_sec = seconds; ts->tv_nsec = nanoseconds + phase * 8; return 0; } static int ksz_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts) { struct ksz_ptp_data *ptp_data = ptp_caps_to_data(ptp); struct ksz_device *dev = ptp_data_to_ksz_dev(ptp_data); int ret; mutex_lock(&ptp_data->lock); ret = _ksz_ptp_gettime(dev, ts); mutex_unlock(&ptp_data->lock); return ret; } static int ksz_ptp_restart_perout(struct ksz_device *dev) { struct ksz_ptp_data *ptp_data = &dev->ptp_data; s64 now_ns, first_ns, period_ns, next_ns; struct ptp_perout_request request; struct timespec64 next; struct timespec64 now; unsigned int count; int ret; dev_info(dev->dev, "Restarting periodic output signal\n"); ret = _ksz_ptp_gettime(dev, &now); if (ret) return ret; now_ns = timespec64_to_ns(&now); first_ns = timespec64_to_ns(&ptp_data->perout_target_time_first); /* Calculate next perout event based on start time and period */ period_ns = timespec64_to_ns(&ptp_data->perout_period); if (first_ns < now_ns) { count = div_u64(now_ns - first_ns, period_ns); next_ns = first_ns + count * period_ns; } else { next_ns = first_ns; } /* Ensure 100 ms guard time prior next event */ while (next_ns < now_ns + 100000000) next_ns += period_ns; /* Restart periodic output signal */ next = ns_to_timespec64(next_ns); request.start.sec = next.tv_sec; request.start.nsec = next.tv_nsec; request.period.sec = ptp_data->perout_period.tv_sec; request.period.nsec = ptp_data->perout_period.tv_nsec; request.index = 0; request.flags = 0; return ksz_ptp_enable_perout(dev, &request, 1); } static int ksz_ptp_settime(struct ptp_clock_info *ptp, const struct timespec64 *ts) { struct ksz_ptp_data *ptp_data = ptp_caps_to_data(ptp); struct ksz_device *dev = ptp_data_to_ksz_dev(ptp_data); int ret; mutex_lock(&ptp_data->lock); /* Write to shadow registers and Load PTP clock */ ret = ksz_write16(dev, REG_PTP_RTC_SUB_NANOSEC__2, PTP_RTC_0NS); if (ret) goto unlock; ret = ksz_write32(dev, REG_PTP_RTC_NANOSEC, ts->tv_nsec); if (ret) goto unlock; ret = ksz_write32(dev, REG_PTP_RTC_SEC, ts->tv_sec); if (ret) goto unlock; ret = ksz_rmw16(dev, REG_PTP_CLK_CTRL, PTP_LOAD_TIME, PTP_LOAD_TIME); if (ret) goto unlock; switch (ptp_data->tou_mode) { case KSZ_PTP_TOU_IDLE: break; case KSZ_PTP_TOU_PEROUT: ret = ksz_ptp_restart_perout(dev); if (ret) goto unlock; break; } spin_lock_bh(&ptp_data->clock_lock); ptp_data->clock_time = *ts; spin_unlock_bh(&ptp_data->clock_lock); unlock: mutex_unlock(&ptp_data->lock); return ret; } static int ksz_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm) { struct ksz_ptp_data *ptp_data = ptp_caps_to_data(ptp); struct ksz_device *dev = ptp_data_to_ksz_dev(ptp_data); u64 base, adj; bool negative; u32 data32; int ret; mutex_lock(&ptp_data->lock); if (scaled_ppm) { base = KSZ_PTP_INC_NS << KSZ_PTP_SUBNS_BITS; negative = diff_by_scaled_ppm(base, scaled_ppm, &adj); data32 = (u32)adj; data32 &= PTP_SUBNANOSEC_M; if (!negative) data32 |= PTP_RATE_DIR; ret = ksz_write32(dev, REG_PTP_SUBNANOSEC_RATE, data32); if (ret) goto unlock; ret = ksz_rmw16(dev, REG_PTP_CLK_CTRL, PTP_CLK_ADJ_ENABLE, PTP_CLK_ADJ_ENABLE); if (ret) goto unlock; } else { ret = ksz_rmw16(dev, REG_PTP_CLK_CTRL, PTP_CLK_ADJ_ENABLE, 0); if (ret) goto unlock; } unlock: mutex_unlock(&ptp_data->lock); return ret; } static int ksz_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta) { struct ksz_ptp_data *ptp_data = ptp_caps_to_data(ptp); struct ksz_device *dev = ptp_data_to_ksz_dev(ptp_data); struct timespec64 delta64 = ns_to_timespec64(delta); s32 sec, nsec; u16 data16; int ret; mutex_lock(&ptp_data->lock); /* do not use ns_to_timespec64(), * both sec and nsec are subtracted by hw */ sec = div_s64_rem(delta, NSEC_PER_SEC, &nsec); ret = ksz_write32(dev, REG_PTP_RTC_NANOSEC, abs(nsec)); if (ret) goto unlock; ret = ksz_write32(dev, REG_PTP_RTC_SEC, abs(sec)); if (ret) goto unlock; ret = ksz_read16(dev, REG_PTP_CLK_CTRL, &data16); if (ret) goto unlock; data16 |= PTP_STEP_ADJ; /* PTP_STEP_DIR -- 0: subtract, 1: add */ if (delta < 0) data16 &= ~PTP_STEP_DIR; else data16 |= PTP_STEP_DIR; ret = ksz_write16(dev, REG_PTP_CLK_CTRL, data16); if (ret) goto unlock; switch (ptp_data->tou_mode) { case KSZ_PTP_TOU_IDLE: break; case KSZ_PTP_TOU_PEROUT: ret = ksz_ptp_restart_perout(dev); if (ret) goto unlock; break; } spin_lock_bh(&ptp_data->clock_lock); ptp_data->clock_time = timespec64_add(ptp_data->clock_time, delta64); spin_unlock_bh(&ptp_data->clock_lock); unlock: mutex_unlock(&ptp_data->lock); return ret; } static int ksz_ptp_enable(struct ptp_clock_info *ptp, struct ptp_clock_request *req, int on) { struct ksz_ptp_data *ptp_data = ptp_caps_to_data(ptp); struct ksz_device *dev = ptp_data_to_ksz_dev(ptp_data); int ret; switch (req->type) { case PTP_CLK_REQ_PEROUT: mutex_lock(&ptp_data->lock); ret = ksz_ptp_enable_perout(dev, &req->perout, on); mutex_unlock(&ptp_data->lock); break; default: return -EOPNOTSUPP; } return ret; } static int ksz_ptp_verify_pin(struct ptp_clock_info *ptp, unsigned int pin, enum ptp_pin_function func, unsigned int chan) { int ret = 0; switch (func) { case PTP_PF_NONE: case PTP_PF_PEROUT: break; default: ret = -1; break; } return ret; } /* Function is pointer to the do_aux_work in the ptp_clock capability */ static long ksz_ptp_do_aux_work(struct ptp_clock_info *ptp) { struct ksz_ptp_data *ptp_data = ptp_caps_to_data(ptp); struct ksz_device *dev = ptp_data_to_ksz_dev(ptp_data); struct timespec64 ts; int ret; mutex_lock(&ptp_data->lock); ret = _ksz_ptp_gettime(dev, &ts); if (ret) goto out; spin_lock_bh(&ptp_data->clock_lock); ptp_data->clock_time = ts; spin_unlock_bh(&ptp_data->clock_lock); out: mutex_unlock(&ptp_data->lock); return HZ; /* reschedule in 1 second */ } static int ksz_ptp_start_clock(struct ksz_device *dev) { struct ksz_ptp_data *ptp_data = &dev->ptp_data; int ret; ret = ksz_rmw16(dev, REG_PTP_CLK_CTRL, PTP_CLK_ENABLE, PTP_CLK_ENABLE); if (ret) return ret; ptp_data->clock_time.tv_sec = 0; ptp_data->clock_time.tv_nsec = 0; return 0; } int ksz_ptp_clock_register(struct dsa_switch *ds) { struct ksz_device *dev = ds->priv; struct ksz_ptp_data *ptp_data; int ret; u8 i; ptp_data = &dev->ptp_data; mutex_init(&ptp_data->lock); spin_lock_init(&ptp_data->clock_lock); ptp_data->caps.owner = THIS_MODULE; snprintf(ptp_data->caps.name, 16, "Microchip Clock"); ptp_data->caps.max_adj = KSZ_MAX_DRIFT_CORR; ptp_data->caps.gettime64 = ksz_ptp_gettime; ptp_data->caps.settime64 = ksz_ptp_settime; ptp_data->caps.adjfine = ksz_ptp_adjfine; ptp_data->caps.adjtime = ksz_ptp_adjtime; ptp_data->caps.do_aux_work = ksz_ptp_do_aux_work; ptp_data->caps.enable = ksz_ptp_enable; ptp_data->caps.verify = ksz_ptp_verify_pin; ptp_data->caps.n_pins = KSZ_PTP_N_GPIO; ptp_data->caps.n_per_out = 3; ret = ksz_ptp_start_clock(dev); if (ret) return ret; for (i = 0; i < KSZ_PTP_N_GPIO; i++) { struct ptp_pin_desc *ptp_pin = &ptp_data->pin_config[i]; snprintf(ptp_pin->name, sizeof(ptp_pin->name), "ksz_ptp_pin_%02d", i); ptp_pin->index = i; ptp_pin->func = PTP_PF_NONE; } ptp_data->caps.pin_config = ptp_data->pin_config; /* Currently only P2P mode is supported. When 802_1AS bit is set, it * forwards all PTP packets to host port and none to other ports. */ ret = ksz_rmw16(dev, REG_PTP_MSG_CONF1, PTP_TC_P2P | PTP_802_1AS, PTP_TC_P2P | PTP_802_1AS); if (ret) return ret; ptp_data->clock = ptp_clock_register(&ptp_data->caps, dev->dev); if (IS_ERR_OR_NULL(ptp_data->clock)) return PTR_ERR(ptp_data->clock); return 0; } void ksz_ptp_clock_unregister(struct dsa_switch *ds) { struct ksz_device *dev = ds->priv; struct ksz_ptp_data *ptp_data; ptp_data = &dev->ptp_data; if (ptp_data->clock) ptp_clock_unregister(ptp_data->clock); } static irqreturn_t ksz_ptp_msg_thread_fn(int irq, void *dev_id) { struct ksz_ptp_irq *ptpmsg_irq = dev_id; struct ksz_device *dev; struct ksz_port *port; u32 tstamp_raw; ktime_t tstamp; int ret; port = ptpmsg_irq->port; dev = port->ksz_dev; if (ptpmsg_irq->ts_en) { ret = ksz_read32(dev, ptpmsg_irq->ts_reg, &tstamp_raw); if (ret) return IRQ_NONE; tstamp = ksz_decode_tstamp(tstamp_raw); port->tstamp_msg = ksz_tstamp_reconstruct(dev, tstamp); complete(&port->tstamp_msg_comp); } return IRQ_HANDLED; } static irqreturn_t ksz_ptp_irq_thread_fn(int irq, void *dev_id) { struct ksz_irq *ptpirq = dev_id; unsigned int nhandled = 0; struct ksz_device *dev; unsigned int sub_irq; u16 data; int ret; u8 n; dev = ptpirq->dev; ret = ksz_read16(dev, ptpirq->reg_status, &data); if (ret) goto out; /* Clear the interrupts W1C */ ret = ksz_write16(dev, ptpirq->reg_status, data); if (ret) return IRQ_NONE; for (n = 0; n < ptpirq->nirqs; ++n) { if (data & BIT(n + KSZ_PTP_INT_START)) { sub_irq = irq_find_mapping(ptpirq->domain, n); handle_nested_irq(sub_irq); ++nhandled; } } out: return (nhandled > 0 ? IRQ_HANDLED : IRQ_NONE); } static void ksz_ptp_irq_mask(struct irq_data *d) { struct ksz_irq *kirq = irq_data_get_irq_chip_data(d); kirq->masked &= ~BIT(d->hwirq + KSZ_PTP_INT_START); } static void ksz_ptp_irq_unmask(struct irq_data *d) { struct ksz_irq *kirq = irq_data_get_irq_chip_data(d); kirq->masked |= BIT(d->hwirq + KSZ_PTP_INT_START); } static void ksz_ptp_irq_bus_lock(struct irq_data *d) { struct ksz_irq *kirq = irq_data_get_irq_chip_data(d); mutex_lock(&kirq->dev->lock_irq); } static void ksz_ptp_irq_bus_sync_unlock(struct irq_data *d) { struct ksz_irq *kirq = irq_data_get_irq_chip_data(d); struct ksz_device *dev = kirq->dev; int ret; ret = ksz_write16(dev, kirq->reg_mask, kirq->masked); if (ret) dev_err(dev->dev, "failed to change IRQ mask\n"); mutex_unlock(&dev->lock_irq); } static const struct irq_chip ksz_ptp_irq_chip = { .name = "ksz-irq", .irq_mask = ksz_ptp_irq_mask, .irq_unmask = ksz_ptp_irq_unmask, .irq_bus_lock = ksz_ptp_irq_bus_lock, .irq_bus_sync_unlock = ksz_ptp_irq_bus_sync_unlock, }; static int ksz_ptp_irq_domain_map(struct irq_domain *d, unsigned int irq, irq_hw_number_t hwirq) { irq_set_chip_data(irq, d->host_data); irq_set_chip_and_handler(irq, &ksz_ptp_irq_chip, handle_level_irq); irq_set_noprobe(irq); return 0; } static const struct irq_domain_ops ksz_ptp_irq_domain_ops = { .map = ksz_ptp_irq_domain_map, .xlate = irq_domain_xlate_twocell, }; static void ksz_ptp_msg_irq_free(struct ksz_port *port, u8 n) { struct ksz_ptp_irq *ptpmsg_irq; ptpmsg_irq = &port->ptpmsg_irq[n]; free_irq(ptpmsg_irq->num, ptpmsg_irq); irq_dispose_mapping(ptpmsg_irq->num); } static int ksz_ptp_msg_irq_setup(struct ksz_port *port, u8 n) { u16 ts_reg[] = {REG_PTP_PORT_PDRESP_TS, REG_PTP_PORT_XDELAY_TS, REG_PTP_PORT_SYNC_TS}; static const char * const name[] = {"pdresp-msg", "xdreq-msg", "sync-msg"}; const struct ksz_dev_ops *ops = port->ksz_dev->dev_ops; struct ksz_ptp_irq *ptpmsg_irq; ptpmsg_irq = &port->ptpmsg_irq[n]; ptpmsg_irq->port = port; ptpmsg_irq->ts_reg = ops->get_port_addr(port->num, ts_reg[n]); snprintf(ptpmsg_irq->name, sizeof(ptpmsg_irq->name), name[n]); ptpmsg_irq->num = irq_find_mapping(port->ptpirq.domain, n); if (ptpmsg_irq->num < 0) return ptpmsg_irq->num; return request_threaded_irq(ptpmsg_irq->num, NULL, ksz_ptp_msg_thread_fn, IRQF_ONESHOT, ptpmsg_irq->name, ptpmsg_irq); } int ksz_ptp_irq_setup(struct dsa_switch *ds, u8 p) { struct ksz_device *dev = ds->priv; const struct ksz_dev_ops *ops = dev->dev_ops; struct ksz_port *port = &dev->ports[p]; struct ksz_irq *ptpirq = &port->ptpirq; int irq; int ret; ptpirq->dev = dev; ptpirq->masked = 0; ptpirq->nirqs = 3; ptpirq->reg_mask = ops->get_port_addr(p, REG_PTP_PORT_TX_INT_ENABLE__2); ptpirq->reg_status = ops->get_port_addr(p, REG_PTP_PORT_TX_INT_STATUS__2); snprintf(ptpirq->name, sizeof(ptpirq->name), "ptp-irq-%d", p); init_completion(&port->tstamp_msg_comp); ptpirq->domain = irq_domain_add_linear(dev->dev->of_node, ptpirq->nirqs, &ksz_ptp_irq_domain_ops, ptpirq); if (!ptpirq->domain) return -ENOMEM; for (irq = 0; irq < ptpirq->nirqs; irq++) irq_create_mapping(ptpirq->domain, irq); ptpirq->irq_num = irq_find_mapping(port->pirq.domain, PORT_SRC_PTP_INT); if (ptpirq->irq_num < 0) { ret = ptpirq->irq_num; goto out; } ret = request_threaded_irq(ptpirq->irq_num, NULL, ksz_ptp_irq_thread_fn, IRQF_ONESHOT, ptpirq->name, ptpirq); if (ret) goto out; for (irq = 0; irq < ptpirq->nirqs; irq++) { ret = ksz_ptp_msg_irq_setup(port, irq); if (ret) goto out_ptp_msg; } return 0; out_ptp_msg: free_irq(ptpirq->irq_num, ptpirq); while (irq--) free_irq(port->ptpmsg_irq[irq].num, &port->ptpmsg_irq[irq]); out: for (irq = 0; irq < ptpirq->nirqs; irq++) irq_dispose_mapping(port->ptpmsg_irq[irq].num); irq_domain_remove(ptpirq->domain); return ret; } void ksz_ptp_irq_free(struct dsa_switch *ds, u8 p) { struct ksz_device *dev = ds->priv; struct ksz_port *port = &dev->ports[p]; struct ksz_irq *ptpirq = &port->ptpirq; u8 n; for (n = 0; n < ptpirq->nirqs; n++) ksz_ptp_msg_irq_free(port, n); free_irq(ptpirq->irq_num, ptpirq); irq_dispose_mapping(ptpirq->irq_num); irq_domain_remove(ptpirq->domain); } MODULE_AUTHOR("Christian Eggers <ceggers@arri.de>"); MODULE_AUTHOR("Arun Ramadoss <arun.ramadoss@microchip.com>"); MODULE_DESCRIPTION("PTP support for KSZ switch"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1