Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Atul Gupta | 3401 | 82.51% | 9 | 31.03% |
Vinay Kumar Yadav | 238 | 5.77% | 1 | 3.45% |
Hariprasad Shenai | 164 | 3.98% | 2 | 6.90% |
Ayush Sawal | 75 | 1.82% | 4 | 13.79% |
Harsh Jain | 67 | 1.63% | 4 | 13.79% |
Leon Romanovsky | 64 | 1.55% | 2 | 6.90% |
Rahul Lakkireddy | 57 | 1.38% | 1 | 3.45% |
Ard Biesheuvel | 22 | 0.53% | 1 | 3.45% |
Florian Westphal | 12 | 0.29% | 1 | 3.45% |
Johannes Berg | 10 | 0.24% | 1 | 3.45% |
Dimitris Michailidis | 6 | 0.15% | 1 | 3.45% |
Eric Biggers | 4 | 0.10% | 1 | 3.45% |
Colin Ian King | 2 | 0.05% | 1 | 3.45% |
Total | 4122 | 29 |
/* * This file is part of the Chelsio T6 Crypto driver for Linux. * * Copyright (c) 2003-2017 Chelsio Communications, Inc. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * * Written and Maintained by: * Atul Gupta (atul.gupta@chelsio.com) */ #define pr_fmt(fmt) "ch_ipsec: " fmt #include <linux/kernel.h> #include <linux/module.h> #include <linux/skbuff.h> #include <linux/rtnetlink.h> #include <linux/highmem.h> #include <linux/if_vlan.h> #include <linux/ip.h> #include <linux/netdevice.h> #include <net/esp.h> #include <net/xfrm.h> #include <crypto/aes.h> #include <crypto/hash.h> #include <crypto/sha1.h> #include <crypto/sha2.h> #include <crypto/authenc.h> #include <crypto/internal/aead.h> #include <crypto/null.h> #include <crypto/internal/skcipher.h> #include <crypto/aead.h> #include <crypto/scatterwalk.h> #include <crypto/internal/hash.h> #include "chcr_ipsec.h" /* * Max Tx descriptor space we allow for an Ethernet packet to be inlined * into a WR. */ #define MAX_IMM_TX_PKT_LEN 256 #define GCM_ESP_IV_SIZE 8 static LIST_HEAD(uld_ctx_list); static DEFINE_MUTEX(dev_mutex); static bool ch_ipsec_offload_ok(struct sk_buff *skb, struct xfrm_state *x); static int ch_ipsec_uld_state_change(void *handle, enum cxgb4_state new_state); static int ch_ipsec_xmit(struct sk_buff *skb, struct net_device *dev); static void *ch_ipsec_uld_add(const struct cxgb4_lld_info *infop); static void ch_ipsec_advance_esn_state(struct xfrm_state *x); static void ch_ipsec_xfrm_free_state(struct xfrm_state *x); static void ch_ipsec_xfrm_del_state(struct xfrm_state *x); static int ch_ipsec_xfrm_add_state(struct xfrm_state *x, struct netlink_ext_ack *extack); static const struct xfrmdev_ops ch_ipsec_xfrmdev_ops = { .xdo_dev_state_add = ch_ipsec_xfrm_add_state, .xdo_dev_state_delete = ch_ipsec_xfrm_del_state, .xdo_dev_state_free = ch_ipsec_xfrm_free_state, .xdo_dev_offload_ok = ch_ipsec_offload_ok, .xdo_dev_state_advance_esn = ch_ipsec_advance_esn_state, }; static struct cxgb4_uld_info ch_ipsec_uld_info = { .name = CHIPSEC_DRV_MODULE_NAME, .add = ch_ipsec_uld_add, .state_change = ch_ipsec_uld_state_change, .tx_handler = ch_ipsec_xmit, .xfrmdev_ops = &ch_ipsec_xfrmdev_ops, }; static void *ch_ipsec_uld_add(const struct cxgb4_lld_info *infop) { struct ipsec_uld_ctx *u_ctx; pr_info_once("%s - version %s\n", CHIPSEC_DRV_DESC, CHIPSEC_DRV_VERSION); u_ctx = kzalloc(sizeof(*u_ctx), GFP_KERNEL); if (!u_ctx) { u_ctx = ERR_PTR(-ENOMEM); goto out; } u_ctx->lldi = *infop; out: return u_ctx; } static int ch_ipsec_uld_state_change(void *handle, enum cxgb4_state new_state) { struct ipsec_uld_ctx *u_ctx = handle; pr_debug("new_state %u\n", new_state); switch (new_state) { case CXGB4_STATE_UP: pr_info("%s: Up\n", pci_name(u_ctx->lldi.pdev)); mutex_lock(&dev_mutex); list_add_tail(&u_ctx->entry, &uld_ctx_list); mutex_unlock(&dev_mutex); break; case CXGB4_STATE_START_RECOVERY: case CXGB4_STATE_DOWN: case CXGB4_STATE_DETACH: pr_info("%s: Down\n", pci_name(u_ctx->lldi.pdev)); list_del(&u_ctx->entry); break; default: break; } return 0; } static int ch_ipsec_setauthsize(struct xfrm_state *x, struct ipsec_sa_entry *sa_entry) { int hmac_ctrl; int authsize = x->aead->alg_icv_len / 8; sa_entry->authsize = authsize; switch (authsize) { case ICV_8: hmac_ctrl = CHCR_SCMD_HMAC_CTRL_DIV2; break; case ICV_12: hmac_ctrl = CHCR_SCMD_HMAC_CTRL_IPSEC_96BIT; break; case ICV_16: hmac_ctrl = CHCR_SCMD_HMAC_CTRL_NO_TRUNC; break; default: return -EINVAL; } return hmac_ctrl; } static int ch_ipsec_setkey(struct xfrm_state *x, struct ipsec_sa_entry *sa_entry) { int keylen = (x->aead->alg_key_len + 7) / 8; unsigned char *key = x->aead->alg_key; int ck_size, key_ctx_size = 0; unsigned char ghash_h[AEAD_H_SIZE]; struct crypto_aes_ctx aes; int ret = 0; if (keylen > 3) { keylen -= 4; /* nonce/salt is present in the last 4 bytes */ memcpy(sa_entry->salt, key + keylen, 4); } if (keylen == AES_KEYSIZE_128) { ck_size = CHCR_KEYCTX_CIPHER_KEY_SIZE_128; } else if (keylen == AES_KEYSIZE_192) { ck_size = CHCR_KEYCTX_CIPHER_KEY_SIZE_192; } else if (keylen == AES_KEYSIZE_256) { ck_size = CHCR_KEYCTX_CIPHER_KEY_SIZE_256; } else { pr_err("GCM: Invalid key length %d\n", keylen); ret = -EINVAL; goto out; } memcpy(sa_entry->key, key, keylen); sa_entry->enckey_len = keylen; key_ctx_size = sizeof(struct _key_ctx) + ((DIV_ROUND_UP(keylen, 16)) << 4) + AEAD_H_SIZE; sa_entry->key_ctx_hdr = FILL_KEY_CTX_HDR(ck_size, CHCR_KEYCTX_MAC_KEY_SIZE_128, 0, 0, key_ctx_size >> 4); /* Calculate the H = CIPH(K, 0 repeated 16 times). * It will go in key context */ ret = aes_expandkey(&aes, key, keylen); if (ret) { sa_entry->enckey_len = 0; goto out; } memset(ghash_h, 0, AEAD_H_SIZE); aes_encrypt(&aes, ghash_h, ghash_h); memzero_explicit(&aes, sizeof(aes)); memcpy(sa_entry->key + (DIV_ROUND_UP(sa_entry->enckey_len, 16) * 16), ghash_h, AEAD_H_SIZE); sa_entry->kctx_len = ((DIV_ROUND_UP(sa_entry->enckey_len, 16)) << 4) + AEAD_H_SIZE; out: return ret; } /* * ch_ipsec_xfrm_add_state * returns 0 on success, negative error if failed to send message to FPGA * positive error if FPGA returned a bad response */ static int ch_ipsec_xfrm_add_state(struct xfrm_state *x, struct netlink_ext_ack *extack) { struct ipsec_sa_entry *sa_entry; int res = 0; if (x->props.aalgo != SADB_AALG_NONE) { NL_SET_ERR_MSG_MOD(extack, "Cannot offload authenticated xfrm states"); return -EINVAL; } if (x->props.calgo != SADB_X_CALG_NONE) { NL_SET_ERR_MSG_MOD(extack, "Cannot offload compressed xfrm states"); return -EINVAL; } if (x->props.family != AF_INET && x->props.family != AF_INET6) { NL_SET_ERR_MSG_MOD(extack, "Only IPv4/6 xfrm state offloaded"); return -EINVAL; } if (x->props.mode != XFRM_MODE_TRANSPORT && x->props.mode != XFRM_MODE_TUNNEL) { NL_SET_ERR_MSG_MOD(extack, "Only transport and tunnel xfrm offload"); return -EINVAL; } if (x->id.proto != IPPROTO_ESP) { NL_SET_ERR_MSG_MOD(extack, "Only ESP xfrm state offloaded"); return -EINVAL; } if (x->encap) { NL_SET_ERR_MSG_MOD(extack, "Encapsulated xfrm state not offloaded"); return -EINVAL; } if (!x->aead) { NL_SET_ERR_MSG_MOD(extack, "Cannot offload xfrm states without aead"); return -EINVAL; } if (x->aead->alg_icv_len != 128 && x->aead->alg_icv_len != 96) { NL_SET_ERR_MSG_MOD(extack, "Cannot offload xfrm states with AEAD ICV length other than 96b & 128b"); return -EINVAL; } if ((x->aead->alg_key_len != 128 + 32) && (x->aead->alg_key_len != 256 + 32)) { NL_SET_ERR_MSG_MOD(extack, "cannot offload xfrm states with AEAD key length other than 128/256 bit"); return -EINVAL; } if (x->tfcpad) { NL_SET_ERR_MSG_MOD(extack, "Cannot offload xfrm states with tfc padding"); return -EINVAL; } if (!x->geniv) { NL_SET_ERR_MSG_MOD(extack, "Cannot offload xfrm states without geniv"); return -EINVAL; } if (strcmp(x->geniv, "seqiv")) { NL_SET_ERR_MSG_MOD(extack, "Cannot offload xfrm states with geniv other than seqiv"); return -EINVAL; } if (x->xso.type != XFRM_DEV_OFFLOAD_CRYPTO) { NL_SET_ERR_MSG_MOD(extack, "Unsupported xfrm offload"); return -EINVAL; } sa_entry = kzalloc(sizeof(*sa_entry), GFP_KERNEL); if (!sa_entry) { res = -ENOMEM; goto out; } sa_entry->hmac_ctrl = ch_ipsec_setauthsize(x, sa_entry); if (x->props.flags & XFRM_STATE_ESN) sa_entry->esn = 1; ch_ipsec_setkey(x, sa_entry); x->xso.offload_handle = (unsigned long)sa_entry; try_module_get(THIS_MODULE); out: return res; } static void ch_ipsec_xfrm_del_state(struct xfrm_state *x) { /* do nothing */ if (!x->xso.offload_handle) return; } static void ch_ipsec_xfrm_free_state(struct xfrm_state *x) { struct ipsec_sa_entry *sa_entry; if (!x->xso.offload_handle) return; sa_entry = (struct ipsec_sa_entry *)x->xso.offload_handle; kfree(sa_entry); module_put(THIS_MODULE); } static bool ch_ipsec_offload_ok(struct sk_buff *skb, struct xfrm_state *x) { if (x->props.family == AF_INET) { /* Offload with IP options is not supported yet */ if (ip_hdr(skb)->ihl > 5) return false; } else { /* Offload with IPv6 extension headers is not support yet */ if (ipv6_ext_hdr(ipv6_hdr(skb)->nexthdr)) return false; } return true; } static void ch_ipsec_advance_esn_state(struct xfrm_state *x) { /* do nothing */ if (!x->xso.offload_handle) return; } static int is_eth_imm(const struct sk_buff *skb, struct ipsec_sa_entry *sa_entry) { unsigned int kctx_len; int hdrlen; kctx_len = sa_entry->kctx_len; hdrlen = sizeof(struct fw_ulptx_wr) + sizeof(struct chcr_ipsec_req) + kctx_len; hdrlen += sizeof(struct cpl_tx_pkt); if (sa_entry->esn) hdrlen += (DIV_ROUND_UP(sizeof(struct chcr_ipsec_aadiv), 16) << 4); if (skb->len <= MAX_IMM_TX_PKT_LEN - hdrlen) return hdrlen; return 0; } static unsigned int calc_tx_sec_flits(const struct sk_buff *skb, struct ipsec_sa_entry *sa_entry, bool *immediate) { unsigned int kctx_len; unsigned int flits; int aadivlen; int hdrlen; kctx_len = sa_entry->kctx_len; hdrlen = is_eth_imm(skb, sa_entry); aadivlen = sa_entry->esn ? DIV_ROUND_UP(sizeof(struct chcr_ipsec_aadiv), 16) : 0; aadivlen <<= 4; /* If the skb is small enough, we can pump it out as a work request * with only immediate data. In that case we just have to have the * TX Packet header plus the skb data in the Work Request. */ if (hdrlen) { *immediate = true; return DIV_ROUND_UP(skb->len + hdrlen, sizeof(__be64)); } flits = sgl_len(skb_shinfo(skb)->nr_frags + 1); /* Otherwise, we're going to have to construct a Scatter gather list * of the skb body and fragments. We also include the flits necessary * for the TX Packet Work Request and CPL. We always have a firmware * Write Header (incorporated as part of the cpl_tx_pkt_lso and * cpl_tx_pkt structures), followed by either a TX Packet Write CPL * message or, if we're doing a Large Send Offload, an LSO CPL message * with an embedded TX Packet Write CPL message. */ flits += (sizeof(struct fw_ulptx_wr) + sizeof(struct chcr_ipsec_req) + kctx_len + sizeof(struct cpl_tx_pkt_core) + aadivlen) / sizeof(__be64); return flits; } static void *copy_esn_pktxt(struct sk_buff *skb, struct net_device *dev, void *pos, struct ipsec_sa_entry *sa_entry) { struct chcr_ipsec_aadiv *aadiv; struct ulptx_idata *sc_imm; struct ip_esp_hdr *esphdr; struct xfrm_offload *xo; struct sge_eth_txq *q; struct adapter *adap; struct port_info *pi; __be64 seqno; u32 qidx; u32 seqlo; u8 *iv; int eoq; int len; pi = netdev_priv(dev); adap = pi->adapter; qidx = skb->queue_mapping; q = &adap->sge.ethtxq[qidx + pi->first_qset]; /* end of queue, reset pos to start of queue */ eoq = (void *)q->q.stat - pos; if (!eoq) pos = q->q.desc; len = DIV_ROUND_UP(sizeof(struct chcr_ipsec_aadiv), 16) << 4; memset(pos, 0, len); aadiv = (struct chcr_ipsec_aadiv *)pos; esphdr = (struct ip_esp_hdr *)skb_transport_header(skb); iv = skb_transport_header(skb) + sizeof(struct ip_esp_hdr); xo = xfrm_offload(skb); aadiv->spi = (esphdr->spi); seqlo = ntohl(esphdr->seq_no); seqno = cpu_to_be64(seqlo + ((u64)xo->seq.hi << 32)); memcpy(aadiv->seq_no, &seqno, 8); iv = skb_transport_header(skb) + sizeof(struct ip_esp_hdr); memcpy(aadiv->iv, iv, 8); if (is_eth_imm(skb, sa_entry) && !skb_is_nonlinear(skb)) { sc_imm = (struct ulptx_idata *)(pos + (DIV_ROUND_UP(sizeof(struct chcr_ipsec_aadiv), sizeof(__be64)) << 3)); sc_imm->cmd_more = FILL_CMD_MORE(0); sc_imm->len = cpu_to_be32(skb->len); } pos += len; return pos; } static void *copy_cpltx_pktxt(struct sk_buff *skb, struct net_device *dev, void *pos, struct ipsec_sa_entry *sa_entry) { struct cpl_tx_pkt_core *cpl; struct sge_eth_txq *q; struct adapter *adap; struct port_info *pi; u32 ctrl0, qidx; u64 cntrl = 0; int left; pi = netdev_priv(dev); adap = pi->adapter; qidx = skb->queue_mapping; q = &adap->sge.ethtxq[qidx + pi->first_qset]; left = (void *)q->q.stat - pos; if (!left) pos = q->q.desc; cpl = (struct cpl_tx_pkt_core *)pos; cntrl = TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F; ctrl0 = TXPKT_OPCODE_V(CPL_TX_PKT_XT) | TXPKT_INTF_V(pi->tx_chan) | TXPKT_PF_V(adap->pf); if (skb_vlan_tag_present(skb)) { q->vlan_ins++; cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb)); } cpl->ctrl0 = htonl(ctrl0); cpl->pack = htons(0); cpl->len = htons(skb->len); cpl->ctrl1 = cpu_to_be64(cntrl); pos += sizeof(struct cpl_tx_pkt_core); /* Copy ESN info for HW */ if (sa_entry->esn) pos = copy_esn_pktxt(skb, dev, pos, sa_entry); return pos; } static void *copy_key_cpltx_pktxt(struct sk_buff *skb, struct net_device *dev, void *pos, struct ipsec_sa_entry *sa_entry) { struct _key_ctx *key_ctx; int left, eoq, key_len; struct sge_eth_txq *q; struct adapter *adap; struct port_info *pi; unsigned int qidx; pi = netdev_priv(dev); adap = pi->adapter; qidx = skb->queue_mapping; q = &adap->sge.ethtxq[qidx + pi->first_qset]; key_len = sa_entry->kctx_len; /* end of queue, reset pos to start of queue */ eoq = (void *)q->q.stat - pos; left = eoq; if (!eoq) { pos = q->q.desc; left = 64 * q->q.size; } /* Copy the Key context header */ key_ctx = (struct _key_ctx *)pos; key_ctx->ctx_hdr = sa_entry->key_ctx_hdr; memcpy(key_ctx->salt, sa_entry->salt, MAX_SALT); pos += sizeof(struct _key_ctx); left -= sizeof(struct _key_ctx); if (likely(key_len <= left)) { memcpy(key_ctx->key, sa_entry->key, key_len); pos += key_len; } else { memcpy(pos, sa_entry->key, left); memcpy(q->q.desc, sa_entry->key + left, key_len - left); pos = (u8 *)q->q.desc + (key_len - left); } /* Copy CPL TX PKT XT */ pos = copy_cpltx_pktxt(skb, dev, pos, sa_entry); return pos; } static void *ch_ipsec_crypto_wreq(struct sk_buff *skb, struct net_device *dev, void *pos, int credits, struct ipsec_sa_entry *sa_entry) { struct port_info *pi = netdev_priv(dev); struct adapter *adap = pi->adapter; unsigned int ivsize = GCM_ESP_IV_SIZE; struct chcr_ipsec_wr *wr; bool immediate = false; u16 immdatalen = 0; unsigned int flits; u32 ivinoffset; u32 aadstart; u32 aadstop; u32 ciphstart; u16 sc_more = 0; u32 ivdrop = 0; u32 esnlen = 0; u32 wr_mid; u16 ndesc; int qidx = skb_get_queue_mapping(skb); struct sge_eth_txq *q = &adap->sge.ethtxq[qidx + pi->first_qset]; unsigned int kctx_len = sa_entry->kctx_len; int qid = q->q.cntxt_id; atomic_inc(&adap->ch_ipsec_stats.ipsec_cnt); flits = calc_tx_sec_flits(skb, sa_entry, &immediate); ndesc = DIV_ROUND_UP(flits, 2); if (sa_entry->esn) ivdrop = 1; if (immediate) immdatalen = skb->len; if (sa_entry->esn) { esnlen = sizeof(struct chcr_ipsec_aadiv); if (!skb_is_nonlinear(skb)) sc_more = 1; } /* WR Header */ wr = (struct chcr_ipsec_wr *)pos; wr->wreq.op_to_compl = htonl(FW_WR_OP_V(FW_ULPTX_WR)); wr_mid = FW_CRYPTO_LOOKASIDE_WR_LEN16_V(ndesc); if (unlikely(credits < ETHTXQ_STOP_THRES)) { netif_tx_stop_queue(q->txq); q->q.stops++; if (!q->dbqt) wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F; } wr_mid |= FW_ULPTX_WR_DATA_F; wr->wreq.flowid_len16 = htonl(wr_mid); /* ULPTX */ wr->req.ulptx.cmd_dest = FILL_ULPTX_CMD_DEST(pi->port_id, qid); wr->req.ulptx.len = htonl(ndesc - 1); /* Sub-command */ wr->req.sc_imm.cmd_more = FILL_CMD_MORE(!immdatalen || sc_more); wr->req.sc_imm.len = cpu_to_be32(sizeof(struct cpl_tx_sec_pdu) + sizeof(wr->req.key_ctx) + kctx_len + sizeof(struct cpl_tx_pkt_core) + esnlen + (esnlen ? 0 : immdatalen)); /* CPL_SEC_PDU */ ivinoffset = sa_entry->esn ? (ESN_IV_INSERT_OFFSET + 1) : (skb_transport_offset(skb) + sizeof(struct ip_esp_hdr) + 1); wr->req.sec_cpl.op_ivinsrtofst = htonl( CPL_TX_SEC_PDU_OPCODE_V(CPL_TX_SEC_PDU) | CPL_TX_SEC_PDU_CPLLEN_V(2) | CPL_TX_SEC_PDU_PLACEHOLDER_V(1) | CPL_TX_SEC_PDU_IVINSRTOFST_V( ivinoffset)); wr->req.sec_cpl.pldlen = htonl(skb->len + esnlen); aadstart = sa_entry->esn ? 1 : (skb_transport_offset(skb) + 1); aadstop = sa_entry->esn ? ESN_IV_INSERT_OFFSET : (skb_transport_offset(skb) + sizeof(struct ip_esp_hdr)); ciphstart = skb_transport_offset(skb) + sizeof(struct ip_esp_hdr) + GCM_ESP_IV_SIZE + 1; ciphstart += sa_entry->esn ? esnlen : 0; wr->req.sec_cpl.aadstart_cipherstop_hi = FILL_SEC_CPL_CIPHERSTOP_HI( aadstart, aadstop, ciphstart, 0); wr->req.sec_cpl.cipherstop_lo_authinsert = FILL_SEC_CPL_AUTHINSERT(0, ciphstart, sa_entry->authsize, sa_entry->authsize); wr->req.sec_cpl.seqno_numivs = FILL_SEC_CPL_SCMD0_SEQNO(CHCR_ENCRYPT_OP, 1, CHCR_SCMD_CIPHER_MODE_AES_GCM, CHCR_SCMD_AUTH_MODE_GHASH, sa_entry->hmac_ctrl, ivsize >> 1); wr->req.sec_cpl.ivgen_hdrlen = FILL_SEC_CPL_IVGEN_HDRLEN(0, 0, 1, 0, ivdrop, 0); pos += sizeof(struct fw_ulptx_wr) + sizeof(struct ulp_txpkt) + sizeof(struct ulptx_idata) + sizeof(struct cpl_tx_sec_pdu); pos = copy_key_cpltx_pktxt(skb, dev, pos, sa_entry); return pos; } /** * flits_to_desc - returns the num of Tx descriptors for the given flits * @n: the number of flits * * Returns the number of Tx descriptors needed for the supplied number * of flits. */ static unsigned int flits_to_desc(unsigned int n) { WARN_ON(n > SGE_MAX_WR_LEN / 8); return DIV_ROUND_UP(n, 8); } static unsigned int txq_avail(const struct sge_txq *q) { return q->size - 1 - q->in_use; } static void eth_txq_stop(struct sge_eth_txq *q) { netif_tx_stop_queue(q->txq); q->q.stops++; } static void txq_advance(struct sge_txq *q, unsigned int n) { q->in_use += n; q->pidx += n; if (q->pidx >= q->size) q->pidx -= q->size; } /* * ch_ipsec_xmit called from ULD Tx handler */ int ch_ipsec_xmit(struct sk_buff *skb, struct net_device *dev) { struct xfrm_state *x = xfrm_input_state(skb); unsigned int last_desc, ndesc, flits = 0; struct ipsec_sa_entry *sa_entry; u64 *pos, *end, *before, *sgl; struct tx_sw_desc *sgl_sdesc; int qidx, left, credits; bool immediate = false; struct sge_eth_txq *q; struct adapter *adap; struct port_info *pi; struct sec_path *sp; if (!x->xso.offload_handle) return NETDEV_TX_BUSY; sa_entry = (struct ipsec_sa_entry *)x->xso.offload_handle; sp = skb_sec_path(skb); if (sp->len != 1) { out_free: dev_kfree_skb_any(skb); return NETDEV_TX_OK; } pi = netdev_priv(dev); adap = pi->adapter; qidx = skb->queue_mapping; q = &adap->sge.ethtxq[qidx + pi->first_qset]; cxgb4_reclaim_completed_tx(adap, &q->q, true); flits = calc_tx_sec_flits(skb, sa_entry, &immediate); ndesc = flits_to_desc(flits); credits = txq_avail(&q->q) - ndesc; if (unlikely(credits < 0)) { eth_txq_stop(q); dev_err(adap->pdev_dev, "%s: Tx ring %u full while queue awake! cred:%d %d %d flits:%d\n", dev->name, qidx, credits, ndesc, txq_avail(&q->q), flits); return NETDEV_TX_BUSY; } last_desc = q->q.pidx + ndesc - 1; if (last_desc >= q->q.size) last_desc -= q->q.size; sgl_sdesc = &q->q.sdesc[last_desc]; if (!immediate && unlikely(cxgb4_map_skb(adap->pdev_dev, skb, sgl_sdesc->addr) < 0)) { memset(sgl_sdesc->addr, 0, sizeof(sgl_sdesc->addr)); q->mapping_err++; goto out_free; } pos = (u64 *)&q->q.desc[q->q.pidx]; before = (u64 *)pos; end = (u64 *)pos + flits; /* Setup IPSec CPL */ pos = (void *)ch_ipsec_crypto_wreq(skb, dev, (void *)pos, credits, sa_entry); if (before > (u64 *)pos) { left = (u8 *)end - (u8 *)q->q.stat; end = (void *)q->q.desc + left; } if (pos == (u64 *)q->q.stat) { left = (u8 *)end - (u8 *)q->q.stat; end = (void *)q->q.desc + left; pos = (void *)q->q.desc; } sgl = (void *)pos; if (immediate) { cxgb4_inline_tx_skb(skb, &q->q, sgl); dev_consume_skb_any(skb); } else { cxgb4_write_sgl(skb, &q->q, (void *)sgl, end, 0, sgl_sdesc->addr); skb_orphan(skb); sgl_sdesc->skb = skb; } txq_advance(&q->q, ndesc); cxgb4_ring_tx_db(adap, &q->q, ndesc); return NETDEV_TX_OK; } static int __init ch_ipsec_init(void) { cxgb4_register_uld(CXGB4_ULD_IPSEC, &ch_ipsec_uld_info); return 0; } static void __exit ch_ipsec_exit(void) { struct ipsec_uld_ctx *u_ctx, *tmp; struct adapter *adap; mutex_lock(&dev_mutex); list_for_each_entry_safe(u_ctx, tmp, &uld_ctx_list, entry) { adap = pci_get_drvdata(u_ctx->lldi.pdev); atomic_set(&adap->ch_ipsec_stats.ipsec_cnt, 0); list_del(&u_ctx->entry); kfree(u_ctx); } mutex_unlock(&dev_mutex); cxgb4_unregister_uld(CXGB4_ULD_IPSEC); } module_init(ch_ipsec_init); module_exit(ch_ipsec_exit); MODULE_DESCRIPTION("Crypto IPSEC for Chelsio Terminator cards."); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Chelsio Communications"); MODULE_VERSION(CHIPSEC_DRV_VERSION);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1