Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Vladimir Oltean | 3428 | 99.77% | 21 | 91.30% |
Gustavo A. R. Silva | 5 | 0.15% | 1 | 4.35% |
Vivien Didelot | 3 | 0.09% | 1 | 4.35% |
Total | 3436 | 23 |
// SPDX-License-Identifier: GPL-2.0 /* Copyright (c) 2019, Vladimir Oltean <olteanv@gmail.com> */ #include "sja1105.h" #define SJA1105_TAS_CLKSRC_DISABLED 0 #define SJA1105_TAS_CLKSRC_STANDALONE 1 #define SJA1105_TAS_CLKSRC_AS6802 2 #define SJA1105_TAS_CLKSRC_PTP 3 #define SJA1105_GATE_MASK GENMASK_ULL(SJA1105_NUM_TC - 1, 0) #define work_to_sja1105_tas(d) \ container_of((d), struct sja1105_tas_data, tas_work) #define tas_to_sja1105(d) \ container_of((d), struct sja1105_private, tas_data) static int sja1105_tas_set_runtime_params(struct sja1105_private *priv) { struct sja1105_tas_data *tas_data = &priv->tas_data; struct sja1105_gating_config *gating_cfg = &tas_data->gating_cfg; struct dsa_switch *ds = priv->ds; s64 earliest_base_time = S64_MAX; s64 latest_base_time = 0; s64 its_cycle_time = 0; s64 max_cycle_time = 0; int port; tas_data->enabled = false; for (port = 0; port < ds->num_ports; port++) { const struct tc_taprio_qopt_offload *offload; offload = tas_data->offload[port]; if (!offload) continue; tas_data->enabled = true; if (max_cycle_time < offload->cycle_time) max_cycle_time = offload->cycle_time; if (latest_base_time < offload->base_time) latest_base_time = offload->base_time; if (earliest_base_time > offload->base_time) { earliest_base_time = offload->base_time; its_cycle_time = offload->cycle_time; } } if (!list_empty(&gating_cfg->entries)) { tas_data->enabled = true; if (max_cycle_time < gating_cfg->cycle_time) max_cycle_time = gating_cfg->cycle_time; if (latest_base_time < gating_cfg->base_time) latest_base_time = gating_cfg->base_time; if (earliest_base_time > gating_cfg->base_time) { earliest_base_time = gating_cfg->base_time; its_cycle_time = gating_cfg->cycle_time; } } if (!tas_data->enabled) return 0; /* Roll the earliest base time over until it is in a comparable * time base with the latest, then compare their deltas. * We want to enforce that all ports' base times are within * SJA1105_TAS_MAX_DELTA 200ns cycles of one another. */ earliest_base_time = future_base_time(earliest_base_time, its_cycle_time, latest_base_time); while (earliest_base_time > latest_base_time) earliest_base_time -= its_cycle_time; if (latest_base_time - earliest_base_time > sja1105_delta_to_ns(SJA1105_TAS_MAX_DELTA)) { dev_err(ds->dev, "Base times too far apart: min %llu max %llu\n", earliest_base_time, latest_base_time); return -ERANGE; } tas_data->earliest_base_time = earliest_base_time; tas_data->max_cycle_time = max_cycle_time; dev_dbg(ds->dev, "earliest base time %lld ns\n", earliest_base_time); dev_dbg(ds->dev, "latest base time %lld ns\n", latest_base_time); dev_dbg(ds->dev, "longest cycle time %lld ns\n", max_cycle_time); return 0; } /* Lo and behold: the egress scheduler from hell. * * At the hardware level, the Time-Aware Shaper holds a global linear arrray of * all schedule entries for all ports. These are the Gate Control List (GCL) * entries, let's call them "timeslots" for short. This linear array of * timeslots is held in BLK_IDX_SCHEDULE. * * Then there are a maximum of 8 "execution threads" inside the switch, which * iterate cyclically through the "schedule". Each "cycle" has an entry point * and an exit point, both being timeslot indices in the schedule table. The * hardware calls each cycle a "subschedule". * * Subschedule (cycle) i starts when * ptpclkval >= ptpschtm + BLK_IDX_SCHEDULE_ENTRY_POINTS[i].delta. * * The hardware scheduler iterates BLK_IDX_SCHEDULE with a k ranging from * k = BLK_IDX_SCHEDULE_ENTRY_POINTS[i].address to * k = BLK_IDX_SCHEDULE_PARAMS.subscheind[i] * * For each schedule entry (timeslot) k, the engine executes the gate control * list entry for the duration of BLK_IDX_SCHEDULE[k].delta. * * +---------+ * | | BLK_IDX_SCHEDULE_ENTRY_POINTS_PARAMS * +---------+ * | * +-----------------+ * | .actsubsch * BLK_IDX_SCHEDULE_ENTRY_POINTS v * +-------+-------+ * |cycle 0|cycle 1| * +-------+-------+ * | | | | * +----------------+ | | +-------------------------------------+ * | .subschindx | | .subschindx | * | | +---------------+ | * | .address | .address | | * | | | | * | | | | * | BLK_IDX_SCHEDULE v v | * | +-------+-------+-------+-------+-------+------+ | * | |entry 0|entry 1|entry 2|entry 3|entry 4|entry5| | * | +-------+-------+-------+-------+-------+------+ | * | ^ ^ ^ ^ | * | | | | | | * | +-------------------------+ | | | | * | | +-------------------------------+ | | | * | | | +-------------------+ | | * | | | | | | * | +---------------------------------------------------------------+ | * | |subscheind[0]<=subscheind[1]<=subscheind[2]<=...<=subscheind[7]| | * | +---------------------------------------------------------------+ | * | ^ ^ BLK_IDX_SCHEDULE_PARAMS | * | | | | * +--------+ +-------------------------------------------+ * * In the above picture there are two subschedules (cycles): * * - cycle 0: iterates the schedule table from 0 to 2 (and back) * - cycle 1: iterates the schedule table from 3 to 5 (and back) * * All other possible execution threads must be marked as unused by making * their "subschedule end index" (subscheind) equal to the last valid * subschedule's end index (in this case 5). */ int sja1105_init_scheduling(struct sja1105_private *priv) { struct sja1105_schedule_entry_points_entry *schedule_entry_points; struct sja1105_schedule_entry_points_params_entry *schedule_entry_points_params; struct sja1105_schedule_params_entry *schedule_params; struct sja1105_tas_data *tas_data = &priv->tas_data; struct sja1105_gating_config *gating_cfg = &tas_data->gating_cfg; struct sja1105_schedule_entry *schedule; struct dsa_switch *ds = priv->ds; struct sja1105_table *table; int schedule_start_idx; s64 entry_point_delta; int schedule_end_idx; int num_entries = 0; int num_cycles = 0; int cycle = 0; int i, k = 0; int port, rc; rc = sja1105_tas_set_runtime_params(priv); if (rc < 0) return rc; /* Discard previous Schedule Table */ table = &priv->static_config.tables[BLK_IDX_SCHEDULE]; if (table->entry_count) { kfree(table->entries); table->entry_count = 0; } /* Discard previous Schedule Entry Points Parameters Table */ table = &priv->static_config.tables[BLK_IDX_SCHEDULE_ENTRY_POINTS_PARAMS]; if (table->entry_count) { kfree(table->entries); table->entry_count = 0; } /* Discard previous Schedule Parameters Table */ table = &priv->static_config.tables[BLK_IDX_SCHEDULE_PARAMS]; if (table->entry_count) { kfree(table->entries); table->entry_count = 0; } /* Discard previous Schedule Entry Points Table */ table = &priv->static_config.tables[BLK_IDX_SCHEDULE_ENTRY_POINTS]; if (table->entry_count) { kfree(table->entries); table->entry_count = 0; } /* Figure out the dimensioning of the problem */ for (port = 0; port < ds->num_ports; port++) { if (tas_data->offload[port]) { num_entries += tas_data->offload[port]->num_entries; num_cycles++; } } if (!list_empty(&gating_cfg->entries)) { num_entries += gating_cfg->num_entries; num_cycles++; } /* Nothing to do */ if (!num_cycles) return 0; /* Pre-allocate space in the static config tables */ /* Schedule Table */ table = &priv->static_config.tables[BLK_IDX_SCHEDULE]; table->entries = kcalloc(num_entries, table->ops->unpacked_entry_size, GFP_KERNEL); if (!table->entries) return -ENOMEM; table->entry_count = num_entries; schedule = table->entries; /* Schedule Points Parameters Table */ table = &priv->static_config.tables[BLK_IDX_SCHEDULE_ENTRY_POINTS_PARAMS]; table->entries = kcalloc(SJA1105_MAX_SCHEDULE_ENTRY_POINTS_PARAMS_COUNT, table->ops->unpacked_entry_size, GFP_KERNEL); if (!table->entries) /* Previously allocated memory will be freed automatically in * sja1105_static_config_free. This is true for all early * returns below. */ return -ENOMEM; table->entry_count = SJA1105_MAX_SCHEDULE_ENTRY_POINTS_PARAMS_COUNT; schedule_entry_points_params = table->entries; /* Schedule Parameters Table */ table = &priv->static_config.tables[BLK_IDX_SCHEDULE_PARAMS]; table->entries = kcalloc(SJA1105_MAX_SCHEDULE_PARAMS_COUNT, table->ops->unpacked_entry_size, GFP_KERNEL); if (!table->entries) return -ENOMEM; table->entry_count = SJA1105_MAX_SCHEDULE_PARAMS_COUNT; schedule_params = table->entries; /* Schedule Entry Points Table */ table = &priv->static_config.tables[BLK_IDX_SCHEDULE_ENTRY_POINTS]; table->entries = kcalloc(num_cycles, table->ops->unpacked_entry_size, GFP_KERNEL); if (!table->entries) return -ENOMEM; table->entry_count = num_cycles; schedule_entry_points = table->entries; /* Finally start populating the static config tables */ schedule_entry_points_params->clksrc = SJA1105_TAS_CLKSRC_PTP; schedule_entry_points_params->actsubsch = num_cycles - 1; for (port = 0; port < ds->num_ports; port++) { const struct tc_taprio_qopt_offload *offload; /* Relative base time */ s64 rbt; offload = tas_data->offload[port]; if (!offload) continue; schedule_start_idx = k; schedule_end_idx = k + offload->num_entries - 1; /* This is the base time expressed as a number of TAS ticks * relative to PTPSCHTM, which we'll (perhaps improperly) call * the operational base time. */ rbt = future_base_time(offload->base_time, offload->cycle_time, tas_data->earliest_base_time); rbt -= tas_data->earliest_base_time; /* UM10944.pdf 4.2.2. Schedule Entry Points table says that * delta cannot be zero, which is shitty. Advance all relative * base times by 1 TAS delta, so that even the earliest base * time becomes 1 in relative terms. Then start the operational * base time (PTPSCHTM) one TAS delta earlier than planned. */ entry_point_delta = ns_to_sja1105_delta(rbt) + 1; schedule_entry_points[cycle].subschindx = cycle; schedule_entry_points[cycle].delta = entry_point_delta; schedule_entry_points[cycle].address = schedule_start_idx; /* The subschedule end indices need to be * monotonically increasing. */ for (i = cycle; i < 8; i++) schedule_params->subscheind[i] = schedule_end_idx; for (i = 0; i < offload->num_entries; i++, k++) { s64 delta_ns = offload->entries[i].interval; schedule[k].delta = ns_to_sja1105_delta(delta_ns); schedule[k].destports = BIT(port); schedule[k].resmedia_en = true; schedule[k].resmedia = SJA1105_GATE_MASK & ~offload->entries[i].gate_mask; } cycle++; } if (!list_empty(&gating_cfg->entries)) { struct sja1105_gate_entry *e; /* Relative base time */ s64 rbt; schedule_start_idx = k; schedule_end_idx = k + gating_cfg->num_entries - 1; rbt = future_base_time(gating_cfg->base_time, gating_cfg->cycle_time, tas_data->earliest_base_time); rbt -= tas_data->earliest_base_time; entry_point_delta = ns_to_sja1105_delta(rbt) + 1; schedule_entry_points[cycle].subschindx = cycle; schedule_entry_points[cycle].delta = entry_point_delta; schedule_entry_points[cycle].address = schedule_start_idx; for (i = cycle; i < 8; i++) schedule_params->subscheind[i] = schedule_end_idx; list_for_each_entry(e, &gating_cfg->entries, list) { schedule[k].delta = ns_to_sja1105_delta(e->interval); schedule[k].destports = e->rule->vl.destports; schedule[k].setvalid = true; schedule[k].txen = true; schedule[k].vlindex = e->rule->vl.sharindx; schedule[k].winstindex = e->rule->vl.sharindx; if (e->gate_state) /* Gate open */ schedule[k].winst = true; else /* Gate closed */ schedule[k].winend = true; k++; } } return 0; } /* Be there 2 port subschedules, each executing an arbitrary number of gate * open/close events cyclically. * None of those gate events must ever occur at the exact same time, otherwise * the switch is known to act in exotically strange ways. * However the hardware doesn't bother performing these integrity checks. * So here we are with the task of validating whether the new @admin offload * has any conflict with the already established TAS configuration in * tas_data->offload. We already know the other ports are in harmony with one * another, otherwise we wouldn't have saved them. * Each gate event executes periodically, with a period of @cycle_time and a * phase given by its cycle's @base_time plus its offset within the cycle * (which in turn is given by the length of the events prior to it). * There are two aspects to possible collisions: * - Collisions within one cycle's (actually the longest cycle's) time frame. * For that, we need to compare the cartesian product of each possible * occurrence of each event within one cycle time. * - Collisions in the future. Events may not collide within one cycle time, * but if two port schedules don't have the same periodicity (aka the cycle * times aren't multiples of one another), they surely will some time in the * future (actually they will collide an infinite amount of times). */ static bool sja1105_tas_check_conflicts(struct sja1105_private *priv, int port, const struct tc_taprio_qopt_offload *admin) { struct sja1105_tas_data *tas_data = &priv->tas_data; const struct tc_taprio_qopt_offload *offload; s64 max_cycle_time, min_cycle_time; s64 delta1, delta2; s64 rbt1, rbt2; s64 stop_time; s64 t1, t2; int i, j; s32 rem; offload = tas_data->offload[port]; if (!offload) return false; /* Check if the two cycle times are multiples of one another. * If they aren't, then they will surely collide. */ max_cycle_time = max(offload->cycle_time, admin->cycle_time); min_cycle_time = min(offload->cycle_time, admin->cycle_time); div_s64_rem(max_cycle_time, min_cycle_time, &rem); if (rem) return true; /* Calculate the "reduced" base time of each of the two cycles * (transposed back as close to 0 as possible) by dividing to * the cycle time. */ div_s64_rem(offload->base_time, offload->cycle_time, &rem); rbt1 = rem; div_s64_rem(admin->base_time, admin->cycle_time, &rem); rbt2 = rem; stop_time = max_cycle_time + max(rbt1, rbt2); /* delta1 is the relative base time of each GCL entry within * the established ports' TAS config. */ for (i = 0, delta1 = 0; i < offload->num_entries; delta1 += offload->entries[i].interval, i++) { /* delta2 is the relative base time of each GCL entry * within the newly added TAS config. */ for (j = 0, delta2 = 0; j < admin->num_entries; delta2 += admin->entries[j].interval, j++) { /* t1 follows all possible occurrences of the * established ports' GCL entry i within the * first cycle time. */ for (t1 = rbt1 + delta1; t1 <= stop_time; t1 += offload->cycle_time) { /* t2 follows all possible occurrences * of the newly added GCL entry j * within the first cycle time. */ for (t2 = rbt2 + delta2; t2 <= stop_time; t2 += admin->cycle_time) { if (t1 == t2) { dev_warn(priv->ds->dev, "GCL entry %d collides with entry %d of port %d\n", j, i, port); return true; } } } } } return false; } /* Check the tc-taprio configuration on @port for conflicts with the tc-gate * global subschedule. If @port is -1, check it against all ports. * To reuse the sja1105_tas_check_conflicts logic without refactoring it, * convert the gating configuration to a dummy tc-taprio offload structure. */ bool sja1105_gating_check_conflicts(struct sja1105_private *priv, int port, struct netlink_ext_ack *extack) { struct sja1105_gating_config *gating_cfg = &priv->tas_data.gating_cfg; size_t num_entries = gating_cfg->num_entries; struct tc_taprio_qopt_offload *dummy; struct dsa_switch *ds = priv->ds; struct sja1105_gate_entry *e; bool conflict; int i = 0; if (list_empty(&gating_cfg->entries)) return false; dummy = kzalloc(struct_size(dummy, entries, num_entries), GFP_KERNEL); if (!dummy) { NL_SET_ERR_MSG_MOD(extack, "Failed to allocate memory"); return true; } dummy->num_entries = num_entries; dummy->base_time = gating_cfg->base_time; dummy->cycle_time = gating_cfg->cycle_time; list_for_each_entry(e, &gating_cfg->entries, list) dummy->entries[i++].interval = e->interval; if (port != -1) { conflict = sja1105_tas_check_conflicts(priv, port, dummy); } else { for (port = 0; port < ds->num_ports; port++) { conflict = sja1105_tas_check_conflicts(priv, port, dummy); if (conflict) break; } } kfree(dummy); return conflict; } int sja1105_setup_tc_taprio(struct dsa_switch *ds, int port, struct tc_taprio_qopt_offload *admin) { struct sja1105_private *priv = ds->priv; struct sja1105_tas_data *tas_data = &priv->tas_data; int other_port, rc, i; /* Can't change an already configured port (must delete qdisc first). * Can't delete the qdisc from an unconfigured port. */ if ((!!tas_data->offload[port] && admin->cmd == TAPRIO_CMD_REPLACE) || (!tas_data->offload[port] && admin->cmd == TAPRIO_CMD_DESTROY)) return -EINVAL; if (admin->cmd == TAPRIO_CMD_DESTROY) { taprio_offload_free(tas_data->offload[port]); tas_data->offload[port] = NULL; rc = sja1105_init_scheduling(priv); if (rc < 0) return rc; return sja1105_static_config_reload(priv, SJA1105_SCHEDULING); } else if (admin->cmd != TAPRIO_CMD_REPLACE) { return -EOPNOTSUPP; } /* The cycle time extension is the amount of time the last cycle from * the old OPER needs to be extended in order to phase-align with the * base time of the ADMIN when that becomes the new OPER. * But of course our switch needs to be reset to switch-over between * the ADMIN and the OPER configs - so much for a seamless transition. * So don't add insult over injury and just say we don't support cycle * time extension. */ if (admin->cycle_time_extension) return -ENOTSUPP; for (i = 0; i < admin->num_entries; i++) { s64 delta_ns = admin->entries[i].interval; s64 delta_cycles = ns_to_sja1105_delta(delta_ns); bool too_long, too_short; too_long = (delta_cycles >= SJA1105_TAS_MAX_DELTA); too_short = (delta_cycles == 0); if (too_long || too_short) { dev_err(priv->ds->dev, "Interval %llu too %s for GCL entry %d\n", delta_ns, too_long ? "long" : "short", i); return -ERANGE; } } for (other_port = 0; other_port < ds->num_ports; other_port++) { if (other_port == port) continue; if (sja1105_tas_check_conflicts(priv, other_port, admin)) return -ERANGE; } if (sja1105_gating_check_conflicts(priv, port, NULL)) { dev_err(ds->dev, "Conflict with tc-gate schedule\n"); return -ERANGE; } tas_data->offload[port] = taprio_offload_get(admin); rc = sja1105_init_scheduling(priv); if (rc < 0) return rc; return sja1105_static_config_reload(priv, SJA1105_SCHEDULING); } static int sja1105_tas_check_running(struct sja1105_private *priv) { struct sja1105_tas_data *tas_data = &priv->tas_data; struct dsa_switch *ds = priv->ds; struct sja1105_ptp_cmd cmd = {0}; int rc; rc = sja1105_ptp_commit(ds, &cmd, SPI_READ); if (rc < 0) return rc; if (cmd.ptpstrtsch == 1) /* Schedule successfully started */ tas_data->state = SJA1105_TAS_STATE_RUNNING; else if (cmd.ptpstopsch == 1) /* Schedule is stopped */ tas_data->state = SJA1105_TAS_STATE_DISABLED; else /* Schedule is probably not configured with PTP clock source */ rc = -EINVAL; return rc; } /* Write to PTPCLKCORP */ static int sja1105_tas_adjust_drift(struct sja1105_private *priv, u64 correction) { const struct sja1105_regs *regs = priv->info->regs; u32 ptpclkcorp = ns_to_sja1105_ticks(correction); return sja1105_xfer_u32(priv, SPI_WRITE, regs->ptpclkcorp, &ptpclkcorp, NULL); } /* Write to PTPSCHTM */ static int sja1105_tas_set_base_time(struct sja1105_private *priv, u64 base_time) { const struct sja1105_regs *regs = priv->info->regs; u64 ptpschtm = ns_to_sja1105_ticks(base_time); return sja1105_xfer_u64(priv, SPI_WRITE, regs->ptpschtm, &ptpschtm, NULL); } static int sja1105_tas_start(struct sja1105_private *priv) { struct sja1105_tas_data *tas_data = &priv->tas_data; struct sja1105_ptp_cmd *cmd = &priv->ptp_data.cmd; struct dsa_switch *ds = priv->ds; int rc; dev_dbg(ds->dev, "Starting the TAS\n"); if (tas_data->state == SJA1105_TAS_STATE_ENABLED_NOT_RUNNING || tas_data->state == SJA1105_TAS_STATE_RUNNING) { dev_err(ds->dev, "TAS already started\n"); return -EINVAL; } cmd->ptpstrtsch = 1; cmd->ptpstopsch = 0; rc = sja1105_ptp_commit(ds, cmd, SPI_WRITE); if (rc < 0) return rc; tas_data->state = SJA1105_TAS_STATE_ENABLED_NOT_RUNNING; return 0; } static int sja1105_tas_stop(struct sja1105_private *priv) { struct sja1105_tas_data *tas_data = &priv->tas_data; struct sja1105_ptp_cmd *cmd = &priv->ptp_data.cmd; struct dsa_switch *ds = priv->ds; int rc; dev_dbg(ds->dev, "Stopping the TAS\n"); if (tas_data->state == SJA1105_TAS_STATE_DISABLED) { dev_err(ds->dev, "TAS already disabled\n"); return -EINVAL; } cmd->ptpstopsch = 1; cmd->ptpstrtsch = 0; rc = sja1105_ptp_commit(ds, cmd, SPI_WRITE); if (rc < 0) return rc; tas_data->state = SJA1105_TAS_STATE_DISABLED; return 0; } /* The schedule engine and the PTP clock are driven by the same oscillator, and * they run in parallel. But whilst the PTP clock can keep an absolute * time-of-day, the schedule engine is only running in 'ticks' (25 ticks make * up a delta, which is 200ns), and wrapping around at the end of each cycle. * The schedule engine is started when the PTP clock reaches the PTPSCHTM time * (in PTP domain). * Because the PTP clock can be rate-corrected (accelerated or slowed down) by * a software servo, and the schedule engine clock runs in parallel to the PTP * clock, there is logic internal to the switch that periodically keeps the * schedule engine from drifting away. The frequency with which this internal * syntonization happens is the PTP clock correction period (PTPCLKCORP). It is * a value also in the PTP clock domain, and is also rate-corrected. * To be precise, during a correction period, there is logic to determine by * how many scheduler clock ticks has the PTP clock drifted. At the end of each * correction period/beginning of new one, the length of a delta is shrunk or * expanded with an integer number of ticks, compared with the typical 25. * So a delta lasts for 200ns (or 25 ticks) only on average. * Sometimes it is longer, sometimes it is shorter. The internal syntonization * logic can adjust for at most 5 ticks each 20 ticks. * * The first implication is that you should choose your schedule correction * period to be an integer multiple of the schedule length. Preferably one. * In case there are schedules of multiple ports active, then the correction * period needs to be a multiple of them all. Given the restriction that the * cycle times have to be multiples of one another anyway, this means the * correction period can simply be the largest cycle time, hence the current * choice. This way, the updates are always synchronous to the transmission * cycle, and therefore predictable. * * The second implication is that at the beginning of a correction period, the * first few deltas will be modulated in time, until the schedule engine is * properly phase-aligned with the PTP clock. For this reason, you should place * your best-effort traffic at the beginning of a cycle, and your * time-triggered traffic afterwards. * * The third implication is that once the schedule engine is started, it can * only adjust for so much drift within a correction period. In the servo you * can only change the PTPCLKRATE, but not step the clock (PTPCLKADD). If you * want to do the latter, you need to stop and restart the schedule engine, * which is what the state machine handles. */ static void sja1105_tas_state_machine(struct work_struct *work) { struct sja1105_tas_data *tas_data = work_to_sja1105_tas(work); struct sja1105_private *priv = tas_to_sja1105(tas_data); struct sja1105_ptp_data *ptp_data = &priv->ptp_data; struct timespec64 base_time_ts, now_ts; struct dsa_switch *ds = priv->ds; struct timespec64 diff; s64 base_time, now; int rc = 0; mutex_lock(&ptp_data->lock); switch (tas_data->state) { case SJA1105_TAS_STATE_DISABLED: /* Can't do anything at all if clock is still being stepped */ if (tas_data->last_op != SJA1105_PTP_ADJUSTFREQ) break; rc = sja1105_tas_adjust_drift(priv, tas_data->max_cycle_time); if (rc < 0) break; rc = __sja1105_ptp_gettimex(ds, &now, NULL); if (rc < 0) break; /* Plan to start the earliest schedule first. The others * will be started in hardware, by way of their respective * entry points delta. * Try our best to avoid fringe cases (race condition between * ptpschtm and ptpstrtsch) by pushing the oper_base_time at * least one second in the future from now. This is not ideal, * but this only needs to buy us time until the * sja1105_tas_start command below gets executed. */ base_time = future_base_time(tas_data->earliest_base_time, tas_data->max_cycle_time, now + 1ull * NSEC_PER_SEC); base_time -= sja1105_delta_to_ns(1); rc = sja1105_tas_set_base_time(priv, base_time); if (rc < 0) break; tas_data->oper_base_time = base_time; rc = sja1105_tas_start(priv); if (rc < 0) break; base_time_ts = ns_to_timespec64(base_time); now_ts = ns_to_timespec64(now); dev_dbg(ds->dev, "OPER base time %lld.%09ld (now %lld.%09ld)\n", base_time_ts.tv_sec, base_time_ts.tv_nsec, now_ts.tv_sec, now_ts.tv_nsec); break; case SJA1105_TAS_STATE_ENABLED_NOT_RUNNING: if (tas_data->last_op != SJA1105_PTP_ADJUSTFREQ) { /* Clock was stepped.. bad news for TAS */ sja1105_tas_stop(priv); break; } /* Check if TAS has actually started, by comparing the * scheduled start time with the SJA1105 PTP clock */ rc = __sja1105_ptp_gettimex(ds, &now, NULL); if (rc < 0) break; if (now < tas_data->oper_base_time) { /* TAS has not started yet */ diff = ns_to_timespec64(tas_data->oper_base_time - now); dev_dbg(ds->dev, "time to start: [%lld.%09ld]", diff.tv_sec, diff.tv_nsec); break; } /* Time elapsed, what happened? */ rc = sja1105_tas_check_running(priv); if (rc < 0) break; if (tas_data->state != SJA1105_TAS_STATE_RUNNING) /* TAS has started */ dev_err(ds->dev, "TAS not started despite time elapsed\n"); break; case SJA1105_TAS_STATE_RUNNING: /* Clock was stepped.. bad news for TAS */ if (tas_data->last_op != SJA1105_PTP_ADJUSTFREQ) { sja1105_tas_stop(priv); break; } rc = sja1105_tas_check_running(priv); if (rc < 0) break; if (tas_data->state != SJA1105_TAS_STATE_RUNNING) dev_err(ds->dev, "TAS surprisingly stopped\n"); break; default: if (net_ratelimit()) dev_err(ds->dev, "TAS in an invalid state (incorrect use of API)!\n"); } if (rc && net_ratelimit()) dev_err(ds->dev, "An operation returned %d\n", rc); mutex_unlock(&ptp_data->lock); } void sja1105_tas_clockstep(struct dsa_switch *ds) { struct sja1105_private *priv = ds->priv; struct sja1105_tas_data *tas_data = &priv->tas_data; if (!tas_data->enabled) return; tas_data->last_op = SJA1105_PTP_CLOCKSTEP; schedule_work(&tas_data->tas_work); } void sja1105_tas_adjfreq(struct dsa_switch *ds) { struct sja1105_private *priv = ds->priv; struct sja1105_tas_data *tas_data = &priv->tas_data; if (!tas_data->enabled) return; /* No reason to schedule the workqueue, nothing changed */ if (tas_data->state == SJA1105_TAS_STATE_RUNNING) return; tas_data->last_op = SJA1105_PTP_ADJUSTFREQ; schedule_work(&tas_data->tas_work); } void sja1105_tas_setup(struct dsa_switch *ds) { struct sja1105_private *priv = ds->priv; struct sja1105_tas_data *tas_data = &priv->tas_data; INIT_WORK(&tas_data->tas_work, sja1105_tas_state_machine); tas_data->state = SJA1105_TAS_STATE_DISABLED; tas_data->last_op = SJA1105_PTP_NONE; INIT_LIST_HEAD(&tas_data->gating_cfg.entries); } void sja1105_tas_teardown(struct dsa_switch *ds) { struct sja1105_private *priv = ds->priv; struct tc_taprio_qopt_offload *offload; int port; cancel_work_sync(&priv->tas_data.tas_work); for (port = 0; port < ds->num_ports; port++) { offload = priv->tas_data.offload[port]; if (!offload) continue; taprio_offload_free(offload); } }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1