Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Dimitris Michailidis | 10624 | 99.66% | 3 | 50.00% |
Marek Majtyka | 25 | 0.23% | 1 | 16.67% |
Jiri Pirko | 10 | 0.09% | 1 | 16.67% |
Jakub Kiciński | 1 | 0.01% | 1 | 16.67% |
Total | 10660 | 6 |
// SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause) #include <linux/bpf.h> #include <linux/crash_dump.h> #include <linux/etherdevice.h> #include <linux/ethtool.h> #include <linux/filter.h> #include <linux/idr.h> #include <linux/if_vlan.h> #include <linux/module.h> #include <linux/netdevice.h> #include <linux/pci.h> #include <linux/rtnetlink.h> #include <linux/inetdevice.h> #include "funeth.h" #include "funeth_devlink.h" #include "funeth_ktls.h" #include "fun_port.h" #include "fun_queue.h" #include "funeth_txrx.h" #define ADMIN_SQ_DEPTH 32 #define ADMIN_CQ_DEPTH 64 #define ADMIN_RQ_DEPTH 16 /* Default number of Tx/Rx queues. */ #define FUN_DFLT_QUEUES 16U enum { FUN_SERV_RES_CHANGE = FUN_SERV_FIRST_AVAIL, FUN_SERV_DEL_PORTS, }; static const struct pci_device_id funeth_id_table[] = { { PCI_VDEVICE(FUNGIBLE, 0x0101) }, { PCI_VDEVICE(FUNGIBLE, 0x0181) }, { 0, } }; /* Issue a port write admin command with @n key/value pairs. */ static int fun_port_write_cmds(struct funeth_priv *fp, unsigned int n, const int *keys, const u64 *data) { unsigned int cmd_size, i; union { struct fun_admin_port_req req; struct fun_admin_port_rsp rsp; u8 v[ADMIN_SQE_SIZE]; } cmd; cmd_size = offsetof(struct fun_admin_port_req, u.write.write48) + n * sizeof(struct fun_admin_write48_req); if (cmd_size > sizeof(cmd) || cmd_size > ADMIN_RSP_MAX_LEN) return -EINVAL; cmd.req.common = FUN_ADMIN_REQ_COMMON_INIT2(FUN_ADMIN_OP_PORT, cmd_size); cmd.req.u.write = FUN_ADMIN_PORT_WRITE_REQ_INIT(FUN_ADMIN_SUBOP_WRITE, 0, fp->netdev->dev_port); for (i = 0; i < n; i++) cmd.req.u.write.write48[i] = FUN_ADMIN_WRITE48_REQ_INIT(keys[i], data[i]); return fun_submit_admin_sync_cmd(fp->fdev, &cmd.req.common, &cmd.rsp, cmd_size, 0); } int fun_port_write_cmd(struct funeth_priv *fp, int key, u64 data) { return fun_port_write_cmds(fp, 1, &key, &data); } /* Issue a port read admin command with @n key/value pairs. */ static int fun_port_read_cmds(struct funeth_priv *fp, unsigned int n, const int *keys, u64 *data) { const struct fun_admin_read48_rsp *r48rsp; unsigned int cmd_size, i; int rc; union { struct fun_admin_port_req req; struct fun_admin_port_rsp rsp; u8 v[ADMIN_SQE_SIZE]; } cmd; cmd_size = offsetof(struct fun_admin_port_req, u.read.read48) + n * sizeof(struct fun_admin_read48_req); if (cmd_size > sizeof(cmd) || cmd_size > ADMIN_RSP_MAX_LEN) return -EINVAL; cmd.req.common = FUN_ADMIN_REQ_COMMON_INIT2(FUN_ADMIN_OP_PORT, cmd_size); cmd.req.u.read = FUN_ADMIN_PORT_READ_REQ_INIT(FUN_ADMIN_SUBOP_READ, 0, fp->netdev->dev_port); for (i = 0; i < n; i++) cmd.req.u.read.read48[i] = FUN_ADMIN_READ48_REQ_INIT(keys[i]); rc = fun_submit_admin_sync_cmd(fp->fdev, &cmd.req.common, &cmd.rsp, cmd_size, 0); if (rc) return rc; for (r48rsp = cmd.rsp.u.read.read48, i = 0; i < n; i++, r48rsp++) { data[i] = FUN_ADMIN_READ48_RSP_DATA_G(r48rsp->key_to_data); dev_dbg(fp->fdev->dev, "port_read_rsp lport=%u (key_to_data=0x%llx) key=%d data:%lld retval:%lld", fp->lport, r48rsp->key_to_data, keys[i], data[i], FUN_ADMIN_READ48_RSP_RET_G(r48rsp->key_to_data)); } return 0; } int fun_port_read_cmd(struct funeth_priv *fp, int key, u64 *data) { return fun_port_read_cmds(fp, 1, &key, data); } static void fun_report_link(struct net_device *netdev) { if (netif_carrier_ok(netdev)) { const struct funeth_priv *fp = netdev_priv(netdev); const char *fec = "", *pause = ""; int speed = fp->link_speed; char unit = 'M'; if (fp->link_speed >= SPEED_1000) { speed /= 1000; unit = 'G'; } if (fp->active_fec & FUN_PORT_FEC_RS) fec = ", RS-FEC"; else if (fp->active_fec & FUN_PORT_FEC_FC) fec = ", BASER-FEC"; if ((fp->active_fc & FUN_PORT_CAP_PAUSE_MASK) == FUN_PORT_CAP_PAUSE_MASK) pause = ", Tx/Rx PAUSE"; else if (fp->active_fc & FUN_PORT_CAP_RX_PAUSE) pause = ", Rx PAUSE"; else if (fp->active_fc & FUN_PORT_CAP_TX_PAUSE) pause = ", Tx PAUSE"; netdev_info(netdev, "Link up at %d %cb/s full-duplex%s%s\n", speed, unit, pause, fec); } else { netdev_info(netdev, "Link down\n"); } } static int fun_adi_write(struct fun_dev *fdev, enum fun_admin_adi_attr attr, unsigned int adi_id, const struct fun_adi_param *param) { struct fun_admin_adi_req req = { .common = FUN_ADMIN_REQ_COMMON_INIT2(FUN_ADMIN_OP_ADI, sizeof(req)), .u.write.subop = FUN_ADMIN_SUBOP_WRITE, .u.write.attribute = attr, .u.write.id = cpu_to_be32(adi_id), .u.write.param = *param }; return fun_submit_admin_sync_cmd(fdev, &req.common, NULL, 0, 0); } /* Configure RSS for the given port. @op determines whether a new RSS context * is to be created or whether an existing one should be reconfigured. The * remaining parameters specify the hashing algorithm, key, and indirection * table. * * This initiates packet delivery to the Rx queues set in the indirection * table. */ int fun_config_rss(struct net_device *dev, int algo, const u8 *key, const u32 *qtable, u8 op) { struct funeth_priv *fp = netdev_priv(dev); unsigned int table_len = fp->indir_table_nentries; unsigned int len = FUN_ETH_RSS_MAX_KEY_SIZE + sizeof(u32) * table_len; struct funeth_rxq **rxqs = rtnl_dereference(fp->rxqs); union { struct { struct fun_admin_rss_req req; struct fun_dataop_gl gl; }; struct fun_admin_generic_create_rsp rsp; } cmd; __be32 *indir_tab; u16 flags; int rc; if (op != FUN_ADMIN_SUBOP_CREATE && fp->rss_hw_id == FUN_HCI_ID_INVALID) return -EINVAL; flags = op == FUN_ADMIN_SUBOP_CREATE ? FUN_ADMIN_RES_CREATE_FLAG_ALLOCATOR : 0; cmd.req.common = FUN_ADMIN_REQ_COMMON_INIT2(FUN_ADMIN_OP_RSS, sizeof(cmd)); cmd.req.u.create = FUN_ADMIN_RSS_CREATE_REQ_INIT(op, flags, fp->rss_hw_id, dev->dev_port, algo, FUN_ETH_RSS_MAX_KEY_SIZE, table_len, 0, FUN_ETH_RSS_MAX_KEY_SIZE); cmd.req.u.create.dataop = FUN_DATAOP_HDR_INIT(1, 0, 1, 0, len); fun_dataop_gl_init(&cmd.gl, 0, 0, len, fp->rss_dma_addr); /* write the key and indirection table into the RSS DMA area */ memcpy(fp->rss_cfg, key, FUN_ETH_RSS_MAX_KEY_SIZE); indir_tab = fp->rss_cfg + FUN_ETH_RSS_MAX_KEY_SIZE; for (rc = 0; rc < table_len; rc++) *indir_tab++ = cpu_to_be32(rxqs[*qtable++]->hw_cqid); rc = fun_submit_admin_sync_cmd(fp->fdev, &cmd.req.common, &cmd.rsp, sizeof(cmd.rsp), 0); if (!rc && op == FUN_ADMIN_SUBOP_CREATE) fp->rss_hw_id = be32_to_cpu(cmd.rsp.id); return rc; } /* Destroy the HW RSS conntext associated with the given port. This also stops * all packet delivery to our Rx queues. */ static void fun_destroy_rss(struct funeth_priv *fp) { if (fp->rss_hw_id != FUN_HCI_ID_INVALID) { fun_res_destroy(fp->fdev, FUN_ADMIN_OP_RSS, 0, fp->rss_hw_id); fp->rss_hw_id = FUN_HCI_ID_INVALID; } } static void fun_irq_aff_notify(struct irq_affinity_notify *notify, const cpumask_t *mask) { struct fun_irq *p = container_of(notify, struct fun_irq, aff_notify); cpumask_copy(&p->affinity_mask, mask); } static void fun_irq_aff_release(struct kref __always_unused *ref) { } /* Allocate an IRQ structure, assign an MSI-X index and initial affinity to it, * and add it to the IRQ XArray. */ static struct fun_irq *fun_alloc_qirq(struct funeth_priv *fp, unsigned int idx, int node, unsigned int xa_idx_offset) { struct fun_irq *irq; int cpu, res; cpu = cpumask_local_spread(idx, node); node = cpu_to_mem(cpu); irq = kzalloc_node(sizeof(*irq), GFP_KERNEL, node); if (!irq) return ERR_PTR(-ENOMEM); res = fun_reserve_irqs(fp->fdev, 1, &irq->irq_idx); if (res != 1) goto free_irq; res = xa_insert(&fp->irqs, idx + xa_idx_offset, irq, GFP_KERNEL); if (res) goto release_irq; irq->irq = pci_irq_vector(fp->pdev, irq->irq_idx); cpumask_set_cpu(cpu, &irq->affinity_mask); irq->aff_notify.notify = fun_irq_aff_notify; irq->aff_notify.release = fun_irq_aff_release; irq->state = FUN_IRQ_INIT; return irq; release_irq: fun_release_irqs(fp->fdev, 1, &irq->irq_idx); free_irq: kfree(irq); return ERR_PTR(res); } static void fun_free_qirq(struct funeth_priv *fp, struct fun_irq *irq) { netif_napi_del(&irq->napi); fun_release_irqs(fp->fdev, 1, &irq->irq_idx); kfree(irq); } /* Release the IRQs reserved for Tx/Rx queues that aren't being used. */ static void fun_prune_queue_irqs(struct net_device *dev) { struct funeth_priv *fp = netdev_priv(dev); unsigned int nreleased = 0; struct fun_irq *irq; unsigned long idx; xa_for_each(&fp->irqs, idx, irq) { if (irq->txq || irq->rxq) /* skip those in use */ continue; xa_erase(&fp->irqs, idx); fun_free_qirq(fp, irq); nreleased++; if (idx < fp->rx_irq_ofst) fp->num_tx_irqs--; else fp->num_rx_irqs--; } netif_info(fp, intr, dev, "Released %u queue IRQs\n", nreleased); } /* Reserve IRQs, one per queue, to acommodate the requested queue numbers @ntx * and @nrx. IRQs are added incrementally to those we already have. * We hold on to allocated IRQs until garbage collection of unused IRQs is * separately requested. */ static int fun_alloc_queue_irqs(struct net_device *dev, unsigned int ntx, unsigned int nrx) { struct funeth_priv *fp = netdev_priv(dev); int node = dev_to_node(&fp->pdev->dev); struct fun_irq *irq; unsigned int i; for (i = fp->num_tx_irqs; i < ntx; i++) { irq = fun_alloc_qirq(fp, i, node, 0); if (IS_ERR(irq)) return PTR_ERR(irq); fp->num_tx_irqs++; netif_napi_add_tx(dev, &irq->napi, fun_txq_napi_poll); } for (i = fp->num_rx_irqs; i < nrx; i++) { irq = fun_alloc_qirq(fp, i, node, fp->rx_irq_ofst); if (IS_ERR(irq)) return PTR_ERR(irq); fp->num_rx_irqs++; netif_napi_add(dev, &irq->napi, fun_rxq_napi_poll); } netif_info(fp, intr, dev, "Reserved %u/%u IRQs for Tx/Rx queues\n", ntx, nrx); return 0; } static void free_txqs(struct funeth_txq **txqs, unsigned int nqs, unsigned int start, int state) { unsigned int i; for (i = start; i < nqs && txqs[i]; i++) txqs[i] = funeth_txq_free(txqs[i], state); } static int alloc_txqs(struct net_device *dev, struct funeth_txq **txqs, unsigned int nqs, unsigned int depth, unsigned int start, int state) { struct funeth_priv *fp = netdev_priv(dev); unsigned int i; int err; for (i = start; i < nqs; i++) { err = funeth_txq_create(dev, i, depth, xa_load(&fp->irqs, i), state, &txqs[i]); if (err) { free_txqs(txqs, nqs, start, FUN_QSTATE_DESTROYED); return err; } } return 0; } static void free_rxqs(struct funeth_rxq **rxqs, unsigned int nqs, unsigned int start, int state) { unsigned int i; for (i = start; i < nqs && rxqs[i]; i++) rxqs[i] = funeth_rxq_free(rxqs[i], state); } static int alloc_rxqs(struct net_device *dev, struct funeth_rxq **rxqs, unsigned int nqs, unsigned int ncqe, unsigned int nrqe, unsigned int start, int state) { struct funeth_priv *fp = netdev_priv(dev); unsigned int i; int err; for (i = start; i < nqs; i++) { err = funeth_rxq_create(dev, i, ncqe, nrqe, xa_load(&fp->irqs, i + fp->rx_irq_ofst), state, &rxqs[i]); if (err) { free_rxqs(rxqs, nqs, start, FUN_QSTATE_DESTROYED); return err; } } return 0; } static void free_xdpqs(struct funeth_txq **xdpqs, unsigned int nqs, unsigned int start, int state) { unsigned int i; for (i = start; i < nqs && xdpqs[i]; i++) xdpqs[i] = funeth_txq_free(xdpqs[i], state); if (state == FUN_QSTATE_DESTROYED) kfree(xdpqs); } static struct funeth_txq **alloc_xdpqs(struct net_device *dev, unsigned int nqs, unsigned int depth, unsigned int start, int state) { struct funeth_txq **xdpqs; unsigned int i; int err; xdpqs = kcalloc(nqs, sizeof(*xdpqs), GFP_KERNEL); if (!xdpqs) return ERR_PTR(-ENOMEM); for (i = start; i < nqs; i++) { err = funeth_txq_create(dev, i, depth, NULL, state, &xdpqs[i]); if (err) { free_xdpqs(xdpqs, nqs, start, FUN_QSTATE_DESTROYED); return ERR_PTR(err); } } return xdpqs; } static void fun_free_rings(struct net_device *netdev, struct fun_qset *qset) { struct funeth_priv *fp = netdev_priv(netdev); struct funeth_txq **xdpqs = qset->xdpqs; struct funeth_rxq **rxqs = qset->rxqs; /* qset may not specify any queues to operate on. In that case the * currently installed queues are implied. */ if (!rxqs) { rxqs = rtnl_dereference(fp->rxqs); xdpqs = rtnl_dereference(fp->xdpqs); qset->txqs = fp->txqs; qset->nrxqs = netdev->real_num_rx_queues; qset->ntxqs = netdev->real_num_tx_queues; qset->nxdpqs = fp->num_xdpqs; } if (!rxqs) return; if (rxqs == rtnl_dereference(fp->rxqs)) { rcu_assign_pointer(fp->rxqs, NULL); rcu_assign_pointer(fp->xdpqs, NULL); synchronize_net(); fp->txqs = NULL; } free_rxqs(rxqs, qset->nrxqs, qset->rxq_start, qset->state); free_txqs(qset->txqs, qset->ntxqs, qset->txq_start, qset->state); free_xdpqs(xdpqs, qset->nxdpqs, qset->xdpq_start, qset->state); if (qset->state == FUN_QSTATE_DESTROYED) kfree(rxqs); /* Tell the caller which queues were operated on. */ qset->rxqs = rxqs; qset->xdpqs = xdpqs; } static int fun_alloc_rings(struct net_device *netdev, struct fun_qset *qset) { struct funeth_txq **xdpqs = NULL, **txqs; struct funeth_rxq **rxqs; int err; err = fun_alloc_queue_irqs(netdev, qset->ntxqs, qset->nrxqs); if (err) return err; rxqs = kcalloc(qset->ntxqs + qset->nrxqs, sizeof(*rxqs), GFP_KERNEL); if (!rxqs) return -ENOMEM; if (qset->nxdpqs) { xdpqs = alloc_xdpqs(netdev, qset->nxdpqs, qset->sq_depth, qset->xdpq_start, qset->state); if (IS_ERR(xdpqs)) { err = PTR_ERR(xdpqs); goto free_qvec; } } txqs = (struct funeth_txq **)&rxqs[qset->nrxqs]; err = alloc_txqs(netdev, txqs, qset->ntxqs, qset->sq_depth, qset->txq_start, qset->state); if (err) goto free_xdpqs; err = alloc_rxqs(netdev, rxqs, qset->nrxqs, qset->cq_depth, qset->rq_depth, qset->rxq_start, qset->state); if (err) goto free_txqs; qset->rxqs = rxqs; qset->txqs = txqs; qset->xdpqs = xdpqs; return 0; free_txqs: free_txqs(txqs, qset->ntxqs, qset->txq_start, FUN_QSTATE_DESTROYED); free_xdpqs: free_xdpqs(xdpqs, qset->nxdpqs, qset->xdpq_start, FUN_QSTATE_DESTROYED); free_qvec: kfree(rxqs); return err; } /* Take queues to the next level. Presently this means creating them on the * device. */ static int fun_advance_ring_state(struct net_device *dev, struct fun_qset *qset) { struct funeth_priv *fp = netdev_priv(dev); int i, err; for (i = 0; i < qset->nrxqs; i++) { err = fun_rxq_create_dev(qset->rxqs[i], xa_load(&fp->irqs, i + fp->rx_irq_ofst)); if (err) goto out; } for (i = 0; i < qset->ntxqs; i++) { err = fun_txq_create_dev(qset->txqs[i], xa_load(&fp->irqs, i)); if (err) goto out; } for (i = 0; i < qset->nxdpqs; i++) { err = fun_txq_create_dev(qset->xdpqs[i], NULL); if (err) goto out; } return 0; out: fun_free_rings(dev, qset); return err; } static int fun_port_create(struct net_device *netdev) { struct funeth_priv *fp = netdev_priv(netdev); union { struct fun_admin_port_req req; struct fun_admin_port_rsp rsp; } cmd; int rc; if (fp->lport != INVALID_LPORT) return 0; cmd.req.common = FUN_ADMIN_REQ_COMMON_INIT2(FUN_ADMIN_OP_PORT, sizeof(cmd.req)); cmd.req.u.create = FUN_ADMIN_PORT_CREATE_REQ_INIT(FUN_ADMIN_SUBOP_CREATE, 0, netdev->dev_port); rc = fun_submit_admin_sync_cmd(fp->fdev, &cmd.req.common, &cmd.rsp, sizeof(cmd.rsp), 0); if (!rc) fp->lport = be16_to_cpu(cmd.rsp.u.create.lport); return rc; } static int fun_port_destroy(struct net_device *netdev) { struct funeth_priv *fp = netdev_priv(netdev); if (fp->lport == INVALID_LPORT) return 0; fp->lport = INVALID_LPORT; return fun_res_destroy(fp->fdev, FUN_ADMIN_OP_PORT, 0, netdev->dev_port); } static int fun_eth_create(struct funeth_priv *fp) { union { struct fun_admin_eth_req req; struct fun_admin_generic_create_rsp rsp; } cmd; int rc; cmd.req.common = FUN_ADMIN_REQ_COMMON_INIT2(FUN_ADMIN_OP_ETH, sizeof(cmd.req)); cmd.req.u.create = FUN_ADMIN_ETH_CREATE_REQ_INIT( FUN_ADMIN_SUBOP_CREATE, FUN_ADMIN_RES_CREATE_FLAG_ALLOCATOR, 0, fp->netdev->dev_port); rc = fun_submit_admin_sync_cmd(fp->fdev, &cmd.req.common, &cmd.rsp, sizeof(cmd.rsp), 0); return rc ? rc : be32_to_cpu(cmd.rsp.id); } static int fun_vi_create(struct funeth_priv *fp) { struct fun_admin_vi_req req = { .common = FUN_ADMIN_REQ_COMMON_INIT2(FUN_ADMIN_OP_VI, sizeof(req)), .u.create = FUN_ADMIN_VI_CREATE_REQ_INIT(FUN_ADMIN_SUBOP_CREATE, 0, fp->netdev->dev_port, fp->netdev->dev_port) }; return fun_submit_admin_sync_cmd(fp->fdev, &req.common, NULL, 0, 0); } /* Helper to create an ETH flow and bind an SQ to it. * Returns the ETH id (>= 0) on success or a negative error. */ int fun_create_and_bind_tx(struct funeth_priv *fp, u32 sqid) { int rc, ethid; ethid = fun_eth_create(fp); if (ethid >= 0) { rc = fun_bind(fp->fdev, FUN_ADMIN_BIND_TYPE_EPSQ, sqid, FUN_ADMIN_BIND_TYPE_ETH, ethid); if (rc) { fun_res_destroy(fp->fdev, FUN_ADMIN_OP_ETH, 0, ethid); ethid = rc; } } return ethid; } static irqreturn_t fun_queue_irq_handler(int irq, void *data) { struct fun_irq *p = data; if (p->rxq) { prefetch(p->rxq->next_cqe_info); p->rxq->irq_cnt++; } napi_schedule_irqoff(&p->napi); return IRQ_HANDLED; } static int fun_enable_irqs(struct net_device *dev) { struct funeth_priv *fp = netdev_priv(dev); unsigned long idx, last; unsigned int qidx; struct fun_irq *p; const char *qtype; int err; xa_for_each(&fp->irqs, idx, p) { if (p->txq) { qtype = "tx"; qidx = p->txq->qidx; } else if (p->rxq) { qtype = "rx"; qidx = p->rxq->qidx; } else { continue; } if (p->state != FUN_IRQ_INIT) continue; snprintf(p->name, sizeof(p->name) - 1, "%s-%s-%u", dev->name, qtype, qidx); err = request_irq(p->irq, fun_queue_irq_handler, 0, p->name, p); if (err) { netdev_err(dev, "Failed to allocate IRQ %u, err %d\n", p->irq, err); goto unroll; } p->state = FUN_IRQ_REQUESTED; } xa_for_each(&fp->irqs, idx, p) { if (p->state != FUN_IRQ_REQUESTED) continue; irq_set_affinity_notifier(p->irq, &p->aff_notify); irq_set_affinity_and_hint(p->irq, &p->affinity_mask); napi_enable(&p->napi); p->state = FUN_IRQ_ENABLED; } return 0; unroll: last = idx - 1; xa_for_each_range(&fp->irqs, idx, p, 0, last) if (p->state == FUN_IRQ_REQUESTED) { free_irq(p->irq, p); p->state = FUN_IRQ_INIT; } return err; } static void fun_disable_one_irq(struct fun_irq *irq) { napi_disable(&irq->napi); irq_set_affinity_notifier(irq->irq, NULL); irq_update_affinity_hint(irq->irq, NULL); free_irq(irq->irq, irq); irq->state = FUN_IRQ_INIT; } static void fun_disable_irqs(struct net_device *dev) { struct funeth_priv *fp = netdev_priv(dev); struct fun_irq *p; unsigned long idx; xa_for_each(&fp->irqs, idx, p) if (p->state == FUN_IRQ_ENABLED) fun_disable_one_irq(p); } static void fun_down(struct net_device *dev, struct fun_qset *qset) { struct funeth_priv *fp = netdev_priv(dev); /* If we don't have queues the data path is already down. * Note netif_running(dev) may be true. */ if (!rcu_access_pointer(fp->rxqs)) return; /* It is also down if the queues aren't on the device. */ if (fp->txqs[0]->init_state >= FUN_QSTATE_INIT_FULL) { netif_info(fp, ifdown, dev, "Tearing down data path on device\n"); fun_port_write_cmd(fp, FUN_ADMIN_PORT_KEY_DISABLE, 0); netif_carrier_off(dev); netif_tx_disable(dev); fun_destroy_rss(fp); fun_res_destroy(fp->fdev, FUN_ADMIN_OP_VI, 0, dev->dev_port); fun_disable_irqs(dev); } fun_free_rings(dev, qset); } static int fun_up(struct net_device *dev, struct fun_qset *qset) { static const int port_keys[] = { FUN_ADMIN_PORT_KEY_STATS_DMA_LOW, FUN_ADMIN_PORT_KEY_STATS_DMA_HIGH, FUN_ADMIN_PORT_KEY_ENABLE }; struct funeth_priv *fp = netdev_priv(dev); u64 vals[] = { lower_32_bits(fp->stats_dma_addr), upper_32_bits(fp->stats_dma_addr), FUN_PORT_FLAG_ENABLE_NOTIFY }; int err; netif_info(fp, ifup, dev, "Setting up data path on device\n"); if (qset->rxqs[0]->init_state < FUN_QSTATE_INIT_FULL) { err = fun_advance_ring_state(dev, qset); if (err) return err; } err = fun_vi_create(fp); if (err) goto free_queues; fp->txqs = qset->txqs; rcu_assign_pointer(fp->rxqs, qset->rxqs); rcu_assign_pointer(fp->xdpqs, qset->xdpqs); err = fun_enable_irqs(dev); if (err) goto destroy_vi; if (fp->rss_cfg) { err = fun_config_rss(dev, fp->hash_algo, fp->rss_key, fp->indir_table, FUN_ADMIN_SUBOP_CREATE); } else { /* The non-RSS case has only 1 queue. */ err = fun_bind(fp->fdev, FUN_ADMIN_BIND_TYPE_VI, dev->dev_port, FUN_ADMIN_BIND_TYPE_EPCQ, qset->rxqs[0]->hw_cqid); } if (err) goto disable_irqs; err = fun_port_write_cmds(fp, 3, port_keys, vals); if (err) goto free_rss; netif_tx_start_all_queues(dev); return 0; free_rss: fun_destroy_rss(fp); disable_irqs: fun_disable_irqs(dev); destroy_vi: fun_res_destroy(fp->fdev, FUN_ADMIN_OP_VI, 0, dev->dev_port); free_queues: fun_free_rings(dev, qset); return err; } static int funeth_open(struct net_device *netdev) { struct funeth_priv *fp = netdev_priv(netdev); struct fun_qset qset = { .nrxqs = netdev->real_num_rx_queues, .ntxqs = netdev->real_num_tx_queues, .nxdpqs = fp->num_xdpqs, .cq_depth = fp->cq_depth, .rq_depth = fp->rq_depth, .sq_depth = fp->sq_depth, .state = FUN_QSTATE_INIT_FULL, }; int rc; rc = fun_alloc_rings(netdev, &qset); if (rc) return rc; rc = fun_up(netdev, &qset); if (rc) { qset.state = FUN_QSTATE_DESTROYED; fun_free_rings(netdev, &qset); } return rc; } static int funeth_close(struct net_device *netdev) { struct fun_qset qset = { .state = FUN_QSTATE_DESTROYED }; fun_down(netdev, &qset); return 0; } static void fun_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) { struct funeth_priv *fp = netdev_priv(netdev); struct funeth_txq **xdpqs; struct funeth_rxq **rxqs; unsigned int i, start; stats->tx_packets = fp->tx_packets; stats->tx_bytes = fp->tx_bytes; stats->tx_dropped = fp->tx_dropped; stats->rx_packets = fp->rx_packets; stats->rx_bytes = fp->rx_bytes; stats->rx_dropped = fp->rx_dropped; rcu_read_lock(); rxqs = rcu_dereference(fp->rxqs); if (!rxqs) goto unlock; for (i = 0; i < netdev->real_num_tx_queues; i++) { struct funeth_txq_stats txs; FUN_QSTAT_READ(fp->txqs[i], start, txs); stats->tx_packets += txs.tx_pkts; stats->tx_bytes += txs.tx_bytes; stats->tx_dropped += txs.tx_map_err; } for (i = 0; i < netdev->real_num_rx_queues; i++) { struct funeth_rxq_stats rxs; FUN_QSTAT_READ(rxqs[i], start, rxs); stats->rx_packets += rxs.rx_pkts; stats->rx_bytes += rxs.rx_bytes; stats->rx_dropped += rxs.rx_map_err + rxs.rx_mem_drops; } xdpqs = rcu_dereference(fp->xdpqs); if (!xdpqs) goto unlock; for (i = 0; i < fp->num_xdpqs; i++) { struct funeth_txq_stats txs; FUN_QSTAT_READ(xdpqs[i], start, txs); stats->tx_packets += txs.tx_pkts; stats->tx_bytes += txs.tx_bytes; } unlock: rcu_read_unlock(); } static int fun_change_mtu(struct net_device *netdev, int new_mtu) { struct funeth_priv *fp = netdev_priv(netdev); int rc; rc = fun_port_write_cmd(fp, FUN_ADMIN_PORT_KEY_MTU, new_mtu); if (!rc) netdev->mtu = new_mtu; return rc; } static int fun_set_macaddr(struct net_device *netdev, void *addr) { struct funeth_priv *fp = netdev_priv(netdev); struct sockaddr *saddr = addr; int rc; if (!is_valid_ether_addr(saddr->sa_data)) return -EADDRNOTAVAIL; if (ether_addr_equal(netdev->dev_addr, saddr->sa_data)) return 0; rc = fun_port_write_cmd(fp, FUN_ADMIN_PORT_KEY_MACADDR, ether_addr_to_u64(saddr->sa_data)); if (!rc) eth_hw_addr_set(netdev, saddr->sa_data); return rc; } static int fun_get_port_attributes(struct net_device *netdev) { static const int keys[] = { FUN_ADMIN_PORT_KEY_MACADDR, FUN_ADMIN_PORT_KEY_CAPABILITIES, FUN_ADMIN_PORT_KEY_ADVERT, FUN_ADMIN_PORT_KEY_MTU }; static const int phys_keys[] = { FUN_ADMIN_PORT_KEY_LANE_ATTRS, }; struct funeth_priv *fp = netdev_priv(netdev); u64 data[ARRAY_SIZE(keys)]; u8 mac[ETH_ALEN]; int i, rc; rc = fun_port_read_cmds(fp, ARRAY_SIZE(keys), keys, data); if (rc) return rc; for (i = 0; i < ARRAY_SIZE(keys); i++) { switch (keys[i]) { case FUN_ADMIN_PORT_KEY_MACADDR: u64_to_ether_addr(data[i], mac); if (is_zero_ether_addr(mac)) { eth_hw_addr_random(netdev); } else if (is_valid_ether_addr(mac)) { eth_hw_addr_set(netdev, mac); } else { netdev_err(netdev, "device provided a bad MAC address %pM\n", mac); return -EINVAL; } break; case FUN_ADMIN_PORT_KEY_CAPABILITIES: fp->port_caps = data[i]; break; case FUN_ADMIN_PORT_KEY_ADVERT: fp->advertising = data[i]; break; case FUN_ADMIN_PORT_KEY_MTU: netdev->mtu = data[i]; break; } } if (!(fp->port_caps & FUN_PORT_CAP_VPORT)) { rc = fun_port_read_cmds(fp, ARRAY_SIZE(phys_keys), phys_keys, data); if (rc) return rc; fp->lane_attrs = data[0]; } if (netdev->addr_assign_type == NET_ADDR_RANDOM) return fun_port_write_cmd(fp, FUN_ADMIN_PORT_KEY_MACADDR, ether_addr_to_u64(netdev->dev_addr)); return 0; } static int fun_hwtstamp_get(struct net_device *dev, struct ifreq *ifr) { const struct funeth_priv *fp = netdev_priv(dev); return copy_to_user(ifr->ifr_data, &fp->hwtstamp_cfg, sizeof(fp->hwtstamp_cfg)) ? -EFAULT : 0; } static int fun_hwtstamp_set(struct net_device *dev, struct ifreq *ifr) { struct funeth_priv *fp = netdev_priv(dev); struct hwtstamp_config cfg; if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg))) return -EFAULT; /* no TX HW timestamps */ cfg.tx_type = HWTSTAMP_TX_OFF; switch (cfg.rx_filter) { case HWTSTAMP_FILTER_NONE: break; case HWTSTAMP_FILTER_ALL: case HWTSTAMP_FILTER_SOME: case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: case HWTSTAMP_FILTER_PTP_V2_EVENT: case HWTSTAMP_FILTER_PTP_V2_SYNC: case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: case HWTSTAMP_FILTER_NTP_ALL: cfg.rx_filter = HWTSTAMP_FILTER_ALL; break; default: return -ERANGE; } fp->hwtstamp_cfg = cfg; return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0; } static int fun_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) { switch (cmd) { case SIOCSHWTSTAMP: return fun_hwtstamp_set(dev, ifr); case SIOCGHWTSTAMP: return fun_hwtstamp_get(dev, ifr); default: return -EOPNOTSUPP; } } /* Prepare the queues for XDP. */ static int fun_enter_xdp(struct net_device *dev, struct bpf_prog *prog) { struct funeth_priv *fp = netdev_priv(dev); unsigned int i, nqs = num_online_cpus(); struct funeth_txq **xdpqs; struct funeth_rxq **rxqs; int err; xdpqs = alloc_xdpqs(dev, nqs, fp->sq_depth, 0, FUN_QSTATE_INIT_FULL); if (IS_ERR(xdpqs)) return PTR_ERR(xdpqs); rxqs = rtnl_dereference(fp->rxqs); for (i = 0; i < dev->real_num_rx_queues; i++) { err = fun_rxq_set_bpf(rxqs[i], prog); if (err) goto out; } fp->num_xdpqs = nqs; rcu_assign_pointer(fp->xdpqs, xdpqs); return 0; out: while (i--) fun_rxq_set_bpf(rxqs[i], NULL); free_xdpqs(xdpqs, nqs, 0, FUN_QSTATE_DESTROYED); return err; } /* Set the queues for non-XDP operation. */ static void fun_end_xdp(struct net_device *dev) { struct funeth_priv *fp = netdev_priv(dev); struct funeth_txq **xdpqs; struct funeth_rxq **rxqs; unsigned int i; xdpqs = rtnl_dereference(fp->xdpqs); rcu_assign_pointer(fp->xdpqs, NULL); synchronize_net(); /* at this point both Rx and Tx XDP processing has ended */ free_xdpqs(xdpqs, fp->num_xdpqs, 0, FUN_QSTATE_DESTROYED); fp->num_xdpqs = 0; rxqs = rtnl_dereference(fp->rxqs); for (i = 0; i < dev->real_num_rx_queues; i++) fun_rxq_set_bpf(rxqs[i], NULL); } #define XDP_MAX_MTU \ (PAGE_SIZE - FUN_XDP_HEADROOM - VLAN_ETH_HLEN - FUN_RX_TAILROOM) static int fun_xdp_setup(struct net_device *dev, struct netdev_bpf *xdp) { struct bpf_prog *old_prog, *prog = xdp->prog; struct funeth_priv *fp = netdev_priv(dev); int i, err; /* XDP uses at most one buffer */ if (prog && dev->mtu > XDP_MAX_MTU) { netdev_err(dev, "device MTU %u too large for XDP\n", dev->mtu); NL_SET_ERR_MSG_MOD(xdp->extack, "Device MTU too large for XDP"); return -EINVAL; } if (!netif_running(dev)) { fp->num_xdpqs = prog ? num_online_cpus() : 0; } else if (prog && !fp->xdp_prog) { err = fun_enter_xdp(dev, prog); if (err) { NL_SET_ERR_MSG_MOD(xdp->extack, "Failed to set queues for XDP."); return err; } } else if (!prog && fp->xdp_prog) { fun_end_xdp(dev); } else { struct funeth_rxq **rxqs = rtnl_dereference(fp->rxqs); for (i = 0; i < dev->real_num_rx_queues; i++) WRITE_ONCE(rxqs[i]->xdp_prog, prog); } if (prog) xdp_features_set_redirect_target(dev, true); else xdp_features_clear_redirect_target(dev); dev->max_mtu = prog ? XDP_MAX_MTU : FUN_MAX_MTU; old_prog = xchg(&fp->xdp_prog, prog); if (old_prog) bpf_prog_put(old_prog); return 0; } static int fun_xdp(struct net_device *dev, struct netdev_bpf *xdp) { switch (xdp->command) { case XDP_SETUP_PROG: return fun_xdp_setup(dev, xdp); default: return -EINVAL; } } static int fun_init_vports(struct fun_ethdev *ed, unsigned int n) { if (ed->num_vports) return -EINVAL; ed->vport_info = kvcalloc(n, sizeof(*ed->vport_info), GFP_KERNEL); if (!ed->vport_info) return -ENOMEM; ed->num_vports = n; return 0; } static void fun_free_vports(struct fun_ethdev *ed) { kvfree(ed->vport_info); ed->vport_info = NULL; ed->num_vports = 0; } static struct fun_vport_info *fun_get_vport(struct fun_ethdev *ed, unsigned int vport) { if (!ed->vport_info || vport >= ed->num_vports) return NULL; return ed->vport_info + vport; } static int fun_set_vf_mac(struct net_device *dev, int vf, u8 *mac) { struct funeth_priv *fp = netdev_priv(dev); struct fun_adi_param mac_param = {}; struct fun_dev *fdev = fp->fdev; struct fun_ethdev *ed = to_fun_ethdev(fdev); struct fun_vport_info *vi; int rc = -EINVAL; if (is_multicast_ether_addr(mac)) return -EINVAL; mutex_lock(&ed->state_mutex); vi = fun_get_vport(ed, vf); if (!vi) goto unlock; mac_param.u.mac = FUN_ADI_MAC_INIT(ether_addr_to_u64(mac)); rc = fun_adi_write(fdev, FUN_ADMIN_ADI_ATTR_MACADDR, vf + 1, &mac_param); if (!rc) ether_addr_copy(vi->mac, mac); unlock: mutex_unlock(&ed->state_mutex); return rc; } static int fun_set_vf_vlan(struct net_device *dev, int vf, u16 vlan, u8 qos, __be16 vlan_proto) { struct funeth_priv *fp = netdev_priv(dev); struct fun_adi_param vlan_param = {}; struct fun_dev *fdev = fp->fdev; struct fun_ethdev *ed = to_fun_ethdev(fdev); struct fun_vport_info *vi; int rc = -EINVAL; if (vlan > 4095 || qos > 7) return -EINVAL; if (vlan_proto && vlan_proto != htons(ETH_P_8021Q) && vlan_proto != htons(ETH_P_8021AD)) return -EINVAL; mutex_lock(&ed->state_mutex); vi = fun_get_vport(ed, vf); if (!vi) goto unlock; vlan_param.u.vlan = FUN_ADI_VLAN_INIT(be16_to_cpu(vlan_proto), ((u16)qos << VLAN_PRIO_SHIFT) | vlan); rc = fun_adi_write(fdev, FUN_ADMIN_ADI_ATTR_VLAN, vf + 1, &vlan_param); if (!rc) { vi->vlan = vlan; vi->qos = qos; vi->vlan_proto = vlan_proto; } unlock: mutex_unlock(&ed->state_mutex); return rc; } static int fun_set_vf_rate(struct net_device *dev, int vf, int min_tx_rate, int max_tx_rate) { struct funeth_priv *fp = netdev_priv(dev); struct fun_adi_param rate_param = {}; struct fun_dev *fdev = fp->fdev; struct fun_ethdev *ed = to_fun_ethdev(fdev); struct fun_vport_info *vi; int rc = -EINVAL; if (min_tx_rate) return -EINVAL; mutex_lock(&ed->state_mutex); vi = fun_get_vport(ed, vf); if (!vi) goto unlock; rate_param.u.rate = FUN_ADI_RATE_INIT(max_tx_rate); rc = fun_adi_write(fdev, FUN_ADMIN_ADI_ATTR_RATE, vf + 1, &rate_param); if (!rc) vi->max_rate = max_tx_rate; unlock: mutex_unlock(&ed->state_mutex); return rc; } static int fun_get_vf_config(struct net_device *dev, int vf, struct ifla_vf_info *ivi) { struct funeth_priv *fp = netdev_priv(dev); struct fun_ethdev *ed = to_fun_ethdev(fp->fdev); const struct fun_vport_info *vi; mutex_lock(&ed->state_mutex); vi = fun_get_vport(ed, vf); if (!vi) goto unlock; memset(ivi, 0, sizeof(*ivi)); ivi->vf = vf; ether_addr_copy(ivi->mac, vi->mac); ivi->vlan = vi->vlan; ivi->qos = vi->qos; ivi->vlan_proto = vi->vlan_proto; ivi->max_tx_rate = vi->max_rate; ivi->spoofchk = vi->spoofchk; unlock: mutex_unlock(&ed->state_mutex); return vi ? 0 : -EINVAL; } static void fun_uninit(struct net_device *dev) { struct funeth_priv *fp = netdev_priv(dev); fun_prune_queue_irqs(dev); xa_destroy(&fp->irqs); } static const struct net_device_ops fun_netdev_ops = { .ndo_open = funeth_open, .ndo_stop = funeth_close, .ndo_start_xmit = fun_start_xmit, .ndo_get_stats64 = fun_get_stats64, .ndo_change_mtu = fun_change_mtu, .ndo_set_mac_address = fun_set_macaddr, .ndo_validate_addr = eth_validate_addr, .ndo_eth_ioctl = fun_ioctl, .ndo_uninit = fun_uninit, .ndo_bpf = fun_xdp, .ndo_xdp_xmit = fun_xdp_xmit_frames, .ndo_set_vf_mac = fun_set_vf_mac, .ndo_set_vf_vlan = fun_set_vf_vlan, .ndo_set_vf_rate = fun_set_vf_rate, .ndo_get_vf_config = fun_get_vf_config, }; #define GSO_ENCAP_FLAGS (NETIF_F_GSO_GRE | NETIF_F_GSO_IPXIP4 | \ NETIF_F_GSO_IPXIP6 | NETIF_F_GSO_UDP_TUNNEL | \ NETIF_F_GSO_UDP_TUNNEL_CSUM) #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN | \ NETIF_F_GSO_UDP_L4) #define VLAN_FEAT (NETIF_F_SG | NETIF_F_HW_CSUM | TSO_FLAGS | \ GSO_ENCAP_FLAGS | NETIF_F_HIGHDMA) static void fun_dflt_rss_indir(struct funeth_priv *fp, unsigned int nrx) { unsigned int i; for (i = 0; i < fp->indir_table_nentries; i++) fp->indir_table[i] = ethtool_rxfh_indir_default(i, nrx); } /* Reset the RSS indirection table to equal distribution across the current * number of Rx queues. Called at init time and whenever the number of Rx * queues changes subsequently. Note that this may also resize the indirection * table. */ static void fun_reset_rss_indir(struct net_device *dev, unsigned int nrx) { struct funeth_priv *fp = netdev_priv(dev); if (!fp->rss_cfg) return; /* Set the table size to the max possible that allows an equal number * of occurrences of each CQ. */ fp->indir_table_nentries = rounddown(FUN_ETH_RSS_MAX_INDIR_ENT, nrx); fun_dflt_rss_indir(fp, nrx); } /* Update the RSS LUT to contain only queues in [0, nrx). Normally this will * update the LUT to an equal distribution among nrx queues, If @only_if_needed * is set the LUT is left unchanged if it already does not reference any queues * >= nrx. */ static int fun_rss_set_qnum(struct net_device *dev, unsigned int nrx, bool only_if_needed) { struct funeth_priv *fp = netdev_priv(dev); u32 old_lut[FUN_ETH_RSS_MAX_INDIR_ENT]; unsigned int i, oldsz; int err; if (!fp->rss_cfg) return 0; if (only_if_needed) { for (i = 0; i < fp->indir_table_nentries; i++) if (fp->indir_table[i] >= nrx) break; if (i >= fp->indir_table_nentries) return 0; } memcpy(old_lut, fp->indir_table, sizeof(old_lut)); oldsz = fp->indir_table_nentries; fun_reset_rss_indir(dev, nrx); err = fun_config_rss(dev, fp->hash_algo, fp->rss_key, fp->indir_table, FUN_ADMIN_SUBOP_MODIFY); if (!err) return 0; memcpy(fp->indir_table, old_lut, sizeof(old_lut)); fp->indir_table_nentries = oldsz; return err; } /* Allocate the DMA area for the RSS configuration commands to the device, and * initialize the hash, hash key, indirection table size and its entries to * their defaults. The indirection table defaults to equal distribution across * the Rx queues. */ static int fun_init_rss(struct net_device *dev) { struct funeth_priv *fp = netdev_priv(dev); size_t size = sizeof(fp->rss_key) + sizeof(fp->indir_table); fp->rss_hw_id = FUN_HCI_ID_INVALID; if (!(fp->port_caps & FUN_PORT_CAP_OFFLOADS)) return 0; fp->rss_cfg = dma_alloc_coherent(&fp->pdev->dev, size, &fp->rss_dma_addr, GFP_KERNEL); if (!fp->rss_cfg) return -ENOMEM; fp->hash_algo = FUN_ETH_RSS_ALG_TOEPLITZ; netdev_rss_key_fill(fp->rss_key, sizeof(fp->rss_key)); fun_reset_rss_indir(dev, dev->real_num_rx_queues); return 0; } static void fun_free_rss(struct funeth_priv *fp) { if (fp->rss_cfg) { dma_free_coherent(&fp->pdev->dev, sizeof(fp->rss_key) + sizeof(fp->indir_table), fp->rss_cfg, fp->rss_dma_addr); fp->rss_cfg = NULL; } } void fun_set_ring_count(struct net_device *netdev, unsigned int ntx, unsigned int nrx) { netif_set_real_num_tx_queues(netdev, ntx); if (nrx != netdev->real_num_rx_queues) { netif_set_real_num_rx_queues(netdev, nrx); fun_reset_rss_indir(netdev, nrx); } } static int fun_init_stats_area(struct funeth_priv *fp) { unsigned int nstats; if (!(fp->port_caps & FUN_PORT_CAP_STATS)) return 0; nstats = PORT_MAC_RX_STATS_MAX + PORT_MAC_TX_STATS_MAX + PORT_MAC_FEC_STATS_MAX; fp->stats = dma_alloc_coherent(&fp->pdev->dev, nstats * sizeof(u64), &fp->stats_dma_addr, GFP_KERNEL); if (!fp->stats) return -ENOMEM; return 0; } static void fun_free_stats_area(struct funeth_priv *fp) { unsigned int nstats; if (fp->stats) { nstats = PORT_MAC_RX_STATS_MAX + PORT_MAC_TX_STATS_MAX; dma_free_coherent(&fp->pdev->dev, nstats * sizeof(u64), fp->stats, fp->stats_dma_addr); fp->stats = NULL; } } static int fun_dl_port_register(struct net_device *netdev) { struct funeth_priv *fp = netdev_priv(netdev); struct devlink *dl = priv_to_devlink(fp->fdev); struct devlink_port_attrs attrs = {}; unsigned int idx; if (fp->port_caps & FUN_PORT_CAP_VPORT) { attrs.flavour = DEVLINK_PORT_FLAVOUR_VIRTUAL; idx = fp->lport; } else { idx = netdev->dev_port; attrs.flavour = DEVLINK_PORT_FLAVOUR_PHYSICAL; attrs.lanes = fp->lane_attrs & 7; if (fp->lane_attrs & FUN_PORT_LANE_SPLIT) { attrs.split = 1; attrs.phys.port_number = fp->lport & ~3; attrs.phys.split_subport_number = fp->lport & 3; } else { attrs.phys.port_number = fp->lport; } } devlink_port_attrs_set(&fp->dl_port, &attrs); return devlink_port_register(dl, &fp->dl_port, idx); } /* Determine the max Tx/Rx queues for a port. */ static int fun_max_qs(struct fun_ethdev *ed, unsigned int *ntx, unsigned int *nrx) { int neth; if (ed->num_ports > 1 || is_kdump_kernel()) { *ntx = 1; *nrx = 1; return 0; } neth = fun_get_res_count(&ed->fdev, FUN_ADMIN_OP_ETH); if (neth < 0) return neth; /* We determine the max number of queues based on the CPU * cores, device interrupts and queues, RSS size, and device Tx flows. * * - At least 1 Rx and 1 Tx queues. * - At most 1 Rx/Tx queue per core. * - Each Rx/Tx queue needs 1 SQ. */ *ntx = min(ed->nsqs_per_port - 1, num_online_cpus()); *nrx = *ntx; if (*ntx > neth) *ntx = neth; if (*nrx > FUN_ETH_RSS_MAX_INDIR_ENT) *nrx = FUN_ETH_RSS_MAX_INDIR_ENT; return 0; } static void fun_queue_defaults(struct net_device *dev, unsigned int nsqs) { unsigned int ntx, nrx; ntx = min(dev->num_tx_queues, FUN_DFLT_QUEUES); nrx = min(dev->num_rx_queues, FUN_DFLT_QUEUES); if (ntx <= nrx) { ntx = min(ntx, nsqs / 2); nrx = min(nrx, nsqs - ntx); } else { nrx = min(nrx, nsqs / 2); ntx = min(ntx, nsqs - nrx); } netif_set_real_num_tx_queues(dev, ntx); netif_set_real_num_rx_queues(dev, nrx); } /* Replace the existing Rx/Tx/XDP queues with equal number of queues with * different settings, e.g. depth. This is a disruptive replacement that * temporarily shuts down the data path and should be limited to changes that * can't be applied to live queues. The old queues are always discarded. */ int fun_replace_queues(struct net_device *dev, struct fun_qset *newqs, struct netlink_ext_ack *extack) { struct fun_qset oldqs = { .state = FUN_QSTATE_DESTROYED }; struct funeth_priv *fp = netdev_priv(dev); int err; newqs->nrxqs = dev->real_num_rx_queues; newqs->ntxqs = dev->real_num_tx_queues; newqs->nxdpqs = fp->num_xdpqs; newqs->state = FUN_QSTATE_INIT_SW; err = fun_alloc_rings(dev, newqs); if (err) { NL_SET_ERR_MSG_MOD(extack, "Unable to allocate memory for new queues, keeping current settings"); return err; } fun_down(dev, &oldqs); err = fun_up(dev, newqs); if (!err) return 0; /* The new queues couldn't be installed. We do not retry the old queues * as they are the same to the device as the new queues and would * similarly fail. */ newqs->state = FUN_QSTATE_DESTROYED; fun_free_rings(dev, newqs); NL_SET_ERR_MSG_MOD(extack, "Unable to restore the data path with the new queues."); return err; } /* Change the number of Rx/Tx queues of a device while it is up. This is done * by incrementally adding/removing queues to meet the new requirements while * handling ongoing traffic. */ int fun_change_num_queues(struct net_device *dev, unsigned int ntx, unsigned int nrx) { unsigned int keep_tx = min(dev->real_num_tx_queues, ntx); unsigned int keep_rx = min(dev->real_num_rx_queues, nrx); struct funeth_priv *fp = netdev_priv(dev); struct fun_qset oldqs = { .rxqs = rtnl_dereference(fp->rxqs), .txqs = fp->txqs, .nrxqs = dev->real_num_rx_queues, .ntxqs = dev->real_num_tx_queues, .rxq_start = keep_rx, .txq_start = keep_tx, .state = FUN_QSTATE_DESTROYED }; struct fun_qset newqs = { .nrxqs = nrx, .ntxqs = ntx, .rxq_start = keep_rx, .txq_start = keep_tx, .cq_depth = fp->cq_depth, .rq_depth = fp->rq_depth, .sq_depth = fp->sq_depth, .state = FUN_QSTATE_INIT_FULL }; int i, err; err = fun_alloc_rings(dev, &newqs); if (err) goto free_irqs; err = fun_enable_irqs(dev); /* of any newly added queues */ if (err) goto free_rings; /* copy the queues we are keeping to the new set */ memcpy(newqs.rxqs, oldqs.rxqs, keep_rx * sizeof(*oldqs.rxqs)); memcpy(newqs.txqs, fp->txqs, keep_tx * sizeof(*fp->txqs)); if (nrx < dev->real_num_rx_queues) { err = fun_rss_set_qnum(dev, nrx, true); if (err) goto disable_tx_irqs; for (i = nrx; i < dev->real_num_rx_queues; i++) fun_disable_one_irq(container_of(oldqs.rxqs[i]->napi, struct fun_irq, napi)); netif_set_real_num_rx_queues(dev, nrx); } if (ntx < dev->real_num_tx_queues) netif_set_real_num_tx_queues(dev, ntx); rcu_assign_pointer(fp->rxqs, newqs.rxqs); fp->txqs = newqs.txqs; synchronize_net(); if (ntx > dev->real_num_tx_queues) netif_set_real_num_tx_queues(dev, ntx); if (nrx > dev->real_num_rx_queues) { netif_set_real_num_rx_queues(dev, nrx); fun_rss_set_qnum(dev, nrx, false); } /* disable interrupts of any excess Tx queues */ for (i = keep_tx; i < oldqs.ntxqs; i++) fun_disable_one_irq(oldqs.txqs[i]->irq); fun_free_rings(dev, &oldqs); fun_prune_queue_irqs(dev); return 0; disable_tx_irqs: for (i = oldqs.ntxqs; i < ntx; i++) fun_disable_one_irq(newqs.txqs[i]->irq); free_rings: newqs.state = FUN_QSTATE_DESTROYED; fun_free_rings(dev, &newqs); free_irqs: fun_prune_queue_irqs(dev); return err; } static int fun_create_netdev(struct fun_ethdev *ed, unsigned int portid) { struct fun_dev *fdev = &ed->fdev; struct net_device *netdev; struct funeth_priv *fp; unsigned int ntx, nrx; int rc; rc = fun_max_qs(ed, &ntx, &nrx); if (rc) return rc; netdev = alloc_etherdev_mqs(sizeof(*fp), ntx, nrx); if (!netdev) { rc = -ENOMEM; goto done; } netdev->dev_port = portid; fun_queue_defaults(netdev, ed->nsqs_per_port); fp = netdev_priv(netdev); fp->fdev = fdev; fp->pdev = to_pci_dev(fdev->dev); fp->netdev = netdev; xa_init(&fp->irqs); fp->rx_irq_ofst = ntx; seqcount_init(&fp->link_seq); fp->lport = INVALID_LPORT; rc = fun_port_create(netdev); if (rc) goto free_netdev; /* bind port to admin CQ for async events */ rc = fun_bind(fdev, FUN_ADMIN_BIND_TYPE_PORT, portid, FUN_ADMIN_BIND_TYPE_EPCQ, 0); if (rc) goto destroy_port; rc = fun_get_port_attributes(netdev); if (rc) goto destroy_port; rc = fun_init_rss(netdev); if (rc) goto destroy_port; rc = fun_init_stats_area(fp); if (rc) goto free_rss; SET_NETDEV_DEV(netdev, fdev->dev); SET_NETDEV_DEVLINK_PORT(netdev, &fp->dl_port); netdev->netdev_ops = &fun_netdev_ops; netdev->hw_features = NETIF_F_SG | NETIF_F_RXHASH | NETIF_F_RXCSUM; if (fp->port_caps & FUN_PORT_CAP_OFFLOADS) netdev->hw_features |= NETIF_F_HW_CSUM | TSO_FLAGS; if (fp->port_caps & FUN_PORT_CAP_ENCAP_OFFLOADS) netdev->hw_features |= GSO_ENCAP_FLAGS; netdev->features |= netdev->hw_features | NETIF_F_HIGHDMA; netdev->vlan_features = netdev->features & VLAN_FEAT; netdev->mpls_features = netdev->vlan_features; netdev->hw_enc_features = netdev->hw_features; netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT; netdev->min_mtu = ETH_MIN_MTU; netdev->max_mtu = FUN_MAX_MTU; fun_set_ethtool_ops(netdev); /* configurable parameters */ fp->sq_depth = min(SQ_DEPTH, fdev->q_depth); fp->cq_depth = min(CQ_DEPTH, fdev->q_depth); fp->rq_depth = min_t(unsigned int, RQ_DEPTH, fdev->q_depth); fp->rx_coal_usec = CQ_INTCOAL_USEC; fp->rx_coal_count = CQ_INTCOAL_NPKT; fp->tx_coal_usec = SQ_INTCOAL_USEC; fp->tx_coal_count = SQ_INTCOAL_NPKT; fp->cq_irq_db = FUN_IRQ_CQ_DB(fp->rx_coal_usec, fp->rx_coal_count); rc = fun_dl_port_register(netdev); if (rc) goto free_stats; fp->ktls_id = FUN_HCI_ID_INVALID; fun_ktls_init(netdev); /* optional, failure OK */ netif_carrier_off(netdev); ed->netdevs[portid] = netdev; rc = register_netdev(netdev); if (rc) goto unreg_devlink; return 0; unreg_devlink: ed->netdevs[portid] = NULL; fun_ktls_cleanup(fp); devlink_port_unregister(&fp->dl_port); free_stats: fun_free_stats_area(fp); free_rss: fun_free_rss(fp); destroy_port: fun_port_destroy(netdev); free_netdev: free_netdev(netdev); done: dev_err(fdev->dev, "couldn't allocate port %u, error %d", portid, rc); return rc; } static void fun_destroy_netdev(struct net_device *netdev) { struct funeth_priv *fp; fp = netdev_priv(netdev); unregister_netdev(netdev); devlink_port_unregister(&fp->dl_port); fun_ktls_cleanup(fp); fun_free_stats_area(fp); fun_free_rss(fp); fun_port_destroy(netdev); free_netdev(netdev); } static int fun_create_ports(struct fun_ethdev *ed, unsigned int nports) { struct fun_dev *fd = &ed->fdev; int i, rc; /* The admin queue takes 1 IRQ and 2 SQs. */ ed->nsqs_per_port = min(fd->num_irqs - 1, fd->kern_end_qid - 2) / nports; if (ed->nsqs_per_port < 2) { dev_err(fd->dev, "Too few SQs for %u ports", nports); return -EINVAL; } ed->netdevs = kcalloc(nports, sizeof(*ed->netdevs), GFP_KERNEL); if (!ed->netdevs) return -ENOMEM; ed->num_ports = nports; for (i = 0; i < nports; i++) { rc = fun_create_netdev(ed, i); if (rc) goto free_netdevs; } return 0; free_netdevs: while (i) fun_destroy_netdev(ed->netdevs[--i]); kfree(ed->netdevs); ed->netdevs = NULL; ed->num_ports = 0; return rc; } static void fun_destroy_ports(struct fun_ethdev *ed) { unsigned int i; for (i = 0; i < ed->num_ports; i++) fun_destroy_netdev(ed->netdevs[i]); kfree(ed->netdevs); ed->netdevs = NULL; ed->num_ports = 0; } static void fun_update_link_state(const struct fun_ethdev *ed, const struct fun_admin_port_notif *notif) { unsigned int port_idx = be16_to_cpu(notif->id); struct net_device *netdev; struct funeth_priv *fp; if (port_idx >= ed->num_ports) return; netdev = ed->netdevs[port_idx]; fp = netdev_priv(netdev); write_seqcount_begin(&fp->link_seq); fp->link_speed = be32_to_cpu(notif->speed) * 10; /* 10 Mbps->Mbps */ fp->active_fc = notif->flow_ctrl; fp->active_fec = notif->fec; fp->xcvr_type = notif->xcvr_type; fp->link_down_reason = notif->link_down_reason; fp->lp_advertising = be64_to_cpu(notif->lp_advertising); if ((notif->link_state | notif->missed_events) & FUN_PORT_FLAG_MAC_DOWN) netif_carrier_off(netdev); if (notif->link_state & FUN_PORT_FLAG_MAC_UP) netif_carrier_on(netdev); write_seqcount_end(&fp->link_seq); fun_report_link(netdev); } /* handler for async events delivered through the admin CQ */ static void fun_event_cb(struct fun_dev *fdev, void *entry) { u8 op = ((struct fun_admin_rsp_common *)entry)->op; if (op == FUN_ADMIN_OP_PORT) { const struct fun_admin_port_notif *rsp = entry; if (rsp->subop == FUN_ADMIN_SUBOP_NOTIFY) { fun_update_link_state(to_fun_ethdev(fdev), rsp); } else if (rsp->subop == FUN_ADMIN_SUBOP_RES_COUNT) { const struct fun_admin_res_count_rsp *r = entry; if (r->count.data) set_bit(FUN_SERV_RES_CHANGE, &fdev->service_flags); else set_bit(FUN_SERV_DEL_PORTS, &fdev->service_flags); fun_serv_sched(fdev); } else { dev_info(fdev->dev, "adminq event unexpected op %u subop %u", op, rsp->subop); } } else { dev_info(fdev->dev, "adminq event unexpected op %u", op); } } /* handler for pending work managed by the service task */ static void fun_service_cb(struct fun_dev *fdev) { struct fun_ethdev *ed = to_fun_ethdev(fdev); int rc; if (test_and_clear_bit(FUN_SERV_DEL_PORTS, &fdev->service_flags)) fun_destroy_ports(ed); if (!test_and_clear_bit(FUN_SERV_RES_CHANGE, &fdev->service_flags)) return; rc = fun_get_res_count(fdev, FUN_ADMIN_OP_PORT); if (rc < 0 || rc == ed->num_ports) return; if (ed->num_ports) fun_destroy_ports(ed); if (rc) fun_create_ports(ed, rc); } static int funeth_sriov_configure(struct pci_dev *pdev, int nvfs) { struct fun_dev *fdev = pci_get_drvdata(pdev); struct fun_ethdev *ed = to_fun_ethdev(fdev); int rc; if (nvfs == 0) { if (pci_vfs_assigned(pdev)) { dev_warn(&pdev->dev, "Cannot disable SR-IOV while VFs are assigned\n"); return -EPERM; } mutex_lock(&ed->state_mutex); fun_free_vports(ed); mutex_unlock(&ed->state_mutex); pci_disable_sriov(pdev); return 0; } rc = pci_enable_sriov(pdev, nvfs); if (rc) return rc; mutex_lock(&ed->state_mutex); rc = fun_init_vports(ed, nvfs); mutex_unlock(&ed->state_mutex); if (rc) { pci_disable_sriov(pdev); return rc; } return nvfs; } static int funeth_probe(struct pci_dev *pdev, const struct pci_device_id *id) { struct fun_dev_params aqreq = { .cqe_size_log2 = ilog2(ADMIN_CQE_SIZE), .sqe_size_log2 = ilog2(ADMIN_SQE_SIZE), .cq_depth = ADMIN_CQ_DEPTH, .sq_depth = ADMIN_SQ_DEPTH, .rq_depth = ADMIN_RQ_DEPTH, .min_msix = 2, /* 1 Rx + 1 Tx */ .event_cb = fun_event_cb, .serv_cb = fun_service_cb, }; struct devlink *devlink; struct fun_ethdev *ed; struct fun_dev *fdev; int rc; devlink = fun_devlink_alloc(&pdev->dev); if (!devlink) { dev_err(&pdev->dev, "devlink alloc failed\n"); return -ENOMEM; } ed = devlink_priv(devlink); mutex_init(&ed->state_mutex); fdev = &ed->fdev; rc = fun_dev_enable(fdev, pdev, &aqreq, KBUILD_MODNAME); if (rc) goto free_devlink; rc = fun_get_res_count(fdev, FUN_ADMIN_OP_PORT); if (rc > 0) rc = fun_create_ports(ed, rc); if (rc < 0) goto disable_dev; fun_serv_restart(fdev); fun_devlink_register(devlink); return 0; disable_dev: fun_dev_disable(fdev); free_devlink: mutex_destroy(&ed->state_mutex); fun_devlink_free(devlink); return rc; } static void funeth_remove(struct pci_dev *pdev) { struct fun_dev *fdev = pci_get_drvdata(pdev); struct devlink *devlink; struct fun_ethdev *ed; ed = to_fun_ethdev(fdev); devlink = priv_to_devlink(ed); fun_devlink_unregister(devlink); #ifdef CONFIG_PCI_IOV funeth_sriov_configure(pdev, 0); #endif fun_serv_stop(fdev); fun_destroy_ports(ed); fun_dev_disable(fdev); mutex_destroy(&ed->state_mutex); fun_devlink_free(devlink); } static struct pci_driver funeth_driver = { .name = KBUILD_MODNAME, .id_table = funeth_id_table, .probe = funeth_probe, .remove = funeth_remove, .shutdown = funeth_remove, .sriov_configure = funeth_sriov_configure, }; module_pci_driver(funeth_driver); MODULE_AUTHOR("Dimitris Michailidis <dmichail@fungible.com>"); MODULE_DESCRIPTION("Fungible Ethernet Network Driver"); MODULE_LICENSE("Dual BSD/GPL"); MODULE_DEVICE_TABLE(pci, funeth_id_table);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1