Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Joseph CHANG | 5390 | 99.45% | 1 | 11.11% |
Dan Carpenter | 10 | 0.18% | 1 | 11.11% |
Yuan Can | 7 | 0.13% | 1 | 11.11% |
Amit Kumar Mahapatra | 5 | 0.09% | 1 | 11.11% |
Li Yang | 3 | 0.06% | 1 | 11.11% |
Colin Ian King | 2 | 0.04% | 1 | 11.11% |
ruanjinjie | 1 | 0.02% | 1 | 11.11% |
Sebastian Andrzej Siewior | 1 | 0.02% | 1 | 11.11% |
Stephen Rothwell | 1 | 0.02% | 1 | 11.11% |
Total | 5420 | 9 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2022 Davicom Semiconductor,Inc. * Davicom DM9051 SPI Fast Ethernet Linux driver */ #include <linux/etherdevice.h> #include <linux/ethtool.h> #include <linux/interrupt.h> #include <linux/iopoll.h> #include <linux/irq.h> #include <linux/mii.h> #include <linux/module.h> #include <linux/netdevice.h> #include <linux/phy.h> #include <linux/regmap.h> #include <linux/skbuff.h> #include <linux/spinlock.h> #include <linux/spi/spi.h> #include <linux/types.h> #include "dm9051.h" #define DRVNAME_9051 "dm9051" /** * struct rx_ctl_mach - rx activities record * @status_err_counter: rx status error counter * @large_err_counter: rx get large packet length error counter * @rx_err_counter: receive packet error counter * @tx_err_counter: transmit packet error counter * @fifo_rst_counter: reset operation counter * * To keep track for the driver operation statistics */ struct rx_ctl_mach { u16 status_err_counter; u16 large_err_counter; u16 rx_err_counter; u16 tx_err_counter; u16 fifo_rst_counter; }; /** * struct dm9051_rxctrl - dm9051 driver rx control * @hash_table: Multicast hash-table data * @rcr_all: KS_RXCR1 register setting * * The settings needs to control the receive filtering * such as the multicast hash-filter and the receive register settings */ struct dm9051_rxctrl { u16 hash_table[4]; u8 rcr_all; }; /** * struct dm9051_rxhdr - rx packet data header * @headbyte: lead byte equal to 0x01 notifies a valid packet * @status: status bits for the received packet * @rxlen: packet length * * The Rx packed, entered into the FIFO memory, start with these * four bytes which is the Rx header, followed by the ethernet * packet data and ends with an appended 4-byte CRC data. * Both Rx packet and CRC data are for check purpose and finally * are dropped by this driver */ struct dm9051_rxhdr { u8 headbyte; u8 status; __le16 rxlen; }; /** * struct board_info - maintain the saved data * @spidev: spi device structure * @ndev: net device structure * @mdiobus: mii bus structure * @phydev: phy device structure * @txq: tx queue structure * @regmap_dm: regmap for register read/write * @regmap_dmbulk: extra regmap for bulk read/write * @rxctrl_work: Work queue for updating RX mode and multicast lists * @tx_work: Work queue for tx packets * @pause: ethtool pause parameter structure * @spi_lockm: between threads lock structure * @reg_mutex: regmap access lock structure * @bc: rx control statistics structure * @rxhdr: rx header structure * @rctl: rx control setting structure * @msg_enable: message level value * @imr_all: to store operating imr value for register DM9051_IMR * @lcr_all: to store operating rcr value for register DM9051_LMCR * * The saved data variables, keep up to date for retrieval back to use */ struct board_info { u32 msg_enable; struct spi_device *spidev; struct net_device *ndev; struct mii_bus *mdiobus; struct phy_device *phydev; struct sk_buff_head txq; struct regmap *regmap_dm; struct regmap *regmap_dmbulk; struct work_struct rxctrl_work; struct work_struct tx_work; struct ethtool_pauseparam pause; struct mutex spi_lockm; struct mutex reg_mutex; struct rx_ctl_mach bc; struct dm9051_rxhdr rxhdr; struct dm9051_rxctrl rctl; u8 imr_all; u8 lcr_all; }; static int dm9051_set_reg(struct board_info *db, unsigned int reg, unsigned int val) { int ret; ret = regmap_write(db->regmap_dm, reg, val); if (ret < 0) netif_err(db, drv, db->ndev, "%s: error %d set reg %02x\n", __func__, ret, reg); return ret; } static int dm9051_update_bits(struct board_info *db, unsigned int reg, unsigned int mask, unsigned int val) { int ret; ret = regmap_update_bits(db->regmap_dm, reg, mask, val); if (ret < 0) netif_err(db, drv, db->ndev, "%s: error %d update bits reg %02x\n", __func__, ret, reg); return ret; } /* skb buffer exhausted, just discard the received data */ static int dm9051_dumpblk(struct board_info *db, u8 reg, size_t count) { struct net_device *ndev = db->ndev; unsigned int rb; int ret; /* no skb buffer, * both reg and &rb must be noinc, * read once one byte via regmap_read */ do { ret = regmap_read(db->regmap_dm, reg, &rb); if (ret < 0) { netif_err(db, drv, ndev, "%s: error %d dumping read reg %02x\n", __func__, ret, reg); break; } } while (--count); return ret; } static int dm9051_set_regs(struct board_info *db, unsigned int reg, const void *val, size_t val_count) { int ret; ret = regmap_bulk_write(db->regmap_dmbulk, reg, val, val_count); if (ret < 0) netif_err(db, drv, db->ndev, "%s: error %d bulk writing regs %02x\n", __func__, ret, reg); return ret; } static int dm9051_get_regs(struct board_info *db, unsigned int reg, void *val, size_t val_count) { int ret; ret = regmap_bulk_read(db->regmap_dmbulk, reg, val, val_count); if (ret < 0) netif_err(db, drv, db->ndev, "%s: error %d bulk reading regs %02x\n", __func__, ret, reg); return ret; } static int dm9051_write_mem(struct board_info *db, unsigned int reg, const void *buff, size_t len) { int ret; ret = regmap_noinc_write(db->regmap_dm, reg, buff, len); if (ret < 0) netif_err(db, drv, db->ndev, "%s: error %d noinc writing regs %02x\n", __func__, ret, reg); return ret; } static int dm9051_read_mem(struct board_info *db, unsigned int reg, void *buff, size_t len) { int ret; ret = regmap_noinc_read(db->regmap_dm, reg, buff, len); if (ret < 0) netif_err(db, drv, db->ndev, "%s: error %d noinc reading regs %02x\n", __func__, ret, reg); return ret; } /* waiting tx-end rather than tx-req * got faster */ static int dm9051_nsr_poll(struct board_info *db) { unsigned int mval; int ret; ret = regmap_read_poll_timeout(db->regmap_dm, DM9051_NSR, mval, mval & (NSR_TX2END | NSR_TX1END), 1, 20); if (ret == -ETIMEDOUT) netdev_err(db->ndev, "timeout in checking for tx end\n"); return ret; } static int dm9051_epcr_poll(struct board_info *db) { unsigned int mval; int ret; ret = regmap_read_poll_timeout(db->regmap_dm, DM9051_EPCR, mval, !(mval & EPCR_ERRE), 100, 10000); if (ret == -ETIMEDOUT) netdev_err(db->ndev, "eeprom/phy in processing get timeout\n"); return ret; } static int dm9051_irq_flag(struct board_info *db) { struct spi_device *spi = db->spidev; int irq_type = irq_get_trigger_type(spi->irq); if (irq_type) return irq_type; return IRQF_TRIGGER_LOW; } static unsigned int dm9051_intcr_value(struct board_info *db) { return (dm9051_irq_flag(db) == IRQF_TRIGGER_LOW) ? INTCR_POL_LOW : INTCR_POL_HIGH; } static int dm9051_set_fcr(struct board_info *db) { u8 fcr = 0; if (db->pause.rx_pause) fcr |= FCR_BKPM | FCR_FLCE; if (db->pause.tx_pause) fcr |= FCR_TXPEN; return dm9051_set_reg(db, DM9051_FCR, fcr); } static int dm9051_set_recv(struct board_info *db) { int ret; ret = dm9051_set_regs(db, DM9051_MAR, db->rctl.hash_table, sizeof(db->rctl.hash_table)); if (ret) return ret; return dm9051_set_reg(db, DM9051_RCR, db->rctl.rcr_all); /* enable rx */ } static int dm9051_core_reset(struct board_info *db) { int ret; db->bc.fifo_rst_counter++; ret = regmap_write(db->regmap_dm, DM9051_NCR, NCR_RST); /* NCR reset */ if (ret) return ret; ret = regmap_write(db->regmap_dm, DM9051_MBNDRY, MBNDRY_BYTE); /* MemBound */ if (ret) return ret; ret = regmap_write(db->regmap_dm, DM9051_PPCR, PPCR_PAUSE_COUNT); /* Pause Count */ if (ret) return ret; ret = regmap_write(db->regmap_dm, DM9051_LMCR, db->lcr_all); /* LEDMode1 */ if (ret) return ret; return dm9051_set_reg(db, DM9051_INTCR, dm9051_intcr_value(db)); } static int dm9051_update_fcr(struct board_info *db) { u8 fcr = 0; if (db->pause.rx_pause) fcr |= FCR_BKPM | FCR_FLCE; if (db->pause.tx_pause) fcr |= FCR_TXPEN; return dm9051_update_bits(db, DM9051_FCR, FCR_RXTX_BITS, fcr); } static int dm9051_disable_interrupt(struct board_info *db) { return dm9051_set_reg(db, DM9051_IMR, IMR_PAR); /* disable int */ } static int dm9051_enable_interrupt(struct board_info *db) { return dm9051_set_reg(db, DM9051_IMR, db->imr_all); /* enable int */ } static int dm9051_stop_mrcmd(struct board_info *db) { return dm9051_set_reg(db, DM9051_ISR, ISR_STOP_MRCMD); /* to stop mrcmd */ } static int dm9051_clear_interrupt(struct board_info *db) { return dm9051_update_bits(db, DM9051_ISR, ISR_CLR_INT, ISR_CLR_INT); } static int dm9051_eeprom_read(struct board_info *db, int offset, u8 *to) { int ret; ret = regmap_write(db->regmap_dm, DM9051_EPAR, offset); if (ret) return ret; ret = regmap_write(db->regmap_dm, DM9051_EPCR, EPCR_ERPRR); if (ret) return ret; ret = dm9051_epcr_poll(db); if (ret) return ret; ret = regmap_write(db->regmap_dm, DM9051_EPCR, 0); if (ret) return ret; return regmap_bulk_read(db->regmap_dmbulk, DM9051_EPDRL, to, 2); } static int dm9051_eeprom_write(struct board_info *db, int offset, u8 *data) { int ret; ret = regmap_write(db->regmap_dm, DM9051_EPAR, offset); if (ret) return ret; ret = regmap_bulk_write(db->regmap_dmbulk, DM9051_EPDRL, data, 2); if (ret < 0) return ret; ret = regmap_write(db->regmap_dm, DM9051_EPCR, EPCR_WEP | EPCR_ERPRW); if (ret) return ret; ret = dm9051_epcr_poll(db); if (ret) return ret; return regmap_write(db->regmap_dm, DM9051_EPCR, 0); } static int dm9051_phyread(void *context, unsigned int reg, unsigned int *val) { struct board_info *db = context; int ret; ret = regmap_write(db->regmap_dm, DM9051_EPAR, DM9051_PHY | reg); if (ret) return ret; ret = regmap_write(db->regmap_dm, DM9051_EPCR, EPCR_ERPRR | EPCR_EPOS); if (ret) return ret; ret = dm9051_epcr_poll(db); if (ret) return ret; ret = regmap_write(db->regmap_dm, DM9051_EPCR, 0); if (ret) return ret; /* this is a 4 bytes data, clear to zero since following regmap_bulk_read * only fill lower 2 bytes */ *val = 0; return regmap_bulk_read(db->regmap_dmbulk, DM9051_EPDRL, val, 2); } static int dm9051_phywrite(void *context, unsigned int reg, unsigned int val) { struct board_info *db = context; int ret; ret = regmap_write(db->regmap_dm, DM9051_EPAR, DM9051_PHY | reg); if (ret) return ret; ret = regmap_bulk_write(db->regmap_dmbulk, DM9051_EPDRL, &val, 2); if (ret < 0) return ret; ret = regmap_write(db->regmap_dm, DM9051_EPCR, EPCR_EPOS | EPCR_ERPRW); if (ret) return ret; ret = dm9051_epcr_poll(db); if (ret) return ret; return regmap_write(db->regmap_dm, DM9051_EPCR, 0); } static int dm9051_mdio_read(struct mii_bus *bus, int addr, int regnum) { struct board_info *db = bus->priv; unsigned int val = 0xffff; int ret; if (addr == DM9051_PHY_ADDR) { ret = dm9051_phyread(db, regnum, &val); if (ret) return ret; } return val; } static int dm9051_mdio_write(struct mii_bus *bus, int addr, int regnum, u16 val) { struct board_info *db = bus->priv; if (addr == DM9051_PHY_ADDR) return dm9051_phywrite(db, regnum, val); return -ENODEV; } static void dm9051_reg_lock_mutex(void *dbcontext) { struct board_info *db = dbcontext; mutex_lock(&db->reg_mutex); } static void dm9051_reg_unlock_mutex(void *dbcontext) { struct board_info *db = dbcontext; mutex_unlock(&db->reg_mutex); } static struct regmap_config regconfigdm = { .reg_bits = 8, .val_bits = 8, .max_register = 0xff, .reg_stride = 1, .cache_type = REGCACHE_NONE, .read_flag_mask = 0, .write_flag_mask = DM_SPI_WR, .val_format_endian = REGMAP_ENDIAN_LITTLE, .lock = dm9051_reg_lock_mutex, .unlock = dm9051_reg_unlock_mutex, }; static struct regmap_config regconfigdmbulk = { .reg_bits = 8, .val_bits = 8, .max_register = 0xff, .reg_stride = 1, .cache_type = REGCACHE_NONE, .read_flag_mask = 0, .write_flag_mask = DM_SPI_WR, .val_format_endian = REGMAP_ENDIAN_LITTLE, .lock = dm9051_reg_lock_mutex, .unlock = dm9051_reg_unlock_mutex, .use_single_read = true, .use_single_write = true, }; static int dm9051_map_init(struct spi_device *spi, struct board_info *db) { /* create two regmap instances, * split read/write and bulk_read/bulk_write to individual regmap * to resolve regmap execution confliction problem */ regconfigdm.lock_arg = db; db->regmap_dm = devm_regmap_init_spi(db->spidev, ®configdm); if (IS_ERR(db->regmap_dm)) return PTR_ERR(db->regmap_dm); regconfigdmbulk.lock_arg = db; db->regmap_dmbulk = devm_regmap_init_spi(db->spidev, ®configdmbulk); return PTR_ERR_OR_ZERO(db->regmap_dmbulk); } static int dm9051_map_chipid(struct board_info *db) { struct device *dev = &db->spidev->dev; unsigned short wid; u8 buff[6]; int ret; ret = dm9051_get_regs(db, DM9051_VIDL, buff, sizeof(buff)); if (ret < 0) return ret; wid = get_unaligned_le16(buff + 2); if (wid != DM9051_ID) { dev_err(dev, "chipid error as %04x !\n", wid); return -ENODEV; } dev_info(dev, "chip %04x found\n", wid); return 0; } /* Read DM9051_PAR registers which is the mac address loaded from EEPROM while power-on */ static int dm9051_map_etherdev_par(struct net_device *ndev, struct board_info *db) { u8 addr[ETH_ALEN]; int ret; ret = dm9051_get_regs(db, DM9051_PAR, addr, sizeof(addr)); if (ret < 0) return ret; if (!is_valid_ether_addr(addr)) { eth_hw_addr_random(ndev); ret = dm9051_set_regs(db, DM9051_PAR, ndev->dev_addr, sizeof(ndev->dev_addr)); if (ret < 0) return ret; dev_dbg(&db->spidev->dev, "Use random MAC address\n"); return 0; } eth_hw_addr_set(ndev, addr); return 0; } /* ethtool-ops */ static void dm9051_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) { strscpy(info->driver, DRVNAME_9051, sizeof(info->driver)); } static void dm9051_set_msglevel(struct net_device *ndev, u32 value) { struct board_info *db = to_dm9051_board(ndev); db->msg_enable = value; } static u32 dm9051_get_msglevel(struct net_device *ndev) { struct board_info *db = to_dm9051_board(ndev); return db->msg_enable; } static int dm9051_get_eeprom_len(struct net_device *dev) { return 128; } static int dm9051_get_eeprom(struct net_device *ndev, struct ethtool_eeprom *ee, u8 *data) { struct board_info *db = to_dm9051_board(ndev); int offset = ee->offset; int len = ee->len; int i, ret; if ((len | offset) & 1) return -EINVAL; ee->magic = DM_EEPROM_MAGIC; for (i = 0; i < len; i += 2) { ret = dm9051_eeprom_read(db, (offset + i) / 2, data + i); if (ret) break; } return ret; } static int dm9051_set_eeprom(struct net_device *ndev, struct ethtool_eeprom *ee, u8 *data) { struct board_info *db = to_dm9051_board(ndev); int offset = ee->offset; int len = ee->len; int i, ret; if ((len | offset) & 1) return -EINVAL; if (ee->magic != DM_EEPROM_MAGIC) return -EINVAL; for (i = 0; i < len; i += 2) { ret = dm9051_eeprom_write(db, (offset + i) / 2, data + i); if (ret) break; } return ret; } static void dm9051_get_pauseparam(struct net_device *ndev, struct ethtool_pauseparam *pause) { struct board_info *db = to_dm9051_board(ndev); *pause = db->pause; } static int dm9051_set_pauseparam(struct net_device *ndev, struct ethtool_pauseparam *pause) { struct board_info *db = to_dm9051_board(ndev); db->pause = *pause; if (pause->autoneg == AUTONEG_DISABLE) return dm9051_update_fcr(db); phy_set_sym_pause(db->phydev, pause->rx_pause, pause->tx_pause, pause->autoneg); phy_start_aneg(db->phydev); return 0; } static const struct ethtool_ops dm9051_ethtool_ops = { .get_drvinfo = dm9051_get_drvinfo, .get_link_ksettings = phy_ethtool_get_link_ksettings, .set_link_ksettings = phy_ethtool_set_link_ksettings, .get_msglevel = dm9051_get_msglevel, .set_msglevel = dm9051_set_msglevel, .nway_reset = phy_ethtool_nway_reset, .get_link = ethtool_op_get_link, .get_eeprom_len = dm9051_get_eeprom_len, .get_eeprom = dm9051_get_eeprom, .set_eeprom = dm9051_set_eeprom, .get_pauseparam = dm9051_get_pauseparam, .set_pauseparam = dm9051_set_pauseparam, }; static int dm9051_all_start(struct board_info *db) { int ret; /* GPR power on of the internal phy */ ret = dm9051_set_reg(db, DM9051_GPR, 0); if (ret) return ret; /* dm9051 chip registers could not be accessed within 1 ms * after GPR power on, delay 1 ms is essential */ msleep(1); ret = dm9051_core_reset(db); if (ret) return ret; return dm9051_enable_interrupt(db); } static int dm9051_all_stop(struct board_info *db) { int ret; /* GPR power off of the internal phy, * The internal phy still could be accessed after this GPR power off control */ ret = dm9051_set_reg(db, DM9051_GPR, GPR_PHY_OFF); if (ret) return ret; return dm9051_set_reg(db, DM9051_RCR, RCR_RX_DISABLE); } /* fifo reset while rx error found */ static int dm9051_all_restart(struct board_info *db) { struct net_device *ndev = db->ndev; int ret; ret = dm9051_core_reset(db); if (ret) return ret; ret = dm9051_enable_interrupt(db); if (ret) return ret; netdev_dbg(ndev, " rxstatus_Er & rxlen_Er %d, RST_c %d\n", db->bc.status_err_counter + db->bc.large_err_counter, db->bc.fifo_rst_counter); ret = dm9051_set_recv(db); if (ret) return ret; return dm9051_set_fcr(db); } /* read packets from the fifo memory * return value, * > 0 - read packet number, caller can repeat the rx operation * 0 - no error, caller need stop further rx operation * -EBUSY - read data error, caller escape from rx operation */ static int dm9051_loop_rx(struct board_info *db) { struct net_device *ndev = db->ndev; unsigned int rxbyte; int ret, rxlen; struct sk_buff *skb; u8 *rdptr; int scanrr = 0; do { ret = dm9051_read_mem(db, DM_SPI_MRCMDX, &rxbyte, 2); if (ret) return ret; if ((rxbyte & GENMASK(7, 0)) != DM9051_PKT_RDY) break; /* exhaust-empty */ ret = dm9051_read_mem(db, DM_SPI_MRCMD, &db->rxhdr, DM_RXHDR_SIZE); if (ret) return ret; ret = dm9051_stop_mrcmd(db); if (ret) return ret; rxlen = le16_to_cpu(db->rxhdr.rxlen); if (db->rxhdr.status & RSR_ERR_BITS || rxlen > DM9051_PKT_MAX) { netdev_dbg(ndev, "rxhdr-byte (%02x)\n", db->rxhdr.headbyte); if (db->rxhdr.status & RSR_ERR_BITS) { db->bc.status_err_counter++; netdev_dbg(ndev, "check rxstatus-error (%02x)\n", db->rxhdr.status); } else { db->bc.large_err_counter++; netdev_dbg(ndev, "check rxlen large-error (%d > %d)\n", rxlen, DM9051_PKT_MAX); } return dm9051_all_restart(db); } skb = dev_alloc_skb(rxlen); if (!skb) { ret = dm9051_dumpblk(db, DM_SPI_MRCMD, rxlen); if (ret) return ret; return scanrr; } rdptr = skb_put(skb, rxlen - 4); ret = dm9051_read_mem(db, DM_SPI_MRCMD, rdptr, rxlen); if (ret) { db->bc.rx_err_counter++; dev_kfree_skb(skb); return ret; } ret = dm9051_stop_mrcmd(db); if (ret) { dev_kfree_skb(skb); return ret; } skb->protocol = eth_type_trans(skb, db->ndev); if (db->ndev->features & NETIF_F_RXCSUM) skb_checksum_none_assert(skb); netif_rx(skb); db->ndev->stats.rx_bytes += rxlen; db->ndev->stats.rx_packets++; scanrr++; } while (!ret); return scanrr; } /* transmit a packet, * return value, * 0 - succeed * -ETIMEDOUT - timeout error */ static int dm9051_single_tx(struct board_info *db, u8 *buff, unsigned int len) { int ret; ret = dm9051_nsr_poll(db); if (ret) return ret; ret = dm9051_write_mem(db, DM_SPI_MWCMD, buff, len); if (ret) return ret; ret = dm9051_set_regs(db, DM9051_TXPLL, &len, 2); if (ret < 0) return ret; return dm9051_set_reg(db, DM9051_TCR, TCR_TXREQ); } static int dm9051_loop_tx(struct board_info *db) { struct net_device *ndev = db->ndev; int ntx = 0; int ret; while (!skb_queue_empty(&db->txq)) { struct sk_buff *skb; unsigned int len; skb = skb_dequeue(&db->txq); if (skb) { ntx++; ret = dm9051_single_tx(db, skb->data, skb->len); len = skb->len; dev_kfree_skb(skb); if (ret < 0) { db->bc.tx_err_counter++; return 0; } ndev->stats.tx_bytes += len; ndev->stats.tx_packets++; } if (netif_queue_stopped(ndev) && (skb_queue_len(&db->txq) < DM9051_TX_QUE_LO_WATER)) netif_wake_queue(ndev); } return ntx; } static irqreturn_t dm9051_rx_threaded_irq(int irq, void *pw) { struct board_info *db = pw; int result, result_tx; mutex_lock(&db->spi_lockm); result = dm9051_disable_interrupt(db); if (result) goto out_unlock; result = dm9051_clear_interrupt(db); if (result) goto out_unlock; do { result = dm9051_loop_rx(db); /* threaded irq rx */ if (result < 0) goto out_unlock; result_tx = dm9051_loop_tx(db); /* more tx better performance */ if (result_tx < 0) goto out_unlock; } while (result > 0); dm9051_enable_interrupt(db); /* To exit and has mutex unlock while rx or tx error */ out_unlock: mutex_unlock(&db->spi_lockm); return IRQ_HANDLED; } static void dm9051_tx_delay(struct work_struct *work) { struct board_info *db = container_of(work, struct board_info, tx_work); int result; mutex_lock(&db->spi_lockm); result = dm9051_loop_tx(db); if (result < 0) netdev_err(db->ndev, "transmit packet error\n"); mutex_unlock(&db->spi_lockm); } static void dm9051_rxctl_delay(struct work_struct *work) { struct board_info *db = container_of(work, struct board_info, rxctrl_work); struct net_device *ndev = db->ndev; int result; mutex_lock(&db->spi_lockm); result = dm9051_set_regs(db, DM9051_PAR, ndev->dev_addr, sizeof(ndev->dev_addr)); if (result < 0) goto out_unlock; dm9051_set_recv(db); /* To has mutex unlock and return from this function if regmap function fail */ out_unlock: mutex_unlock(&db->spi_lockm); } /* Open network device * Called when the network device is marked active, such as a user executing * 'ifconfig up' on the device */ static int dm9051_open(struct net_device *ndev) { struct board_info *db = to_dm9051_board(ndev); struct spi_device *spi = db->spidev; int ret; db->imr_all = IMR_PAR | IMR_PRM; db->lcr_all = LMCR_MODE1; db->rctl.rcr_all = RCR_DIS_LONG | RCR_DIS_CRC | RCR_RXEN; memset(db->rctl.hash_table, 0, sizeof(db->rctl.hash_table)); ndev->irq = spi->irq; /* by dts */ ret = request_threaded_irq(spi->irq, NULL, dm9051_rx_threaded_irq, dm9051_irq_flag(db) | IRQF_ONESHOT, ndev->name, db); if (ret < 0) { netdev_err(ndev, "failed to get irq\n"); return ret; } phy_support_sym_pause(db->phydev); phy_start(db->phydev); /* flow control parameters init */ db->pause.rx_pause = true; db->pause.tx_pause = true; db->pause.autoneg = AUTONEG_DISABLE; if (db->phydev->autoneg) db->pause.autoneg = AUTONEG_ENABLE; ret = dm9051_all_start(db); if (ret) { phy_stop(db->phydev); free_irq(spi->irq, db); return ret; } netif_wake_queue(ndev); return 0; } /* Close network device * Called to close down a network device which has been active. Cancel any * work, shutdown the RX and TX process and then place the chip into a low * power state while it is not being used */ static int dm9051_stop(struct net_device *ndev) { struct board_info *db = to_dm9051_board(ndev); int ret; ret = dm9051_all_stop(db); if (ret) return ret; flush_work(&db->tx_work); flush_work(&db->rxctrl_work); phy_stop(db->phydev); free_irq(db->spidev->irq, db); netif_stop_queue(ndev); skb_queue_purge(&db->txq); return 0; } /* event: play a schedule starter in condition */ static netdev_tx_t dm9051_start_xmit(struct sk_buff *skb, struct net_device *ndev) { struct board_info *db = to_dm9051_board(ndev); skb_queue_tail(&db->txq, skb); if (skb_queue_len(&db->txq) > DM9051_TX_QUE_HI_WATER) netif_stop_queue(ndev); /* enforce limit queue size */ schedule_work(&db->tx_work); return NETDEV_TX_OK; } /* event: play with a schedule starter */ static void dm9051_set_rx_mode(struct net_device *ndev) { struct board_info *db = to_dm9051_board(ndev); struct dm9051_rxctrl rxctrl; struct netdev_hw_addr *ha; u8 rcr = RCR_DIS_LONG | RCR_DIS_CRC | RCR_RXEN; u32 hash_val; memset(&rxctrl, 0, sizeof(rxctrl)); /* rx control */ if (ndev->flags & IFF_PROMISC) { rcr |= RCR_PRMSC; netdev_dbg(ndev, "set_multicast rcr |= RCR_PRMSC, rcr= %02x\n", rcr); } if (ndev->flags & IFF_ALLMULTI) { rcr |= RCR_ALL; netdev_dbg(ndev, "set_multicast rcr |= RCR_ALLMULTI, rcr= %02x\n", rcr); } rxctrl.rcr_all = rcr; /* broadcast address */ rxctrl.hash_table[0] = 0; rxctrl.hash_table[1] = 0; rxctrl.hash_table[2] = 0; rxctrl.hash_table[3] = 0x8000; /* the multicast address in Hash Table : 64 bits */ netdev_for_each_mc_addr(ha, ndev) { hash_val = ether_crc_le(ETH_ALEN, ha->addr) & GENMASK(5, 0); rxctrl.hash_table[hash_val / 16] |= BIT(0) << (hash_val % 16); } /* schedule work to do the actual set of the data if needed */ if (memcmp(&db->rctl, &rxctrl, sizeof(rxctrl))) { memcpy(&db->rctl, &rxctrl, sizeof(rxctrl)); schedule_work(&db->rxctrl_work); } } /* event: write into the mac registers and eeprom directly */ static int dm9051_set_mac_address(struct net_device *ndev, void *p) { struct board_info *db = to_dm9051_board(ndev); int ret; ret = eth_prepare_mac_addr_change(ndev, p); if (ret < 0) return ret; eth_commit_mac_addr_change(ndev, p); return dm9051_set_regs(db, DM9051_PAR, ndev->dev_addr, sizeof(ndev->dev_addr)); } static const struct net_device_ops dm9051_netdev_ops = { .ndo_open = dm9051_open, .ndo_stop = dm9051_stop, .ndo_start_xmit = dm9051_start_xmit, .ndo_set_rx_mode = dm9051_set_rx_mode, .ndo_validate_addr = eth_validate_addr, .ndo_set_mac_address = dm9051_set_mac_address, }; static void dm9051_operation_clear(struct board_info *db) { db->bc.status_err_counter = 0; db->bc.large_err_counter = 0; db->bc.rx_err_counter = 0; db->bc.tx_err_counter = 0; db->bc.fifo_rst_counter = 0; } static int dm9051_mdio_register(struct board_info *db) { struct spi_device *spi = db->spidev; int ret; db->mdiobus = devm_mdiobus_alloc(&spi->dev); if (!db->mdiobus) return -ENOMEM; db->mdiobus->priv = db; db->mdiobus->read = dm9051_mdio_read; db->mdiobus->write = dm9051_mdio_write; db->mdiobus->name = "dm9051-mdiobus"; db->mdiobus->phy_mask = (u32)~BIT(1); db->mdiobus->parent = &spi->dev; snprintf(db->mdiobus->id, MII_BUS_ID_SIZE, "dm9051-%s.%u", dev_name(&spi->dev), spi_get_chipselect(spi, 0)); ret = devm_mdiobus_register(&spi->dev, db->mdiobus); if (ret) dev_err(&spi->dev, "Could not register MDIO bus\n"); return ret; } static void dm9051_handle_link_change(struct net_device *ndev) { struct board_info *db = to_dm9051_board(ndev); phy_print_status(db->phydev); /* only write pause settings to mac. since mac and phy are integrated * together, such as link state, speed and duplex are sync already */ if (db->phydev->link) { if (db->phydev->pause) { db->pause.rx_pause = true; db->pause.tx_pause = true; } dm9051_update_fcr(db); } } /* phy connect as poll mode */ static int dm9051_phy_connect(struct board_info *db) { char phy_id[MII_BUS_ID_SIZE + 3]; snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT, db->mdiobus->id, DM9051_PHY_ADDR); db->phydev = phy_connect(db->ndev, phy_id, dm9051_handle_link_change, PHY_INTERFACE_MODE_MII); return PTR_ERR_OR_ZERO(db->phydev); } static int dm9051_probe(struct spi_device *spi) { struct device *dev = &spi->dev; struct net_device *ndev; struct board_info *db; int ret; ndev = devm_alloc_etherdev(dev, sizeof(struct board_info)); if (!ndev) return -ENOMEM; SET_NETDEV_DEV(ndev, dev); dev_set_drvdata(dev, ndev); db = netdev_priv(ndev); db->msg_enable = 0; db->spidev = spi; db->ndev = ndev; ndev->netdev_ops = &dm9051_netdev_ops; ndev->ethtool_ops = &dm9051_ethtool_ops; mutex_init(&db->spi_lockm); mutex_init(&db->reg_mutex); INIT_WORK(&db->rxctrl_work, dm9051_rxctl_delay); INIT_WORK(&db->tx_work, dm9051_tx_delay); ret = dm9051_map_init(spi, db); if (ret) return ret; ret = dm9051_map_chipid(db); if (ret) return ret; ret = dm9051_map_etherdev_par(ndev, db); if (ret < 0) return ret; ret = dm9051_mdio_register(db); if (ret) return ret; ret = dm9051_phy_connect(db); if (ret) return ret; dm9051_operation_clear(db); skb_queue_head_init(&db->txq); ret = devm_register_netdev(dev, ndev); if (ret) { phy_disconnect(db->phydev); return dev_err_probe(dev, ret, "device register failed"); } return 0; } static void dm9051_drv_remove(struct spi_device *spi) { struct device *dev = &spi->dev; struct net_device *ndev = dev_get_drvdata(dev); struct board_info *db = to_dm9051_board(ndev); phy_disconnect(db->phydev); } static const struct of_device_id dm9051_match_table[] = { { .compatible = "davicom,dm9051" }, {} }; static const struct spi_device_id dm9051_id_table[] = { { "dm9051", 0 }, {} }; static struct spi_driver dm9051_driver = { .driver = { .name = DRVNAME_9051, .of_match_table = dm9051_match_table, }, .probe = dm9051_probe, .remove = dm9051_drv_remove, .id_table = dm9051_id_table, }; module_spi_driver(dm9051_driver); MODULE_AUTHOR("Joseph CHANG <joseph_chang@davicom.com.tw>"); MODULE_DESCRIPTION("Davicom DM9051 network SPI driver"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1