Contributors: 19
Author Tokens Token Proportion Commits Commit Proportion
Kiran Patil 3740 40.94% 3 5.17%
Michal Swiatkowski 1788 19.57% 9 15.52%
Marcin Szycik 1658 18.15% 7 12.07%
Amritha Nambiar 1006 11.01% 3 5.17%
Martyna Szapar-Mudlaw 484 5.30% 4 6.90%
Aniruddha Paul 204 2.23% 1 1.72%
Anirudh Venkataramanan 125 1.37% 11 18.97%
Tony Nguyen 22 0.24% 7 12.07%
Ratheesh Kannoth 22 0.24% 1 1.72%
Sridhar Samudrala 18 0.20% 1 1.72%
Md Fahad Iqbal Polash 14 0.15% 1 1.72%
Wojciech Drewek 13 0.14% 2 3.45%
Brett Creeley 12 0.13% 2 3.45%
Akeem G. Abodunrin 12 0.13% 1 1.72%
Henry Tieman 6 0.07% 1 1.72%
Sudheer Mogilappagari 6 0.07% 1 1.72%
Arnd Bergmann 4 0.04% 1 1.72%
Dan Carpenter 1 0.01% 1 1.72%
Lu Wei 1 0.01% 1 1.72%
Total 9136 58


// SPDX-License-Identifier: GPL-2.0
/* Copyright (C) 2019-2021, Intel Corporation. */

#include "ice.h"
#include "ice_tc_lib.h"
#include "ice_fltr.h"
#include "ice_lib.h"
#include "ice_protocol_type.h"

#define ICE_TC_METADATA_LKUP_IDX 0

/**
 * ice_tc_count_lkups - determine lookup count for switch filter
 * @flags: TC-flower flags
 * @headers: Pointer to TC flower filter header structure
 * @fltr: Pointer to outer TC filter structure
 *
 * Determine lookup count based on TC flower input for switch filter.
 */
static int
ice_tc_count_lkups(u32 flags, struct ice_tc_flower_lyr_2_4_hdrs *headers,
		   struct ice_tc_flower_fltr *fltr)
{
	int lkups_cnt = 1; /* 0th lookup is metadata */

	/* Always add metadata as the 0th lookup. Included elements:
	 * - Direction flag (always present)
	 * - ICE_TC_FLWR_FIELD_VLAN_TPID (present if specified)
	 * - Tunnel flag (present if tunnel)
	 */

	if (flags & ICE_TC_FLWR_FIELD_TENANT_ID)
		lkups_cnt++;

	if (flags & ICE_TC_FLWR_FIELD_ENC_DST_MAC)
		lkups_cnt++;

	if (flags & ICE_TC_FLWR_FIELD_ENC_OPTS)
		lkups_cnt++;

	if (flags & (ICE_TC_FLWR_FIELD_ENC_SRC_IPV4 |
		     ICE_TC_FLWR_FIELD_ENC_DEST_IPV4 |
		     ICE_TC_FLWR_FIELD_ENC_SRC_IPV6 |
		     ICE_TC_FLWR_FIELD_ENC_DEST_IPV6))
		lkups_cnt++;

	if (flags & (ICE_TC_FLWR_FIELD_ENC_IP_TOS |
		     ICE_TC_FLWR_FIELD_ENC_IP_TTL))
		lkups_cnt++;

	if (flags & ICE_TC_FLWR_FIELD_ENC_DEST_L4_PORT)
		lkups_cnt++;

	if (flags & ICE_TC_FLWR_FIELD_ETH_TYPE_ID)
		lkups_cnt++;

	/* are MAC fields specified? */
	if (flags & (ICE_TC_FLWR_FIELD_DST_MAC | ICE_TC_FLWR_FIELD_SRC_MAC))
		lkups_cnt++;

	/* is VLAN specified? */
	if (flags & (ICE_TC_FLWR_FIELD_VLAN | ICE_TC_FLWR_FIELD_VLAN_PRIO))
		lkups_cnt++;

	/* is CVLAN specified? */
	if (flags & (ICE_TC_FLWR_FIELD_CVLAN | ICE_TC_FLWR_FIELD_CVLAN_PRIO))
		lkups_cnt++;

	/* are PPPoE options specified? */
	if (flags & (ICE_TC_FLWR_FIELD_PPPOE_SESSID |
		     ICE_TC_FLWR_FIELD_PPP_PROTO))
		lkups_cnt++;

	/* are IPv[4|6] fields specified? */
	if (flags & (ICE_TC_FLWR_FIELD_DEST_IPV4 | ICE_TC_FLWR_FIELD_SRC_IPV4 |
		     ICE_TC_FLWR_FIELD_DEST_IPV6 | ICE_TC_FLWR_FIELD_SRC_IPV6))
		lkups_cnt++;

	if (flags & (ICE_TC_FLWR_FIELD_IP_TOS | ICE_TC_FLWR_FIELD_IP_TTL))
		lkups_cnt++;

	/* are L2TPv3 options specified? */
	if (flags & ICE_TC_FLWR_FIELD_L2TPV3_SESSID)
		lkups_cnt++;

	/* is L4 (TCP/UDP/any other L4 protocol fields) specified? */
	if (flags & (ICE_TC_FLWR_FIELD_DEST_L4_PORT |
		     ICE_TC_FLWR_FIELD_SRC_L4_PORT))
		lkups_cnt++;

	return lkups_cnt;
}

static enum ice_protocol_type ice_proto_type_from_mac(bool inner)
{
	return inner ? ICE_MAC_IL : ICE_MAC_OFOS;
}

static enum ice_protocol_type ice_proto_type_from_etype(bool inner)
{
	return inner ? ICE_ETYPE_IL : ICE_ETYPE_OL;
}

static enum ice_protocol_type ice_proto_type_from_ipv4(bool inner)
{
	return inner ? ICE_IPV4_IL : ICE_IPV4_OFOS;
}

static enum ice_protocol_type ice_proto_type_from_ipv6(bool inner)
{
	return inner ? ICE_IPV6_IL : ICE_IPV6_OFOS;
}

static enum ice_protocol_type ice_proto_type_from_l4_port(u16 ip_proto)
{
	switch (ip_proto) {
	case IPPROTO_TCP:
		return ICE_TCP_IL;
	case IPPROTO_UDP:
		return ICE_UDP_ILOS;
	}

	return 0;
}

static enum ice_protocol_type
ice_proto_type_from_tunnel(enum ice_tunnel_type type)
{
	switch (type) {
	case TNL_VXLAN:
		return ICE_VXLAN;
	case TNL_GENEVE:
		return ICE_GENEVE;
	case TNL_GRETAP:
		return ICE_NVGRE;
	case TNL_GTPU:
		/* NO_PAY profiles will not work with GTP-U */
		return ICE_GTP;
	case TNL_GTPC:
		return ICE_GTP_NO_PAY;
	default:
		return 0;
	}
}

static enum ice_sw_tunnel_type
ice_sw_type_from_tunnel(enum ice_tunnel_type type)
{
	switch (type) {
	case TNL_VXLAN:
		return ICE_SW_TUN_VXLAN;
	case TNL_GENEVE:
		return ICE_SW_TUN_GENEVE;
	case TNL_GRETAP:
		return ICE_SW_TUN_NVGRE;
	case TNL_GTPU:
		return ICE_SW_TUN_GTPU;
	case TNL_GTPC:
		return ICE_SW_TUN_GTPC;
	default:
		return ICE_NON_TUN;
	}
}

static u16 ice_check_supported_vlan_tpid(u16 vlan_tpid)
{
	switch (vlan_tpid) {
	case ETH_P_8021Q:
	case ETH_P_8021AD:
	case ETH_P_QINQ1:
		return vlan_tpid;
	default:
		return 0;
	}
}

static int
ice_tc_fill_tunnel_outer(u32 flags, struct ice_tc_flower_fltr *fltr,
			 struct ice_adv_lkup_elem *list, int i)
{
	struct ice_tc_flower_lyr_2_4_hdrs *hdr = &fltr->outer_headers;

	if (flags & ICE_TC_FLWR_FIELD_TENANT_ID) {
		u32 tenant_id;

		list[i].type = ice_proto_type_from_tunnel(fltr->tunnel_type);
		switch (fltr->tunnel_type) {
		case TNL_VXLAN:
		case TNL_GENEVE:
			tenant_id = be32_to_cpu(fltr->tenant_id) << 8;
			list[i].h_u.tnl_hdr.vni = cpu_to_be32(tenant_id);
			memcpy(&list[i].m_u.tnl_hdr.vni, "\xff\xff\xff\x00", 4);
			i++;
			break;
		case TNL_GRETAP:
			list[i].h_u.nvgre_hdr.tni_flow = fltr->tenant_id;
			memcpy(&list[i].m_u.nvgre_hdr.tni_flow,
			       "\xff\xff\xff\xff", 4);
			i++;
			break;
		case TNL_GTPC:
		case TNL_GTPU:
			list[i].h_u.gtp_hdr.teid = fltr->tenant_id;
			memcpy(&list[i].m_u.gtp_hdr.teid,
			       "\xff\xff\xff\xff", 4);
			i++;
			break;
		default:
			break;
		}
	}

	if (flags & ICE_TC_FLWR_FIELD_ENC_DST_MAC) {
		list[i].type = ice_proto_type_from_mac(false);
		ether_addr_copy(list[i].h_u.eth_hdr.dst_addr,
				hdr->l2_key.dst_mac);
		ether_addr_copy(list[i].m_u.eth_hdr.dst_addr,
				hdr->l2_mask.dst_mac);
		i++;
	}

	if (flags & ICE_TC_FLWR_FIELD_ENC_OPTS &&
	    (fltr->tunnel_type == TNL_GTPU || fltr->tunnel_type == TNL_GTPC)) {
		list[i].type = ice_proto_type_from_tunnel(fltr->tunnel_type);

		if (fltr->gtp_pdu_info_masks.pdu_type) {
			list[i].h_u.gtp_hdr.pdu_type =
				fltr->gtp_pdu_info_keys.pdu_type << 4;
			memcpy(&list[i].m_u.gtp_hdr.pdu_type, "\xf0", 1);
		}

		if (fltr->gtp_pdu_info_masks.qfi) {
			list[i].h_u.gtp_hdr.qfi = fltr->gtp_pdu_info_keys.qfi;
			memcpy(&list[i].m_u.gtp_hdr.qfi, "\x3f", 1);
		}

		i++;
	}

	if (flags & (ICE_TC_FLWR_FIELD_ENC_SRC_IPV4 |
		     ICE_TC_FLWR_FIELD_ENC_DEST_IPV4)) {
		list[i].type = ice_proto_type_from_ipv4(false);

		if (flags & ICE_TC_FLWR_FIELD_ENC_SRC_IPV4) {
			list[i].h_u.ipv4_hdr.src_addr = hdr->l3_key.src_ipv4;
			list[i].m_u.ipv4_hdr.src_addr = hdr->l3_mask.src_ipv4;
		}
		if (flags & ICE_TC_FLWR_FIELD_ENC_DEST_IPV4) {
			list[i].h_u.ipv4_hdr.dst_addr = hdr->l3_key.dst_ipv4;
			list[i].m_u.ipv4_hdr.dst_addr = hdr->l3_mask.dst_ipv4;
		}
		i++;
	}

	if (flags & (ICE_TC_FLWR_FIELD_ENC_SRC_IPV6 |
		     ICE_TC_FLWR_FIELD_ENC_DEST_IPV6)) {
		list[i].type = ice_proto_type_from_ipv6(false);

		if (flags & ICE_TC_FLWR_FIELD_ENC_SRC_IPV6) {
			memcpy(&list[i].h_u.ipv6_hdr.src_addr,
			       &hdr->l3_key.src_ipv6_addr,
			       sizeof(hdr->l3_key.src_ipv6_addr));
			memcpy(&list[i].m_u.ipv6_hdr.src_addr,
			       &hdr->l3_mask.src_ipv6_addr,
			       sizeof(hdr->l3_mask.src_ipv6_addr));
		}
		if (flags & ICE_TC_FLWR_FIELD_ENC_DEST_IPV6) {
			memcpy(&list[i].h_u.ipv6_hdr.dst_addr,
			       &hdr->l3_key.dst_ipv6_addr,
			       sizeof(hdr->l3_key.dst_ipv6_addr));
			memcpy(&list[i].m_u.ipv6_hdr.dst_addr,
			       &hdr->l3_mask.dst_ipv6_addr,
			       sizeof(hdr->l3_mask.dst_ipv6_addr));
		}
		i++;
	}

	if (fltr->inner_headers.l2_key.n_proto == htons(ETH_P_IP) &&
	    (flags & (ICE_TC_FLWR_FIELD_ENC_IP_TOS |
		      ICE_TC_FLWR_FIELD_ENC_IP_TTL))) {
		list[i].type = ice_proto_type_from_ipv4(false);

		if (flags & ICE_TC_FLWR_FIELD_ENC_IP_TOS) {
			list[i].h_u.ipv4_hdr.tos = hdr->l3_key.tos;
			list[i].m_u.ipv4_hdr.tos = hdr->l3_mask.tos;
		}

		if (flags & ICE_TC_FLWR_FIELD_ENC_IP_TTL) {
			list[i].h_u.ipv4_hdr.time_to_live = hdr->l3_key.ttl;
			list[i].m_u.ipv4_hdr.time_to_live = hdr->l3_mask.ttl;
		}

		i++;
	}

	if (fltr->inner_headers.l2_key.n_proto == htons(ETH_P_IPV6) &&
	    (flags & (ICE_TC_FLWR_FIELD_ENC_IP_TOS |
		      ICE_TC_FLWR_FIELD_ENC_IP_TTL))) {
		struct ice_ipv6_hdr *hdr_h, *hdr_m;

		hdr_h = &list[i].h_u.ipv6_hdr;
		hdr_m = &list[i].m_u.ipv6_hdr;
		list[i].type = ice_proto_type_from_ipv6(false);

		if (flags & ICE_TC_FLWR_FIELD_ENC_IP_TOS) {
			be32p_replace_bits(&hdr_h->be_ver_tc_flow,
					   hdr->l3_key.tos,
					   ICE_IPV6_HDR_TC_MASK);
			be32p_replace_bits(&hdr_m->be_ver_tc_flow,
					   hdr->l3_mask.tos,
					   ICE_IPV6_HDR_TC_MASK);
		}

		if (flags & ICE_TC_FLWR_FIELD_ENC_IP_TTL) {
			hdr_h->hop_limit = hdr->l3_key.ttl;
			hdr_m->hop_limit = hdr->l3_mask.ttl;
		}

		i++;
	}

	if ((flags & ICE_TC_FLWR_FIELD_ENC_DEST_L4_PORT) &&
	    hdr->l3_key.ip_proto == IPPROTO_UDP) {
		list[i].type = ICE_UDP_OF;
		list[i].h_u.l4_hdr.dst_port = hdr->l4_key.dst_port;
		list[i].m_u.l4_hdr.dst_port = hdr->l4_mask.dst_port;
		i++;
	}

	/* always fill matching on tunneled packets in metadata */
	ice_rule_add_tunnel_metadata(&list[ICE_TC_METADATA_LKUP_IDX]);

	return i;
}

/**
 * ice_tc_fill_rules - fill filter rules based on TC fltr
 * @hw: pointer to HW structure
 * @flags: tc flower field flags
 * @tc_fltr: pointer to TC flower filter
 * @list: list of advance rule elements
 * @rule_info: pointer to information about rule
 * @l4_proto: pointer to information such as L4 proto type
 *
 * Fill ice_adv_lkup_elem list based on TC flower flags and
 * TC flower headers. This list should be used to add
 * advance filter in hardware.
 */
static int
ice_tc_fill_rules(struct ice_hw *hw, u32 flags,
		  struct ice_tc_flower_fltr *tc_fltr,
		  struct ice_adv_lkup_elem *list,
		  struct ice_adv_rule_info *rule_info,
		  u16 *l4_proto)
{
	struct ice_tc_flower_lyr_2_4_hdrs *headers = &tc_fltr->outer_headers;
	bool inner = false;
	u16 vlan_tpid = 0;
	int i = 1; /* 0th lookup is metadata */

	rule_info->vlan_type = vlan_tpid;

	/* Always add direction metadata */
	ice_rule_add_direction_metadata(&list[ICE_TC_METADATA_LKUP_IDX]);

	rule_info->tun_type = ice_sw_type_from_tunnel(tc_fltr->tunnel_type);
	if (tc_fltr->tunnel_type != TNL_LAST) {
		i = ice_tc_fill_tunnel_outer(flags, tc_fltr, list, i);

		headers = &tc_fltr->inner_headers;
		inner = true;
	}

	if (flags & ICE_TC_FLWR_FIELD_ETH_TYPE_ID) {
		list[i].type = ice_proto_type_from_etype(inner);
		list[i].h_u.ethertype.ethtype_id = headers->l2_key.n_proto;
		list[i].m_u.ethertype.ethtype_id = headers->l2_mask.n_proto;
		i++;
	}

	if (flags & (ICE_TC_FLWR_FIELD_DST_MAC |
		     ICE_TC_FLWR_FIELD_SRC_MAC)) {
		struct ice_tc_l2_hdr *l2_key, *l2_mask;

		l2_key = &headers->l2_key;
		l2_mask = &headers->l2_mask;

		list[i].type = ice_proto_type_from_mac(inner);
		if (flags & ICE_TC_FLWR_FIELD_DST_MAC) {
			ether_addr_copy(list[i].h_u.eth_hdr.dst_addr,
					l2_key->dst_mac);
			ether_addr_copy(list[i].m_u.eth_hdr.dst_addr,
					l2_mask->dst_mac);
		}
		if (flags & ICE_TC_FLWR_FIELD_SRC_MAC) {
			ether_addr_copy(list[i].h_u.eth_hdr.src_addr,
					l2_key->src_mac);
			ether_addr_copy(list[i].m_u.eth_hdr.src_addr,
					l2_mask->src_mac);
		}
		i++;
	}

	/* copy VLAN info */
	if (flags & (ICE_TC_FLWR_FIELD_VLAN | ICE_TC_FLWR_FIELD_VLAN_PRIO)) {
		if (flags & ICE_TC_FLWR_FIELD_CVLAN)
			list[i].type = ICE_VLAN_EX;
		else
			list[i].type = ICE_VLAN_OFOS;

		if (flags & ICE_TC_FLWR_FIELD_VLAN) {
			list[i].h_u.vlan_hdr.vlan = headers->vlan_hdr.vlan_id;
			list[i].m_u.vlan_hdr.vlan = cpu_to_be16(0x0FFF);
		}

		if (flags & ICE_TC_FLWR_FIELD_VLAN_PRIO) {
			if (flags & ICE_TC_FLWR_FIELD_VLAN) {
				list[i].m_u.vlan_hdr.vlan = cpu_to_be16(0xEFFF);
			} else {
				list[i].m_u.vlan_hdr.vlan = cpu_to_be16(0xE000);
				list[i].h_u.vlan_hdr.vlan = 0;
			}
			list[i].h_u.vlan_hdr.vlan |=
				headers->vlan_hdr.vlan_prio;
		}

		i++;
	}

	if (flags & ICE_TC_FLWR_FIELD_VLAN_TPID) {
		vlan_tpid = be16_to_cpu(headers->vlan_hdr.vlan_tpid);
		rule_info->vlan_type =
				ice_check_supported_vlan_tpid(vlan_tpid);

		ice_rule_add_vlan_metadata(&list[ICE_TC_METADATA_LKUP_IDX]);
	}

	if (flags & (ICE_TC_FLWR_FIELD_CVLAN | ICE_TC_FLWR_FIELD_CVLAN_PRIO)) {
		list[i].type = ICE_VLAN_IN;

		if (flags & ICE_TC_FLWR_FIELD_CVLAN) {
			list[i].h_u.vlan_hdr.vlan = headers->cvlan_hdr.vlan_id;
			list[i].m_u.vlan_hdr.vlan = cpu_to_be16(0x0FFF);
		}

		if (flags & ICE_TC_FLWR_FIELD_CVLAN_PRIO) {
			if (flags & ICE_TC_FLWR_FIELD_CVLAN) {
				list[i].m_u.vlan_hdr.vlan = cpu_to_be16(0xEFFF);
			} else {
				list[i].m_u.vlan_hdr.vlan = cpu_to_be16(0xE000);
				list[i].h_u.vlan_hdr.vlan = 0;
			}
			list[i].h_u.vlan_hdr.vlan |=
				headers->cvlan_hdr.vlan_prio;
		}

		i++;
	}

	if (flags & (ICE_TC_FLWR_FIELD_PPPOE_SESSID |
		     ICE_TC_FLWR_FIELD_PPP_PROTO)) {
		struct ice_pppoe_hdr *vals, *masks;

		vals = &list[i].h_u.pppoe_hdr;
		masks = &list[i].m_u.pppoe_hdr;

		list[i].type = ICE_PPPOE;

		if (flags & ICE_TC_FLWR_FIELD_PPPOE_SESSID) {
			vals->session_id = headers->pppoe_hdr.session_id;
			masks->session_id = cpu_to_be16(0xFFFF);
		}

		if (flags & ICE_TC_FLWR_FIELD_PPP_PROTO) {
			vals->ppp_prot_id = headers->pppoe_hdr.ppp_proto;
			masks->ppp_prot_id = cpu_to_be16(0xFFFF);
		}

		i++;
	}

	/* copy L3 (IPv[4|6]: src, dest) address */
	if (flags & (ICE_TC_FLWR_FIELD_DEST_IPV4 |
		     ICE_TC_FLWR_FIELD_SRC_IPV4)) {
		struct ice_tc_l3_hdr *l3_key, *l3_mask;

		list[i].type = ice_proto_type_from_ipv4(inner);
		l3_key = &headers->l3_key;
		l3_mask = &headers->l3_mask;
		if (flags & ICE_TC_FLWR_FIELD_DEST_IPV4) {
			list[i].h_u.ipv4_hdr.dst_addr = l3_key->dst_ipv4;
			list[i].m_u.ipv4_hdr.dst_addr = l3_mask->dst_ipv4;
		}
		if (flags & ICE_TC_FLWR_FIELD_SRC_IPV4) {
			list[i].h_u.ipv4_hdr.src_addr = l3_key->src_ipv4;
			list[i].m_u.ipv4_hdr.src_addr = l3_mask->src_ipv4;
		}
		i++;
	} else if (flags & (ICE_TC_FLWR_FIELD_DEST_IPV6 |
			    ICE_TC_FLWR_FIELD_SRC_IPV6)) {
		struct ice_ipv6_hdr *ipv6_hdr, *ipv6_mask;
		struct ice_tc_l3_hdr *l3_key, *l3_mask;

		list[i].type = ice_proto_type_from_ipv6(inner);
		ipv6_hdr = &list[i].h_u.ipv6_hdr;
		ipv6_mask = &list[i].m_u.ipv6_hdr;
		l3_key = &headers->l3_key;
		l3_mask = &headers->l3_mask;

		if (flags & ICE_TC_FLWR_FIELD_DEST_IPV6) {
			memcpy(&ipv6_hdr->dst_addr, &l3_key->dst_ipv6_addr,
			       sizeof(l3_key->dst_ipv6_addr));
			memcpy(&ipv6_mask->dst_addr, &l3_mask->dst_ipv6_addr,
			       sizeof(l3_mask->dst_ipv6_addr));
		}
		if (flags & ICE_TC_FLWR_FIELD_SRC_IPV6) {
			memcpy(&ipv6_hdr->src_addr, &l3_key->src_ipv6_addr,
			       sizeof(l3_key->src_ipv6_addr));
			memcpy(&ipv6_mask->src_addr, &l3_mask->src_ipv6_addr,
			       sizeof(l3_mask->src_ipv6_addr));
		}
		i++;
	}

	if (headers->l2_key.n_proto == htons(ETH_P_IP) &&
	    (flags & (ICE_TC_FLWR_FIELD_IP_TOS | ICE_TC_FLWR_FIELD_IP_TTL))) {
		list[i].type = ice_proto_type_from_ipv4(inner);

		if (flags & ICE_TC_FLWR_FIELD_IP_TOS) {
			list[i].h_u.ipv4_hdr.tos = headers->l3_key.tos;
			list[i].m_u.ipv4_hdr.tos = headers->l3_mask.tos;
		}

		if (flags & ICE_TC_FLWR_FIELD_IP_TTL) {
			list[i].h_u.ipv4_hdr.time_to_live =
				headers->l3_key.ttl;
			list[i].m_u.ipv4_hdr.time_to_live =
				headers->l3_mask.ttl;
		}

		i++;
	}

	if (headers->l2_key.n_proto == htons(ETH_P_IPV6) &&
	    (flags & (ICE_TC_FLWR_FIELD_IP_TOS | ICE_TC_FLWR_FIELD_IP_TTL))) {
		struct ice_ipv6_hdr *hdr_h, *hdr_m;

		hdr_h = &list[i].h_u.ipv6_hdr;
		hdr_m = &list[i].m_u.ipv6_hdr;
		list[i].type = ice_proto_type_from_ipv6(inner);

		if (flags & ICE_TC_FLWR_FIELD_IP_TOS) {
			be32p_replace_bits(&hdr_h->be_ver_tc_flow,
					   headers->l3_key.tos,
					   ICE_IPV6_HDR_TC_MASK);
			be32p_replace_bits(&hdr_m->be_ver_tc_flow,
					   headers->l3_mask.tos,
					   ICE_IPV6_HDR_TC_MASK);
		}

		if (flags & ICE_TC_FLWR_FIELD_IP_TTL) {
			hdr_h->hop_limit = headers->l3_key.ttl;
			hdr_m->hop_limit = headers->l3_mask.ttl;
		}

		i++;
	}

	if (flags & ICE_TC_FLWR_FIELD_L2TPV3_SESSID) {
		list[i].type = ICE_L2TPV3;

		list[i].h_u.l2tpv3_sess_hdr.session_id =
			headers->l2tpv3_hdr.session_id;
		list[i].m_u.l2tpv3_sess_hdr.session_id =
			cpu_to_be32(0xFFFFFFFF);

		i++;
	}

	/* copy L4 (src, dest) port */
	if (flags & (ICE_TC_FLWR_FIELD_DEST_L4_PORT |
		     ICE_TC_FLWR_FIELD_SRC_L4_PORT)) {
		struct ice_tc_l4_hdr *l4_key, *l4_mask;

		list[i].type = ice_proto_type_from_l4_port(headers->l3_key.ip_proto);
		l4_key = &headers->l4_key;
		l4_mask = &headers->l4_mask;

		if (flags & ICE_TC_FLWR_FIELD_DEST_L4_PORT) {
			list[i].h_u.l4_hdr.dst_port = l4_key->dst_port;
			list[i].m_u.l4_hdr.dst_port = l4_mask->dst_port;
		}
		if (flags & ICE_TC_FLWR_FIELD_SRC_L4_PORT) {
			list[i].h_u.l4_hdr.src_port = l4_key->src_port;
			list[i].m_u.l4_hdr.src_port = l4_mask->src_port;
		}
		i++;
	}

	return i;
}

/**
 * ice_tc_tun_get_type - get the tunnel type
 * @tunnel_dev: ptr to tunnel device
 *
 * This function detects appropriate tunnel_type if specified device is
 * tunnel device such as VXLAN/Geneve
 */
static int ice_tc_tun_get_type(struct net_device *tunnel_dev)
{
	if (netif_is_vxlan(tunnel_dev))
		return TNL_VXLAN;
	if (netif_is_geneve(tunnel_dev))
		return TNL_GENEVE;
	if (netif_is_gretap(tunnel_dev) ||
	    netif_is_ip6gretap(tunnel_dev))
		return TNL_GRETAP;

	/* Assume GTP-U by default in case of GTP netdev.
	 * GTP-C may be selected later, based on enc_dst_port.
	 */
	if (netif_is_gtp(tunnel_dev))
		return TNL_GTPU;
	return TNL_LAST;
}

bool ice_is_tunnel_supported(struct net_device *dev)
{
	return ice_tc_tun_get_type(dev) != TNL_LAST;
}

static bool ice_tc_is_dev_uplink(struct net_device *dev)
{
	return netif_is_ice(dev) || ice_is_tunnel_supported(dev);
}

static int ice_tc_setup_redirect_action(struct net_device *filter_dev,
					struct ice_tc_flower_fltr *fltr,
					struct net_device *target_dev)
{
	struct ice_repr *repr;

	fltr->action.fltr_act = ICE_FWD_TO_VSI;

	if (ice_is_port_repr_netdev(filter_dev) &&
	    ice_is_port_repr_netdev(target_dev)) {
		repr = ice_netdev_to_repr(target_dev);

		fltr->dest_vsi = repr->src_vsi;
		fltr->direction = ICE_ESWITCH_FLTR_EGRESS;
	} else if (ice_is_port_repr_netdev(filter_dev) &&
		   ice_tc_is_dev_uplink(target_dev)) {
		repr = ice_netdev_to_repr(filter_dev);

		fltr->dest_vsi = repr->src_vsi->back->switchdev.uplink_vsi;
		fltr->direction = ICE_ESWITCH_FLTR_EGRESS;
	} else if (ice_tc_is_dev_uplink(filter_dev) &&
		   ice_is_port_repr_netdev(target_dev)) {
		repr = ice_netdev_to_repr(target_dev);

		fltr->dest_vsi = repr->src_vsi;
		fltr->direction = ICE_ESWITCH_FLTR_INGRESS;
	} else {
		NL_SET_ERR_MSG_MOD(fltr->extack,
				   "Unsupported netdevice in switchdev mode");
		return -EINVAL;
	}

	return 0;
}

static int
ice_tc_setup_drop_action(struct net_device *filter_dev,
			 struct ice_tc_flower_fltr *fltr)
{
	fltr->action.fltr_act = ICE_DROP_PACKET;

	if (ice_is_port_repr_netdev(filter_dev)) {
		fltr->direction = ICE_ESWITCH_FLTR_EGRESS;
	} else if (ice_tc_is_dev_uplink(filter_dev)) {
		fltr->direction = ICE_ESWITCH_FLTR_INGRESS;
	} else {
		NL_SET_ERR_MSG_MOD(fltr->extack,
				   "Unsupported netdevice in switchdev mode");
		return -EINVAL;
	}

	return 0;
}

static int ice_eswitch_tc_parse_action(struct net_device *filter_dev,
				       struct ice_tc_flower_fltr *fltr,
				       struct flow_action_entry *act)
{
	int err;

	switch (act->id) {
	case FLOW_ACTION_DROP:
		err = ice_tc_setup_drop_action(filter_dev, fltr);
		if (err)
			return err;

		break;

	case FLOW_ACTION_REDIRECT:
		err = ice_tc_setup_redirect_action(filter_dev, fltr, act->dev);
		if (err)
			return err;

		break;

	default:
		NL_SET_ERR_MSG_MOD(fltr->extack, "Unsupported action in switchdev mode");
		return -EINVAL;
	}

	return 0;
}

static int
ice_eswitch_add_tc_fltr(struct ice_vsi *vsi, struct ice_tc_flower_fltr *fltr)
{
	struct ice_tc_flower_lyr_2_4_hdrs *headers = &fltr->outer_headers;
	struct ice_adv_rule_info rule_info = { 0 };
	struct ice_rule_query_data rule_added;
	struct ice_hw *hw = &vsi->back->hw;
	struct ice_adv_lkup_elem *list;
	u32 flags = fltr->flags;
	int lkups_cnt;
	int ret;
	int i;

	if (!flags || (flags & ICE_TC_FLWR_FIELD_ENC_SRC_L4_PORT)) {
		NL_SET_ERR_MSG_MOD(fltr->extack, "Unsupported encap field(s)");
		return -EOPNOTSUPP;
	}

	lkups_cnt = ice_tc_count_lkups(flags, headers, fltr);
	list = kcalloc(lkups_cnt, sizeof(*list), GFP_ATOMIC);
	if (!list)
		return -ENOMEM;

	i = ice_tc_fill_rules(hw, flags, fltr, list, &rule_info, NULL);
	if (i != lkups_cnt) {
		ret = -EINVAL;
		goto exit;
	}

	rule_info.sw_act.fltr_act = fltr->action.fltr_act;
	if (fltr->action.fltr_act != ICE_DROP_PACKET)
		rule_info.sw_act.vsi_handle = fltr->dest_vsi->idx;
	/* For now, making priority to be highest, and it also becomes
	 * the priority for recipe which will get created as a result of
	 * new extraction sequence based on input set.
	 * Priority '7' is max val for switch recipe, higher the number
	 * results into order of switch rule evaluation.
	 */
	rule_info.priority = 7;
	rule_info.flags_info.act_valid = true;

	if (fltr->direction == ICE_ESWITCH_FLTR_INGRESS) {
		/* Uplink to VF */
		rule_info.sw_act.flag |= ICE_FLTR_RX;
		rule_info.sw_act.src = hw->pf_id;
		rule_info.flags_info.act = ICE_SINGLE_ACT_LB_ENABLE;
	} else if (fltr->direction == ICE_ESWITCH_FLTR_EGRESS &&
		   fltr->dest_vsi == vsi->back->switchdev.uplink_vsi) {
		/* VF to Uplink */
		rule_info.sw_act.flag |= ICE_FLTR_TX;
		rule_info.sw_act.src = vsi->idx;
		rule_info.flags_info.act = ICE_SINGLE_ACT_LAN_ENABLE;
	} else {
		/* VF to VF */
		rule_info.sw_act.flag |= ICE_FLTR_TX;
		rule_info.sw_act.src = vsi->idx;
		rule_info.flags_info.act = ICE_SINGLE_ACT_LB_ENABLE;
	}

	/* specify the cookie as filter_rule_id */
	rule_info.fltr_rule_id = fltr->cookie;

	ret = ice_add_adv_rule(hw, list, lkups_cnt, &rule_info, &rule_added);
	if (ret == -EEXIST) {
		NL_SET_ERR_MSG_MOD(fltr->extack, "Unable to add filter because it already exist");
		ret = -EINVAL;
		goto exit;
	} else if (ret) {
		NL_SET_ERR_MSG_MOD(fltr->extack, "Unable to add filter due to error");
		goto exit;
	}

	/* store the output params, which are needed later for removing
	 * advanced switch filter
	 */
	fltr->rid = rule_added.rid;
	fltr->rule_id = rule_added.rule_id;
	fltr->dest_vsi_handle = rule_added.vsi_handle;

exit:
	kfree(list);
	return ret;
}

/**
 * ice_locate_vsi_using_queue - locate VSI using queue (forward to queue action)
 * @vsi: Pointer to VSI
 * @queue: Queue index
 *
 * Locate the VSI using specified "queue". When ADQ is not enabled,
 * always return input VSI, otherwise locate corresponding
 * VSI based on per channel "offset" and "qcount"
 */
struct ice_vsi *
ice_locate_vsi_using_queue(struct ice_vsi *vsi, int queue)
{
	int num_tc, tc;

	/* if ADQ is not active, passed VSI is the candidate VSI */
	if (!ice_is_adq_active(vsi->back))
		return vsi;

	/* Locate the VSI (it could still be main PF VSI or CHNL_VSI depending
	 * upon queue number)
	 */
	num_tc = vsi->mqprio_qopt.qopt.num_tc;

	for (tc = 0; tc < num_tc; tc++) {
		int qcount = vsi->mqprio_qopt.qopt.count[tc];
		int offset = vsi->mqprio_qopt.qopt.offset[tc];

		if (queue >= offset && queue < offset + qcount) {
			/* for non-ADQ TCs, passed VSI is the candidate VSI */
			if (tc < ICE_CHNL_START_TC)
				return vsi;
			else
				return vsi->tc_map_vsi[tc];
		}
	}
	return NULL;
}

static struct ice_rx_ring *
ice_locate_rx_ring_using_queue(struct ice_vsi *vsi,
			       struct ice_tc_flower_fltr *tc_fltr)
{
	u16 queue = tc_fltr->action.fwd.q.queue;

	return queue < vsi->num_rxq ? vsi->rx_rings[queue] : NULL;
}

/**
 * ice_tc_forward_action - Determine destination VSI and queue for the action
 * @vsi: Pointer to VSI
 * @tc_fltr: Pointer to TC flower filter structure
 *
 * Validates the tc forward action and determines the destination VSI and queue
 * for the forward action.
 */
static struct ice_vsi *
ice_tc_forward_action(struct ice_vsi *vsi, struct ice_tc_flower_fltr *tc_fltr)
{
	struct ice_rx_ring *ring = NULL;
	struct ice_vsi *dest_vsi = NULL;
	struct ice_pf *pf = vsi->back;
	struct device *dev;
	u32 tc_class;
	int q;

	dev = ice_pf_to_dev(pf);

	/* Get the destination VSI and/or destination queue and validate them */
	switch (tc_fltr->action.fltr_act) {
	case ICE_FWD_TO_VSI:
		tc_class = tc_fltr->action.fwd.tc.tc_class;
		/* Select the destination VSI */
		if (tc_class < ICE_CHNL_START_TC) {
			NL_SET_ERR_MSG_MOD(tc_fltr->extack,
					   "Unable to add filter because of unsupported destination");
			return ERR_PTR(-EOPNOTSUPP);
		}
		/* Locate ADQ VSI depending on hw_tc number */
		dest_vsi = vsi->tc_map_vsi[tc_class];
		break;
	case ICE_FWD_TO_Q:
		/* Locate the Rx queue */
		ring = ice_locate_rx_ring_using_queue(vsi, tc_fltr);
		if (!ring) {
			dev_err(dev,
				"Unable to locate Rx queue for action fwd_to_queue: %u\n",
				tc_fltr->action.fwd.q.queue);
			return ERR_PTR(-EINVAL);
		}
		/* Determine destination VSI even though the action is
		 * FWD_TO_QUEUE, because QUEUE is associated with VSI
		 */
		q = tc_fltr->action.fwd.q.queue;
		dest_vsi = ice_locate_vsi_using_queue(vsi, q);
		break;
	default:
		dev_err(dev,
			"Unable to add filter because of unsupported action %u (supported actions: fwd to tc, fwd to queue)\n",
			tc_fltr->action.fltr_act);
		return ERR_PTR(-EINVAL);
	}
	/* Must have valid dest_vsi (it could be main VSI or ADQ VSI) */
	if (!dest_vsi) {
		dev_err(dev,
			"Unable to add filter because specified destination VSI doesn't exist\n");
		return ERR_PTR(-EINVAL);
	}
	return dest_vsi;
}

/**
 * ice_add_tc_flower_adv_fltr - add appropriate filter rules
 * @vsi: Pointer to VSI
 * @tc_fltr: Pointer to TC flower filter structure
 *
 * based on filter parameters using Advance recipes supported
 * by OS package.
 */
static int
ice_add_tc_flower_adv_fltr(struct ice_vsi *vsi,
			   struct ice_tc_flower_fltr *tc_fltr)
{
	struct ice_tc_flower_lyr_2_4_hdrs *headers = &tc_fltr->outer_headers;
	struct ice_adv_rule_info rule_info = {0};
	struct ice_rule_query_data rule_added;
	struct ice_adv_lkup_elem *list;
	struct ice_pf *pf = vsi->back;
	struct ice_hw *hw = &pf->hw;
	u32 flags = tc_fltr->flags;
	struct ice_vsi *dest_vsi;
	struct device *dev;
	u16 lkups_cnt = 0;
	u16 l4_proto = 0;
	int ret = 0;
	u16 i = 0;

	dev = ice_pf_to_dev(pf);
	if (ice_is_safe_mode(pf)) {
		NL_SET_ERR_MSG_MOD(tc_fltr->extack, "Unable to add filter because driver is in safe mode");
		return -EOPNOTSUPP;
	}

	if (!flags || (flags & (ICE_TC_FLWR_FIELD_ENC_DEST_IPV4 |
				ICE_TC_FLWR_FIELD_ENC_SRC_IPV4 |
				ICE_TC_FLWR_FIELD_ENC_DEST_IPV6 |
				ICE_TC_FLWR_FIELD_ENC_SRC_IPV6 |
				ICE_TC_FLWR_FIELD_ENC_SRC_L4_PORT))) {
		NL_SET_ERR_MSG_MOD(tc_fltr->extack, "Unsupported encap field(s)");
		return -EOPNOTSUPP;
	}

	/* validate forwarding action VSI and queue */
	if (ice_is_forward_action(tc_fltr->action.fltr_act)) {
		dest_vsi = ice_tc_forward_action(vsi, tc_fltr);
		if (IS_ERR(dest_vsi))
			return PTR_ERR(dest_vsi);
	}

	lkups_cnt = ice_tc_count_lkups(flags, headers, tc_fltr);
	list = kcalloc(lkups_cnt, sizeof(*list), GFP_ATOMIC);
	if (!list)
		return -ENOMEM;

	i = ice_tc_fill_rules(hw, flags, tc_fltr, list, &rule_info, &l4_proto);
	if (i != lkups_cnt) {
		ret = -EINVAL;
		goto exit;
	}

	rule_info.sw_act.fltr_act = tc_fltr->action.fltr_act;
	/* specify the cookie as filter_rule_id */
	rule_info.fltr_rule_id = tc_fltr->cookie;

	switch (tc_fltr->action.fltr_act) {
	case ICE_FWD_TO_VSI:
		rule_info.sw_act.vsi_handle = dest_vsi->idx;
		rule_info.priority = ICE_SWITCH_FLTR_PRIO_VSI;
		rule_info.sw_act.src = hw->pf_id;
		dev_dbg(dev, "add switch rule for TC:%u vsi_idx:%u, lkups_cnt:%u\n",
			tc_fltr->action.fwd.tc.tc_class,
			rule_info.sw_act.vsi_handle, lkups_cnt);
		break;
	case ICE_FWD_TO_Q:
		/* HW queue number in global space */
		rule_info.sw_act.fwd_id.q_id = tc_fltr->action.fwd.q.hw_queue;
		rule_info.sw_act.vsi_handle = dest_vsi->idx;
		rule_info.priority = ICE_SWITCH_FLTR_PRIO_QUEUE;
		rule_info.sw_act.src = hw->pf_id;
		dev_dbg(dev, "add switch rule action to forward to queue:%u (HW queue %u), lkups_cnt:%u\n",
			tc_fltr->action.fwd.q.queue,
			tc_fltr->action.fwd.q.hw_queue, lkups_cnt);
		break;
	case ICE_DROP_PACKET:
		rule_info.sw_act.flag |= ICE_FLTR_RX;
		rule_info.sw_act.src = hw->pf_id;
		rule_info.priority = ICE_SWITCH_FLTR_PRIO_VSI;
		break;
	default:
		ret = -EOPNOTSUPP;
		goto exit;
	}

	ret = ice_add_adv_rule(hw, list, lkups_cnt, &rule_info, &rule_added);
	if (ret == -EEXIST) {
		NL_SET_ERR_MSG_MOD(tc_fltr->extack,
				   "Unable to add filter because it already exist");
		ret = -EINVAL;
		goto exit;
	} else if (ret) {
		NL_SET_ERR_MSG_MOD(tc_fltr->extack,
				   "Unable to add filter due to error");
		goto exit;
	}

	/* store the output params, which are needed later for removing
	 * advanced switch filter
	 */
	tc_fltr->rid = rule_added.rid;
	tc_fltr->rule_id = rule_added.rule_id;
	tc_fltr->dest_vsi_handle = rule_added.vsi_handle;
	if (tc_fltr->action.fltr_act == ICE_FWD_TO_VSI ||
	    tc_fltr->action.fltr_act == ICE_FWD_TO_Q) {
		tc_fltr->dest_vsi = dest_vsi;
		/* keep track of advanced switch filter for
		 * destination VSI
		 */
		dest_vsi->num_chnl_fltr++;

		/* keeps track of channel filters for PF VSI */
		if (vsi->type == ICE_VSI_PF &&
		    (flags & (ICE_TC_FLWR_FIELD_DST_MAC |
			      ICE_TC_FLWR_FIELD_ENC_DST_MAC)))
			pf->num_dmac_chnl_fltrs++;
	}
	switch (tc_fltr->action.fltr_act) {
	case ICE_FWD_TO_VSI:
		dev_dbg(dev, "added switch rule (lkups_cnt %u, flags 0x%x), action is forward to TC %u, rid %u, rule_id %u, vsi_idx %u\n",
			lkups_cnt, flags,
			tc_fltr->action.fwd.tc.tc_class, rule_added.rid,
			rule_added.rule_id, rule_added.vsi_handle);
		break;
	case ICE_FWD_TO_Q:
		dev_dbg(dev, "added switch rule (lkups_cnt %u, flags 0x%x), action is forward to queue: %u (HW queue %u)     , rid %u, rule_id %u\n",
			lkups_cnt, flags, tc_fltr->action.fwd.q.queue,
			tc_fltr->action.fwd.q.hw_queue, rule_added.rid,
			rule_added.rule_id);
		break;
	case ICE_DROP_PACKET:
		dev_dbg(dev, "added switch rule (lkups_cnt %u, flags 0x%x), action is drop, rid %u, rule_id %u\n",
			lkups_cnt, flags, rule_added.rid, rule_added.rule_id);
		break;
	default:
		break;
	}
exit:
	kfree(list);
	return ret;
}

/**
 * ice_tc_set_pppoe - Parse PPPoE fields from TC flower filter
 * @match: Pointer to flow match structure
 * @fltr: Pointer to filter structure
 * @headers: Pointer to outer header fields
 * @returns PPP protocol used in filter (ppp_ses or ppp_disc)
 */
static u16
ice_tc_set_pppoe(struct flow_match_pppoe *match,
		 struct ice_tc_flower_fltr *fltr,
		 struct ice_tc_flower_lyr_2_4_hdrs *headers)
{
	if (match->mask->session_id) {
		fltr->flags |= ICE_TC_FLWR_FIELD_PPPOE_SESSID;
		headers->pppoe_hdr.session_id = match->key->session_id;
	}

	if (match->mask->ppp_proto) {
		fltr->flags |= ICE_TC_FLWR_FIELD_PPP_PROTO;
		headers->pppoe_hdr.ppp_proto = match->key->ppp_proto;
	}

	return be16_to_cpu(match->key->type);
}

/**
 * ice_tc_set_ipv4 - Parse IPv4 addresses from TC flower filter
 * @match: Pointer to flow match structure
 * @fltr: Pointer to filter structure
 * @headers: inner or outer header fields
 * @is_encap: set true for tunnel IPv4 address
 */
static int
ice_tc_set_ipv4(struct flow_match_ipv4_addrs *match,
		struct ice_tc_flower_fltr *fltr,
		struct ice_tc_flower_lyr_2_4_hdrs *headers, bool is_encap)
{
	if (match->key->dst) {
		if (is_encap)
			fltr->flags |= ICE_TC_FLWR_FIELD_ENC_DEST_IPV4;
		else
			fltr->flags |= ICE_TC_FLWR_FIELD_DEST_IPV4;
		headers->l3_key.dst_ipv4 = match->key->dst;
		headers->l3_mask.dst_ipv4 = match->mask->dst;
	}
	if (match->key->src) {
		if (is_encap)
			fltr->flags |= ICE_TC_FLWR_FIELD_ENC_SRC_IPV4;
		else
			fltr->flags |= ICE_TC_FLWR_FIELD_SRC_IPV4;
		headers->l3_key.src_ipv4 = match->key->src;
		headers->l3_mask.src_ipv4 = match->mask->src;
	}
	return 0;
}

/**
 * ice_tc_set_ipv6 - Parse IPv6 addresses from TC flower filter
 * @match: Pointer to flow match structure
 * @fltr: Pointer to filter structure
 * @headers: inner or outer header fields
 * @is_encap: set true for tunnel IPv6 address
 */
static int
ice_tc_set_ipv6(struct flow_match_ipv6_addrs *match,
		struct ice_tc_flower_fltr *fltr,
		struct ice_tc_flower_lyr_2_4_hdrs *headers, bool is_encap)
{
	struct ice_tc_l3_hdr *l3_key, *l3_mask;

	/* src and dest IPV6 address should not be LOOPBACK
	 * (0:0:0:0:0:0:0:1), which can be represented as ::1
	 */
	if (ipv6_addr_loopback(&match->key->dst) ||
	    ipv6_addr_loopback(&match->key->src)) {
		NL_SET_ERR_MSG_MOD(fltr->extack, "Bad IPv6, addr is LOOPBACK");
		return -EINVAL;
	}
	/* if src/dest IPv6 address is *,* error */
	if (ipv6_addr_any(&match->mask->dst) &&
	    ipv6_addr_any(&match->mask->src)) {
		NL_SET_ERR_MSG_MOD(fltr->extack, "Bad src/dest IPv6, addr is any");
		return -EINVAL;
	}
	if (!ipv6_addr_any(&match->mask->dst)) {
		if (is_encap)
			fltr->flags |= ICE_TC_FLWR_FIELD_ENC_DEST_IPV6;
		else
			fltr->flags |= ICE_TC_FLWR_FIELD_DEST_IPV6;
	}
	if (!ipv6_addr_any(&match->mask->src)) {
		if (is_encap)
			fltr->flags |= ICE_TC_FLWR_FIELD_ENC_SRC_IPV6;
		else
			fltr->flags |= ICE_TC_FLWR_FIELD_SRC_IPV6;
	}

	l3_key = &headers->l3_key;
	l3_mask = &headers->l3_mask;

	if (fltr->flags & (ICE_TC_FLWR_FIELD_ENC_SRC_IPV6 |
			   ICE_TC_FLWR_FIELD_SRC_IPV6)) {
		memcpy(&l3_key->src_ipv6_addr, &match->key->src.s6_addr,
		       sizeof(match->key->src.s6_addr));
		memcpy(&l3_mask->src_ipv6_addr, &match->mask->src.s6_addr,
		       sizeof(match->mask->src.s6_addr));
	}
	if (fltr->flags & (ICE_TC_FLWR_FIELD_ENC_DEST_IPV6 |
			   ICE_TC_FLWR_FIELD_DEST_IPV6)) {
		memcpy(&l3_key->dst_ipv6_addr, &match->key->dst.s6_addr,
		       sizeof(match->key->dst.s6_addr));
		memcpy(&l3_mask->dst_ipv6_addr, &match->mask->dst.s6_addr,
		       sizeof(match->mask->dst.s6_addr));
	}

	return 0;
}

/**
 * ice_tc_set_tos_ttl - Parse IP ToS/TTL from TC flower filter
 * @match: Pointer to flow match structure
 * @fltr: Pointer to filter structure
 * @headers: inner or outer header fields
 * @is_encap: set true for tunnel
 */
static void
ice_tc_set_tos_ttl(struct flow_match_ip *match,
		   struct ice_tc_flower_fltr *fltr,
		   struct ice_tc_flower_lyr_2_4_hdrs *headers,
		   bool is_encap)
{
	if (match->mask->tos) {
		if (is_encap)
			fltr->flags |= ICE_TC_FLWR_FIELD_ENC_IP_TOS;
		else
			fltr->flags |= ICE_TC_FLWR_FIELD_IP_TOS;

		headers->l3_key.tos = match->key->tos;
		headers->l3_mask.tos = match->mask->tos;
	}

	if (match->mask->ttl) {
		if (is_encap)
			fltr->flags |= ICE_TC_FLWR_FIELD_ENC_IP_TTL;
		else
			fltr->flags |= ICE_TC_FLWR_FIELD_IP_TTL;

		headers->l3_key.ttl = match->key->ttl;
		headers->l3_mask.ttl = match->mask->ttl;
	}
}

/**
 * ice_tc_set_port - Parse ports from TC flower filter
 * @match: Flow match structure
 * @fltr: Pointer to filter structure
 * @headers: inner or outer header fields
 * @is_encap: set true for tunnel port
 */
static int
ice_tc_set_port(struct flow_match_ports match,
		struct ice_tc_flower_fltr *fltr,
		struct ice_tc_flower_lyr_2_4_hdrs *headers, bool is_encap)
{
	if (match.key->dst) {
		if (is_encap)
			fltr->flags |= ICE_TC_FLWR_FIELD_ENC_DEST_L4_PORT;
		else
			fltr->flags |= ICE_TC_FLWR_FIELD_DEST_L4_PORT;

		headers->l4_key.dst_port = match.key->dst;
		headers->l4_mask.dst_port = match.mask->dst;
	}
	if (match.key->src) {
		if (is_encap)
			fltr->flags |= ICE_TC_FLWR_FIELD_ENC_SRC_L4_PORT;
		else
			fltr->flags |= ICE_TC_FLWR_FIELD_SRC_L4_PORT;

		headers->l4_key.src_port = match.key->src;
		headers->l4_mask.src_port = match.mask->src;
	}
	return 0;
}

static struct net_device *
ice_get_tunnel_device(struct net_device *dev, struct flow_rule *rule)
{
	struct flow_action_entry *act;
	int i;

	if (ice_is_tunnel_supported(dev))
		return dev;

	flow_action_for_each(i, act, &rule->action) {
		if (act->id == FLOW_ACTION_REDIRECT &&
		    ice_is_tunnel_supported(act->dev))
			return act->dev;
	}

	return NULL;
}

/**
 * ice_parse_gtp_type - Sets GTP tunnel type to GTP-U or GTP-C
 * @match: Flow match structure
 * @fltr: Pointer to filter structure
 *
 * GTP-C/GTP-U is selected based on destination port number (enc_dst_port).
 * Before calling this funtcion, fltr->tunnel_type should be set to TNL_GTPU,
 * therefore making GTP-U the default choice (when destination port number is
 * not specified).
 */
static int
ice_parse_gtp_type(struct flow_match_ports match,
		   struct ice_tc_flower_fltr *fltr)
{
	u16 dst_port;

	if (match.key->dst) {
		dst_port = be16_to_cpu(match.key->dst);

		switch (dst_port) {
		case 2152:
			break;
		case 2123:
			fltr->tunnel_type = TNL_GTPC;
			break;
		default:
			NL_SET_ERR_MSG_MOD(fltr->extack, "Unsupported GTP port number");
			return -EINVAL;
		}
	}

	return 0;
}

static int
ice_parse_tunnel_attr(struct net_device *dev, struct flow_rule *rule,
		      struct ice_tc_flower_fltr *fltr)
{
	struct ice_tc_flower_lyr_2_4_hdrs *headers = &fltr->outer_headers;
	struct flow_match_control enc_control;

	fltr->tunnel_type = ice_tc_tun_get_type(dev);
	headers->l3_key.ip_proto = IPPROTO_UDP;

	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
		struct flow_match_enc_keyid enc_keyid;

		flow_rule_match_enc_keyid(rule, &enc_keyid);

		if (!enc_keyid.mask->keyid ||
		    enc_keyid.mask->keyid != cpu_to_be32(ICE_TC_FLOWER_MASK_32))
			return -EINVAL;

		fltr->flags |= ICE_TC_FLWR_FIELD_TENANT_ID;
		fltr->tenant_id = enc_keyid.key->keyid;
	}

	flow_rule_match_enc_control(rule, &enc_control);

	if (enc_control.key->addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) {
		struct flow_match_ipv4_addrs match;

		flow_rule_match_enc_ipv4_addrs(rule, &match);
		if (ice_tc_set_ipv4(&match, fltr, headers, true))
			return -EINVAL;
	} else if (enc_control.key->addr_type ==
					FLOW_DISSECTOR_KEY_IPV6_ADDRS) {
		struct flow_match_ipv6_addrs match;

		flow_rule_match_enc_ipv6_addrs(rule, &match);
		if (ice_tc_set_ipv6(&match, fltr, headers, true))
			return -EINVAL;
	}

	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_IP)) {
		struct flow_match_ip match;

		flow_rule_match_enc_ip(rule, &match);
		ice_tc_set_tos_ttl(&match, fltr, headers, true);
	}

	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_PORTS) &&
	    fltr->tunnel_type != TNL_VXLAN && fltr->tunnel_type != TNL_GENEVE) {
		struct flow_match_ports match;

		flow_rule_match_enc_ports(rule, &match);

		if (fltr->tunnel_type != TNL_GTPU) {
			if (ice_tc_set_port(match, fltr, headers, true))
				return -EINVAL;
		} else {
			if (ice_parse_gtp_type(match, fltr))
				return -EINVAL;
		}
	}

	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_OPTS)) {
		struct flow_match_enc_opts match;

		flow_rule_match_enc_opts(rule, &match);

		memcpy(&fltr->gtp_pdu_info_keys, &match.key->data[0],
		       sizeof(struct gtp_pdu_session_info));

		memcpy(&fltr->gtp_pdu_info_masks, &match.mask->data[0],
		       sizeof(struct gtp_pdu_session_info));

		fltr->flags |= ICE_TC_FLWR_FIELD_ENC_OPTS;
	}

	return 0;
}

/**
 * ice_parse_cls_flower - Parse TC flower filters provided by kernel
 * @vsi: Pointer to the VSI
 * @filter_dev: Pointer to device on which filter is being added
 * @f: Pointer to struct flow_cls_offload
 * @fltr: Pointer to filter structure
 */
static int
ice_parse_cls_flower(struct net_device *filter_dev, struct ice_vsi *vsi,
		     struct flow_cls_offload *f,
		     struct ice_tc_flower_fltr *fltr)
{
	struct ice_tc_flower_lyr_2_4_hdrs *headers = &fltr->outer_headers;
	struct flow_rule *rule = flow_cls_offload_flow_rule(f);
	u16 n_proto_mask = 0, n_proto_key = 0, addr_type = 0;
	struct flow_dissector *dissector;
	struct net_device *tunnel_dev;

	dissector = rule->match.dissector;

	if (dissector->used_keys &
	    ~(BIT_ULL(FLOW_DISSECTOR_KEY_CONTROL) |
	      BIT_ULL(FLOW_DISSECTOR_KEY_BASIC) |
	      BIT_ULL(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
	      BIT_ULL(FLOW_DISSECTOR_KEY_VLAN) |
	      BIT_ULL(FLOW_DISSECTOR_KEY_CVLAN) |
	      BIT_ULL(FLOW_DISSECTOR_KEY_IPV4_ADDRS) |
	      BIT_ULL(FLOW_DISSECTOR_KEY_IPV6_ADDRS) |
	      BIT_ULL(FLOW_DISSECTOR_KEY_ENC_CONTROL) |
	      BIT_ULL(FLOW_DISSECTOR_KEY_ENC_KEYID) |
	      BIT_ULL(FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS) |
	      BIT_ULL(FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS) |
	      BIT_ULL(FLOW_DISSECTOR_KEY_ENC_PORTS) |
	      BIT_ULL(FLOW_DISSECTOR_KEY_ENC_OPTS) |
	      BIT_ULL(FLOW_DISSECTOR_KEY_IP) |
	      BIT_ULL(FLOW_DISSECTOR_KEY_ENC_IP) |
	      BIT_ULL(FLOW_DISSECTOR_KEY_PORTS) |
	      BIT_ULL(FLOW_DISSECTOR_KEY_PPPOE) |
	      BIT_ULL(FLOW_DISSECTOR_KEY_L2TPV3))) {
		NL_SET_ERR_MSG_MOD(fltr->extack, "Unsupported key used");
		return -EOPNOTSUPP;
	}

	tunnel_dev = ice_get_tunnel_device(filter_dev, rule);
	if (tunnel_dev) {
		int err;

		filter_dev = tunnel_dev;

		err = ice_parse_tunnel_attr(filter_dev, rule, fltr);
		if (err) {
			NL_SET_ERR_MSG_MOD(fltr->extack, "Failed to parse TC flower tunnel attributes");
			return err;
		}

		/* header pointers should point to the inner headers, outer
		 * header were already set by ice_parse_tunnel_attr
		 */
		headers = &fltr->inner_headers;
	} else if (dissector->used_keys &
		  (BIT_ULL(FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS) |
		   BIT_ULL(FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS) |
		   BIT_ULL(FLOW_DISSECTOR_KEY_ENC_KEYID) |
		   BIT_ULL(FLOW_DISSECTOR_KEY_ENC_PORTS))) {
		NL_SET_ERR_MSG_MOD(fltr->extack, "Tunnel key used, but device isn't a tunnel");
		return -EOPNOTSUPP;
	} else {
		fltr->tunnel_type = TNL_LAST;
	}

	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
		struct flow_match_basic match;

		flow_rule_match_basic(rule, &match);

		n_proto_key = ntohs(match.key->n_proto);
		n_proto_mask = ntohs(match.mask->n_proto);

		if (n_proto_key == ETH_P_ALL || n_proto_key == 0 ||
		    fltr->tunnel_type == TNL_GTPU ||
		    fltr->tunnel_type == TNL_GTPC) {
			n_proto_key = 0;
			n_proto_mask = 0;
		} else {
			fltr->flags |= ICE_TC_FLWR_FIELD_ETH_TYPE_ID;
		}

		headers->l2_key.n_proto = cpu_to_be16(n_proto_key);
		headers->l2_mask.n_proto = cpu_to_be16(n_proto_mask);
		headers->l3_key.ip_proto = match.key->ip_proto;
	}

	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
		struct flow_match_eth_addrs match;

		flow_rule_match_eth_addrs(rule, &match);

		if (!is_zero_ether_addr(match.key->dst)) {
			ether_addr_copy(headers->l2_key.dst_mac,
					match.key->dst);
			ether_addr_copy(headers->l2_mask.dst_mac,
					match.mask->dst);
			fltr->flags |= ICE_TC_FLWR_FIELD_DST_MAC;
		}

		if (!is_zero_ether_addr(match.key->src)) {
			ether_addr_copy(headers->l2_key.src_mac,
					match.key->src);
			ether_addr_copy(headers->l2_mask.src_mac,
					match.mask->src);
			fltr->flags |= ICE_TC_FLWR_FIELD_SRC_MAC;
		}
	}

	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN) ||
	    is_vlan_dev(filter_dev)) {
		struct flow_dissector_key_vlan mask;
		struct flow_dissector_key_vlan key;
		struct flow_match_vlan match;

		if (is_vlan_dev(filter_dev)) {
			match.key = &key;
			match.key->vlan_id = vlan_dev_vlan_id(filter_dev);
			match.key->vlan_priority = 0;
			match.mask = &mask;
			memset(match.mask, 0xff, sizeof(*match.mask));
			match.mask->vlan_priority = 0;
		} else {
			flow_rule_match_vlan(rule, &match);
		}

		if (match.mask->vlan_id) {
			if (match.mask->vlan_id == VLAN_VID_MASK) {
				fltr->flags |= ICE_TC_FLWR_FIELD_VLAN;
				headers->vlan_hdr.vlan_id =
					cpu_to_be16(match.key->vlan_id &
						    VLAN_VID_MASK);
			} else {
				NL_SET_ERR_MSG_MOD(fltr->extack, "Bad VLAN mask");
				return -EINVAL;
			}
		}

		if (match.mask->vlan_priority) {
			fltr->flags |= ICE_TC_FLWR_FIELD_VLAN_PRIO;
			headers->vlan_hdr.vlan_prio =
				be16_encode_bits(match.key->vlan_priority,
						 VLAN_PRIO_MASK);
		}

		if (match.mask->vlan_tpid) {
			headers->vlan_hdr.vlan_tpid = match.key->vlan_tpid;
			fltr->flags |= ICE_TC_FLWR_FIELD_VLAN_TPID;
		}
	}

	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CVLAN)) {
		struct flow_match_vlan match;

		if (!ice_is_dvm_ena(&vsi->back->hw)) {
			NL_SET_ERR_MSG_MOD(fltr->extack, "Double VLAN mode is not enabled");
			return -EINVAL;
		}

		flow_rule_match_cvlan(rule, &match);

		if (match.mask->vlan_id) {
			if (match.mask->vlan_id == VLAN_VID_MASK) {
				fltr->flags |= ICE_TC_FLWR_FIELD_CVLAN;
				headers->cvlan_hdr.vlan_id =
					cpu_to_be16(match.key->vlan_id &
						    VLAN_VID_MASK);
			} else {
				NL_SET_ERR_MSG_MOD(fltr->extack,
						   "Bad CVLAN mask");
				return -EINVAL;
			}
		}

		if (match.mask->vlan_priority) {
			fltr->flags |= ICE_TC_FLWR_FIELD_CVLAN_PRIO;
			headers->cvlan_hdr.vlan_prio =
				be16_encode_bits(match.key->vlan_priority,
						 VLAN_PRIO_MASK);
		}
	}

	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PPPOE)) {
		struct flow_match_pppoe match;

		flow_rule_match_pppoe(rule, &match);
		n_proto_key = ice_tc_set_pppoe(&match, fltr, headers);

		/* If ethertype equals ETH_P_PPP_SES, n_proto might be
		 * overwritten by encapsulated protocol (ppp_proto field) or set
		 * to 0. To correct this, flow_match_pppoe provides the type
		 * field, which contains the actual ethertype (ETH_P_PPP_SES).
		 */
		headers->l2_key.n_proto = cpu_to_be16(n_proto_key);
		headers->l2_mask.n_proto = cpu_to_be16(0xFFFF);
		fltr->flags |= ICE_TC_FLWR_FIELD_ETH_TYPE_ID;
	}

	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) {
		struct flow_match_control match;

		flow_rule_match_control(rule, &match);

		addr_type = match.key->addr_type;
	}

	if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) {
		struct flow_match_ipv4_addrs match;

		flow_rule_match_ipv4_addrs(rule, &match);
		if (ice_tc_set_ipv4(&match, fltr, headers, false))
			return -EINVAL;
	}

	if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) {
		struct flow_match_ipv6_addrs match;

		flow_rule_match_ipv6_addrs(rule, &match);
		if (ice_tc_set_ipv6(&match, fltr, headers, false))
			return -EINVAL;
	}

	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_IP)) {
		struct flow_match_ip match;

		flow_rule_match_ip(rule, &match);
		ice_tc_set_tos_ttl(&match, fltr, headers, false);
	}

	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_L2TPV3)) {
		struct flow_match_l2tpv3 match;

		flow_rule_match_l2tpv3(rule, &match);

		fltr->flags |= ICE_TC_FLWR_FIELD_L2TPV3_SESSID;
		headers->l2tpv3_hdr.session_id = match.key->session_id;
	}

	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) {
		struct flow_match_ports match;

		flow_rule_match_ports(rule, &match);
		if (ice_tc_set_port(match, fltr, headers, false))
			return -EINVAL;
		switch (headers->l3_key.ip_proto) {
		case IPPROTO_TCP:
		case IPPROTO_UDP:
			break;
		default:
			NL_SET_ERR_MSG_MOD(fltr->extack, "Only UDP and TCP transport are supported");
			return -EINVAL;
		}
	}
	return 0;
}

/**
 * ice_add_switch_fltr - Add TC flower filters
 * @vsi: Pointer to VSI
 * @fltr: Pointer to struct ice_tc_flower_fltr
 *
 * Add filter in HW switch block
 */
static int
ice_add_switch_fltr(struct ice_vsi *vsi, struct ice_tc_flower_fltr *fltr)
{
	if (fltr->action.fltr_act == ICE_FWD_TO_QGRP)
		return -EOPNOTSUPP;

	if (ice_is_eswitch_mode_switchdev(vsi->back))
		return ice_eswitch_add_tc_fltr(vsi, fltr);

	return ice_add_tc_flower_adv_fltr(vsi, fltr);
}

/**
 * ice_prep_adq_filter - Prepare ADQ filter with the required additional headers
 * @vsi: Pointer to VSI
 * @fltr: Pointer to TC flower filter structure
 *
 * Prepare ADQ filter with the required additional header fields
 */
static int
ice_prep_adq_filter(struct ice_vsi *vsi, struct ice_tc_flower_fltr *fltr)
{
	if ((fltr->flags & ICE_TC_FLWR_FIELD_TENANT_ID) &&
	    (fltr->flags & (ICE_TC_FLWR_FIELD_DST_MAC |
			   ICE_TC_FLWR_FIELD_SRC_MAC))) {
		NL_SET_ERR_MSG_MOD(fltr->extack,
				   "Unable to add filter because filter using tunnel key and inner MAC is unsupported combination");
		return -EOPNOTSUPP;
	}

	/* For ADQ, filter must include dest MAC address, otherwise unwanted
	 * packets with unrelated MAC address get delivered to ADQ VSIs as long
	 * as remaining filter criteria is satisfied such as dest IP address
	 * and dest/src L4 port. Below code handles the following cases:
	 * 1. For non-tunnel, if user specify MAC addresses, use them.
	 * 2. For non-tunnel, if user didn't specify MAC address, add implicit
	 * dest MAC to be lower netdev's active unicast MAC address
	 * 3. For tunnel,  as of now TC-filter through flower classifier doesn't
	 * have provision for user to specify outer DMAC, hence driver to
	 * implicitly add outer dest MAC to be lower netdev's active unicast
	 * MAC address.
	 */
	if (fltr->tunnel_type != TNL_LAST &&
	    !(fltr->flags & ICE_TC_FLWR_FIELD_ENC_DST_MAC))
		fltr->flags |= ICE_TC_FLWR_FIELD_ENC_DST_MAC;

	if (fltr->tunnel_type == TNL_LAST &&
	    !(fltr->flags & ICE_TC_FLWR_FIELD_DST_MAC))
		fltr->flags |= ICE_TC_FLWR_FIELD_DST_MAC;

	if (fltr->flags & (ICE_TC_FLWR_FIELD_DST_MAC |
			   ICE_TC_FLWR_FIELD_ENC_DST_MAC)) {
		ether_addr_copy(fltr->outer_headers.l2_key.dst_mac,
				vsi->netdev->dev_addr);
		eth_broadcast_addr(fltr->outer_headers.l2_mask.dst_mac);
	}

	/* Make sure VLAN is already added to main VSI, before allowing ADQ to
	 * add a VLAN based filter such as MAC + VLAN + L4 port.
	 */
	if (fltr->flags & ICE_TC_FLWR_FIELD_VLAN) {
		u16 vlan_id = be16_to_cpu(fltr->outer_headers.vlan_hdr.vlan_id);

		if (!ice_vlan_fltr_exist(&vsi->back->hw, vlan_id, vsi->idx)) {
			NL_SET_ERR_MSG_MOD(fltr->extack,
					   "Unable to add filter because legacy VLAN filter for specified destination doesn't exist");
			return -EINVAL;
		}
	}
	return 0;
}

/**
 * ice_handle_tclass_action - Support directing to a traffic class
 * @vsi: Pointer to VSI
 * @cls_flower: Pointer to TC flower offload structure
 * @fltr: Pointer to TC flower filter structure
 *
 * Support directing traffic to a traffic class/queue-set
 */
static int
ice_handle_tclass_action(struct ice_vsi *vsi,
			 struct flow_cls_offload *cls_flower,
			 struct ice_tc_flower_fltr *fltr)
{
	int tc = tc_classid_to_hwtc(vsi->netdev, cls_flower->classid);

	/* user specified hw_tc (must be non-zero for ADQ TC), action is forward
	 * to hw_tc (i.e. ADQ channel number)
	 */
	if (tc < ICE_CHNL_START_TC) {
		NL_SET_ERR_MSG_MOD(fltr->extack,
				   "Unable to add filter because of unsupported destination");
		return -EOPNOTSUPP;
	}
	if (!(vsi->all_enatc & BIT(tc))) {
		NL_SET_ERR_MSG_MOD(fltr->extack,
				   "Unable to add filter because of non-existence destination");
		return -EINVAL;
	}
	fltr->action.fltr_act = ICE_FWD_TO_VSI;
	fltr->action.fwd.tc.tc_class = tc;

	return ice_prep_adq_filter(vsi, fltr);
}

static int
ice_tc_forward_to_queue(struct ice_vsi *vsi, struct ice_tc_flower_fltr *fltr,
			struct flow_action_entry *act)
{
	struct ice_vsi *ch_vsi = NULL;
	u16 queue = act->rx_queue;

	if (queue >= vsi->num_rxq) {
		NL_SET_ERR_MSG_MOD(fltr->extack,
				   "Unable to add filter because specified queue is invalid");
		return -EINVAL;
	}
	fltr->action.fltr_act = ICE_FWD_TO_Q;
	fltr->action.fwd.q.queue = queue;
	/* determine corresponding HW queue */
	fltr->action.fwd.q.hw_queue = vsi->rxq_map[queue];

	/* If ADQ is configured, and the queue belongs to ADQ VSI, then prepare
	 * ADQ switch filter
	 */
	ch_vsi = ice_locate_vsi_using_queue(vsi, fltr->action.fwd.q.queue);
	if (!ch_vsi)
		return -EINVAL;
	fltr->dest_vsi = ch_vsi;
	if (!ice_is_chnl_fltr(fltr))
		return 0;

	return ice_prep_adq_filter(vsi, fltr);
}

static int
ice_tc_parse_action(struct ice_vsi *vsi, struct ice_tc_flower_fltr *fltr,
		    struct flow_action_entry *act)
{
	switch (act->id) {
	case FLOW_ACTION_RX_QUEUE_MAPPING:
		/* forward to queue */
		return ice_tc_forward_to_queue(vsi, fltr, act);
	case FLOW_ACTION_DROP:
		fltr->action.fltr_act = ICE_DROP_PACKET;
		return 0;
	default:
		NL_SET_ERR_MSG_MOD(fltr->extack, "Unsupported TC action");
		return -EOPNOTSUPP;
	}
}

/**
 * ice_parse_tc_flower_actions - Parse the actions for a TC filter
 * @filter_dev: Pointer to device on which filter is being added
 * @vsi: Pointer to VSI
 * @cls_flower: Pointer to TC flower offload structure
 * @fltr: Pointer to TC flower filter structure
 *
 * Parse the actions for a TC filter
 */
static int ice_parse_tc_flower_actions(struct net_device *filter_dev,
				       struct ice_vsi *vsi,
				       struct flow_cls_offload *cls_flower,
				       struct ice_tc_flower_fltr *fltr)
{
	struct flow_rule *rule = flow_cls_offload_flow_rule(cls_flower);
	struct flow_action *flow_action = &rule->action;
	struct flow_action_entry *act;
	int i, err;

	if (cls_flower->classid)
		return ice_handle_tclass_action(vsi, cls_flower, fltr);

	if (!flow_action_has_entries(flow_action))
		return -EINVAL;

	flow_action_for_each(i, act, flow_action) {
		if (ice_is_eswitch_mode_switchdev(vsi->back))
			err = ice_eswitch_tc_parse_action(filter_dev, fltr, act);
		else
			err = ice_tc_parse_action(vsi, fltr, act);
		if (err)
			return err;
		continue;
	}
	return 0;
}

/**
 * ice_del_tc_fltr - deletes a filter from HW table
 * @vsi: Pointer to VSI
 * @fltr: Pointer to struct ice_tc_flower_fltr
 *
 * This function deletes a filter from HW table and manages book-keeping
 */
static int ice_del_tc_fltr(struct ice_vsi *vsi, struct ice_tc_flower_fltr *fltr)
{
	struct ice_rule_query_data rule_rem;
	struct ice_pf *pf = vsi->back;
	int err;

	rule_rem.rid = fltr->rid;
	rule_rem.rule_id = fltr->rule_id;
	rule_rem.vsi_handle = fltr->dest_vsi_handle;
	err = ice_rem_adv_rule_by_id(&pf->hw, &rule_rem);
	if (err) {
		if (err == -ENOENT) {
			NL_SET_ERR_MSG_MOD(fltr->extack, "Filter does not exist");
			return -ENOENT;
		}
		NL_SET_ERR_MSG_MOD(fltr->extack, "Failed to delete TC flower filter");
		return -EIO;
	}

	/* update advanced switch filter count for destination
	 * VSI if filter destination was VSI
	 */
	if (fltr->dest_vsi) {
		if (fltr->dest_vsi->type == ICE_VSI_CHNL) {
			fltr->dest_vsi->num_chnl_fltr--;

			/* keeps track of channel filters for PF VSI */
			if (vsi->type == ICE_VSI_PF &&
			    (fltr->flags & (ICE_TC_FLWR_FIELD_DST_MAC |
					    ICE_TC_FLWR_FIELD_ENC_DST_MAC)))
				pf->num_dmac_chnl_fltrs--;
		}
	}
	return 0;
}

/**
 * ice_add_tc_fltr - adds a TC flower filter
 * @netdev: Pointer to netdev
 * @vsi: Pointer to VSI
 * @f: Pointer to flower offload structure
 * @__fltr: Pointer to struct ice_tc_flower_fltr
 *
 * This function parses TC-flower input fields, parses action,
 * and adds a filter.
 */
static int
ice_add_tc_fltr(struct net_device *netdev, struct ice_vsi *vsi,
		struct flow_cls_offload *f,
		struct ice_tc_flower_fltr **__fltr)
{
	struct ice_tc_flower_fltr *fltr;
	int err;

	/* by default, set output to be INVALID */
	*__fltr = NULL;

	fltr = kzalloc(sizeof(*fltr), GFP_KERNEL);
	if (!fltr)
		return -ENOMEM;

	fltr->cookie = f->cookie;
	fltr->extack = f->common.extack;
	fltr->src_vsi = vsi;
	INIT_HLIST_NODE(&fltr->tc_flower_node);

	err = ice_parse_cls_flower(netdev, vsi, f, fltr);
	if (err < 0)
		goto err;

	err = ice_parse_tc_flower_actions(netdev, vsi, f, fltr);
	if (err < 0)
		goto err;

	err = ice_add_switch_fltr(vsi, fltr);
	if (err < 0)
		goto err;

	/* return the newly created filter */
	*__fltr = fltr;

	return 0;
err:
	kfree(fltr);
	return err;
}

/**
 * ice_find_tc_flower_fltr - Find the TC flower filter in the list
 * @pf: Pointer to PF
 * @cookie: filter specific cookie
 */
static struct ice_tc_flower_fltr *
ice_find_tc_flower_fltr(struct ice_pf *pf, unsigned long cookie)
{
	struct ice_tc_flower_fltr *fltr;

	hlist_for_each_entry(fltr, &pf->tc_flower_fltr_list, tc_flower_node)
		if (cookie == fltr->cookie)
			return fltr;

	return NULL;
}

/**
 * ice_add_cls_flower - add TC flower filters
 * @netdev: Pointer to filter device
 * @vsi: Pointer to VSI
 * @cls_flower: Pointer to flower offload structure
 */
int
ice_add_cls_flower(struct net_device *netdev, struct ice_vsi *vsi,
		   struct flow_cls_offload *cls_flower)
{
	struct netlink_ext_ack *extack = cls_flower->common.extack;
	struct net_device *vsi_netdev = vsi->netdev;
	struct ice_tc_flower_fltr *fltr;
	struct ice_pf *pf = vsi->back;
	int err;

	if (ice_is_reset_in_progress(pf->state))
		return -EBUSY;
	if (test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags))
		return -EINVAL;

	if (ice_is_port_repr_netdev(netdev))
		vsi_netdev = netdev;

	if (!(vsi_netdev->features & NETIF_F_HW_TC) &&
	    !test_bit(ICE_FLAG_CLS_FLOWER, pf->flags)) {
		/* Based on TC indirect notifications from kernel, all ice
		 * devices get an instance of rule from higher level device.
		 * Avoid triggering explicit error in this case.
		 */
		if (netdev == vsi_netdev)
			NL_SET_ERR_MSG_MOD(extack, "can't apply TC flower filters, turn ON hw-tc-offload and try again");
		return -EINVAL;
	}

	/* avoid duplicate entries, if exists - return error */
	fltr = ice_find_tc_flower_fltr(pf, cls_flower->cookie);
	if (fltr) {
		NL_SET_ERR_MSG_MOD(extack, "filter cookie already exists, ignoring");
		return -EEXIST;
	}

	/* prep and add TC-flower filter in HW */
	err = ice_add_tc_fltr(netdev, vsi, cls_flower, &fltr);
	if (err)
		return err;

	/* add filter into an ordered list */
	hlist_add_head(&fltr->tc_flower_node, &pf->tc_flower_fltr_list);
	return 0;
}

/**
 * ice_del_cls_flower - delete TC flower filters
 * @vsi: Pointer to VSI
 * @cls_flower: Pointer to struct flow_cls_offload
 */
int
ice_del_cls_flower(struct ice_vsi *vsi, struct flow_cls_offload *cls_flower)
{
	struct ice_tc_flower_fltr *fltr;
	struct ice_pf *pf = vsi->back;
	int err;

	/* find filter */
	fltr = ice_find_tc_flower_fltr(pf, cls_flower->cookie);
	if (!fltr) {
		if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) &&
		    hlist_empty(&pf->tc_flower_fltr_list))
			return 0;

		NL_SET_ERR_MSG_MOD(cls_flower->common.extack, "failed to delete TC flower filter because unable to find it");
		return -EINVAL;
	}

	fltr->extack = cls_flower->common.extack;
	/* delete filter from HW */
	err = ice_del_tc_fltr(vsi, fltr);
	if (err)
		return err;

	/* delete filter from an ordered list */
	hlist_del(&fltr->tc_flower_node);

	/* free the filter node */
	kfree(fltr);

	return 0;
}

/**
 * ice_replay_tc_fltrs - replay TC filters
 * @pf: pointer to PF struct
 */
void ice_replay_tc_fltrs(struct ice_pf *pf)
{
	struct ice_tc_flower_fltr *fltr;
	struct hlist_node *node;

	hlist_for_each_entry_safe(fltr, node,
				  &pf->tc_flower_fltr_list,
				  tc_flower_node) {
		fltr->extack = NULL;
		ice_add_switch_fltr(fltr->src_vsi, fltr);
	}
}