Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jacob E Keller | 8870 | 73.63% | 14 | 28.00% |
Arkadiusz Kubalewski | 1845 | 15.32% | 3 | 6.00% |
Karol Kolacinski | 489 | 4.06% | 8 | 16.00% |
Maciej Machnikowski | 352 | 2.92% | 4 | 8.00% |
Siddaraju DH | 218 | 1.81% | 1 | 2.00% |
Anirudh Venkataramanan | 68 | 0.56% | 7 | 14.00% |
Dave Ertman | 60 | 0.50% | 1 | 2.00% |
Paul Greenwalt | 42 | 0.35% | 2 | 4.00% |
Bruce W Allan | 41 | 0.34% | 1 | 2.00% |
Sergey Temerkhanov | 38 | 0.32% | 1 | 2.00% |
Kiran Patil | 9 | 0.07% | 2 | 4.00% |
Tony Nguyen | 6 | 0.05% | 3 | 6.00% |
Brett Creeley | 4 | 0.03% | 1 | 2.00% |
Jan Sokolowski | 3 | 0.02% | 1 | 2.00% |
Milena Olech | 1 | 0.01% | 1 | 2.00% |
Total | 12046 | 50 |
// SPDX-License-Identifier: GPL-2.0 /* Copyright (C) 2021, Intel Corporation. */ #include <linux/delay.h> #include "ice_common.h" #include "ice_ptp_hw.h" #include "ice_ptp_consts.h" #include "ice_cgu_regs.h" static struct dpll_pin_frequency ice_cgu_pin_freq_common[] = { DPLL_PIN_FREQUENCY_1PPS, DPLL_PIN_FREQUENCY_10MHZ, }; static struct dpll_pin_frequency ice_cgu_pin_freq_1_hz[] = { DPLL_PIN_FREQUENCY_1PPS, }; static struct dpll_pin_frequency ice_cgu_pin_freq_10_mhz[] = { DPLL_PIN_FREQUENCY_10MHZ, }; static const struct ice_cgu_pin_desc ice_e810t_sfp_cgu_inputs[] = { { "CVL-SDP22", ZL_REF0P, DPLL_PIN_TYPE_INT_OSCILLATOR, ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common }, { "CVL-SDP20", ZL_REF0N, DPLL_PIN_TYPE_INT_OSCILLATOR, ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common }, { "C827_0-RCLKA", ZL_REF1P, DPLL_PIN_TYPE_MUX, 0, }, { "C827_0-RCLKB", ZL_REF1N, DPLL_PIN_TYPE_MUX, 0, }, { "SMA1", ZL_REF3P, DPLL_PIN_TYPE_EXT, ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common }, { "SMA2/U.FL2", ZL_REF3N, DPLL_PIN_TYPE_EXT, ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common }, { "GNSS-1PPS", ZL_REF4P, DPLL_PIN_TYPE_GNSS, ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz }, { "OCXO", ZL_REF4N, DPLL_PIN_TYPE_INT_OSCILLATOR, 0, }, }; static const struct ice_cgu_pin_desc ice_e810t_qsfp_cgu_inputs[] = { { "CVL-SDP22", ZL_REF0P, DPLL_PIN_TYPE_INT_OSCILLATOR, ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common }, { "CVL-SDP20", ZL_REF0N, DPLL_PIN_TYPE_INT_OSCILLATOR, ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common }, { "C827_0-RCLKA", ZL_REF1P, DPLL_PIN_TYPE_MUX, }, { "C827_0-RCLKB", ZL_REF1N, DPLL_PIN_TYPE_MUX, }, { "C827_1-RCLKA", ZL_REF2P, DPLL_PIN_TYPE_MUX, }, { "C827_1-RCLKB", ZL_REF2N, DPLL_PIN_TYPE_MUX, }, { "SMA1", ZL_REF3P, DPLL_PIN_TYPE_EXT, ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common }, { "SMA2/U.FL2", ZL_REF3N, DPLL_PIN_TYPE_EXT, ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common }, { "GNSS-1PPS", ZL_REF4P, DPLL_PIN_TYPE_GNSS, ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz }, { "OCXO", ZL_REF4N, DPLL_PIN_TYPE_INT_OSCILLATOR, }, }; static const struct ice_cgu_pin_desc ice_e810t_sfp_cgu_outputs[] = { { "REF-SMA1", ZL_OUT0, DPLL_PIN_TYPE_EXT, ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common }, { "REF-SMA2/U.FL2", ZL_OUT1, DPLL_PIN_TYPE_EXT, ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common }, { "PHY-CLK", ZL_OUT2, DPLL_PIN_TYPE_SYNCE_ETH_PORT, }, { "MAC-CLK", ZL_OUT3, DPLL_PIN_TYPE_SYNCE_ETH_PORT, }, { "CVL-SDP21", ZL_OUT4, DPLL_PIN_TYPE_EXT, ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz }, { "CVL-SDP23", ZL_OUT5, DPLL_PIN_TYPE_EXT, ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz }, }; static const struct ice_cgu_pin_desc ice_e810t_qsfp_cgu_outputs[] = { { "REF-SMA1", ZL_OUT0, DPLL_PIN_TYPE_EXT, ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common }, { "REF-SMA2/U.FL2", ZL_OUT1, DPLL_PIN_TYPE_EXT, ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common }, { "PHY-CLK", ZL_OUT2, DPLL_PIN_TYPE_SYNCE_ETH_PORT, 0 }, { "PHY2-CLK", ZL_OUT3, DPLL_PIN_TYPE_SYNCE_ETH_PORT, 0 }, { "MAC-CLK", ZL_OUT4, DPLL_PIN_TYPE_SYNCE_ETH_PORT, 0 }, { "CVL-SDP21", ZL_OUT5, DPLL_PIN_TYPE_EXT, ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz }, { "CVL-SDP23", ZL_OUT6, DPLL_PIN_TYPE_EXT, ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz }, }; static const struct ice_cgu_pin_desc ice_e823_si_cgu_inputs[] = { { "NONE", SI_REF0P, 0, 0 }, { "NONE", SI_REF0N, 0, 0 }, { "SYNCE0_DP", SI_REF1P, DPLL_PIN_TYPE_MUX, 0 }, { "SYNCE0_DN", SI_REF1N, DPLL_PIN_TYPE_MUX, 0 }, { "EXT_CLK_SYNC", SI_REF2P, DPLL_PIN_TYPE_EXT, ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common }, { "NONE", SI_REF2N, 0, 0 }, { "EXT_PPS_OUT", SI_REF3, DPLL_PIN_TYPE_EXT, ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common }, { "INT_PPS_OUT", SI_REF4, DPLL_PIN_TYPE_EXT, ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common }, }; static const struct ice_cgu_pin_desc ice_e823_si_cgu_outputs[] = { { "1588-TIME_SYNC", SI_OUT0, DPLL_PIN_TYPE_EXT, ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common }, { "PHY-CLK", SI_OUT1, DPLL_PIN_TYPE_SYNCE_ETH_PORT, 0 }, { "10MHZ-SMA2", SI_OUT2, DPLL_PIN_TYPE_EXT, ARRAY_SIZE(ice_cgu_pin_freq_10_mhz), ice_cgu_pin_freq_10_mhz }, { "PPS-SMA1", SI_OUT3, DPLL_PIN_TYPE_EXT, ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common }, }; static const struct ice_cgu_pin_desc ice_e823_zl_cgu_inputs[] = { { "NONE", ZL_REF0P, 0, 0 }, { "INT_PPS_OUT", ZL_REF0N, DPLL_PIN_TYPE_EXT, ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz }, { "SYNCE0_DP", ZL_REF1P, DPLL_PIN_TYPE_MUX, 0 }, { "SYNCE0_DN", ZL_REF1N, DPLL_PIN_TYPE_MUX, 0 }, { "NONE", ZL_REF2P, 0, 0 }, { "NONE", ZL_REF2N, 0, 0 }, { "EXT_CLK_SYNC", ZL_REF3P, DPLL_PIN_TYPE_EXT, ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common }, { "NONE", ZL_REF3N, 0, 0 }, { "EXT_PPS_OUT", ZL_REF4P, DPLL_PIN_TYPE_EXT, ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz }, { "OCXO", ZL_REF4N, DPLL_PIN_TYPE_INT_OSCILLATOR, 0 }, }; static const struct ice_cgu_pin_desc ice_e823_zl_cgu_outputs[] = { { "PPS-SMA1", ZL_OUT0, DPLL_PIN_TYPE_EXT, ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz }, { "10MHZ-SMA2", ZL_OUT1, DPLL_PIN_TYPE_EXT, ARRAY_SIZE(ice_cgu_pin_freq_10_mhz), ice_cgu_pin_freq_10_mhz }, { "PHY-CLK", ZL_OUT2, DPLL_PIN_TYPE_SYNCE_ETH_PORT, 0 }, { "1588-TIME_REF", ZL_OUT3, DPLL_PIN_TYPE_SYNCE_ETH_PORT, 0 }, { "CPK-TIME_SYNC", ZL_OUT4, DPLL_PIN_TYPE_EXT, ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common }, { "NONE", ZL_OUT5, 0, 0 }, }; /* Low level functions for interacting with and managing the device clock used * for the Precision Time Protocol. * * The ice hardware represents the current time using three registers: * * GLTSYN_TIME_H GLTSYN_TIME_L GLTSYN_TIME_R * +---------------+ +---------------+ +---------------+ * | 32 bits | | 32 bits | | 32 bits | * +---------------+ +---------------+ +---------------+ * * The registers are incremented every clock tick using a 40bit increment * value defined over two registers: * * GLTSYN_INCVAL_H GLTSYN_INCVAL_L * +---------------+ +---------------+ * | 8 bit s | | 32 bits | * +---------------+ +---------------+ * * The increment value is added to the GLSTYN_TIME_R and GLSTYN_TIME_L * registers every clock source tick. Depending on the specific device * configuration, the clock source frequency could be one of a number of * values. * * For E810 devices, the increment frequency is 812.5 MHz * * For E822 devices the clock can be derived from different sources, and the * increment has an effective frequency of one of the following: * - 823.4375 MHz * - 783.36 MHz * - 796.875 MHz * - 816 MHz * - 830.078125 MHz * - 783.36 MHz * * The hardware captures timestamps in the PHY for incoming packets, and for * outgoing packets on request. To support this, the PHY maintains a timer * that matches the lower 64 bits of the global source timer. * * In order to ensure that the PHY timers and the source timer are equivalent, * shadow registers are used to prepare the desired initial values. A special * sync command is issued to trigger copying from the shadow registers into * the appropriate source and PHY registers simultaneously. * * The driver supports devices which have different PHYs with subtly different * mechanisms to program and control the timers. We divide the devices into * families named after the first major device, E810 and similar devices, and * E822 and similar devices. * * - E822 based devices have additional support for fine grained Vernier * calibration which requires significant setup * - The layout of timestamp data in the PHY register blocks is different * - The way timer synchronization commands are issued is different. * * To support this, very low level functions have an e810 or e822 suffix * indicating what type of device they work on. Higher level abstractions for * tasks that can be done on both devices do not have the suffix and will * correctly look up the appropriate low level function when running. * * Functions which only make sense on a single device family may not have * a suitable generic implementation */ /** * ice_get_ptp_src_clock_index - determine source clock index * @hw: pointer to HW struct * * Determine the source clock index currently in use, based on device * capabilities reported during initialization. */ u8 ice_get_ptp_src_clock_index(struct ice_hw *hw) { return hw->func_caps.ts_func_info.tmr_index_assoc; } /** * ice_ptp_read_src_incval - Read source timer increment value * @hw: pointer to HW struct * * Read the increment value of the source timer and return it. */ static u64 ice_ptp_read_src_incval(struct ice_hw *hw) { u32 lo, hi; u8 tmr_idx; tmr_idx = ice_get_ptp_src_clock_index(hw); lo = rd32(hw, GLTSYN_INCVAL_L(tmr_idx)); hi = rd32(hw, GLTSYN_INCVAL_H(tmr_idx)); return ((u64)(hi & INCVAL_HIGH_M) << 32) | lo; } /** * ice_ptp_src_cmd - Prepare source timer for a timer command * @hw: pointer to HW structure * @cmd: Timer command * * Prepare the source timer for an upcoming timer sync command. */ void ice_ptp_src_cmd(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd) { u32 cmd_val; u8 tmr_idx; tmr_idx = ice_get_ptp_src_clock_index(hw); cmd_val = tmr_idx << SEL_CPK_SRC; switch (cmd) { case ICE_PTP_INIT_TIME: cmd_val |= GLTSYN_CMD_INIT_TIME; break; case ICE_PTP_INIT_INCVAL: cmd_val |= GLTSYN_CMD_INIT_INCVAL; break; case ICE_PTP_ADJ_TIME: cmd_val |= GLTSYN_CMD_ADJ_TIME; break; case ICE_PTP_ADJ_TIME_AT_TIME: cmd_val |= GLTSYN_CMD_ADJ_INIT_TIME; break; case ICE_PTP_READ_TIME: cmd_val |= GLTSYN_CMD_READ_TIME; break; case ICE_PTP_NOP: break; } wr32(hw, GLTSYN_CMD, cmd_val); } /** * ice_ptp_exec_tmr_cmd - Execute all prepared timer commands * @hw: pointer to HW struct * * Write the SYNC_EXEC_CMD bit to the GLTSYN_CMD_SYNC register, and flush the * write immediately. This triggers the hardware to begin executing all of the * source and PHY timer commands synchronously. */ static void ice_ptp_exec_tmr_cmd(struct ice_hw *hw) { wr32(hw, GLTSYN_CMD_SYNC, SYNC_EXEC_CMD); ice_flush(hw); } /* E822 family functions * * The following functions operate on the E822 family of devices. */ /** * ice_fill_phy_msg_e822 - Fill message data for a PHY register access * @msg: the PHY message buffer to fill in * @port: the port to access * @offset: the register offset */ static void ice_fill_phy_msg_e822(struct ice_sbq_msg_input *msg, u8 port, u16 offset) { int phy_port, phy, quadtype; phy_port = port % ICE_PORTS_PER_PHY_E822; phy = port / ICE_PORTS_PER_PHY_E822; quadtype = (port / ICE_PORTS_PER_QUAD) % ICE_QUADS_PER_PHY_E822; if (quadtype == 0) { msg->msg_addr_low = P_Q0_L(P_0_BASE + offset, phy_port); msg->msg_addr_high = P_Q0_H(P_0_BASE + offset, phy_port); } else { msg->msg_addr_low = P_Q1_L(P_4_BASE + offset, phy_port); msg->msg_addr_high = P_Q1_H(P_4_BASE + offset, phy_port); } if (phy == 0) msg->dest_dev = rmn_0; else if (phy == 1) msg->dest_dev = rmn_1; else msg->dest_dev = rmn_2; } /** * ice_is_64b_phy_reg_e822 - Check if this is a 64bit PHY register * @low_addr: the low address to check * @high_addr: on return, contains the high address of the 64bit register * * Checks if the provided low address is one of the known 64bit PHY values * represented as two 32bit registers. If it is, return the appropriate high * register offset to use. */ static bool ice_is_64b_phy_reg_e822(u16 low_addr, u16 *high_addr) { switch (low_addr) { case P_REG_PAR_PCS_TX_OFFSET_L: *high_addr = P_REG_PAR_PCS_TX_OFFSET_U; return true; case P_REG_PAR_PCS_RX_OFFSET_L: *high_addr = P_REG_PAR_PCS_RX_OFFSET_U; return true; case P_REG_PAR_TX_TIME_L: *high_addr = P_REG_PAR_TX_TIME_U; return true; case P_REG_PAR_RX_TIME_L: *high_addr = P_REG_PAR_RX_TIME_U; return true; case P_REG_TOTAL_TX_OFFSET_L: *high_addr = P_REG_TOTAL_TX_OFFSET_U; return true; case P_REG_TOTAL_RX_OFFSET_L: *high_addr = P_REG_TOTAL_RX_OFFSET_U; return true; case P_REG_UIX66_10G_40G_L: *high_addr = P_REG_UIX66_10G_40G_U; return true; case P_REG_UIX66_25G_100G_L: *high_addr = P_REG_UIX66_25G_100G_U; return true; case P_REG_TX_CAPTURE_L: *high_addr = P_REG_TX_CAPTURE_U; return true; case P_REG_RX_CAPTURE_L: *high_addr = P_REG_RX_CAPTURE_U; return true; case P_REG_TX_TIMER_INC_PRE_L: *high_addr = P_REG_TX_TIMER_INC_PRE_U; return true; case P_REG_RX_TIMER_INC_PRE_L: *high_addr = P_REG_RX_TIMER_INC_PRE_U; return true; default: return false; } } /** * ice_is_40b_phy_reg_e822 - Check if this is a 40bit PHY register * @low_addr: the low address to check * @high_addr: on return, contains the high address of the 40bit value * * Checks if the provided low address is one of the known 40bit PHY values * split into two registers with the lower 8 bits in the low register and the * upper 32 bits in the high register. If it is, return the appropriate high * register offset to use. */ static bool ice_is_40b_phy_reg_e822(u16 low_addr, u16 *high_addr) { switch (low_addr) { case P_REG_TIMETUS_L: *high_addr = P_REG_TIMETUS_U; return true; case P_REG_PAR_RX_TUS_L: *high_addr = P_REG_PAR_RX_TUS_U; return true; case P_REG_PAR_TX_TUS_L: *high_addr = P_REG_PAR_TX_TUS_U; return true; case P_REG_PCS_RX_TUS_L: *high_addr = P_REG_PCS_RX_TUS_U; return true; case P_REG_PCS_TX_TUS_L: *high_addr = P_REG_PCS_TX_TUS_U; return true; case P_REG_DESK_PAR_RX_TUS_L: *high_addr = P_REG_DESK_PAR_RX_TUS_U; return true; case P_REG_DESK_PAR_TX_TUS_L: *high_addr = P_REG_DESK_PAR_TX_TUS_U; return true; case P_REG_DESK_PCS_RX_TUS_L: *high_addr = P_REG_DESK_PCS_RX_TUS_U; return true; case P_REG_DESK_PCS_TX_TUS_L: *high_addr = P_REG_DESK_PCS_TX_TUS_U; return true; default: return false; } } /** * ice_read_phy_reg_e822 - Read a PHY register * @hw: pointer to the HW struct * @port: PHY port to read from * @offset: PHY register offset to read * @val: on return, the contents read from the PHY * * Read a PHY register for the given port over the device sideband queue. */ static int ice_read_phy_reg_e822(struct ice_hw *hw, u8 port, u16 offset, u32 *val) { struct ice_sbq_msg_input msg = {0}; int err; ice_fill_phy_msg_e822(&msg, port, offset); msg.opcode = ice_sbq_msg_rd; err = ice_sbq_rw_reg(hw, &msg); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n", err); return err; } *val = msg.data; return 0; } /** * ice_read_64b_phy_reg_e822 - Read a 64bit value from PHY registers * @hw: pointer to the HW struct * @port: PHY port to read from * @low_addr: offset of the lower register to read from * @val: on return, the contents of the 64bit value from the PHY registers * * Reads the two registers associated with a 64bit value and returns it in the * val pointer. The offset always specifies the lower register offset to use. * The high offset is looked up. This function only operates on registers * known to be two parts of a 64bit value. */ static int ice_read_64b_phy_reg_e822(struct ice_hw *hw, u8 port, u16 low_addr, u64 *val) { u32 low, high; u16 high_addr; int err; /* Only operate on registers known to be split into two 32bit * registers. */ if (!ice_is_64b_phy_reg_e822(low_addr, &high_addr)) { ice_debug(hw, ICE_DBG_PTP, "Invalid 64b register addr 0x%08x\n", low_addr); return -EINVAL; } err = ice_read_phy_reg_e822(hw, port, low_addr, &low); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to read from low register 0x%08x\n, err %d", low_addr, err); return err; } err = ice_read_phy_reg_e822(hw, port, high_addr, &high); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to read from high register 0x%08x\n, err %d", high_addr, err); return err; } *val = (u64)high << 32 | low; return 0; } /** * ice_write_phy_reg_e822 - Write a PHY register * @hw: pointer to the HW struct * @port: PHY port to write to * @offset: PHY register offset to write * @val: The value to write to the register * * Write a PHY register for the given port over the device sideband queue. */ static int ice_write_phy_reg_e822(struct ice_hw *hw, u8 port, u16 offset, u32 val) { struct ice_sbq_msg_input msg = {0}; int err; ice_fill_phy_msg_e822(&msg, port, offset); msg.opcode = ice_sbq_msg_wr; msg.data = val; err = ice_sbq_rw_reg(hw, &msg); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n", err); return err; } return 0; } /** * ice_write_40b_phy_reg_e822 - Write a 40b value to the PHY * @hw: pointer to the HW struct * @port: port to write to * @low_addr: offset of the low register * @val: 40b value to write * * Write the provided 40b value to the two associated registers by splitting * it up into two chunks, the lower 8 bits and the upper 32 bits. */ static int ice_write_40b_phy_reg_e822(struct ice_hw *hw, u8 port, u16 low_addr, u64 val) { u32 low, high; u16 high_addr; int err; /* Only operate on registers known to be split into a lower 8 bit * register and an upper 32 bit register. */ if (!ice_is_40b_phy_reg_e822(low_addr, &high_addr)) { ice_debug(hw, ICE_DBG_PTP, "Invalid 40b register addr 0x%08x\n", low_addr); return -EINVAL; } low = (u32)(val & P_REG_40B_LOW_M); high = (u32)(val >> P_REG_40B_HIGH_S); err = ice_write_phy_reg_e822(hw, port, low_addr, low); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to write to low register 0x%08x\n, err %d", low_addr, err); return err; } err = ice_write_phy_reg_e822(hw, port, high_addr, high); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to write to high register 0x%08x\n, err %d", high_addr, err); return err; } return 0; } /** * ice_write_64b_phy_reg_e822 - Write a 64bit value to PHY registers * @hw: pointer to the HW struct * @port: PHY port to read from * @low_addr: offset of the lower register to read from * @val: the contents of the 64bit value to write to PHY * * Write the 64bit value to the two associated 32bit PHY registers. The offset * is always specified as the lower register, and the high address is looked * up. This function only operates on registers known to be two parts of * a 64bit value. */ static int ice_write_64b_phy_reg_e822(struct ice_hw *hw, u8 port, u16 low_addr, u64 val) { u32 low, high; u16 high_addr; int err; /* Only operate on registers known to be split into two 32bit * registers. */ if (!ice_is_64b_phy_reg_e822(low_addr, &high_addr)) { ice_debug(hw, ICE_DBG_PTP, "Invalid 64b register addr 0x%08x\n", low_addr); return -EINVAL; } low = lower_32_bits(val); high = upper_32_bits(val); err = ice_write_phy_reg_e822(hw, port, low_addr, low); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to write to low register 0x%08x\n, err %d", low_addr, err); return err; } err = ice_write_phy_reg_e822(hw, port, high_addr, high); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to write to high register 0x%08x\n, err %d", high_addr, err); return err; } return 0; } /** * ice_fill_quad_msg_e822 - Fill message data for quad register access * @msg: the PHY message buffer to fill in * @quad: the quad to access * @offset: the register offset * * Fill a message buffer for accessing a register in a quad shared between * multiple PHYs. */ static int ice_fill_quad_msg_e822(struct ice_sbq_msg_input *msg, u8 quad, u16 offset) { u32 addr; if (quad >= ICE_MAX_QUAD) return -EINVAL; msg->dest_dev = rmn_0; if ((quad % ICE_QUADS_PER_PHY_E822) == 0) addr = Q_0_BASE + offset; else addr = Q_1_BASE + offset; msg->msg_addr_low = lower_16_bits(addr); msg->msg_addr_high = upper_16_bits(addr); return 0; } /** * ice_read_quad_reg_e822 - Read a PHY quad register * @hw: pointer to the HW struct * @quad: quad to read from * @offset: quad register offset to read * @val: on return, the contents read from the quad * * Read a quad register over the device sideband queue. Quad registers are * shared between multiple PHYs. */ int ice_read_quad_reg_e822(struct ice_hw *hw, u8 quad, u16 offset, u32 *val) { struct ice_sbq_msg_input msg = {0}; int err; err = ice_fill_quad_msg_e822(&msg, quad, offset); if (err) return err; msg.opcode = ice_sbq_msg_rd; err = ice_sbq_rw_reg(hw, &msg); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n", err); return err; } *val = msg.data; return 0; } /** * ice_write_quad_reg_e822 - Write a PHY quad register * @hw: pointer to the HW struct * @quad: quad to write to * @offset: quad register offset to write * @val: The value to write to the register * * Write a quad register over the device sideband queue. Quad registers are * shared between multiple PHYs. */ int ice_write_quad_reg_e822(struct ice_hw *hw, u8 quad, u16 offset, u32 val) { struct ice_sbq_msg_input msg = {0}; int err; err = ice_fill_quad_msg_e822(&msg, quad, offset); if (err) return err; msg.opcode = ice_sbq_msg_wr; msg.data = val; err = ice_sbq_rw_reg(hw, &msg); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n", err); return err; } return 0; } /** * ice_read_phy_tstamp_e822 - Read a PHY timestamp out of the quad block * @hw: pointer to the HW struct * @quad: the quad to read from * @idx: the timestamp index to read * @tstamp: on return, the 40bit timestamp value * * Read a 40bit timestamp value out of the two associated registers in the * quad memory block that is shared between the internal PHYs of the E822 * family of devices. */ static int ice_read_phy_tstamp_e822(struct ice_hw *hw, u8 quad, u8 idx, u64 *tstamp) { u16 lo_addr, hi_addr; u32 lo, hi; int err; lo_addr = (u16)TS_L(Q_REG_TX_MEMORY_BANK_START, idx); hi_addr = (u16)TS_H(Q_REG_TX_MEMORY_BANK_START, idx); err = ice_read_quad_reg_e822(hw, quad, lo_addr, &lo); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to read low PTP timestamp register, err %d\n", err); return err; } err = ice_read_quad_reg_e822(hw, quad, hi_addr, &hi); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to read high PTP timestamp register, err %d\n", err); return err; } /* For E822 based internal PHYs, the timestamp is reported with the * lower 8 bits in the low register, and the upper 32 bits in the high * register. */ *tstamp = ((u64)hi) << TS_PHY_HIGH_S | ((u64)lo & TS_PHY_LOW_M); return 0; } /** * ice_clear_phy_tstamp_e822 - Clear a timestamp from the quad block * @hw: pointer to the HW struct * @quad: the quad to read from * @idx: the timestamp index to reset * * Read the timestamp out of the quad to clear its timestamp status bit from * the PHY quad block that is shared between the internal PHYs of the E822 * devices. * * Note that unlike E810, software cannot directly write to the quad memory * bank registers. E822 relies on the ice_get_phy_tx_tstamp_ready() function * to determine which timestamps are valid. Reading a timestamp auto-clears * the valid bit. * * To directly clear the contents of the timestamp block entirely, discarding * all timestamp data at once, software should instead use * ice_ptp_reset_ts_memory_quad_e822(). * * This function should only be called on an idx whose bit is set according to * ice_get_phy_tx_tstamp_ready(). */ static int ice_clear_phy_tstamp_e822(struct ice_hw *hw, u8 quad, u8 idx) { u64 unused_tstamp; int err; err = ice_read_phy_tstamp_e822(hw, quad, idx, &unused_tstamp); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to read the timestamp register for quad %u, idx %u, err %d\n", quad, idx, err); return err; } return 0; } /** * ice_ptp_reset_ts_memory_quad_e822 - Clear all timestamps from the quad block * @hw: pointer to the HW struct * @quad: the quad to read from * * Clear all timestamps from the PHY quad block that is shared between the * internal PHYs on the E822 devices. */ void ice_ptp_reset_ts_memory_quad_e822(struct ice_hw *hw, u8 quad) { ice_write_quad_reg_e822(hw, quad, Q_REG_TS_CTRL, Q_REG_TS_CTRL_M); ice_write_quad_reg_e822(hw, quad, Q_REG_TS_CTRL, ~(u32)Q_REG_TS_CTRL_M); } /** * ice_ptp_reset_ts_memory_e822 - Clear all timestamps from all quad blocks * @hw: pointer to the HW struct */ static void ice_ptp_reset_ts_memory_e822(struct ice_hw *hw) { unsigned int quad; for (quad = 0; quad < ICE_MAX_QUAD; quad++) ice_ptp_reset_ts_memory_quad_e822(hw, quad); } /** * ice_read_cgu_reg_e822 - Read a CGU register * @hw: pointer to the HW struct * @addr: Register address to read * @val: storage for register value read * * Read the contents of a register of the Clock Generation Unit. Only * applicable to E822 devices. */ static int ice_read_cgu_reg_e822(struct ice_hw *hw, u32 addr, u32 *val) { struct ice_sbq_msg_input cgu_msg; int err; cgu_msg.opcode = ice_sbq_msg_rd; cgu_msg.dest_dev = cgu; cgu_msg.msg_addr_low = addr; cgu_msg.msg_addr_high = 0x0; err = ice_sbq_rw_reg(hw, &cgu_msg); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to read CGU register 0x%04x, err %d\n", addr, err); return err; } *val = cgu_msg.data; return err; } /** * ice_write_cgu_reg_e822 - Write a CGU register * @hw: pointer to the HW struct * @addr: Register address to write * @val: value to write into the register * * Write the specified value to a register of the Clock Generation Unit. Only * applicable to E822 devices. */ static int ice_write_cgu_reg_e822(struct ice_hw *hw, u32 addr, u32 val) { struct ice_sbq_msg_input cgu_msg; int err; cgu_msg.opcode = ice_sbq_msg_wr; cgu_msg.dest_dev = cgu; cgu_msg.msg_addr_low = addr; cgu_msg.msg_addr_high = 0x0; cgu_msg.data = val; err = ice_sbq_rw_reg(hw, &cgu_msg); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to write CGU register 0x%04x, err %d\n", addr, err); return err; } return err; } /** * ice_clk_freq_str - Convert time_ref_freq to string * @clk_freq: Clock frequency * * Convert the specified TIME_REF clock frequency to a string. */ static const char *ice_clk_freq_str(u8 clk_freq) { switch ((enum ice_time_ref_freq)clk_freq) { case ICE_TIME_REF_FREQ_25_000: return "25 MHz"; case ICE_TIME_REF_FREQ_122_880: return "122.88 MHz"; case ICE_TIME_REF_FREQ_125_000: return "125 MHz"; case ICE_TIME_REF_FREQ_153_600: return "153.6 MHz"; case ICE_TIME_REF_FREQ_156_250: return "156.25 MHz"; case ICE_TIME_REF_FREQ_245_760: return "245.76 MHz"; default: return "Unknown"; } } /** * ice_clk_src_str - Convert time_ref_src to string * @clk_src: Clock source * * Convert the specified clock source to its string name. */ static const char *ice_clk_src_str(u8 clk_src) { switch ((enum ice_clk_src)clk_src) { case ICE_CLK_SRC_TCX0: return "TCX0"; case ICE_CLK_SRC_TIME_REF: return "TIME_REF"; default: return "Unknown"; } } /** * ice_cfg_cgu_pll_e822 - Configure the Clock Generation Unit * @hw: pointer to the HW struct * @clk_freq: Clock frequency to program * @clk_src: Clock source to select (TIME_REF, or TCX0) * * Configure the Clock Generation Unit with the desired clock frequency and * time reference, enabling the PLL which drives the PTP hardware clock. */ static int ice_cfg_cgu_pll_e822(struct ice_hw *hw, enum ice_time_ref_freq clk_freq, enum ice_clk_src clk_src) { union tspll_ro_bwm_lf bwm_lf; union nac_cgu_dword19 dw19; union nac_cgu_dword22 dw22; union nac_cgu_dword24 dw24; union nac_cgu_dword9 dw9; int err; if (clk_freq >= NUM_ICE_TIME_REF_FREQ) { dev_warn(ice_hw_to_dev(hw), "Invalid TIME_REF frequency %u\n", clk_freq); return -EINVAL; } if (clk_src >= NUM_ICE_CLK_SRC) { dev_warn(ice_hw_to_dev(hw), "Invalid clock source %u\n", clk_src); return -EINVAL; } if (clk_src == ICE_CLK_SRC_TCX0 && clk_freq != ICE_TIME_REF_FREQ_25_000) { dev_warn(ice_hw_to_dev(hw), "TCX0 only supports 25 MHz frequency\n"); return -EINVAL; } err = ice_read_cgu_reg_e822(hw, NAC_CGU_DWORD9, &dw9.val); if (err) return err; err = ice_read_cgu_reg_e822(hw, NAC_CGU_DWORD24, &dw24.val); if (err) return err; err = ice_read_cgu_reg_e822(hw, TSPLL_RO_BWM_LF, &bwm_lf.val); if (err) return err; /* Log the current clock configuration */ ice_debug(hw, ICE_DBG_PTP, "Current CGU configuration -- %s, clk_src %s, clk_freq %s, PLL %s\n", dw24.field.ts_pll_enable ? "enabled" : "disabled", ice_clk_src_str(dw24.field.time_ref_sel), ice_clk_freq_str(dw9.field.time_ref_freq_sel), bwm_lf.field.plllock_true_lock_cri ? "locked" : "unlocked"); /* Disable the PLL before changing the clock source or frequency */ if (dw24.field.ts_pll_enable) { dw24.field.ts_pll_enable = 0; err = ice_write_cgu_reg_e822(hw, NAC_CGU_DWORD24, dw24.val); if (err) return err; } /* Set the frequency */ dw9.field.time_ref_freq_sel = clk_freq; err = ice_write_cgu_reg_e822(hw, NAC_CGU_DWORD9, dw9.val); if (err) return err; /* Configure the TS PLL feedback divisor */ err = ice_read_cgu_reg_e822(hw, NAC_CGU_DWORD19, &dw19.val); if (err) return err; dw19.field.tspll_fbdiv_intgr = e822_cgu_params[clk_freq].feedback_div; dw19.field.tspll_ndivratio = 1; err = ice_write_cgu_reg_e822(hw, NAC_CGU_DWORD19, dw19.val); if (err) return err; /* Configure the TS PLL post divisor */ err = ice_read_cgu_reg_e822(hw, NAC_CGU_DWORD22, &dw22.val); if (err) return err; dw22.field.time1588clk_div = e822_cgu_params[clk_freq].post_pll_div; dw22.field.time1588clk_sel_div2 = 0; err = ice_write_cgu_reg_e822(hw, NAC_CGU_DWORD22, dw22.val); if (err) return err; /* Configure the TS PLL pre divisor and clock source */ err = ice_read_cgu_reg_e822(hw, NAC_CGU_DWORD24, &dw24.val); if (err) return err; dw24.field.ref1588_ck_div = e822_cgu_params[clk_freq].refclk_pre_div; dw24.field.tspll_fbdiv_frac = e822_cgu_params[clk_freq].frac_n_div; dw24.field.time_ref_sel = clk_src; err = ice_write_cgu_reg_e822(hw, NAC_CGU_DWORD24, dw24.val); if (err) return err; /* Finally, enable the PLL */ dw24.field.ts_pll_enable = 1; err = ice_write_cgu_reg_e822(hw, NAC_CGU_DWORD24, dw24.val); if (err) return err; /* Wait to verify if the PLL locks */ usleep_range(1000, 5000); err = ice_read_cgu_reg_e822(hw, TSPLL_RO_BWM_LF, &bwm_lf.val); if (err) return err; if (!bwm_lf.field.plllock_true_lock_cri) { dev_warn(ice_hw_to_dev(hw), "CGU PLL failed to lock\n"); return -EBUSY; } /* Log the current clock configuration */ ice_debug(hw, ICE_DBG_PTP, "New CGU configuration -- %s, clk_src %s, clk_freq %s, PLL %s\n", dw24.field.ts_pll_enable ? "enabled" : "disabled", ice_clk_src_str(dw24.field.time_ref_sel), ice_clk_freq_str(dw9.field.time_ref_freq_sel), bwm_lf.field.plllock_true_lock_cri ? "locked" : "unlocked"); return 0; } /** * ice_init_cgu_e822 - Initialize CGU with settings from firmware * @hw: pointer to the HW structure * * Initialize the Clock Generation Unit of the E822 device. */ static int ice_init_cgu_e822(struct ice_hw *hw) { struct ice_ts_func_info *ts_info = &hw->func_caps.ts_func_info; union tspll_cntr_bist_settings cntr_bist; int err; err = ice_read_cgu_reg_e822(hw, TSPLL_CNTR_BIST_SETTINGS, &cntr_bist.val); if (err) return err; /* Disable sticky lock detection so lock err reported is accurate */ cntr_bist.field.i_plllock_sel_0 = 0; cntr_bist.field.i_plllock_sel_1 = 0; err = ice_write_cgu_reg_e822(hw, TSPLL_CNTR_BIST_SETTINGS, cntr_bist.val); if (err) return err; /* Configure the CGU PLL using the parameters from the function * capabilities. */ err = ice_cfg_cgu_pll_e822(hw, ts_info->time_ref, (enum ice_clk_src)ts_info->clk_src); if (err) return err; return 0; } /** * ice_ptp_set_vernier_wl - Set the window length for vernier calibration * @hw: pointer to the HW struct * * Set the window length used for the vernier port calibration process. */ static int ice_ptp_set_vernier_wl(struct ice_hw *hw) { u8 port; for (port = 0; port < ICE_NUM_EXTERNAL_PORTS; port++) { int err; err = ice_write_phy_reg_e822(hw, port, P_REG_WL, PTP_VERNIER_WL); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to set vernier window length for port %u, err %d\n", port, err); return err; } } return 0; } /** * ice_ptp_init_phc_e822 - Perform E822 specific PHC initialization * @hw: pointer to HW struct * * Perform PHC initialization steps specific to E822 devices. */ static int ice_ptp_init_phc_e822(struct ice_hw *hw) { int err; u32 regval; /* Enable reading switch and PHY registers over the sideband queue */ #define PF_SB_REM_DEV_CTL_SWITCH_READ BIT(1) #define PF_SB_REM_DEV_CTL_PHY0 BIT(2) regval = rd32(hw, PF_SB_REM_DEV_CTL); regval |= (PF_SB_REM_DEV_CTL_SWITCH_READ | PF_SB_REM_DEV_CTL_PHY0); wr32(hw, PF_SB_REM_DEV_CTL, regval); /* Initialize the Clock Generation Unit */ err = ice_init_cgu_e822(hw); if (err) return err; /* Set window length for all the ports */ return ice_ptp_set_vernier_wl(hw); } /** * ice_ptp_prep_phy_time_e822 - Prepare PHY port with initial time * @hw: pointer to the HW struct * @time: Time to initialize the PHY port clocks to * * Program the PHY port registers with a new initial time value. The port * clock will be initialized once the driver issues an ICE_PTP_INIT_TIME sync * command. The time value is the upper 32 bits of the PHY timer, usually in * units of nominal nanoseconds. */ static int ice_ptp_prep_phy_time_e822(struct ice_hw *hw, u32 time) { u64 phy_time; u8 port; int err; /* The time represents the upper 32 bits of the PHY timer, so we need * to shift to account for this when programming. */ phy_time = (u64)time << 32; for (port = 0; port < ICE_NUM_EXTERNAL_PORTS; port++) { /* Tx case */ err = ice_write_64b_phy_reg_e822(hw, port, P_REG_TX_TIMER_INC_PRE_L, phy_time); if (err) goto exit_err; /* Rx case */ err = ice_write_64b_phy_reg_e822(hw, port, P_REG_RX_TIMER_INC_PRE_L, phy_time); if (err) goto exit_err; } return 0; exit_err: ice_debug(hw, ICE_DBG_PTP, "Failed to write init time for port %u, err %d\n", port, err); return err; } /** * ice_ptp_prep_port_adj_e822 - Prepare a single port for time adjust * @hw: pointer to HW struct * @port: Port number to be programmed * @time: time in cycles to adjust the port Tx and Rx clocks * * Program the port for an atomic adjustment by writing the Tx and Rx timer * registers. The atomic adjustment won't be completed until the driver issues * an ICE_PTP_ADJ_TIME command. * * Note that time is not in units of nanoseconds. It is in clock time * including the lower sub-nanosecond portion of the port timer. * * Negative adjustments are supported using 2s complement arithmetic. */ static int ice_ptp_prep_port_adj_e822(struct ice_hw *hw, u8 port, s64 time) { u32 l_time, u_time; int err; l_time = lower_32_bits(time); u_time = upper_32_bits(time); /* Tx case */ err = ice_write_phy_reg_e822(hw, port, P_REG_TX_TIMER_INC_PRE_L, l_time); if (err) goto exit_err; err = ice_write_phy_reg_e822(hw, port, P_REG_TX_TIMER_INC_PRE_U, u_time); if (err) goto exit_err; /* Rx case */ err = ice_write_phy_reg_e822(hw, port, P_REG_RX_TIMER_INC_PRE_L, l_time); if (err) goto exit_err; err = ice_write_phy_reg_e822(hw, port, P_REG_RX_TIMER_INC_PRE_U, u_time); if (err) goto exit_err; return 0; exit_err: ice_debug(hw, ICE_DBG_PTP, "Failed to write time adjust for port %u, err %d\n", port, err); return err; } /** * ice_ptp_prep_phy_adj_e822 - Prep PHY ports for a time adjustment * @hw: pointer to HW struct * @adj: adjustment in nanoseconds * * Prepare the PHY ports for an atomic time adjustment by programming the PHY * Tx and Rx port registers. The actual adjustment is completed by issuing an * ICE_PTP_ADJ_TIME or ICE_PTP_ADJ_TIME_AT_TIME sync command. */ static int ice_ptp_prep_phy_adj_e822(struct ice_hw *hw, s32 adj) { s64 cycles; u8 port; /* The port clock supports adjustment of the sub-nanosecond portion of * the clock. We shift the provided adjustment in nanoseconds to * calculate the appropriate adjustment to program into the PHY ports. */ if (adj > 0) cycles = (s64)adj << 32; else cycles = -(((s64)-adj) << 32); for (port = 0; port < ICE_NUM_EXTERNAL_PORTS; port++) { int err; err = ice_ptp_prep_port_adj_e822(hw, port, cycles); if (err) return err; } return 0; } /** * ice_ptp_prep_phy_incval_e822 - Prepare PHY ports for time adjustment * @hw: pointer to HW struct * @incval: new increment value to prepare * * Prepare each of the PHY ports for a new increment value by programming the * port's TIMETUS registers. The new increment value will be updated after * issuing an ICE_PTP_INIT_INCVAL command. */ static int ice_ptp_prep_phy_incval_e822(struct ice_hw *hw, u64 incval) { int err; u8 port; for (port = 0; port < ICE_NUM_EXTERNAL_PORTS; port++) { err = ice_write_40b_phy_reg_e822(hw, port, P_REG_TIMETUS_L, incval); if (err) goto exit_err; } return 0; exit_err: ice_debug(hw, ICE_DBG_PTP, "Failed to write incval for port %u, err %d\n", port, err); return err; } /** * ice_ptp_read_port_capture - Read a port's local time capture * @hw: pointer to HW struct * @port: Port number to read * @tx_ts: on return, the Tx port time capture * @rx_ts: on return, the Rx port time capture * * Read the port's Tx and Rx local time capture values. * * Note this has no equivalent for the E810 devices. */ static int ice_ptp_read_port_capture(struct ice_hw *hw, u8 port, u64 *tx_ts, u64 *rx_ts) { int err; /* Tx case */ err = ice_read_64b_phy_reg_e822(hw, port, P_REG_TX_CAPTURE_L, tx_ts); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to read REG_TX_CAPTURE, err %d\n", err); return err; } ice_debug(hw, ICE_DBG_PTP, "tx_init = 0x%016llx\n", (unsigned long long)*tx_ts); /* Rx case */ err = ice_read_64b_phy_reg_e822(hw, port, P_REG_RX_CAPTURE_L, rx_ts); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to read RX_CAPTURE, err %d\n", err); return err; } ice_debug(hw, ICE_DBG_PTP, "rx_init = 0x%016llx\n", (unsigned long long)*rx_ts); return 0; } /** * ice_ptp_write_port_cmd_e822 - Prepare a single PHY port for a timer command * @hw: pointer to HW struct * @port: Port to which cmd has to be sent * @cmd: Command to be sent to the port * * Prepare the requested port for an upcoming timer sync command. * * Do not use this function directly. If you want to configure exactly one * port, use ice_ptp_one_port_cmd() instead. */ static int ice_ptp_write_port_cmd_e822(struct ice_hw *hw, u8 port, enum ice_ptp_tmr_cmd cmd) { u32 cmd_val, val; u8 tmr_idx; int err; tmr_idx = ice_get_ptp_src_clock_index(hw); cmd_val = tmr_idx << SEL_PHY_SRC; switch (cmd) { case ICE_PTP_INIT_TIME: cmd_val |= PHY_CMD_INIT_TIME; break; case ICE_PTP_INIT_INCVAL: cmd_val |= PHY_CMD_INIT_INCVAL; break; case ICE_PTP_ADJ_TIME: cmd_val |= PHY_CMD_ADJ_TIME; break; case ICE_PTP_READ_TIME: cmd_val |= PHY_CMD_READ_TIME; break; case ICE_PTP_ADJ_TIME_AT_TIME: cmd_val |= PHY_CMD_ADJ_TIME_AT_TIME; break; case ICE_PTP_NOP: break; } /* Tx case */ /* Read, modify, write */ err = ice_read_phy_reg_e822(hw, port, P_REG_TX_TMR_CMD, &val); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_TMR_CMD, err %d\n", err); return err; } /* Modify necessary bits only and perform write */ val &= ~TS_CMD_MASK; val |= cmd_val; err = ice_write_phy_reg_e822(hw, port, P_REG_TX_TMR_CMD, val); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to write back TX_TMR_CMD, err %d\n", err); return err; } /* Rx case */ /* Read, modify, write */ err = ice_read_phy_reg_e822(hw, port, P_REG_RX_TMR_CMD, &val); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to read RX_TMR_CMD, err %d\n", err); return err; } /* Modify necessary bits only and perform write */ val &= ~TS_CMD_MASK; val |= cmd_val; err = ice_write_phy_reg_e822(hw, port, P_REG_RX_TMR_CMD, val); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to write back RX_TMR_CMD, err %d\n", err); return err; } return 0; } /** * ice_ptp_one_port_cmd - Prepare one port for a timer command * @hw: pointer to the HW struct * @configured_port: the port to configure with configured_cmd * @configured_cmd: timer command to prepare on the configured_port * * Prepare the configured_port for the configured_cmd, and prepare all other * ports for ICE_PTP_NOP. This causes the configured_port to execute the * desired command while all other ports perform no operation. */ static int ice_ptp_one_port_cmd(struct ice_hw *hw, u8 configured_port, enum ice_ptp_tmr_cmd configured_cmd) { u8 port; for (port = 0; port < ICE_NUM_EXTERNAL_PORTS; port++) { enum ice_ptp_tmr_cmd cmd; int err; if (port == configured_port) cmd = configured_cmd; else cmd = ICE_PTP_NOP; err = ice_ptp_write_port_cmd_e822(hw, port, cmd); if (err) return err; } return 0; } /** * ice_ptp_port_cmd_e822 - Prepare all ports for a timer command * @hw: pointer to the HW struct * @cmd: timer command to prepare * * Prepare all ports connected to this device for an upcoming timer sync * command. */ static int ice_ptp_port_cmd_e822(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd) { u8 port; for (port = 0; port < ICE_NUM_EXTERNAL_PORTS; port++) { int err; err = ice_ptp_write_port_cmd_e822(hw, port, cmd); if (err) return err; } return 0; } /* E822 Vernier calibration functions * * The following functions are used as part of the vernier calibration of * a port. This calibration increases the precision of the timestamps on the * port. */ /** * ice_phy_get_speed_and_fec_e822 - Get link speed and FEC based on serdes mode * @hw: pointer to HW struct * @port: the port to read from * @link_out: if non-NULL, holds link speed on success * @fec_out: if non-NULL, holds FEC algorithm on success * * Read the serdes data for the PHY port and extract the link speed and FEC * algorithm. */ static int ice_phy_get_speed_and_fec_e822(struct ice_hw *hw, u8 port, enum ice_ptp_link_spd *link_out, enum ice_ptp_fec_mode *fec_out) { enum ice_ptp_link_spd link; enum ice_ptp_fec_mode fec; u32 serdes; int err; err = ice_read_phy_reg_e822(hw, port, P_REG_LINK_SPEED, &serdes); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to read serdes info\n"); return err; } /* Determine the FEC algorithm */ fec = (enum ice_ptp_fec_mode)P_REG_LINK_SPEED_FEC_MODE(serdes); serdes &= P_REG_LINK_SPEED_SERDES_M; /* Determine the link speed */ if (fec == ICE_PTP_FEC_MODE_RS_FEC) { switch (serdes) { case ICE_PTP_SERDES_25G: link = ICE_PTP_LNK_SPD_25G_RS; break; case ICE_PTP_SERDES_50G: link = ICE_PTP_LNK_SPD_50G_RS; break; case ICE_PTP_SERDES_100G: link = ICE_PTP_LNK_SPD_100G_RS; break; default: return -EIO; } } else { switch (serdes) { case ICE_PTP_SERDES_1G: link = ICE_PTP_LNK_SPD_1G; break; case ICE_PTP_SERDES_10G: link = ICE_PTP_LNK_SPD_10G; break; case ICE_PTP_SERDES_25G: link = ICE_PTP_LNK_SPD_25G; break; case ICE_PTP_SERDES_40G: link = ICE_PTP_LNK_SPD_40G; break; case ICE_PTP_SERDES_50G: link = ICE_PTP_LNK_SPD_50G; break; default: return -EIO; } } if (link_out) *link_out = link; if (fec_out) *fec_out = fec; return 0; } /** * ice_phy_cfg_lane_e822 - Configure PHY quad for single/multi-lane timestamp * @hw: pointer to HW struct * @port: to configure the quad for */ static void ice_phy_cfg_lane_e822(struct ice_hw *hw, u8 port) { enum ice_ptp_link_spd link_spd; int err; u32 val; u8 quad; err = ice_phy_get_speed_and_fec_e822(hw, port, &link_spd, NULL); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to get PHY link speed, err %d\n", err); return; } quad = port / ICE_PORTS_PER_QUAD; err = ice_read_quad_reg_e822(hw, quad, Q_REG_TX_MEM_GBL_CFG, &val); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_MEM_GLB_CFG, err %d\n", err); return; } if (link_spd >= ICE_PTP_LNK_SPD_40G) val &= ~Q_REG_TX_MEM_GBL_CFG_LANE_TYPE_M; else val |= Q_REG_TX_MEM_GBL_CFG_LANE_TYPE_M; err = ice_write_quad_reg_e822(hw, quad, Q_REG_TX_MEM_GBL_CFG, val); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to write back TX_MEM_GBL_CFG, err %d\n", err); return; } } /** * ice_phy_cfg_uix_e822 - Configure Serdes UI to TU conversion for E822 * @hw: pointer to the HW structure * @port: the port to configure * * Program the conversion ration of Serdes clock "unit intervals" (UIs) to PHC * hardware clock time units (TUs). That is, determine the number of TUs per * serdes unit interval, and program the UIX registers with this conversion. * * This conversion is used as part of the calibration process when determining * the additional error of a timestamp vs the real time of transmission or * receipt of the packet. * * Hardware uses the number of TUs per 66 UIs, written to the UIX registers * for the two main serdes clock rates, 10G/40G and 25G/100G serdes clocks. * * To calculate the conversion ratio, we use the following facts: * * a) the clock frequency in Hz (cycles per second) * b) the number of TUs per cycle (the increment value of the clock) * c) 1 second per 1 billion nanoseconds * d) the duration of 66 UIs in nanoseconds * * Given these facts, we can use the following table to work out what ratios * to multiply in order to get the number of TUs per 66 UIs: * * cycles | 1 second | incval (TUs) | nanoseconds * -------+--------------+--------------+------------- * second | 1 billion ns | cycle | 66 UIs * * To perform the multiplication using integers without too much loss of * precision, we can take use the following equation: * * (freq * incval * 6600 LINE_UI ) / ( 100 * 1 billion) * * We scale up to using 6600 UI instead of 66 in order to avoid fractional * nanosecond UIs (66 UI at 10G/40G is 6.4 ns) * * The increment value has a maximum expected range of about 34 bits, while * the frequency value is about 29 bits. Multiplying these values shouldn't * overflow the 64 bits. However, we must then further multiply them again by * the Serdes unit interval duration. To avoid overflow here, we split the * overall divide by 1e11 into a divide by 256 (shift down by 8 bits) and * a divide by 390,625,000. This does lose some precision, but avoids * miscalculation due to arithmetic overflow. */ static int ice_phy_cfg_uix_e822(struct ice_hw *hw, u8 port) { u64 cur_freq, clk_incval, tu_per_sec, uix; int err; cur_freq = ice_e822_pll_freq(ice_e822_time_ref(hw)); clk_incval = ice_ptp_read_src_incval(hw); /* Calculate TUs per second divided by 256 */ tu_per_sec = (cur_freq * clk_incval) >> 8; #define LINE_UI_10G_40G 640 /* 6600 UIs is 640 nanoseconds at 10Gb/40Gb */ #define LINE_UI_25G_100G 256 /* 6600 UIs is 256 nanoseconds at 25Gb/100Gb */ /* Program the 10Gb/40Gb conversion ratio */ uix = div_u64(tu_per_sec * LINE_UI_10G_40G, 390625000); err = ice_write_64b_phy_reg_e822(hw, port, P_REG_UIX66_10G_40G_L, uix); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to write UIX66_10G_40G, err %d\n", err); return err; } /* Program the 25Gb/100Gb conversion ratio */ uix = div_u64(tu_per_sec * LINE_UI_25G_100G, 390625000); err = ice_write_64b_phy_reg_e822(hw, port, P_REG_UIX66_25G_100G_L, uix); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to write UIX66_25G_100G, err %d\n", err); return err; } return 0; } /** * ice_phy_cfg_parpcs_e822 - Configure TUs per PAR/PCS clock cycle * @hw: pointer to the HW struct * @port: port to configure * * Configure the number of TUs for the PAR and PCS clocks used as part of the * timestamp calibration process. This depends on the link speed, as the PHY * uses different markers depending on the speed. * * 1Gb/10Gb/25Gb: * - Tx/Rx PAR/PCS markers * * 25Gb RS: * - Tx/Rx Reed Solomon gearbox PAR/PCS markers * * 40Gb/50Gb: * - Tx/Rx PAR/PCS markers * - Rx Deskew PAR/PCS markers * * 50G RS and 100GB RS: * - Tx/Rx Reed Solomon gearbox PAR/PCS markers * - Rx Deskew PAR/PCS markers * - Tx PAR/PCS markers * * To calculate the conversion, we use the PHC clock frequency (cycles per * second), the increment value (TUs per cycle), and the related PHY clock * frequency to calculate the TUs per unit of the PHY link clock. The * following table shows how the units convert: * * cycles | TUs | second * -------+-------+-------- * second | cycle | cycles * * For each conversion register, look up the appropriate frequency from the * e822 PAR/PCS table and calculate the TUs per unit of that clock. Program * this to the appropriate register, preparing hardware to perform timestamp * calibration to calculate the total Tx or Rx offset to adjust the timestamp * in order to calibrate for the internal PHY delays. * * Note that the increment value ranges up to ~34 bits, and the clock * frequency is ~29 bits, so multiplying them together should fit within the * 64 bit arithmetic. */ static int ice_phy_cfg_parpcs_e822(struct ice_hw *hw, u8 port) { u64 cur_freq, clk_incval, tu_per_sec, phy_tus; enum ice_ptp_link_spd link_spd; enum ice_ptp_fec_mode fec_mode; int err; err = ice_phy_get_speed_and_fec_e822(hw, port, &link_spd, &fec_mode); if (err) return err; cur_freq = ice_e822_pll_freq(ice_e822_time_ref(hw)); clk_incval = ice_ptp_read_src_incval(hw); /* Calculate TUs per cycle of the PHC clock */ tu_per_sec = cur_freq * clk_incval; /* For each PHY conversion register, look up the appropriate link * speed frequency and determine the TUs per that clock's cycle time. * Split this into a high and low value and then program the * appropriate register. If that link speed does not use the * associated register, write zeros to clear it instead. */ /* P_REG_PAR_TX_TUS */ if (e822_vernier[link_spd].tx_par_clk) phy_tus = div_u64(tu_per_sec, e822_vernier[link_spd].tx_par_clk); else phy_tus = 0; err = ice_write_40b_phy_reg_e822(hw, port, P_REG_PAR_TX_TUS_L, phy_tus); if (err) return err; /* P_REG_PAR_RX_TUS */ if (e822_vernier[link_spd].rx_par_clk) phy_tus = div_u64(tu_per_sec, e822_vernier[link_spd].rx_par_clk); else phy_tus = 0; err = ice_write_40b_phy_reg_e822(hw, port, P_REG_PAR_RX_TUS_L, phy_tus); if (err) return err; /* P_REG_PCS_TX_TUS */ if (e822_vernier[link_spd].tx_pcs_clk) phy_tus = div_u64(tu_per_sec, e822_vernier[link_spd].tx_pcs_clk); else phy_tus = 0; err = ice_write_40b_phy_reg_e822(hw, port, P_REG_PCS_TX_TUS_L, phy_tus); if (err) return err; /* P_REG_PCS_RX_TUS */ if (e822_vernier[link_spd].rx_pcs_clk) phy_tus = div_u64(tu_per_sec, e822_vernier[link_spd].rx_pcs_clk); else phy_tus = 0; err = ice_write_40b_phy_reg_e822(hw, port, P_REG_PCS_RX_TUS_L, phy_tus); if (err) return err; /* P_REG_DESK_PAR_TX_TUS */ if (e822_vernier[link_spd].tx_desk_rsgb_par) phy_tus = div_u64(tu_per_sec, e822_vernier[link_spd].tx_desk_rsgb_par); else phy_tus = 0; err = ice_write_40b_phy_reg_e822(hw, port, P_REG_DESK_PAR_TX_TUS_L, phy_tus); if (err) return err; /* P_REG_DESK_PAR_RX_TUS */ if (e822_vernier[link_spd].rx_desk_rsgb_par) phy_tus = div_u64(tu_per_sec, e822_vernier[link_spd].rx_desk_rsgb_par); else phy_tus = 0; err = ice_write_40b_phy_reg_e822(hw, port, P_REG_DESK_PAR_RX_TUS_L, phy_tus); if (err) return err; /* P_REG_DESK_PCS_TX_TUS */ if (e822_vernier[link_spd].tx_desk_rsgb_pcs) phy_tus = div_u64(tu_per_sec, e822_vernier[link_spd].tx_desk_rsgb_pcs); else phy_tus = 0; err = ice_write_40b_phy_reg_e822(hw, port, P_REG_DESK_PCS_TX_TUS_L, phy_tus); if (err) return err; /* P_REG_DESK_PCS_RX_TUS */ if (e822_vernier[link_spd].rx_desk_rsgb_pcs) phy_tus = div_u64(tu_per_sec, e822_vernier[link_spd].rx_desk_rsgb_pcs); else phy_tus = 0; return ice_write_40b_phy_reg_e822(hw, port, P_REG_DESK_PCS_RX_TUS_L, phy_tus); } /** * ice_calc_fixed_tx_offset_e822 - Calculated Fixed Tx offset for a port * @hw: pointer to the HW struct * @link_spd: the Link speed to calculate for * * Calculate the fixed offset due to known static latency data. */ static u64 ice_calc_fixed_tx_offset_e822(struct ice_hw *hw, enum ice_ptp_link_spd link_spd) { u64 cur_freq, clk_incval, tu_per_sec, fixed_offset; cur_freq = ice_e822_pll_freq(ice_e822_time_ref(hw)); clk_incval = ice_ptp_read_src_incval(hw); /* Calculate TUs per second */ tu_per_sec = cur_freq * clk_incval; /* Calculate number of TUs to add for the fixed Tx latency. Since the * latency measurement is in 1/100th of a nanosecond, we need to * multiply by tu_per_sec and then divide by 1e11. This calculation * overflows 64 bit integer arithmetic, so break it up into two * divisions by 1e4 first then by 1e7. */ fixed_offset = div_u64(tu_per_sec, 10000); fixed_offset *= e822_vernier[link_spd].tx_fixed_delay; fixed_offset = div_u64(fixed_offset, 10000000); return fixed_offset; } /** * ice_phy_cfg_tx_offset_e822 - Configure total Tx timestamp offset * @hw: pointer to the HW struct * @port: the PHY port to configure * * Program the P_REG_TOTAL_TX_OFFSET register with the total number of TUs to * adjust Tx timestamps by. This is calculated by combining some known static * latency along with the Vernier offset computations done by hardware. * * This function will not return successfully until the Tx offset calculations * have been completed, which requires waiting until at least one packet has * been transmitted by the device. It is safe to call this function * periodically until calibration succeeds, as it will only program the offset * once. * * To avoid overflow, when calculating the offset based on the known static * latency values, we use measurements in 1/100th of a nanosecond, and divide * the TUs per second up front. This avoids overflow while allowing * calculation of the adjustment using integer arithmetic. * * Returns zero on success, -EBUSY if the hardware vernier offset * calibration has not completed, or another error code on failure. */ int ice_phy_cfg_tx_offset_e822(struct ice_hw *hw, u8 port) { enum ice_ptp_link_spd link_spd; enum ice_ptp_fec_mode fec_mode; u64 total_offset, val; int err; u32 reg; /* Nothing to do if we've already programmed the offset */ err = ice_read_phy_reg_e822(hw, port, P_REG_TX_OR, ®); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_OR for port %u, err %d\n", port, err); return err; } if (reg) return 0; err = ice_read_phy_reg_e822(hw, port, P_REG_TX_OV_STATUS, ®); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_OV_STATUS for port %u, err %d\n", port, err); return err; } if (!(reg & P_REG_TX_OV_STATUS_OV_M)) return -EBUSY; err = ice_phy_get_speed_and_fec_e822(hw, port, &link_spd, &fec_mode); if (err) return err; total_offset = ice_calc_fixed_tx_offset_e822(hw, link_spd); /* Read the first Vernier offset from the PHY register and add it to * the total offset. */ if (link_spd == ICE_PTP_LNK_SPD_1G || link_spd == ICE_PTP_LNK_SPD_10G || link_spd == ICE_PTP_LNK_SPD_25G || link_spd == ICE_PTP_LNK_SPD_25G_RS || link_spd == ICE_PTP_LNK_SPD_40G || link_spd == ICE_PTP_LNK_SPD_50G) { err = ice_read_64b_phy_reg_e822(hw, port, P_REG_PAR_PCS_TX_OFFSET_L, &val); if (err) return err; total_offset += val; } /* For Tx, we only need to use the second Vernier offset for * multi-lane link speeds with RS-FEC. The lanes will always be * aligned. */ if (link_spd == ICE_PTP_LNK_SPD_50G_RS || link_spd == ICE_PTP_LNK_SPD_100G_RS) { err = ice_read_64b_phy_reg_e822(hw, port, P_REG_PAR_TX_TIME_L, &val); if (err) return err; total_offset += val; } /* Now that the total offset has been calculated, program it to the * PHY and indicate that the Tx offset is ready. After this, * timestamps will be enabled. */ err = ice_write_64b_phy_reg_e822(hw, port, P_REG_TOTAL_TX_OFFSET_L, total_offset); if (err) return err; err = ice_write_phy_reg_e822(hw, port, P_REG_TX_OR, 1); if (err) return err; dev_info(ice_hw_to_dev(hw), "Port=%d Tx vernier offset calibration complete\n", port); return 0; } /** * ice_phy_calc_pmd_adj_e822 - Calculate PMD adjustment for Rx * @hw: pointer to the HW struct * @port: the PHY port to adjust for * @link_spd: the current link speed of the PHY * @fec_mode: the current FEC mode of the PHY * @pmd_adj: on return, the amount to adjust the Rx total offset by * * Calculates the adjustment to Rx timestamps due to PMD alignment in the PHY. * This varies by link speed and FEC mode. The value calculated accounts for * various delays caused when receiving a packet. */ static int ice_phy_calc_pmd_adj_e822(struct ice_hw *hw, u8 port, enum ice_ptp_link_spd link_spd, enum ice_ptp_fec_mode fec_mode, u64 *pmd_adj) { u64 cur_freq, clk_incval, tu_per_sec, mult, adj; u8 pmd_align; u32 val; int err; err = ice_read_phy_reg_e822(hw, port, P_REG_PMD_ALIGNMENT, &val); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to read PMD alignment, err %d\n", err); return err; } pmd_align = (u8)val; cur_freq = ice_e822_pll_freq(ice_e822_time_ref(hw)); clk_incval = ice_ptp_read_src_incval(hw); /* Calculate TUs per second */ tu_per_sec = cur_freq * clk_incval; /* The PMD alignment adjustment measurement depends on the link speed, * and whether FEC is enabled. For each link speed, the alignment * adjustment is calculated by dividing a value by the length of * a Time Unit in nanoseconds. * * 1G: align == 4 ? 10 * 0.8 : (align + 6 % 10) * 0.8 * 10G: align == 65 ? 0 : (align * 0.1 * 32/33) * 10G w/FEC: align * 0.1 * 32/33 * 25G: align == 65 ? 0 : (align * 0.4 * 32/33) * 25G w/FEC: align * 0.4 * 32/33 * 40G: align == 65 ? 0 : (align * 0.1 * 32/33) * 40G w/FEC: align * 0.1 * 32/33 * 50G: align == 65 ? 0 : (align * 0.4 * 32/33) * 50G w/FEC: align * 0.8 * 32/33 * * For RS-FEC, if align is < 17 then we must also add 1.6 * 32/33. * * To allow for calculating this value using integer arithmetic, we * instead start with the number of TUs per second, (inverse of the * length of a Time Unit in nanoseconds), multiply by a value based * on the PMD alignment register, and then divide by the right value * calculated based on the table above. To avoid integer overflow this * division is broken up into a step of dividing by 125 first. */ if (link_spd == ICE_PTP_LNK_SPD_1G) { if (pmd_align == 4) mult = 10; else mult = (pmd_align + 6) % 10; } else if (link_spd == ICE_PTP_LNK_SPD_10G || link_spd == ICE_PTP_LNK_SPD_25G || link_spd == ICE_PTP_LNK_SPD_40G || link_spd == ICE_PTP_LNK_SPD_50G) { /* If Clause 74 FEC, always calculate PMD adjust */ if (pmd_align != 65 || fec_mode == ICE_PTP_FEC_MODE_CLAUSE74) mult = pmd_align; else mult = 0; } else if (link_spd == ICE_PTP_LNK_SPD_25G_RS || link_spd == ICE_PTP_LNK_SPD_50G_RS || link_spd == ICE_PTP_LNK_SPD_100G_RS) { if (pmd_align < 17) mult = pmd_align + 40; else mult = pmd_align; } else { ice_debug(hw, ICE_DBG_PTP, "Unknown link speed %d, skipping PMD adjustment\n", link_spd); mult = 0; } /* In some cases, there's no need to adjust for the PMD alignment */ if (!mult) { *pmd_adj = 0; return 0; } /* Calculate the adjustment by multiplying TUs per second by the * appropriate multiplier and divisor. To avoid overflow, we first * divide by 125, and then handle remaining divisor based on the link * speed pmd_adj_divisor value. */ adj = div_u64(tu_per_sec, 125); adj *= mult; adj = div_u64(adj, e822_vernier[link_spd].pmd_adj_divisor); /* Finally, for 25G-RS and 50G-RS, a further adjustment for the Rx * cycle count is necessary. */ if (link_spd == ICE_PTP_LNK_SPD_25G_RS) { u64 cycle_adj; u8 rx_cycle; err = ice_read_phy_reg_e822(hw, port, P_REG_RX_40_TO_160_CNT, &val); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to read 25G-RS Rx cycle count, err %d\n", err); return err; } rx_cycle = val & P_REG_RX_40_TO_160_CNT_RXCYC_M; if (rx_cycle) { mult = (4 - rx_cycle) * 40; cycle_adj = div_u64(tu_per_sec, 125); cycle_adj *= mult; cycle_adj = div_u64(cycle_adj, e822_vernier[link_spd].pmd_adj_divisor); adj += cycle_adj; } } else if (link_spd == ICE_PTP_LNK_SPD_50G_RS) { u64 cycle_adj; u8 rx_cycle; err = ice_read_phy_reg_e822(hw, port, P_REG_RX_80_TO_160_CNT, &val); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to read 50G-RS Rx cycle count, err %d\n", err); return err; } rx_cycle = val & P_REG_RX_80_TO_160_CNT_RXCYC_M; if (rx_cycle) { mult = rx_cycle * 40; cycle_adj = div_u64(tu_per_sec, 125); cycle_adj *= mult; cycle_adj = div_u64(cycle_adj, e822_vernier[link_spd].pmd_adj_divisor); adj += cycle_adj; } } /* Return the calculated adjustment */ *pmd_adj = adj; return 0; } /** * ice_calc_fixed_rx_offset_e822 - Calculated the fixed Rx offset for a port * @hw: pointer to HW struct * @link_spd: The Link speed to calculate for * * Determine the fixed Rx latency for a given link speed. */ static u64 ice_calc_fixed_rx_offset_e822(struct ice_hw *hw, enum ice_ptp_link_spd link_spd) { u64 cur_freq, clk_incval, tu_per_sec, fixed_offset; cur_freq = ice_e822_pll_freq(ice_e822_time_ref(hw)); clk_incval = ice_ptp_read_src_incval(hw); /* Calculate TUs per second */ tu_per_sec = cur_freq * clk_incval; /* Calculate number of TUs to add for the fixed Rx latency. Since the * latency measurement is in 1/100th of a nanosecond, we need to * multiply by tu_per_sec and then divide by 1e11. This calculation * overflows 64 bit integer arithmetic, so break it up into two * divisions by 1e4 first then by 1e7. */ fixed_offset = div_u64(tu_per_sec, 10000); fixed_offset *= e822_vernier[link_spd].rx_fixed_delay; fixed_offset = div_u64(fixed_offset, 10000000); return fixed_offset; } /** * ice_phy_cfg_rx_offset_e822 - Configure total Rx timestamp offset * @hw: pointer to the HW struct * @port: the PHY port to configure * * Program the P_REG_TOTAL_RX_OFFSET register with the number of Time Units to * adjust Rx timestamps by. This combines calculations from the Vernier offset * measurements taken in hardware with some data about known fixed delay as * well as adjusting for multi-lane alignment delay. * * This function will not return successfully until the Rx offset calculations * have been completed, which requires waiting until at least one packet has * been received by the device. It is safe to call this function periodically * until calibration succeeds, as it will only program the offset once. * * This function must be called only after the offset registers are valid, * i.e. after the Vernier calibration wait has passed, to ensure that the PHY * has measured the offset. * * To avoid overflow, when calculating the offset based on the known static * latency values, we use measurements in 1/100th of a nanosecond, and divide * the TUs per second up front. This avoids overflow while allowing * calculation of the adjustment using integer arithmetic. * * Returns zero on success, -EBUSY if the hardware vernier offset * calibration has not completed, or another error code on failure. */ int ice_phy_cfg_rx_offset_e822(struct ice_hw *hw, u8 port) { enum ice_ptp_link_spd link_spd; enum ice_ptp_fec_mode fec_mode; u64 total_offset, pmd, val; int err; u32 reg; /* Nothing to do if we've already programmed the offset */ err = ice_read_phy_reg_e822(hw, port, P_REG_RX_OR, ®); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to read RX_OR for port %u, err %d\n", port, err); return err; } if (reg) return 0; err = ice_read_phy_reg_e822(hw, port, P_REG_RX_OV_STATUS, ®); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to read RX_OV_STATUS for port %u, err %d\n", port, err); return err; } if (!(reg & P_REG_RX_OV_STATUS_OV_M)) return -EBUSY; err = ice_phy_get_speed_and_fec_e822(hw, port, &link_spd, &fec_mode); if (err) return err; total_offset = ice_calc_fixed_rx_offset_e822(hw, link_spd); /* Read the first Vernier offset from the PHY register and add it to * the total offset. */ err = ice_read_64b_phy_reg_e822(hw, port, P_REG_PAR_PCS_RX_OFFSET_L, &val); if (err) return err; total_offset += val; /* For Rx, all multi-lane link speeds include a second Vernier * calibration, because the lanes might not be aligned. */ if (link_spd == ICE_PTP_LNK_SPD_40G || link_spd == ICE_PTP_LNK_SPD_50G || link_spd == ICE_PTP_LNK_SPD_50G_RS || link_spd == ICE_PTP_LNK_SPD_100G_RS) { err = ice_read_64b_phy_reg_e822(hw, port, P_REG_PAR_RX_TIME_L, &val); if (err) return err; total_offset += val; } /* In addition, Rx must account for the PMD alignment */ err = ice_phy_calc_pmd_adj_e822(hw, port, link_spd, fec_mode, &pmd); if (err) return err; /* For RS-FEC, this adjustment adds delay, but for other modes, it * subtracts delay. */ if (fec_mode == ICE_PTP_FEC_MODE_RS_FEC) total_offset += pmd; else total_offset -= pmd; /* Now that the total offset has been calculated, program it to the * PHY and indicate that the Rx offset is ready. After this, * timestamps will be enabled. */ err = ice_write_64b_phy_reg_e822(hw, port, P_REG_TOTAL_RX_OFFSET_L, total_offset); if (err) return err; err = ice_write_phy_reg_e822(hw, port, P_REG_RX_OR, 1); if (err) return err; dev_info(ice_hw_to_dev(hw), "Port=%d Rx vernier offset calibration complete\n", port); return 0; } /** * ice_read_phy_and_phc_time_e822 - Simultaneously capture PHC and PHY time * @hw: pointer to the HW struct * @port: the PHY port to read * @phy_time: on return, the 64bit PHY timer value * @phc_time: on return, the lower 64bits of PHC time * * Issue a ICE_PTP_READ_TIME timer command to simultaneously capture the PHY * and PHC timer values. */ static int ice_read_phy_and_phc_time_e822(struct ice_hw *hw, u8 port, u64 *phy_time, u64 *phc_time) { u64 tx_time, rx_time; u32 zo, lo; u8 tmr_idx; int err; tmr_idx = ice_get_ptp_src_clock_index(hw); /* Prepare the PHC timer for a ICE_PTP_READ_TIME capture command */ ice_ptp_src_cmd(hw, ICE_PTP_READ_TIME); /* Prepare the PHY timer for a ICE_PTP_READ_TIME capture command */ err = ice_ptp_one_port_cmd(hw, port, ICE_PTP_READ_TIME); if (err) return err; /* Issue the sync to start the ICE_PTP_READ_TIME capture */ ice_ptp_exec_tmr_cmd(hw); /* Read the captured PHC time from the shadow time registers */ zo = rd32(hw, GLTSYN_SHTIME_0(tmr_idx)); lo = rd32(hw, GLTSYN_SHTIME_L(tmr_idx)); *phc_time = (u64)lo << 32 | zo; /* Read the captured PHY time from the PHY shadow registers */ err = ice_ptp_read_port_capture(hw, port, &tx_time, &rx_time); if (err) return err; /* If the PHY Tx and Rx timers don't match, log a warning message. * Note that this should not happen in normal circumstances since the * driver always programs them together. */ if (tx_time != rx_time) dev_warn(ice_hw_to_dev(hw), "PHY port %u Tx and Rx timers do not match, tx_time 0x%016llX, rx_time 0x%016llX\n", port, (unsigned long long)tx_time, (unsigned long long)rx_time); *phy_time = tx_time; return 0; } /** * ice_sync_phy_timer_e822 - Synchronize the PHY timer with PHC timer * @hw: pointer to the HW struct * @port: the PHY port to synchronize * * Perform an adjustment to ensure that the PHY and PHC timers are in sync. * This is done by issuing a ICE_PTP_READ_TIME command which triggers a * simultaneous read of the PHY timer and PHC timer. Then we use the * difference to calculate an appropriate 2s complement addition to add * to the PHY timer in order to ensure it reads the same value as the * primary PHC timer. */ static int ice_sync_phy_timer_e822(struct ice_hw *hw, u8 port) { u64 phc_time, phy_time, difference; int err; if (!ice_ptp_lock(hw)) { ice_debug(hw, ICE_DBG_PTP, "Failed to acquire PTP semaphore\n"); return -EBUSY; } err = ice_read_phy_and_phc_time_e822(hw, port, &phy_time, &phc_time); if (err) goto err_unlock; /* Calculate the amount required to add to the port time in order for * it to match the PHC time. * * Note that the port adjustment is done using 2s complement * arithmetic. This is convenient since it means that we can simply * calculate the difference between the PHC time and the port time, * and it will be interpreted correctly. */ difference = phc_time - phy_time; err = ice_ptp_prep_port_adj_e822(hw, port, (s64)difference); if (err) goto err_unlock; err = ice_ptp_one_port_cmd(hw, port, ICE_PTP_ADJ_TIME); if (err) goto err_unlock; /* Do not perform any action on the main timer */ ice_ptp_src_cmd(hw, ICE_PTP_NOP); /* Issue the sync to activate the time adjustment */ ice_ptp_exec_tmr_cmd(hw); /* Re-capture the timer values to flush the command registers and * verify that the time was properly adjusted. */ err = ice_read_phy_and_phc_time_e822(hw, port, &phy_time, &phc_time); if (err) goto err_unlock; dev_info(ice_hw_to_dev(hw), "Port %u PHY time synced to PHC: 0x%016llX, 0x%016llX\n", port, (unsigned long long)phy_time, (unsigned long long)phc_time); ice_ptp_unlock(hw); return 0; err_unlock: ice_ptp_unlock(hw); return err; } /** * ice_stop_phy_timer_e822 - Stop the PHY clock timer * @hw: pointer to the HW struct * @port: the PHY port to stop * @soft_reset: if true, hold the SOFT_RESET bit of P_REG_PS * * Stop the clock of a PHY port. This must be done as part of the flow to * re-calibrate Tx and Rx timestamping offsets whenever the clock time is * initialized or when link speed changes. */ int ice_stop_phy_timer_e822(struct ice_hw *hw, u8 port, bool soft_reset) { int err; u32 val; err = ice_write_phy_reg_e822(hw, port, P_REG_TX_OR, 0); if (err) return err; err = ice_write_phy_reg_e822(hw, port, P_REG_RX_OR, 0); if (err) return err; err = ice_read_phy_reg_e822(hw, port, P_REG_PS, &val); if (err) return err; val &= ~P_REG_PS_START_M; err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val); if (err) return err; val &= ~P_REG_PS_ENA_CLK_M; err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val); if (err) return err; if (soft_reset) { val |= P_REG_PS_SFT_RESET_M; err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val); if (err) return err; } ice_debug(hw, ICE_DBG_PTP, "Disabled clock on PHY port %u\n", port); return 0; } /** * ice_start_phy_timer_e822 - Start the PHY clock timer * @hw: pointer to the HW struct * @port: the PHY port to start * * Start the clock of a PHY port. This must be done as part of the flow to * re-calibrate Tx and Rx timestamping offsets whenever the clock time is * initialized or when link speed changes. * * Hardware will take Vernier measurements on Tx or Rx of packets. */ int ice_start_phy_timer_e822(struct ice_hw *hw, u8 port) { u32 lo, hi, val; u64 incval; u8 tmr_idx; int err; tmr_idx = ice_get_ptp_src_clock_index(hw); err = ice_stop_phy_timer_e822(hw, port, false); if (err) return err; ice_phy_cfg_lane_e822(hw, port); err = ice_phy_cfg_uix_e822(hw, port); if (err) return err; err = ice_phy_cfg_parpcs_e822(hw, port); if (err) return err; lo = rd32(hw, GLTSYN_INCVAL_L(tmr_idx)); hi = rd32(hw, GLTSYN_INCVAL_H(tmr_idx)); incval = (u64)hi << 32 | lo; err = ice_write_40b_phy_reg_e822(hw, port, P_REG_TIMETUS_L, incval); if (err) return err; err = ice_ptp_one_port_cmd(hw, port, ICE_PTP_INIT_INCVAL); if (err) return err; /* Do not perform any action on the main timer */ ice_ptp_src_cmd(hw, ICE_PTP_NOP); ice_ptp_exec_tmr_cmd(hw); err = ice_read_phy_reg_e822(hw, port, P_REG_PS, &val); if (err) return err; val |= P_REG_PS_SFT_RESET_M; err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val); if (err) return err; val |= P_REG_PS_START_M; err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val); if (err) return err; val &= ~P_REG_PS_SFT_RESET_M; err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val); if (err) return err; err = ice_ptp_one_port_cmd(hw, port, ICE_PTP_INIT_INCVAL); if (err) return err; ice_ptp_exec_tmr_cmd(hw); val |= P_REG_PS_ENA_CLK_M; err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val); if (err) return err; val |= P_REG_PS_LOAD_OFFSET_M; err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val); if (err) return err; ice_ptp_exec_tmr_cmd(hw); err = ice_sync_phy_timer_e822(hw, port); if (err) return err; ice_debug(hw, ICE_DBG_PTP, "Enabled clock on PHY port %u\n", port); return 0; } /** * ice_get_phy_tx_tstamp_ready_e822 - Read Tx memory status register * @hw: pointer to the HW struct * @quad: the timestamp quad to read from * @tstamp_ready: contents of the Tx memory status register * * Read the Q_REG_TX_MEMORY_STATUS register indicating which timestamps in * the PHY are ready. A set bit means the corresponding timestamp is valid and * ready to be captured from the PHY timestamp block. */ static int ice_get_phy_tx_tstamp_ready_e822(struct ice_hw *hw, u8 quad, u64 *tstamp_ready) { u32 hi, lo; int err; err = ice_read_quad_reg_e822(hw, quad, Q_REG_TX_MEMORY_STATUS_U, &hi); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_MEMORY_STATUS_U for quad %u, err %d\n", quad, err); return err; } err = ice_read_quad_reg_e822(hw, quad, Q_REG_TX_MEMORY_STATUS_L, &lo); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_MEMORY_STATUS_L for quad %u, err %d\n", quad, err); return err; } *tstamp_ready = (u64)hi << 32 | (u64)lo; return 0; } /* E810 functions * * The following functions operate on the E810 series devices which use * a separate external PHY. */ /** * ice_read_phy_reg_e810 - Read register from external PHY on E810 * @hw: pointer to the HW struct * @addr: the address to read from * @val: On return, the value read from the PHY * * Read a register from the external PHY on the E810 device. */ static int ice_read_phy_reg_e810(struct ice_hw *hw, u32 addr, u32 *val) { struct ice_sbq_msg_input msg = {0}; int err; msg.msg_addr_low = lower_16_bits(addr); msg.msg_addr_high = upper_16_bits(addr); msg.opcode = ice_sbq_msg_rd; msg.dest_dev = rmn_0; err = ice_sbq_rw_reg(hw, &msg); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n", err); return err; } *val = msg.data; return 0; } /** * ice_write_phy_reg_e810 - Write register on external PHY on E810 * @hw: pointer to the HW struct * @addr: the address to writem to * @val: the value to write to the PHY * * Write a value to a register of the external PHY on the E810 device. */ static int ice_write_phy_reg_e810(struct ice_hw *hw, u32 addr, u32 val) { struct ice_sbq_msg_input msg = {0}; int err; msg.msg_addr_low = lower_16_bits(addr); msg.msg_addr_high = upper_16_bits(addr); msg.opcode = ice_sbq_msg_wr; msg.dest_dev = rmn_0; msg.data = val; err = ice_sbq_rw_reg(hw, &msg); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n", err); return err; } return 0; } /** * ice_read_phy_tstamp_ll_e810 - Read a PHY timestamp registers through the FW * @hw: pointer to the HW struct * @idx: the timestamp index to read * @hi: 8 bit timestamp high value * @lo: 32 bit timestamp low value * * Read a 8bit timestamp high value and 32 bit timestamp low value out of the * timestamp block of the external PHY on the E810 device using the low latency * timestamp read. */ static int ice_read_phy_tstamp_ll_e810(struct ice_hw *hw, u8 idx, u8 *hi, u32 *lo) { u32 val; u8 i; /* Write TS index to read to the PF register so the FW can read it */ val = FIELD_PREP(TS_LL_READ_TS_IDX, idx) | TS_LL_READ_TS; wr32(hw, PF_SB_ATQBAL, val); /* Read the register repeatedly until the FW provides us the TS */ for (i = TS_LL_READ_RETRIES; i > 0; i--) { val = rd32(hw, PF_SB_ATQBAL); /* When the bit is cleared, the TS is ready in the register */ if (!(FIELD_GET(TS_LL_READ_TS, val))) { /* High 8 bit value of the TS is on the bits 16:23 */ *hi = FIELD_GET(TS_LL_READ_TS_HIGH, val); /* Read the low 32 bit value and set the TS valid bit */ *lo = rd32(hw, PF_SB_ATQBAH) | TS_VALID; return 0; } udelay(10); } /* FW failed to provide the TS in time */ ice_debug(hw, ICE_DBG_PTP, "Failed to read PTP timestamp using low latency read\n"); return -EINVAL; } /** * ice_read_phy_tstamp_sbq_e810 - Read a PHY timestamp registers through the sbq * @hw: pointer to the HW struct * @lport: the lport to read from * @idx: the timestamp index to read * @hi: 8 bit timestamp high value * @lo: 32 bit timestamp low value * * Read a 8bit timestamp high value and 32 bit timestamp low value out of the * timestamp block of the external PHY on the E810 device using sideband queue. */ static int ice_read_phy_tstamp_sbq_e810(struct ice_hw *hw, u8 lport, u8 idx, u8 *hi, u32 *lo) { u32 hi_addr = TS_EXT(HIGH_TX_MEMORY_BANK_START, lport, idx); u32 lo_addr = TS_EXT(LOW_TX_MEMORY_BANK_START, lport, idx); u32 lo_val, hi_val; int err; err = ice_read_phy_reg_e810(hw, lo_addr, &lo_val); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to read low PTP timestamp register, err %d\n", err); return err; } err = ice_read_phy_reg_e810(hw, hi_addr, &hi_val); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to read high PTP timestamp register, err %d\n", err); return err; } *lo = lo_val; *hi = (u8)hi_val; return 0; } /** * ice_read_phy_tstamp_e810 - Read a PHY timestamp out of the external PHY * @hw: pointer to the HW struct * @lport: the lport to read from * @idx: the timestamp index to read * @tstamp: on return, the 40bit timestamp value * * Read a 40bit timestamp value out of the timestamp block of the external PHY * on the E810 device. */ static int ice_read_phy_tstamp_e810(struct ice_hw *hw, u8 lport, u8 idx, u64 *tstamp) { u32 lo = 0; u8 hi = 0; int err; if (hw->dev_caps.ts_dev_info.ts_ll_read) err = ice_read_phy_tstamp_ll_e810(hw, idx, &hi, &lo); else err = ice_read_phy_tstamp_sbq_e810(hw, lport, idx, &hi, &lo); if (err) return err; /* For E810 devices, the timestamp is reported with the lower 32 bits * in the low register, and the upper 8 bits in the high register. */ *tstamp = ((u64)hi) << TS_HIGH_S | ((u64)lo & TS_LOW_M); return 0; } /** * ice_clear_phy_tstamp_e810 - Clear a timestamp from the external PHY * @hw: pointer to the HW struct * @lport: the lport to read from * @idx: the timestamp index to reset * * Read the timestamp and then forcibly overwrite its value to clear the valid * bit from the timestamp block of the external PHY on the E810 device. * * This function should only be called on an idx whose bit is set according to * ice_get_phy_tx_tstamp_ready(). */ static int ice_clear_phy_tstamp_e810(struct ice_hw *hw, u8 lport, u8 idx) { u32 lo_addr, hi_addr; u64 unused_tstamp; int err; err = ice_read_phy_tstamp_e810(hw, lport, idx, &unused_tstamp); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to read the timestamp register for lport %u, idx %u, err %d\n", lport, idx, err); return err; } lo_addr = TS_EXT(LOW_TX_MEMORY_BANK_START, lport, idx); hi_addr = TS_EXT(HIGH_TX_MEMORY_BANK_START, lport, idx); err = ice_write_phy_reg_e810(hw, lo_addr, 0); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to clear low PTP timestamp register for lport %u, idx %u, err %d\n", lport, idx, err); return err; } err = ice_write_phy_reg_e810(hw, hi_addr, 0); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to clear high PTP timestamp register for lport %u, idx %u, err %d\n", lport, idx, err); return err; } return 0; } /** * ice_ptp_init_phy_e810 - Enable PTP function on the external PHY * @hw: pointer to HW struct * * Enable the timesync PTP functionality for the external PHY connected to * this function. */ int ice_ptp_init_phy_e810(struct ice_hw *hw) { u8 tmr_idx; int err; tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_ENA(tmr_idx), GLTSYN_ENA_TSYN_ENA_M); if (err) ice_debug(hw, ICE_DBG_PTP, "PTP failed in ena_phy_time_syn %d\n", err); return err; } /** * ice_ptp_init_phc_e810 - Perform E810 specific PHC initialization * @hw: pointer to HW struct * * Perform E810-specific PTP hardware clock initialization steps. */ static int ice_ptp_init_phc_e810(struct ice_hw *hw) { /* Ensure synchronization delay is zero */ wr32(hw, GLTSYN_SYNC_DLAY, 0); /* Initialize the PHY */ return ice_ptp_init_phy_e810(hw); } /** * ice_ptp_prep_phy_time_e810 - Prepare PHY port with initial time * @hw: Board private structure * @time: Time to initialize the PHY port clock to * * Program the PHY port ETH_GLTSYN_SHTIME registers in preparation setting the * initial clock time. The time will not actually be programmed until the * driver issues an ICE_PTP_INIT_TIME command. * * The time value is the upper 32 bits of the PHY timer, usually in units of * nominal nanoseconds. */ static int ice_ptp_prep_phy_time_e810(struct ice_hw *hw, u32 time) { u8 tmr_idx; int err; tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHTIME_0(tmr_idx), 0); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to write SHTIME_0, err %d\n", err); return err; } err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHTIME_L(tmr_idx), time); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to write SHTIME_L, err %d\n", err); return err; } return 0; } /** * ice_ptp_prep_phy_adj_e810 - Prep PHY port for a time adjustment * @hw: pointer to HW struct * @adj: adjustment value to program * * Prepare the PHY port for an atomic adjustment by programming the PHY * ETH_GLTSYN_SHADJ_L and ETH_GLTSYN_SHADJ_H registers. The actual adjustment * is completed by issuing an ICE_PTP_ADJ_TIME sync command. * * The adjustment value only contains the portion used for the upper 32bits of * the PHY timer, usually in units of nominal nanoseconds. Negative * adjustments are supported using 2s complement arithmetic. */ static int ice_ptp_prep_phy_adj_e810(struct ice_hw *hw, s32 adj) { u8 tmr_idx; int err; tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; /* Adjustments are represented as signed 2's complement values in * nanoseconds. Sub-nanosecond adjustment is not supported. */ err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHADJ_L(tmr_idx), 0); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to write adj to PHY SHADJ_L, err %d\n", err); return err; } err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHADJ_H(tmr_idx), adj); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to write adj to PHY SHADJ_H, err %d\n", err); return err; } return 0; } /** * ice_ptp_prep_phy_incval_e810 - Prep PHY port increment value change * @hw: pointer to HW struct * @incval: The new 40bit increment value to prepare * * Prepare the PHY port for a new increment value by programming the PHY * ETH_GLTSYN_SHADJ_L and ETH_GLTSYN_SHADJ_H registers. The actual change is * completed by issuing an ICE_PTP_INIT_INCVAL command. */ static int ice_ptp_prep_phy_incval_e810(struct ice_hw *hw, u64 incval) { u32 high, low; u8 tmr_idx; int err; tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; low = lower_32_bits(incval); high = upper_32_bits(incval); err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHADJ_L(tmr_idx), low); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to write incval to PHY SHADJ_L, err %d\n", err); return err; } err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHADJ_H(tmr_idx), high); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to write incval PHY SHADJ_H, err %d\n", err); return err; } return 0; } /** * ice_ptp_port_cmd_e810 - Prepare all external PHYs for a timer command * @hw: pointer to HW struct * @cmd: Command to be sent to the port * * Prepare the external PHYs connected to this device for a timer sync * command. */ static int ice_ptp_port_cmd_e810(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd) { u32 cmd_val, val; int err; switch (cmd) { case ICE_PTP_INIT_TIME: cmd_val = GLTSYN_CMD_INIT_TIME; break; case ICE_PTP_INIT_INCVAL: cmd_val = GLTSYN_CMD_INIT_INCVAL; break; case ICE_PTP_ADJ_TIME: cmd_val = GLTSYN_CMD_ADJ_TIME; break; case ICE_PTP_READ_TIME: cmd_val = GLTSYN_CMD_READ_TIME; break; case ICE_PTP_ADJ_TIME_AT_TIME: cmd_val = GLTSYN_CMD_ADJ_INIT_TIME; break; case ICE_PTP_NOP: return 0; } /* Read, modify, write */ err = ice_read_phy_reg_e810(hw, ETH_GLTSYN_CMD, &val); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to read GLTSYN_CMD, err %d\n", err); return err; } /* Modify necessary bits only and perform write */ val &= ~TS_CMD_MASK_E810; val |= cmd_val; err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_CMD, val); if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to write back GLTSYN_CMD, err %d\n", err); return err; } return 0; } /** * ice_get_phy_tx_tstamp_ready_e810 - Read Tx memory status register * @hw: pointer to the HW struct * @port: the PHY port to read * @tstamp_ready: contents of the Tx memory status register * * E810 devices do not use a Tx memory status register. Instead simply * indicate that all timestamps are currently ready. */ static int ice_get_phy_tx_tstamp_ready_e810(struct ice_hw *hw, u8 port, u64 *tstamp_ready) { *tstamp_ready = 0xFFFFFFFFFFFFFFFF; return 0; } /* E810T SMA functions * * The following functions operate specifically on E810T hardware and are used * to access the extended GPIOs available. */ /** * ice_get_pca9575_handle * @hw: pointer to the hw struct * @pca9575_handle: GPIO controller's handle * * Find and return the GPIO controller's handle in the netlist. * When found - the value will be cached in the hw structure and following calls * will return cached value */ static int ice_get_pca9575_handle(struct ice_hw *hw, u16 *pca9575_handle) { struct ice_aqc_get_link_topo *cmd; struct ice_aq_desc desc; int status; u8 idx; /* If handle was read previously return cached value */ if (hw->io_expander_handle) { *pca9575_handle = hw->io_expander_handle; return 0; } /* If handle was not detected read it from the netlist */ cmd = &desc.params.get_link_topo; ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo); /* Set node type to GPIO controller */ cmd->addr.topo_params.node_type_ctx = (ICE_AQC_LINK_TOPO_NODE_TYPE_M & ICE_AQC_LINK_TOPO_NODE_TYPE_GPIO_CTRL); #define SW_PCA9575_SFP_TOPO_IDX 2 #define SW_PCA9575_QSFP_TOPO_IDX 1 /* Check if the SW IO expander controlling SMA exists in the netlist. */ if (hw->device_id == ICE_DEV_ID_E810C_SFP) idx = SW_PCA9575_SFP_TOPO_IDX; else if (hw->device_id == ICE_DEV_ID_E810C_QSFP) idx = SW_PCA9575_QSFP_TOPO_IDX; else return -EOPNOTSUPP; cmd->addr.topo_params.index = idx; status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL); if (status) return -EOPNOTSUPP; /* Verify if we found the right IO expander type */ if (desc.params.get_link_topo.node_part_num != ICE_AQC_GET_LINK_TOPO_NODE_NR_PCA9575) return -EOPNOTSUPP; /* If present save the handle and return it */ hw->io_expander_handle = le16_to_cpu(desc.params.get_link_topo.addr.handle); *pca9575_handle = hw->io_expander_handle; return 0; } /** * ice_read_sma_ctrl_e810t * @hw: pointer to the hw struct * @data: pointer to data to be read from the GPIO controller * * Read the SMA controller state. It is connected to pins 3-7 of Port 1 of the * PCA9575 expander, so only bits 3-7 in data are valid. */ int ice_read_sma_ctrl_e810t(struct ice_hw *hw, u8 *data) { int status; u16 handle; u8 i; status = ice_get_pca9575_handle(hw, &handle); if (status) return status; *data = 0; for (i = ICE_SMA_MIN_BIT_E810T; i <= ICE_SMA_MAX_BIT_E810T; i++) { bool pin; status = ice_aq_get_gpio(hw, handle, i + ICE_PCA9575_P1_OFFSET, &pin, NULL); if (status) break; *data |= (u8)(!pin) << i; } return status; } /** * ice_write_sma_ctrl_e810t * @hw: pointer to the hw struct * @data: data to be written to the GPIO controller * * Write the data to the SMA controller. It is connected to pins 3-7 of Port 1 * of the PCA9575 expander, so only bits 3-7 in data are valid. */ int ice_write_sma_ctrl_e810t(struct ice_hw *hw, u8 data) { int status; u16 handle; u8 i; status = ice_get_pca9575_handle(hw, &handle); if (status) return status; for (i = ICE_SMA_MIN_BIT_E810T; i <= ICE_SMA_MAX_BIT_E810T; i++) { bool pin; pin = !(data & (1 << i)); status = ice_aq_set_gpio(hw, handle, i + ICE_PCA9575_P1_OFFSET, pin, NULL); if (status) break; } return status; } /** * ice_read_pca9575_reg_e810t * @hw: pointer to the hw struct * @offset: GPIO controller register offset * @data: pointer to data to be read from the GPIO controller * * Read the register from the GPIO controller */ int ice_read_pca9575_reg_e810t(struct ice_hw *hw, u8 offset, u8 *data) { struct ice_aqc_link_topo_addr link_topo; __le16 addr; u16 handle; int err; memset(&link_topo, 0, sizeof(link_topo)); err = ice_get_pca9575_handle(hw, &handle); if (err) return err; link_topo.handle = cpu_to_le16(handle); link_topo.topo_params.node_type_ctx = FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_CTX_M, ICE_AQC_LINK_TOPO_NODE_CTX_PROVIDED); addr = cpu_to_le16((u16)offset); return ice_aq_read_i2c(hw, link_topo, 0, addr, 1, data, NULL); } /* Device agnostic functions * * The following functions implement shared behavior common to both E822 and * E810 devices, possibly calling a device specific implementation where * necessary. */ /** * ice_ptp_lock - Acquire PTP global semaphore register lock * @hw: pointer to the HW struct * * Acquire the global PTP hardware semaphore lock. Returns true if the lock * was acquired, false otherwise. * * The PFTSYN_SEM register sets the busy bit on read, returning the previous * value. If software sees the busy bit cleared, this means that this function * acquired the lock (and the busy bit is now set). If software sees the busy * bit set, it means that another function acquired the lock. * * Software must clear the busy bit with a write to release the lock for other * functions when done. */ bool ice_ptp_lock(struct ice_hw *hw) { u32 hw_lock; int i; #define MAX_TRIES 15 for (i = 0; i < MAX_TRIES; i++) { hw_lock = rd32(hw, PFTSYN_SEM + (PFTSYN_SEM_BYTES * hw->pf_id)); hw_lock = hw_lock & PFTSYN_SEM_BUSY_M; if (hw_lock) { /* Somebody is holding the lock */ usleep_range(5000, 6000); continue; } break; } return !hw_lock; } /** * ice_ptp_unlock - Release PTP global semaphore register lock * @hw: pointer to the HW struct * * Release the global PTP hardware semaphore lock. This is done by writing to * the PFTSYN_SEM register. */ void ice_ptp_unlock(struct ice_hw *hw) { wr32(hw, PFTSYN_SEM + (PFTSYN_SEM_BYTES * hw->pf_id), 0); } /** * ice_ptp_init_phy_model - Initialize hw->phy_model based on device type * @hw: pointer to the HW structure * * Determine the PHY model for the device, and initialize hw->phy_model * for use by other functions. */ void ice_ptp_init_phy_model(struct ice_hw *hw) { if (ice_is_e810(hw)) hw->phy_model = ICE_PHY_E810; else hw->phy_model = ICE_PHY_E822; } /** * ice_ptp_tmr_cmd - Prepare and trigger a timer sync command * @hw: pointer to HW struct * @cmd: the command to issue * * Prepare the source timer and PHY timers and then trigger the requested * command. This causes the shadow registers previously written in preparation * for the command to be synchronously applied to both the source and PHY * timers. */ static int ice_ptp_tmr_cmd(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd) { int err; /* First, prepare the source timer */ ice_ptp_src_cmd(hw, cmd); /* Next, prepare the ports */ switch (hw->phy_model) { case ICE_PHY_E810: err = ice_ptp_port_cmd_e810(hw, cmd); break; case ICE_PHY_E822: err = ice_ptp_port_cmd_e822(hw, cmd); break; default: err = -EOPNOTSUPP; } if (err) { ice_debug(hw, ICE_DBG_PTP, "Failed to prepare PHY ports for timer command %u, err %d\n", cmd, err); return err; } /* Write the sync command register to drive both source and PHY timer * commands synchronously */ ice_ptp_exec_tmr_cmd(hw); return 0; } /** * ice_ptp_init_time - Initialize device time to provided value * @hw: pointer to HW struct * @time: 64bits of time (GLTSYN_TIME_L and GLTSYN_TIME_H) * * Initialize the device to the specified time provided. This requires a three * step process: * * 1) write the new init time to the source timer shadow registers * 2) write the new init time to the PHY timer shadow registers * 3) issue an init_time timer command to synchronously switch both the source * and port timers to the new init time value at the next clock cycle. */ int ice_ptp_init_time(struct ice_hw *hw, u64 time) { u8 tmr_idx; int err; tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; /* Source timers */ wr32(hw, GLTSYN_SHTIME_L(tmr_idx), lower_32_bits(time)); wr32(hw, GLTSYN_SHTIME_H(tmr_idx), upper_32_bits(time)); wr32(hw, GLTSYN_SHTIME_0(tmr_idx), 0); /* PHY timers */ /* Fill Rx and Tx ports and send msg to PHY */ switch (hw->phy_model) { case ICE_PHY_E810: err = ice_ptp_prep_phy_time_e810(hw, time & 0xFFFFFFFF); break; case ICE_PHY_E822: err = ice_ptp_prep_phy_time_e822(hw, time & 0xFFFFFFFF); break; default: err = -EOPNOTSUPP; } if (err) return err; return ice_ptp_tmr_cmd(hw, ICE_PTP_INIT_TIME); } /** * ice_ptp_write_incval - Program PHC with new increment value * @hw: pointer to HW struct * @incval: Source timer increment value per clock cycle * * Program the PHC with a new increment value. This requires a three-step * process: * * 1) Write the increment value to the source timer shadow registers * 2) Write the increment value to the PHY timer shadow registers * 3) Issue an ICE_PTP_INIT_INCVAL timer command to synchronously switch both * the source and port timers to the new increment value at the next clock * cycle. */ int ice_ptp_write_incval(struct ice_hw *hw, u64 incval) { u8 tmr_idx; int err; tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; /* Shadow Adjust */ wr32(hw, GLTSYN_SHADJ_L(tmr_idx), lower_32_bits(incval)); wr32(hw, GLTSYN_SHADJ_H(tmr_idx), upper_32_bits(incval)); switch (hw->phy_model) { case ICE_PHY_E810: err = ice_ptp_prep_phy_incval_e810(hw, incval); break; case ICE_PHY_E822: err = ice_ptp_prep_phy_incval_e822(hw, incval); break; default: err = -EOPNOTSUPP; } if (err) return err; return ice_ptp_tmr_cmd(hw, ICE_PTP_INIT_INCVAL); } /** * ice_ptp_write_incval_locked - Program new incval while holding semaphore * @hw: pointer to HW struct * @incval: Source timer increment value per clock cycle * * Program a new PHC incval while holding the PTP semaphore. */ int ice_ptp_write_incval_locked(struct ice_hw *hw, u64 incval) { int err; if (!ice_ptp_lock(hw)) return -EBUSY; err = ice_ptp_write_incval(hw, incval); ice_ptp_unlock(hw); return err; } /** * ice_ptp_adj_clock - Adjust PHC clock time atomically * @hw: pointer to HW struct * @adj: Adjustment in nanoseconds * * Perform an atomic adjustment of the PHC time by the specified number of * nanoseconds. This requires a three-step process: * * 1) Write the adjustment to the source timer shadow registers * 2) Write the adjustment to the PHY timer shadow registers * 3) Issue an ICE_PTP_ADJ_TIME timer command to synchronously apply the * adjustment to both the source and port timers at the next clock cycle. */ int ice_ptp_adj_clock(struct ice_hw *hw, s32 adj) { u8 tmr_idx; int err; tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; /* Write the desired clock adjustment into the GLTSYN_SHADJ register. * For an ICE_PTP_ADJ_TIME command, this set of registers represents * the value to add to the clock time. It supports subtraction by * interpreting the value as a 2's complement integer. */ wr32(hw, GLTSYN_SHADJ_L(tmr_idx), 0); wr32(hw, GLTSYN_SHADJ_H(tmr_idx), adj); switch (hw->phy_model) { case ICE_PHY_E810: err = ice_ptp_prep_phy_adj_e810(hw, adj); break; case ICE_PHY_E822: err = ice_ptp_prep_phy_adj_e822(hw, adj); break; default: err = -EOPNOTSUPP; } if (err) return err; return ice_ptp_tmr_cmd(hw, ICE_PTP_ADJ_TIME); } /** * ice_read_phy_tstamp - Read a PHY timestamp from the timestamo block * @hw: pointer to the HW struct * @block: the block to read from * @idx: the timestamp index to read * @tstamp: on return, the 40bit timestamp value * * Read a 40bit timestamp value out of the timestamp block. For E822 devices, * the block is the quad to read from. For E810 devices, the block is the * logical port to read from. */ int ice_read_phy_tstamp(struct ice_hw *hw, u8 block, u8 idx, u64 *tstamp) { switch (hw->phy_model) { case ICE_PHY_E810: return ice_read_phy_tstamp_e810(hw, block, idx, tstamp); case ICE_PHY_E822: return ice_read_phy_tstamp_e822(hw, block, idx, tstamp); default: return -EOPNOTSUPP; } } /** * ice_clear_phy_tstamp - Clear a timestamp from the timestamp block * @hw: pointer to the HW struct * @block: the block to read from * @idx: the timestamp index to reset * * Clear a timestamp from the timestamp block, discarding its value without * returning it. This resets the memory status bit for the timestamp index * allowing it to be reused for another timestamp in the future. * * For E822 devices, the block number is the PHY quad to clear from. For E810 * devices, the block number is the logical port to clear from. * * This function must only be called on a timestamp index whose valid bit is * set according to ice_get_phy_tx_tstamp_ready(). */ int ice_clear_phy_tstamp(struct ice_hw *hw, u8 block, u8 idx) { switch (hw->phy_model) { case ICE_PHY_E810: return ice_clear_phy_tstamp_e810(hw, block, idx); case ICE_PHY_E822: return ice_clear_phy_tstamp_e822(hw, block, idx); default: return -EOPNOTSUPP; } } /** * ice_get_pf_c827_idx - find and return the C827 index for the current pf * @hw: pointer to the hw struct * @idx: index of the found C827 PHY * Return: * * 0 - success * * negative - failure */ static int ice_get_pf_c827_idx(struct ice_hw *hw, u8 *idx) { struct ice_aqc_get_link_topo cmd; u8 node_part_number; u16 node_handle; int status; u8 ctx; if (hw->mac_type != ICE_MAC_E810) return -ENODEV; if (hw->device_id != ICE_DEV_ID_E810C_QSFP) { *idx = C827_0; return 0; } memset(&cmd, 0, sizeof(cmd)); ctx = ICE_AQC_LINK_TOPO_NODE_TYPE_PHY << ICE_AQC_LINK_TOPO_NODE_TYPE_S; ctx |= ICE_AQC_LINK_TOPO_NODE_CTX_PORT << ICE_AQC_LINK_TOPO_NODE_CTX_S; cmd.addr.topo_params.node_type_ctx = ctx; status = ice_aq_get_netlist_node(hw, &cmd, &node_part_number, &node_handle); if (status || node_part_number != ICE_AQC_GET_LINK_TOPO_NODE_NR_C827) return -ENOENT; if (node_handle == E810C_QSFP_C827_0_HANDLE) *idx = C827_0; else if (node_handle == E810C_QSFP_C827_1_HANDLE) *idx = C827_1; else return -EIO; return 0; } /** * ice_ptp_reset_ts_memory - Reset timestamp memory for all blocks * @hw: pointer to the HW struct */ void ice_ptp_reset_ts_memory(struct ice_hw *hw) { switch (hw->phy_model) { case ICE_PHY_E822: ice_ptp_reset_ts_memory_e822(hw); break; case ICE_PHY_E810: default: return; } } /** * ice_ptp_init_phc - Initialize PTP hardware clock * @hw: pointer to the HW struct * * Perform the steps required to initialize the PTP hardware clock. */ int ice_ptp_init_phc(struct ice_hw *hw) { u8 src_idx = hw->func_caps.ts_func_info.tmr_index_owned; /* Enable source clocks */ wr32(hw, GLTSYN_ENA(src_idx), GLTSYN_ENA_TSYN_ENA_M); /* Clear event err indications for auxiliary pins */ (void)rd32(hw, GLTSYN_STAT(src_idx)); switch (hw->phy_model) { case ICE_PHY_E810: return ice_ptp_init_phc_e810(hw); case ICE_PHY_E822: return ice_ptp_init_phc_e822(hw); default: return -EOPNOTSUPP; } } /** * ice_get_phy_tx_tstamp_ready - Read PHY Tx memory status indication * @hw: pointer to the HW struct * @block: the timestamp block to check * @tstamp_ready: storage for the PHY Tx memory status information * * Check the PHY for Tx timestamp memory status. This reports a 64 bit value * which indicates which timestamps in the block may be captured. A set bit * means the timestamp can be read. An unset bit means the timestamp is not * ready and software should avoid reading the register. */ int ice_get_phy_tx_tstamp_ready(struct ice_hw *hw, u8 block, u64 *tstamp_ready) { switch (hw->phy_model) { case ICE_PHY_E810: return ice_get_phy_tx_tstamp_ready_e810(hw, block, tstamp_ready); case ICE_PHY_E822: return ice_get_phy_tx_tstamp_ready_e822(hw, block, tstamp_ready); break; default: return -EOPNOTSUPP; } } /** * ice_cgu_get_pin_desc_e823 - get pin description array * @hw: pointer to the hw struct * @input: if request is done against input or output pin * @size: number of inputs/outputs * * Return: pointer to pin description array associated to given hw. */ static const struct ice_cgu_pin_desc * ice_cgu_get_pin_desc_e823(struct ice_hw *hw, bool input, int *size) { static const struct ice_cgu_pin_desc *t; if (hw->cgu_part_number == ICE_AQC_GET_LINK_TOPO_NODE_NR_ZL30632_80032) { if (input) { t = ice_e823_zl_cgu_inputs; *size = ARRAY_SIZE(ice_e823_zl_cgu_inputs); } else { t = ice_e823_zl_cgu_outputs; *size = ARRAY_SIZE(ice_e823_zl_cgu_outputs); } } else if (hw->cgu_part_number == ICE_AQC_GET_LINK_TOPO_NODE_NR_SI5383_5384) { if (input) { t = ice_e823_si_cgu_inputs; *size = ARRAY_SIZE(ice_e823_si_cgu_inputs); } else { t = ice_e823_si_cgu_outputs; *size = ARRAY_SIZE(ice_e823_si_cgu_outputs); } } else { t = NULL; *size = 0; } return t; } /** * ice_cgu_get_pin_desc - get pin description array * @hw: pointer to the hw struct * @input: if request is done against input or output pins * @size: size of array returned by function * * Return: pointer to pin description array associated to given hw. */ static const struct ice_cgu_pin_desc * ice_cgu_get_pin_desc(struct ice_hw *hw, bool input, int *size) { const struct ice_cgu_pin_desc *t = NULL; switch (hw->device_id) { case ICE_DEV_ID_E810C_SFP: if (input) { t = ice_e810t_sfp_cgu_inputs; *size = ARRAY_SIZE(ice_e810t_sfp_cgu_inputs); } else { t = ice_e810t_sfp_cgu_outputs; *size = ARRAY_SIZE(ice_e810t_sfp_cgu_outputs); } break; case ICE_DEV_ID_E810C_QSFP: if (input) { t = ice_e810t_qsfp_cgu_inputs; *size = ARRAY_SIZE(ice_e810t_qsfp_cgu_inputs); } else { t = ice_e810t_qsfp_cgu_outputs; *size = ARRAY_SIZE(ice_e810t_qsfp_cgu_outputs); } break; case ICE_DEV_ID_E823L_10G_BASE_T: case ICE_DEV_ID_E823L_1GBE: case ICE_DEV_ID_E823L_BACKPLANE: case ICE_DEV_ID_E823L_QSFP: case ICE_DEV_ID_E823L_SFP: case ICE_DEV_ID_E823C_10G_BASE_T: case ICE_DEV_ID_E823C_BACKPLANE: case ICE_DEV_ID_E823C_QSFP: case ICE_DEV_ID_E823C_SFP: case ICE_DEV_ID_E823C_SGMII: t = ice_cgu_get_pin_desc_e823(hw, input, size); break; default: break; } return t; } /** * ice_cgu_get_pin_type - get pin's type * @hw: pointer to the hw struct * @pin: pin index * @input: if request is done against input or output pin * * Return: type of a pin. */ enum dpll_pin_type ice_cgu_get_pin_type(struct ice_hw *hw, u8 pin, bool input) { const struct ice_cgu_pin_desc *t; int t_size; t = ice_cgu_get_pin_desc(hw, input, &t_size); if (!t) return 0; if (pin >= t_size) return 0; return t[pin].type; } /** * ice_cgu_get_pin_freq_supp - get pin's supported frequency * @hw: pointer to the hw struct * @pin: pin index * @input: if request is done against input or output pin * @num: output number of supported frequencies * * Get frequency supported number and array of supported frequencies. * * Return: array of supported frequencies for given pin. */ struct dpll_pin_frequency * ice_cgu_get_pin_freq_supp(struct ice_hw *hw, u8 pin, bool input, u8 *num) { const struct ice_cgu_pin_desc *t; int t_size; *num = 0; t = ice_cgu_get_pin_desc(hw, input, &t_size); if (!t) return NULL; if (pin >= t_size) return NULL; *num = t[pin].freq_supp_num; return t[pin].freq_supp; } /** * ice_cgu_get_pin_name - get pin's name * @hw: pointer to the hw struct * @pin: pin index * @input: if request is done against input or output pin * * Return: * * null terminated char array with name * * NULL in case of failure */ const char *ice_cgu_get_pin_name(struct ice_hw *hw, u8 pin, bool input) { const struct ice_cgu_pin_desc *t; int t_size; t = ice_cgu_get_pin_desc(hw, input, &t_size); if (!t) return NULL; if (pin >= t_size) return NULL; return t[pin].name; } /** * ice_get_cgu_state - get the state of the DPLL * @hw: pointer to the hw struct * @dpll_idx: Index of internal DPLL unit * @last_dpll_state: last known state of DPLL * @pin: pointer to a buffer for returning currently active pin * @ref_state: reference clock state * @eec_mode: eec mode of the DPLL * @phase_offset: pointer to a buffer for returning phase offset * @dpll_state: state of the DPLL (output) * * This function will read the state of the DPLL(dpll_idx). Non-null * 'pin', 'ref_state', 'eec_mode' and 'phase_offset' parameters are used to * retrieve currently active pin, state, mode and phase_offset respectively. * * Return: state of the DPLL */ int ice_get_cgu_state(struct ice_hw *hw, u8 dpll_idx, enum dpll_lock_status last_dpll_state, u8 *pin, u8 *ref_state, u8 *eec_mode, s64 *phase_offset, enum dpll_lock_status *dpll_state) { u8 hw_ref_state, hw_dpll_state, hw_eec_mode, hw_config; s64 hw_phase_offset; int status; status = ice_aq_get_cgu_dpll_status(hw, dpll_idx, &hw_ref_state, &hw_dpll_state, &hw_config, &hw_phase_offset, &hw_eec_mode); if (status) return status; if (pin) /* current ref pin in dpll_state_refsel_status_X register */ *pin = hw_config & ICE_AQC_GET_CGU_DPLL_CONFIG_CLK_REF_SEL; if (phase_offset) *phase_offset = hw_phase_offset; if (ref_state) *ref_state = hw_ref_state; if (eec_mode) *eec_mode = hw_eec_mode; if (!dpll_state) return 0; /* According to ZL DPLL documentation, once state reach LOCKED_HO_ACQ * it would never return to FREERUN. This aligns to ITU-T G.781 * Recommendation. We cannot report HOLDOVER as HO memory is cleared * while switching to another reference. * Only for situations where previous state was either: "LOCKED without * HO_ACQ" or "HOLDOVER" we actually back to FREERUN. */ if (hw_dpll_state & ICE_AQC_GET_CGU_DPLL_STATUS_STATE_LOCK) { if (hw_dpll_state & ICE_AQC_GET_CGU_DPLL_STATUS_STATE_HO_READY) *dpll_state = DPLL_LOCK_STATUS_LOCKED_HO_ACQ; else *dpll_state = DPLL_LOCK_STATUS_LOCKED; } else if (last_dpll_state == DPLL_LOCK_STATUS_LOCKED_HO_ACQ || last_dpll_state == DPLL_LOCK_STATUS_HOLDOVER) { *dpll_state = DPLL_LOCK_STATUS_HOLDOVER; } else { *dpll_state = DPLL_LOCK_STATUS_UNLOCKED; } return 0; } /** * ice_get_cgu_rclk_pin_info - get info on available recovered clock pins * @hw: pointer to the hw struct * @base_idx: returns index of first recovered clock pin on device * @pin_num: returns number of recovered clock pins available on device * * Based on hw provide caller info about recovery clock pins available on the * board. * * Return: * * 0 - success, information is valid * * negative - failure, information is not valid */ int ice_get_cgu_rclk_pin_info(struct ice_hw *hw, u8 *base_idx, u8 *pin_num) { u8 phy_idx; int ret; switch (hw->device_id) { case ICE_DEV_ID_E810C_SFP: case ICE_DEV_ID_E810C_QSFP: ret = ice_get_pf_c827_idx(hw, &phy_idx); if (ret) return ret; *base_idx = E810T_CGU_INPUT_C827(phy_idx, ICE_RCLKA_PIN); *pin_num = ICE_E810_RCLK_PINS_NUM; ret = 0; break; case ICE_DEV_ID_E823L_10G_BASE_T: case ICE_DEV_ID_E823L_1GBE: case ICE_DEV_ID_E823L_BACKPLANE: case ICE_DEV_ID_E823L_QSFP: case ICE_DEV_ID_E823L_SFP: case ICE_DEV_ID_E823C_10G_BASE_T: case ICE_DEV_ID_E823C_BACKPLANE: case ICE_DEV_ID_E823C_QSFP: case ICE_DEV_ID_E823C_SFP: case ICE_DEV_ID_E823C_SGMII: *pin_num = ICE_E822_RCLK_PINS_NUM; ret = 0; if (hw->cgu_part_number == ICE_AQC_GET_LINK_TOPO_NODE_NR_ZL30632_80032) *base_idx = ZL_REF1P; else if (hw->cgu_part_number == ICE_AQC_GET_LINK_TOPO_NODE_NR_SI5383_5384) *base_idx = SI_REF1P; else ret = -ENODEV; break; default: ret = -ENODEV; break; } return ret; } /** * ice_cgu_get_output_pin_state_caps - get output pin state capabilities * @hw: pointer to the hw struct * @pin_id: id of a pin * @caps: capabilities to modify * * Return: * * 0 - success, state capabilities were modified * * negative - failure, capabilities were not modified */ int ice_cgu_get_output_pin_state_caps(struct ice_hw *hw, u8 pin_id, unsigned long *caps) { bool can_change = true; switch (hw->device_id) { case ICE_DEV_ID_E810C_SFP: if (pin_id == ZL_OUT2 || pin_id == ZL_OUT3) can_change = false; break; case ICE_DEV_ID_E810C_QSFP: if (pin_id == ZL_OUT2 || pin_id == ZL_OUT3 || pin_id == ZL_OUT4) can_change = false; break; case ICE_DEV_ID_E823L_10G_BASE_T: case ICE_DEV_ID_E823L_1GBE: case ICE_DEV_ID_E823L_BACKPLANE: case ICE_DEV_ID_E823L_QSFP: case ICE_DEV_ID_E823L_SFP: case ICE_DEV_ID_E823C_10G_BASE_T: case ICE_DEV_ID_E823C_BACKPLANE: case ICE_DEV_ID_E823C_QSFP: case ICE_DEV_ID_E823C_SFP: case ICE_DEV_ID_E823C_SGMII: if (hw->cgu_part_number == ICE_AQC_GET_LINK_TOPO_NODE_NR_ZL30632_80032 && pin_id == ZL_OUT2) can_change = false; else if (hw->cgu_part_number == ICE_AQC_GET_LINK_TOPO_NODE_NR_SI5383_5384 && pin_id == SI_OUT1) can_change = false; break; default: return -EINVAL; } if (can_change) *caps |= DPLL_PIN_CAPABILITIES_STATE_CAN_CHANGE; else *caps &= ~DPLL_PIN_CAPABILITIES_STATE_CAN_CHANGE; return 0; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1