Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Atul Gupta | 2879 | 92.45% | 7 | 29.17% |
Vinay Kumar Yadav | 115 | 3.69% | 6 | 25.00% |
Wenwen Wang | 48 | 1.54% | 1 | 4.17% |
Christoph Hellwig | 20 | 0.64% | 2 | 8.33% |
Jakub Kiciński | 17 | 0.55% | 2 | 8.33% |
Ganesh Goudar | 16 | 0.51% | 1 | 4.17% |
David Howells | 6 | 0.19% | 1 | 4.17% |
Linus Torvalds (pre-git) | 6 | 0.19% | 1 | 4.17% |
Colin Ian King | 4 | 0.13% | 1 | 4.17% |
Thomas Gleixner | 2 | 0.06% | 1 | 4.17% |
Wolfram Sang | 1 | 0.03% | 1 | 4.17% |
Total | 3114 | 24 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2018 Chelsio Communications, Inc. * * Written by: Atul Gupta (atul.gupta@chelsio.com) */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/skbuff.h> #include <linux/socket.h> #include <linux/hash.h> #include <linux/in.h> #include <linux/net.h> #include <linux/ip.h> #include <linux/tcp.h> #include <net/ipv6.h> #include <net/transp_v6.h> #include <net/tcp.h> #include <net/tls.h> #include "chtls.h" #include "chtls_cm.h" #define DRV_NAME "chtls" /* * chtls device management * maintains a list of the chtls devices */ static LIST_HEAD(cdev_list); static DEFINE_MUTEX(cdev_mutex); static DEFINE_MUTEX(notify_mutex); static RAW_NOTIFIER_HEAD(listen_notify_list); static struct proto chtls_cpl_prot, chtls_cpl_protv6; struct request_sock_ops chtls_rsk_ops, chtls_rsk_opsv6; static uint send_page_order = (14 - PAGE_SHIFT < 0) ? 0 : 14 - PAGE_SHIFT; static void register_listen_notifier(struct notifier_block *nb) { mutex_lock(¬ify_mutex); raw_notifier_chain_register(&listen_notify_list, nb); mutex_unlock(¬ify_mutex); } static void unregister_listen_notifier(struct notifier_block *nb) { mutex_lock(¬ify_mutex); raw_notifier_chain_unregister(&listen_notify_list, nb); mutex_unlock(¬ify_mutex); } static int listen_notify_handler(struct notifier_block *this, unsigned long event, void *data) { struct chtls_listen *clisten; int ret = NOTIFY_DONE; clisten = (struct chtls_listen *)data; switch (event) { case CHTLS_LISTEN_START: ret = chtls_listen_start(clisten->cdev, clisten->sk); kfree(clisten); break; case CHTLS_LISTEN_STOP: chtls_listen_stop(clisten->cdev, clisten->sk); kfree(clisten); break; } return ret; } static struct notifier_block listen_notifier = { .notifier_call = listen_notify_handler }; static int listen_backlog_rcv(struct sock *sk, struct sk_buff *skb) { if (likely(skb_transport_header(skb) != skb_network_header(skb))) return tcp_v4_do_rcv(sk, skb); BLOG_SKB_CB(skb)->backlog_rcv(sk, skb); return 0; } static int chtls_start_listen(struct chtls_dev *cdev, struct sock *sk) { struct chtls_listen *clisten; if (sk->sk_protocol != IPPROTO_TCP) return -EPROTONOSUPPORT; if (sk->sk_family == PF_INET && LOOPBACK(inet_sk(sk)->inet_rcv_saddr)) return -EADDRNOTAVAIL; sk->sk_backlog_rcv = listen_backlog_rcv; clisten = kmalloc(sizeof(*clisten), GFP_KERNEL); if (!clisten) return -ENOMEM; clisten->cdev = cdev; clisten->sk = sk; mutex_lock(¬ify_mutex); raw_notifier_call_chain(&listen_notify_list, CHTLS_LISTEN_START, clisten); mutex_unlock(¬ify_mutex); return 0; } static void chtls_stop_listen(struct chtls_dev *cdev, struct sock *sk) { struct chtls_listen *clisten; if (sk->sk_protocol != IPPROTO_TCP) return; clisten = kmalloc(sizeof(*clisten), GFP_KERNEL); if (!clisten) return; clisten->cdev = cdev; clisten->sk = sk; mutex_lock(¬ify_mutex); raw_notifier_call_chain(&listen_notify_list, CHTLS_LISTEN_STOP, clisten); mutex_unlock(¬ify_mutex); } static int chtls_inline_feature(struct tls_toe_device *dev) { struct net_device *netdev; struct chtls_dev *cdev; int i; cdev = to_chtls_dev(dev); for (i = 0; i < cdev->lldi->nports; i++) { netdev = cdev->ports[i]; if (netdev->features & NETIF_F_HW_TLS_RECORD) return 1; } return 0; } static int chtls_create_hash(struct tls_toe_device *dev, struct sock *sk) { struct chtls_dev *cdev = to_chtls_dev(dev); if (sk->sk_state == TCP_LISTEN) return chtls_start_listen(cdev, sk); return 0; } static void chtls_destroy_hash(struct tls_toe_device *dev, struct sock *sk) { struct chtls_dev *cdev = to_chtls_dev(dev); if (sk->sk_state == TCP_LISTEN) chtls_stop_listen(cdev, sk); } static void chtls_free_uld(struct chtls_dev *cdev) { int i; tls_toe_unregister_device(&cdev->tlsdev); kvfree(cdev->kmap.addr); idr_destroy(&cdev->hwtid_idr); for (i = 0; i < (1 << RSPQ_HASH_BITS); i++) kfree_skb(cdev->rspq_skb_cache[i]); kfree(cdev->lldi); kfree_skb(cdev->askb); kfree(cdev); } static inline void chtls_dev_release(struct kref *kref) { struct tls_toe_device *dev; struct chtls_dev *cdev; struct adapter *adap; dev = container_of(kref, struct tls_toe_device, kref); cdev = to_chtls_dev(dev); /* Reset tls rx/tx stats */ adap = pci_get_drvdata(cdev->pdev); atomic_set(&adap->chcr_stats.tls_pdu_tx, 0); atomic_set(&adap->chcr_stats.tls_pdu_rx, 0); chtls_free_uld(cdev); } static void chtls_register_dev(struct chtls_dev *cdev) { struct tls_toe_device *tlsdev = &cdev->tlsdev; strscpy(tlsdev->name, "chtls", TLS_TOE_DEVICE_NAME_MAX); strlcat(tlsdev->name, cdev->lldi->ports[0]->name, TLS_TOE_DEVICE_NAME_MAX); tlsdev->feature = chtls_inline_feature; tlsdev->hash = chtls_create_hash; tlsdev->unhash = chtls_destroy_hash; tlsdev->release = chtls_dev_release; kref_init(&tlsdev->kref); tls_toe_register_device(tlsdev); cdev->cdev_state = CHTLS_CDEV_STATE_UP; } static void process_deferq(struct work_struct *task_param) { struct chtls_dev *cdev = container_of(task_param, struct chtls_dev, deferq_task); struct sk_buff *skb; spin_lock_bh(&cdev->deferq.lock); while ((skb = __skb_dequeue(&cdev->deferq)) != NULL) { spin_unlock_bh(&cdev->deferq.lock); DEFERRED_SKB_CB(skb)->handler(cdev, skb); spin_lock_bh(&cdev->deferq.lock); } spin_unlock_bh(&cdev->deferq.lock); } static int chtls_get_skb(struct chtls_dev *cdev) { cdev->askb = alloc_skb(sizeof(struct tcphdr), GFP_KERNEL); if (!cdev->askb) return -ENOMEM; skb_put(cdev->askb, sizeof(struct tcphdr)); skb_reset_transport_header(cdev->askb); memset(cdev->askb->data, 0, cdev->askb->len); return 0; } static void *chtls_uld_add(const struct cxgb4_lld_info *info) { struct cxgb4_lld_info *lldi; struct chtls_dev *cdev; int i, j; cdev = kzalloc(sizeof(*cdev), GFP_KERNEL); if (!cdev) goto out; lldi = kzalloc(sizeof(*lldi), GFP_KERNEL); if (!lldi) goto out_lldi; if (chtls_get_skb(cdev)) goto out_skb; *lldi = *info; cdev->lldi = lldi; cdev->pdev = lldi->pdev; cdev->tids = lldi->tids; cdev->ports = lldi->ports; cdev->mtus = lldi->mtus; cdev->tids = lldi->tids; cdev->pfvf = FW_VIID_PFN_G(cxgb4_port_viid(lldi->ports[0])) << FW_VIID_PFN_S; for (i = 0; i < (1 << RSPQ_HASH_BITS); i++) { unsigned int size = 64 - sizeof(struct rsp_ctrl) - 8; cdev->rspq_skb_cache[i] = __alloc_skb(size, gfp_any(), 0, lldi->nodeid); if (unlikely(!cdev->rspq_skb_cache[i])) goto out_rspq_skb; } idr_init(&cdev->hwtid_idr); INIT_WORK(&cdev->deferq_task, process_deferq); spin_lock_init(&cdev->listen_lock); spin_lock_init(&cdev->idr_lock); cdev->send_page_order = min_t(uint, get_order(32768), send_page_order); cdev->max_host_sndbuf = 48 * 1024; if (lldi->vr->key.size) if (chtls_init_kmap(cdev, lldi)) goto out_rspq_skb; mutex_lock(&cdev_mutex); list_add_tail(&cdev->list, &cdev_list); mutex_unlock(&cdev_mutex); return cdev; out_rspq_skb: for (j = 0; j < i; j++) kfree_skb(cdev->rspq_skb_cache[j]); kfree_skb(cdev->askb); out_skb: kfree(lldi); out_lldi: kfree(cdev); out: return NULL; } static void chtls_free_all_uld(void) { struct chtls_dev *cdev, *tmp; mutex_lock(&cdev_mutex); list_for_each_entry_safe(cdev, tmp, &cdev_list, list) { if (cdev->cdev_state == CHTLS_CDEV_STATE_UP) { list_del(&cdev->list); kref_put(&cdev->tlsdev.kref, cdev->tlsdev.release); } } mutex_unlock(&cdev_mutex); } static int chtls_uld_state_change(void *handle, enum cxgb4_state new_state) { struct chtls_dev *cdev = handle; switch (new_state) { case CXGB4_STATE_UP: chtls_register_dev(cdev); break; case CXGB4_STATE_DOWN: break; case CXGB4_STATE_START_RECOVERY: break; case CXGB4_STATE_DETACH: mutex_lock(&cdev_mutex); list_del(&cdev->list); mutex_unlock(&cdev_mutex); kref_put(&cdev->tlsdev.kref, cdev->tlsdev.release); break; default: break; } return 0; } static struct sk_buff *copy_gl_to_skb_pkt(const struct pkt_gl *gl, const __be64 *rsp, u32 pktshift) { struct sk_buff *skb; /* Allocate space for cpl_pass_accpet_req which will be synthesized by * driver. Once driver synthesizes cpl_pass_accpet_req the skb will go * through the regular cpl_pass_accept_req processing in TOM. */ skb = alloc_skb(gl->tot_len + sizeof(struct cpl_pass_accept_req) - pktshift, GFP_ATOMIC); if (unlikely(!skb)) return NULL; __skb_put(skb, gl->tot_len + sizeof(struct cpl_pass_accept_req) - pktshift); /* For now we will copy cpl_rx_pkt in the skb */ skb_copy_to_linear_data(skb, rsp, sizeof(struct cpl_rx_pkt)); skb_copy_to_linear_data_offset(skb, sizeof(struct cpl_pass_accept_req) , gl->va + pktshift, gl->tot_len - pktshift); return skb; } static int chtls_recv_packet(struct chtls_dev *cdev, const struct pkt_gl *gl, const __be64 *rsp) { unsigned int opcode = *(u8 *)rsp; struct sk_buff *skb; int ret; skb = copy_gl_to_skb_pkt(gl, rsp, cdev->lldi->sge_pktshift); if (!skb) return -ENOMEM; ret = chtls_handlers[opcode](cdev, skb); if (ret & CPL_RET_BUF_DONE) kfree_skb(skb); return 0; } static int chtls_recv_rsp(struct chtls_dev *cdev, const __be64 *rsp) { unsigned long rspq_bin; unsigned int opcode; struct sk_buff *skb; unsigned int len; int ret; len = 64 - sizeof(struct rsp_ctrl) - 8; opcode = *(u8 *)rsp; rspq_bin = hash_ptr((void *)rsp, RSPQ_HASH_BITS); skb = cdev->rspq_skb_cache[rspq_bin]; if (skb && !skb_is_nonlinear(skb) && !skb_shared(skb) && !skb_cloned(skb)) { refcount_inc(&skb->users); if (refcount_read(&skb->users) == 2) { __skb_trim(skb, 0); if (skb_tailroom(skb) >= len) goto copy_out; } refcount_dec(&skb->users); } skb = alloc_skb(len, GFP_ATOMIC); if (unlikely(!skb)) return -ENOMEM; copy_out: __skb_put(skb, len); skb_copy_to_linear_data(skb, rsp, len); skb_reset_network_header(skb); skb_reset_transport_header(skb); ret = chtls_handlers[opcode](cdev, skb); if (ret & CPL_RET_BUF_DONE) kfree_skb(skb); return 0; } static void chtls_recv(struct chtls_dev *cdev, struct sk_buff **skbs, const __be64 *rsp) { struct sk_buff *skb = *skbs; unsigned int opcode; int ret; opcode = *(u8 *)rsp; __skb_push(skb, sizeof(struct rss_header)); skb_copy_to_linear_data(skb, rsp, sizeof(struct rss_header)); ret = chtls_handlers[opcode](cdev, skb); if (ret & CPL_RET_BUF_DONE) kfree_skb(skb); } static int chtls_uld_rx_handler(void *handle, const __be64 *rsp, const struct pkt_gl *gl) { struct chtls_dev *cdev = handle; unsigned int opcode; struct sk_buff *skb; opcode = *(u8 *)rsp; if (unlikely(opcode == CPL_RX_PKT)) { if (chtls_recv_packet(cdev, gl, rsp) < 0) goto nomem; return 0; } if (!gl) return chtls_recv_rsp(cdev, rsp); #define RX_PULL_LEN 128 skb = cxgb4_pktgl_to_skb(gl, RX_PULL_LEN, RX_PULL_LEN); if (unlikely(!skb)) goto nomem; chtls_recv(cdev, &skb, rsp); return 0; nomem: return -ENOMEM; } static int do_chtls_getsockopt(struct sock *sk, char __user *optval, int __user *optlen) { struct tls_crypto_info crypto_info = { 0 }; crypto_info.version = TLS_1_2_VERSION; if (copy_to_user(optval, &crypto_info, sizeof(struct tls_crypto_info))) return -EFAULT; return 0; } static int chtls_getsockopt(struct sock *sk, int level, int optname, char __user *optval, int __user *optlen) { struct tls_context *ctx = tls_get_ctx(sk); if (level != SOL_TLS) return ctx->sk_proto->getsockopt(sk, level, optname, optval, optlen); return do_chtls_getsockopt(sk, optval, optlen); } static int do_chtls_setsockopt(struct sock *sk, int optname, sockptr_t optval, unsigned int optlen) { struct tls_crypto_info *crypto_info, tmp_crypto_info; struct chtls_sock *csk; int keylen; int cipher_type; int rc = 0; csk = rcu_dereference_sk_user_data(sk); if (sockptr_is_null(optval) || optlen < sizeof(*crypto_info)) { rc = -EINVAL; goto out; } rc = copy_from_sockptr(&tmp_crypto_info, optval, sizeof(*crypto_info)); if (rc) { rc = -EFAULT; goto out; } /* check version */ if (tmp_crypto_info.version != TLS_1_2_VERSION) { rc = -ENOTSUPP; goto out; } crypto_info = (struct tls_crypto_info *)&csk->tlshws.crypto_info; /* GCM mode of AES supports 128 and 256 bit encryption, so * copy keys from user based on GCM cipher type. */ switch (tmp_crypto_info.cipher_type) { case TLS_CIPHER_AES_GCM_128: { /* Obtain version and type from previous copy */ crypto_info[0] = tmp_crypto_info; /* Now copy the following data */ rc = copy_from_sockptr_offset((char *)crypto_info + sizeof(*crypto_info), optval, sizeof(*crypto_info), sizeof(struct tls12_crypto_info_aes_gcm_128) - sizeof(*crypto_info)); if (rc) { rc = -EFAULT; goto out; } keylen = TLS_CIPHER_AES_GCM_128_KEY_SIZE; cipher_type = TLS_CIPHER_AES_GCM_128; break; } case TLS_CIPHER_AES_GCM_256: { crypto_info[0] = tmp_crypto_info; rc = copy_from_sockptr_offset((char *)crypto_info + sizeof(*crypto_info), optval, sizeof(*crypto_info), sizeof(struct tls12_crypto_info_aes_gcm_256) - sizeof(*crypto_info)); if (rc) { rc = -EFAULT; goto out; } keylen = TLS_CIPHER_AES_GCM_256_KEY_SIZE; cipher_type = TLS_CIPHER_AES_GCM_256; break; } default: rc = -EINVAL; goto out; } rc = chtls_setkey(csk, keylen, optname, cipher_type); out: return rc; } static int chtls_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, unsigned int optlen) { struct tls_context *ctx = tls_get_ctx(sk); if (level != SOL_TLS) return ctx->sk_proto->setsockopt(sk, level, optname, optval, optlen); return do_chtls_setsockopt(sk, optname, optval, optlen); } static struct cxgb4_uld_info chtls_uld_info = { .name = DRV_NAME, .nrxq = MAX_ULD_QSETS, .ntxq = MAX_ULD_QSETS, .rxq_size = 1024, .add = chtls_uld_add, .state_change = chtls_uld_state_change, .rx_handler = chtls_uld_rx_handler, }; void chtls_install_cpl_ops(struct sock *sk) { if (sk->sk_family == AF_INET) sk->sk_prot = &chtls_cpl_prot; else sk->sk_prot = &chtls_cpl_protv6; } static void __init chtls_init_ulp_ops(void) { chtls_cpl_prot = tcp_prot; chtls_init_rsk_ops(&chtls_cpl_prot, &chtls_rsk_ops, &tcp_prot, PF_INET); chtls_cpl_prot.close = chtls_close; chtls_cpl_prot.disconnect = chtls_disconnect; chtls_cpl_prot.destroy = chtls_destroy_sock; chtls_cpl_prot.shutdown = chtls_shutdown; chtls_cpl_prot.sendmsg = chtls_sendmsg; chtls_cpl_prot.splice_eof = chtls_splice_eof; chtls_cpl_prot.recvmsg = chtls_recvmsg; chtls_cpl_prot.setsockopt = chtls_setsockopt; chtls_cpl_prot.getsockopt = chtls_getsockopt; #if IS_ENABLED(CONFIG_IPV6) chtls_cpl_protv6 = chtls_cpl_prot; chtls_init_rsk_ops(&chtls_cpl_protv6, &chtls_rsk_opsv6, &tcpv6_prot, PF_INET6); #endif } static int __init chtls_register(void) { chtls_init_ulp_ops(); register_listen_notifier(&listen_notifier); cxgb4_register_uld(CXGB4_ULD_TLS, &chtls_uld_info); return 0; } static void __exit chtls_unregister(void) { unregister_listen_notifier(&listen_notifier); chtls_free_all_uld(); cxgb4_unregister_uld(CXGB4_ULD_TLS); } module_init(chtls_register); module_exit(chtls_unregister); MODULE_DESCRIPTION("Chelsio TLS Inline driver"); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Chelsio Communications"); MODULE_VERSION(CHTLS_DRV_VERSION);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1