Contributors: 75
Author Tokens Token Proportion Commits Commit Proportion
Thomas Petazzoni 8296 32.01% 12 4.38%
Marcin Wojtas 3921 15.13% 11 4.01%
Lorenzo Bianconi 3883 14.98% 47 17.15%
Russell King 3311 12.77% 30 10.95%
Gregory CLEMENT 1071 4.13% 17 6.20%
Maxime Chevallier 818 3.16% 7 2.55%
Ezequiel García 711 2.74% 11 4.01%
JiSheng Zhang 687 2.65% 16 5.84%
Willy Tarreau 542 2.09% 12 4.38%
Maxime Ripard 431 1.66% 4 1.46%
Sebastian Andrzej Siewior 311 1.20% 2 0.73%
Jane Li 229 0.88% 1 0.36%
Yelena Krivosheev 221 0.85% 5 1.82%
Simon Guinot 199 0.77% 6 2.19%
Stas Sergeev 198 0.76% 4 1.46%
Jesper Dangaard Brouer 194 0.75% 2 0.73%
Sascha Hauer 137 0.53% 4 1.46%
Ioana Ciornei 84 0.32% 1 0.36%
Sven Auhagen 69 0.27% 3 1.09%
Chris Packham 65 0.25% 1 0.36%
Jarod Wilson 52 0.20% 1 0.36%
Daniel Gonzalez Cabanelas 51 0.20% 1 0.36%
Jingju Hou 51 0.20% 1 0.36%
Andrew Lunn 42 0.16% 3 1.09%
Marek Behún 41 0.16% 1 0.36%
Florian Fainelli 33 0.13% 3 1.09%
Eric Dumazet 28 0.11% 5 1.82%
Thomas Gleixner 24 0.09% 2 0.73%
Johan Hovold 21 0.08% 1 0.36%
SF Markus Elfring 18 0.07% 4 1.46%
Philippe Reynes 16 0.06% 2 0.73%
Marek Majtyka 14 0.05% 1 0.36%
Uwe Kleine-König 12 0.05% 2 0.73%
Jakub Kiciński 11 0.04% 5 1.82%
Yufeng Mo 10 0.04% 1 0.36%
Arnaud Patard 10 0.04% 1 0.36%
Hao Chen 10 0.04% 1 0.36%
Dmitri Epshtein 7 0.03% 4 1.46%
Matteo Croce 6 0.02% 1 0.36%
Paolo Abeni 6 0.02% 1 0.36%
Rosen Penev 6 0.02% 1 0.36%
Dan Carpenter 6 0.02% 1 0.36%
Peter Chen 5 0.02% 1 0.36%
Matthew Wilcox 4 0.02% 1 0.36%
Gustavo A. R. Silva 4 0.02% 1 0.36%
Michael Walle 4 0.02% 1 0.36%
Joe Perches 4 0.02% 1 0.36%
Lin Yun Sheng 4 0.02% 2 0.73%
Dinghao Liu 3 0.01% 1 0.36%
Eelco Chaudron 3 0.01% 1 0.36%
Wolfram Sang 3 0.01% 1 0.36%
Yangyang Li 2 0.01% 2 0.73%
Anna-Maria Gleixner 2 0.01% 1 0.36%
Alexandre Belloni 2 0.01% 1 0.36%
Andrew Pilloud 2 0.01% 1 0.36%
Klaus Kudielka 2 0.01% 1 0.36%
Baoyou Xie 2 0.01% 1 0.36%
David S. Miller 2 0.01% 1 0.36%
Björn Töpel 2 0.01% 1 0.36%
Florian Westphal 2 0.01% 1 0.36%
Christophe Jaillet 1 0.00% 1 0.36%
Américo Wang 1 0.00% 1 0.36%
Colin Ian King 1 0.00% 1 0.36%
Maxim Kiselev 1 0.00% 1 0.36%
Vladimir Oltean 1 0.00% 1 0.36%
Arnaud Ebalard 1 0.00% 1 0.36%
Stephen Hemminger 1 0.00% 1 0.36%
Yue haibing 1 0.00% 1 0.36%
Johannes Berg 1 0.00% 1 0.36%
Vlad Yasevich 1 0.00% 1 0.36%
Petr Štetiar 1 0.00% 1 0.36%
Justin Maggard 1 0.00% 1 0.36%
Arnd Bergmann 1 0.00% 1 0.36%
Ilias Apalodimas 1 0.00% 1 0.36%
Alexander Lobakin 1 0.00% 1 0.36%
Total 25920 274


/*
 * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
 *
 * Copyright (C) 2012 Marvell
 *
 * Rami Rosen <rosenr@marvell.com>
 * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
 *
 * This file is licensed under the terms of the GNU General Public
 * License version 2. This program is licensed "as is" without any
 * warranty of any kind, whether express or implied.
 */

#include <linux/clk.h>
#include <linux/cpu.h>
#include <linux/etherdevice.h>
#include <linux/if_vlan.h>
#include <linux/inetdevice.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/mbus.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/of_mdio.h>
#include <linux/of_net.h>
#include <linux/phy/phy.h>
#include <linux/phy.h>
#include <linux/phylink.h>
#include <linux/platform_device.h>
#include <linux/skbuff.h>
#include <net/hwbm.h>
#include "mvneta_bm.h"
#include <net/ip.h>
#include <net/ipv6.h>
#include <net/tso.h>
#include <net/page_pool/helpers.h>
#include <net/pkt_sched.h>
#include <linux/bpf_trace.h>

/* Registers */
#define MVNETA_RXQ_CONFIG_REG(q)                (0x1400 + ((q) << 2))
#define      MVNETA_RXQ_HW_BUF_ALLOC            BIT(0)
#define      MVNETA_RXQ_SHORT_POOL_ID_SHIFT	4
#define      MVNETA_RXQ_SHORT_POOL_ID_MASK	0x30
#define      MVNETA_RXQ_LONG_POOL_ID_SHIFT	6
#define      MVNETA_RXQ_LONG_POOL_ID_MASK	0xc0
#define      MVNETA_RXQ_PKT_OFFSET_ALL_MASK     (0xf    << 8)
#define      MVNETA_RXQ_PKT_OFFSET_MASK(offs)   ((offs) << 8)
#define MVNETA_RXQ_THRESHOLD_REG(q)             (0x14c0 + ((q) << 2))
#define      MVNETA_RXQ_NON_OCCUPIED(v)         ((v) << 16)
#define MVNETA_RXQ_BASE_ADDR_REG(q)             (0x1480 + ((q) << 2))
#define MVNETA_RXQ_SIZE_REG(q)                  (0x14a0 + ((q) << 2))
#define      MVNETA_RXQ_BUF_SIZE_SHIFT          19
#define      MVNETA_RXQ_BUF_SIZE_MASK           (0x1fff << 19)
#define MVNETA_RXQ_STATUS_REG(q)                (0x14e0 + ((q) << 2))
#define      MVNETA_RXQ_OCCUPIED_ALL_MASK       0x3fff
#define MVNETA_RXQ_STATUS_UPDATE_REG(q)         (0x1500 + ((q) << 2))
#define      MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT  16
#define      MVNETA_RXQ_ADD_NON_OCCUPIED_MAX    255
#define MVNETA_PORT_POOL_BUFFER_SZ_REG(pool)	(0x1700 + ((pool) << 2))
#define      MVNETA_PORT_POOL_BUFFER_SZ_SHIFT	3
#define      MVNETA_PORT_POOL_BUFFER_SZ_MASK	0xfff8
#define MVNETA_PORT_RX_RESET                    0x1cc0
#define      MVNETA_PORT_RX_DMA_RESET           BIT(0)
#define MVNETA_PHY_ADDR                         0x2000
#define      MVNETA_PHY_ADDR_MASK               0x1f
#define MVNETA_MBUS_RETRY                       0x2010
#define MVNETA_UNIT_INTR_CAUSE                  0x2080
#define MVNETA_UNIT_CONTROL                     0x20B0
#define      MVNETA_PHY_POLLING_ENABLE          BIT(1)
#define MVNETA_WIN_BASE(w)                      (0x2200 + ((w) << 3))
#define MVNETA_WIN_SIZE(w)                      (0x2204 + ((w) << 3))
#define MVNETA_WIN_REMAP(w)                     (0x2280 + ((w) << 2))
#define MVNETA_BASE_ADDR_ENABLE                 0x2290
#define      MVNETA_AC5_CNM_DDR_TARGET		0x2
#define      MVNETA_AC5_CNM_DDR_ATTR		0xb
#define MVNETA_ACCESS_PROTECT_ENABLE            0x2294
#define MVNETA_PORT_CONFIG                      0x2400
#define      MVNETA_UNI_PROMISC_MODE            BIT(0)
#define      MVNETA_DEF_RXQ(q)                  ((q) << 1)
#define      MVNETA_DEF_RXQ_ARP(q)              ((q) << 4)
#define      MVNETA_TX_UNSET_ERR_SUM            BIT(12)
#define      MVNETA_DEF_RXQ_TCP(q)              ((q) << 16)
#define      MVNETA_DEF_RXQ_UDP(q)              ((q) << 19)
#define      MVNETA_DEF_RXQ_BPDU(q)             ((q) << 22)
#define      MVNETA_RX_CSUM_WITH_PSEUDO_HDR     BIT(25)
#define      MVNETA_PORT_CONFIG_DEFL_VALUE(q)   (MVNETA_DEF_RXQ(q)       | \
						 MVNETA_DEF_RXQ_ARP(q)	 | \
						 MVNETA_DEF_RXQ_TCP(q)	 | \
						 MVNETA_DEF_RXQ_UDP(q)	 | \
						 MVNETA_DEF_RXQ_BPDU(q)	 | \
						 MVNETA_TX_UNSET_ERR_SUM | \
						 MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
#define MVNETA_PORT_CONFIG_EXTEND                0x2404
#define MVNETA_MAC_ADDR_LOW                      0x2414
#define MVNETA_MAC_ADDR_HIGH                     0x2418
#define MVNETA_SDMA_CONFIG                       0x241c
#define      MVNETA_SDMA_BRST_SIZE_16            4
#define      MVNETA_RX_BRST_SZ_MASK(burst)       ((burst) << 1)
#define      MVNETA_RX_NO_DATA_SWAP              BIT(4)
#define      MVNETA_TX_NO_DATA_SWAP              BIT(5)
#define      MVNETA_DESC_SWAP                    BIT(6)
#define      MVNETA_TX_BRST_SZ_MASK(burst)       ((burst) << 22)
#define	MVNETA_VLAN_PRIO_TO_RXQ			 0x2440
#define      MVNETA_VLAN_PRIO_RXQ_MAP(prio, rxq) ((rxq) << ((prio) * 3))
#define MVNETA_PORT_STATUS                       0x2444
#define      MVNETA_TX_IN_PRGRS                  BIT(0)
#define      MVNETA_TX_FIFO_EMPTY                BIT(8)
#define MVNETA_RX_MIN_FRAME_SIZE                 0x247c
/* Only exists on Armada XP and Armada 370 */
#define MVNETA_SERDES_CFG			 0x24A0
#define      MVNETA_SGMII_SERDES_PROTO		 0x0cc7
#define      MVNETA_QSGMII_SERDES_PROTO		 0x0667
#define      MVNETA_HSGMII_SERDES_PROTO		 0x1107
#define MVNETA_TYPE_PRIO                         0x24bc
#define      MVNETA_FORCE_UNI                    BIT(21)
#define MVNETA_TXQ_CMD_1                         0x24e4
#define MVNETA_TXQ_CMD                           0x2448
#define      MVNETA_TXQ_DISABLE_SHIFT            8
#define      MVNETA_TXQ_ENABLE_MASK              0x000000ff
#define MVNETA_RX_DISCARD_FRAME_COUNT		 0x2484
#define MVNETA_OVERRUN_FRAME_COUNT		 0x2488
#define MVNETA_GMAC_CLOCK_DIVIDER                0x24f4
#define      MVNETA_GMAC_1MS_CLOCK_ENABLE        BIT(31)
#define MVNETA_ACC_MODE                          0x2500
#define MVNETA_BM_ADDRESS                        0x2504
#define MVNETA_CPU_MAP(cpu)                      (0x2540 + ((cpu) << 2))
#define      MVNETA_CPU_RXQ_ACCESS_ALL_MASK      0x000000ff
#define      MVNETA_CPU_TXQ_ACCESS_ALL_MASK      0x0000ff00
#define      MVNETA_CPU_RXQ_ACCESS(rxq)		 BIT(rxq)
#define      MVNETA_CPU_TXQ_ACCESS(txq)		 BIT(txq + 8)
#define MVNETA_RXQ_TIME_COAL_REG(q)              (0x2580 + ((q) << 2))

/* Exception Interrupt Port/Queue Cause register
 *
 * Their behavior depend of the mapping done using the PCPX2Q
 * registers. For a given CPU if the bit associated to a queue is not
 * set, then for the register a read from this CPU will always return
 * 0 and a write won't do anything
 */

#define MVNETA_INTR_NEW_CAUSE                    0x25a0
#define MVNETA_INTR_NEW_MASK                     0x25a4

/* bits  0..7  = TXQ SENT, one bit per queue.
 * bits  8..15 = RXQ OCCUP, one bit per queue.
 * bits 16..23 = RXQ FREE, one bit per queue.
 * bit  29 = OLD_REG_SUM, see old reg ?
 * bit  30 = TX_ERR_SUM, one bit for 4 ports
 * bit  31 = MISC_SUM,   one bit for 4 ports
 */
#define      MVNETA_TX_INTR_MASK(nr_txqs)        (((1 << nr_txqs) - 1) << 0)
#define      MVNETA_TX_INTR_MASK_ALL             (0xff << 0)
#define      MVNETA_RX_INTR_MASK(nr_rxqs)        (((1 << nr_rxqs) - 1) << 8)
#define      MVNETA_RX_INTR_MASK_ALL             (0xff << 8)
#define      MVNETA_MISCINTR_INTR_MASK           BIT(31)

#define MVNETA_INTR_OLD_CAUSE                    0x25a8
#define MVNETA_INTR_OLD_MASK                     0x25ac

/* Data Path Port/Queue Cause Register */
#define MVNETA_INTR_MISC_CAUSE                   0x25b0
#define MVNETA_INTR_MISC_MASK                    0x25b4

#define      MVNETA_CAUSE_PHY_STATUS_CHANGE      BIT(0)
#define      MVNETA_CAUSE_LINK_CHANGE            BIT(1)
#define      MVNETA_CAUSE_PTP                    BIT(4)

#define      MVNETA_CAUSE_INTERNAL_ADDR_ERR      BIT(7)
#define      MVNETA_CAUSE_RX_OVERRUN             BIT(8)
#define      MVNETA_CAUSE_RX_CRC_ERROR           BIT(9)
#define      MVNETA_CAUSE_RX_LARGE_PKT           BIT(10)
#define      MVNETA_CAUSE_TX_UNDERUN             BIT(11)
#define      MVNETA_CAUSE_PRBS_ERR               BIT(12)
#define      MVNETA_CAUSE_PSC_SYNC_CHANGE        BIT(13)
#define      MVNETA_CAUSE_SERDES_SYNC_ERR        BIT(14)

#define      MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT    16
#define      MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK   (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT)
#define      MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool)))

#define      MVNETA_CAUSE_TXQ_ERROR_SHIFT        24
#define      MVNETA_CAUSE_TXQ_ERROR_ALL_MASK     (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT)
#define      MVNETA_CAUSE_TXQ_ERROR_MASK(q)      (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q)))

#define MVNETA_INTR_ENABLE                       0x25b8
#define      MVNETA_TXQ_INTR_ENABLE_ALL_MASK     0x0000ff00
#define      MVNETA_RXQ_INTR_ENABLE_ALL_MASK     0x000000ff

#define MVNETA_RXQ_CMD                           0x2680
#define      MVNETA_RXQ_DISABLE_SHIFT            8
#define      MVNETA_RXQ_ENABLE_MASK              0x000000ff
#define MVETH_TXQ_TOKEN_COUNT_REG(q)             (0x2700 + ((q) << 4))
#define MVETH_TXQ_TOKEN_CFG_REG(q)               (0x2704 + ((q) << 4))
#define MVNETA_GMAC_CTRL_0                       0x2c00
#define      MVNETA_GMAC_MAX_RX_SIZE_SHIFT       2
#define      MVNETA_GMAC_MAX_RX_SIZE_MASK        0x7ffc
#define      MVNETA_GMAC0_PORT_1000BASE_X        BIT(1)
#define      MVNETA_GMAC0_PORT_ENABLE            BIT(0)
#define MVNETA_GMAC_CTRL_2                       0x2c08
#define      MVNETA_GMAC2_INBAND_AN_ENABLE       BIT(0)
#define      MVNETA_GMAC2_PCS_ENABLE             BIT(3)
#define      MVNETA_GMAC2_PORT_RGMII             BIT(4)
#define      MVNETA_GMAC2_PORT_RESET             BIT(6)
#define MVNETA_GMAC_STATUS                       0x2c10
#define      MVNETA_GMAC_LINK_UP                 BIT(0)
#define      MVNETA_GMAC_SPEED_1000              BIT(1)
#define      MVNETA_GMAC_SPEED_100               BIT(2)
#define      MVNETA_GMAC_FULL_DUPLEX             BIT(3)
#define      MVNETA_GMAC_RX_FLOW_CTRL_ENABLE     BIT(4)
#define      MVNETA_GMAC_TX_FLOW_CTRL_ENABLE     BIT(5)
#define      MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE     BIT(6)
#define      MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE     BIT(7)
#define      MVNETA_GMAC_AN_COMPLETE             BIT(11)
#define      MVNETA_GMAC_SYNC_OK                 BIT(14)
#define MVNETA_GMAC_AUTONEG_CONFIG               0x2c0c
#define      MVNETA_GMAC_FORCE_LINK_DOWN         BIT(0)
#define      MVNETA_GMAC_FORCE_LINK_PASS         BIT(1)
#define      MVNETA_GMAC_INBAND_AN_ENABLE        BIT(2)
#define      MVNETA_GMAC_AN_BYPASS_ENABLE        BIT(3)
#define      MVNETA_GMAC_INBAND_RESTART_AN       BIT(4)
#define      MVNETA_GMAC_CONFIG_MII_SPEED        BIT(5)
#define      MVNETA_GMAC_CONFIG_GMII_SPEED       BIT(6)
#define      MVNETA_GMAC_AN_SPEED_EN             BIT(7)
#define      MVNETA_GMAC_CONFIG_FLOW_CTRL        BIT(8)
#define      MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL    BIT(9)
#define      MVNETA_GMAC_AN_FLOW_CTRL_EN         BIT(11)
#define      MVNETA_GMAC_CONFIG_FULL_DUPLEX      BIT(12)
#define      MVNETA_GMAC_AN_DUPLEX_EN            BIT(13)
#define MVNETA_GMAC_CTRL_4                       0x2c90
#define      MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE  BIT(1)
#define MVNETA_MIB_COUNTERS_BASE                 0x3000
#define      MVNETA_MIB_LATE_COLLISION           0x7c
#define MVNETA_DA_FILT_SPEC_MCAST                0x3400
#define MVNETA_DA_FILT_OTH_MCAST                 0x3500
#define MVNETA_DA_FILT_UCAST_BASE                0x3600
#define MVNETA_TXQ_BASE_ADDR_REG(q)              (0x3c00 + ((q) << 2))
#define MVNETA_TXQ_SIZE_REG(q)                   (0x3c20 + ((q) << 2))
#define      MVNETA_TXQ_SENT_THRESH_ALL_MASK     0x3fff0000
#define      MVNETA_TXQ_SENT_THRESH_MASK(coal)   ((coal) << 16)
#define MVNETA_TXQ_UPDATE_REG(q)                 (0x3c60 + ((q) << 2))
#define      MVNETA_TXQ_DEC_SENT_SHIFT           16
#define      MVNETA_TXQ_DEC_SENT_MASK            0xff
#define MVNETA_TXQ_STATUS_REG(q)                 (0x3c40 + ((q) << 2))
#define      MVNETA_TXQ_SENT_DESC_SHIFT          16
#define      MVNETA_TXQ_SENT_DESC_MASK           0x3fff0000
#define MVNETA_PORT_TX_RESET                     0x3cf0
#define      MVNETA_PORT_TX_DMA_RESET            BIT(0)
#define MVNETA_TXQ_CMD1_REG			 0x3e00
#define      MVNETA_TXQ_CMD1_BW_LIM_SEL_V1	 BIT(3)
#define      MVNETA_TXQ_CMD1_BW_LIM_EN		 BIT(0)
#define MVNETA_REFILL_NUM_CLK_REG		 0x3e08
#define      MVNETA_REFILL_MAX_NUM_CLK		 0x0000ffff
#define MVNETA_TX_MTU                            0x3e0c
#define MVNETA_TX_TOKEN_SIZE                     0x3e14
#define      MVNETA_TX_TOKEN_SIZE_MAX            0xffffffff
#define MVNETA_TXQ_BUCKET_REFILL_REG(q)		 (0x3e20 + ((q) << 2))
#define      MVNETA_TXQ_BUCKET_REFILL_PERIOD_MASK	0x3ff00000
#define      MVNETA_TXQ_BUCKET_REFILL_PERIOD_SHIFT	20
#define      MVNETA_TXQ_BUCKET_REFILL_VALUE_MAX	 0x0007ffff
#define MVNETA_TXQ_TOKEN_SIZE_REG(q)             (0x3e40 + ((q) << 2))
#define      MVNETA_TXQ_TOKEN_SIZE_MAX           0x7fffffff

/* The values of the bucket refill base period and refill period are taken from
 * the reference manual, and adds up to a base resolution of 10Kbps. This allows
 * to cover all rate-limit values from 10Kbps up to 5Gbps
 */

/* Base period for the rate limit algorithm */
#define MVNETA_TXQ_BUCKET_REFILL_BASE_PERIOD_NS	100

/* Number of Base Period to wait between each bucket refill */
#define MVNETA_TXQ_BUCKET_REFILL_PERIOD	1000

/* The base resolution for rate limiting, in bps. Any max_rate value should be
 * a multiple of that value.
 */
#define MVNETA_TXQ_RATE_LIMIT_RESOLUTION (NSEC_PER_SEC / \
					 (MVNETA_TXQ_BUCKET_REFILL_BASE_PERIOD_NS * \
					  MVNETA_TXQ_BUCKET_REFILL_PERIOD))

#define MVNETA_LPI_CTRL_0                        0x2cc0
#define MVNETA_LPI_CTRL_1                        0x2cc4
#define      MVNETA_LPI_REQUEST_ENABLE           BIT(0)
#define MVNETA_LPI_CTRL_2                        0x2cc8
#define MVNETA_LPI_STATUS                        0x2ccc

#define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK	 0xff

/* Descriptor ring Macros */
#define MVNETA_QUEUE_NEXT_DESC(q, index)	\
	(((index) < (q)->last_desc) ? ((index) + 1) : 0)

/* Various constants */

/* Coalescing */
#define MVNETA_TXDONE_COAL_PKTS		0	/* interrupt per packet */
#define MVNETA_RX_COAL_PKTS		32
#define MVNETA_RX_COAL_USEC		100

/* The two bytes Marvell header. Either contains a special value used
 * by Marvell switches when a specific hardware mode is enabled (not
 * supported by this driver) or is filled automatically by zeroes on
 * the RX side. Those two bytes being at the front of the Ethernet
 * header, they allow to have the IP header aligned on a 4 bytes
 * boundary automatically: the hardware skips those two bytes on its
 * own.
 */
#define MVNETA_MH_SIZE			2

#define MVNETA_VLAN_TAG_LEN             4

#define MVNETA_TX_CSUM_DEF_SIZE		1600
#define MVNETA_TX_CSUM_MAX_SIZE		9800
#define MVNETA_ACC_MODE_EXT1		1
#define MVNETA_ACC_MODE_EXT2		2

#define MVNETA_MAX_DECODE_WIN		6

/* Timeout constants */
#define MVNETA_TX_DISABLE_TIMEOUT_MSEC	1000
#define MVNETA_RX_DISABLE_TIMEOUT_MSEC	1000
#define MVNETA_TX_FIFO_EMPTY_TIMEOUT	10000

#define MVNETA_TX_MTU_MAX		0x3ffff

/* The RSS lookup table actually has 256 entries but we do not use
 * them yet
 */
#define MVNETA_RSS_LU_TABLE_SIZE	1

/* Max number of Rx descriptors */
#define MVNETA_MAX_RXD 512

/* Max number of Tx descriptors */
#define MVNETA_MAX_TXD 1024

/* Max number of allowed TCP segments for software TSO */
#define MVNETA_MAX_TSO_SEGS 100

#define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)

/* The size of a TSO header page */
#define MVNETA_TSO_PAGE_SIZE (2 * PAGE_SIZE)

/* Number of TSO headers per page. This should be a power of 2 */
#define MVNETA_TSO_PER_PAGE (MVNETA_TSO_PAGE_SIZE / TSO_HEADER_SIZE)

/* Maximum number of TSO header pages */
#define MVNETA_MAX_TSO_PAGES (MVNETA_MAX_TXD / MVNETA_TSO_PER_PAGE)

/* descriptor aligned size */
#define MVNETA_DESC_ALIGNED_SIZE	32

/* Number of bytes to be taken into account by HW when putting incoming data
 * to the buffers. It is needed in case NET_SKB_PAD exceeds maximum packet
 * offset supported in MVNETA_RXQ_CONFIG_REG(q) registers.
 */
#define MVNETA_RX_PKT_OFFSET_CORRECTION		64

#define MVNETA_RX_PKT_SIZE(mtu) \
	ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \
	      ETH_HLEN + ETH_FCS_LEN,			     \
	      cache_line_size())

/* Driver assumes that the last 3 bits are 0 */
#define MVNETA_SKB_HEADROOM	ALIGN(max(NET_SKB_PAD, XDP_PACKET_HEADROOM), 8)
#define MVNETA_SKB_PAD	(SKB_DATA_ALIGN(sizeof(struct skb_shared_info) + \
			 MVNETA_SKB_HEADROOM))
#define MVNETA_MAX_RX_BUF_SIZE	(PAGE_SIZE - MVNETA_SKB_PAD)

#define MVNETA_RX_GET_BM_POOL_ID(rxd) \
	(((rxd)->status & MVNETA_RXD_BM_POOL_MASK) >> MVNETA_RXD_BM_POOL_SHIFT)

enum {
	ETHTOOL_STAT_EEE_WAKEUP,
	ETHTOOL_STAT_SKB_ALLOC_ERR,
	ETHTOOL_STAT_REFILL_ERR,
	ETHTOOL_XDP_REDIRECT,
	ETHTOOL_XDP_PASS,
	ETHTOOL_XDP_DROP,
	ETHTOOL_XDP_TX,
	ETHTOOL_XDP_TX_ERR,
	ETHTOOL_XDP_XMIT,
	ETHTOOL_XDP_XMIT_ERR,
	ETHTOOL_MAX_STATS,
};

struct mvneta_statistic {
	unsigned short offset;
	unsigned short type;
	const char name[ETH_GSTRING_LEN];
};

#define T_REG_32	32
#define T_REG_64	64
#define T_SW		1

#define MVNETA_XDP_PASS		0
#define MVNETA_XDP_DROPPED	BIT(0)
#define MVNETA_XDP_TX		BIT(1)
#define MVNETA_XDP_REDIR	BIT(2)

static const struct mvneta_statistic mvneta_statistics[] = {
	{ 0x3000, T_REG_64, "good_octets_received", },
	{ 0x3010, T_REG_32, "good_frames_received", },
	{ 0x3008, T_REG_32, "bad_octets_received", },
	{ 0x3014, T_REG_32, "bad_frames_received", },
	{ 0x3018, T_REG_32, "broadcast_frames_received", },
	{ 0x301c, T_REG_32, "multicast_frames_received", },
	{ 0x3050, T_REG_32, "unrec_mac_control_received", },
	{ 0x3058, T_REG_32, "good_fc_received", },
	{ 0x305c, T_REG_32, "bad_fc_received", },
	{ 0x3060, T_REG_32, "undersize_received", },
	{ 0x3064, T_REG_32, "fragments_received", },
	{ 0x3068, T_REG_32, "oversize_received", },
	{ 0x306c, T_REG_32, "jabber_received", },
	{ 0x3070, T_REG_32, "mac_receive_error", },
	{ 0x3074, T_REG_32, "bad_crc_event", },
	{ 0x3078, T_REG_32, "collision", },
	{ 0x307c, T_REG_32, "late_collision", },
	{ 0x2484, T_REG_32, "rx_discard", },
	{ 0x2488, T_REG_32, "rx_overrun", },
	{ 0x3020, T_REG_32, "frames_64_octets", },
	{ 0x3024, T_REG_32, "frames_65_to_127_octets", },
	{ 0x3028, T_REG_32, "frames_128_to_255_octets", },
	{ 0x302c, T_REG_32, "frames_256_to_511_octets", },
	{ 0x3030, T_REG_32, "frames_512_to_1023_octets", },
	{ 0x3034, T_REG_32, "frames_1024_to_max_octets", },
	{ 0x3038, T_REG_64, "good_octets_sent", },
	{ 0x3040, T_REG_32, "good_frames_sent", },
	{ 0x3044, T_REG_32, "excessive_collision", },
	{ 0x3048, T_REG_32, "multicast_frames_sent", },
	{ 0x304c, T_REG_32, "broadcast_frames_sent", },
	{ 0x3054, T_REG_32, "fc_sent", },
	{ 0x300c, T_REG_32, "internal_mac_transmit_err", },
	{ ETHTOOL_STAT_EEE_WAKEUP, T_SW, "eee_wakeup_errors", },
	{ ETHTOOL_STAT_SKB_ALLOC_ERR, T_SW, "skb_alloc_errors", },
	{ ETHTOOL_STAT_REFILL_ERR, T_SW, "refill_errors", },
	{ ETHTOOL_XDP_REDIRECT, T_SW, "rx_xdp_redirect", },
	{ ETHTOOL_XDP_PASS, T_SW, "rx_xdp_pass", },
	{ ETHTOOL_XDP_DROP, T_SW, "rx_xdp_drop", },
	{ ETHTOOL_XDP_TX, T_SW, "rx_xdp_tx", },
	{ ETHTOOL_XDP_TX_ERR, T_SW, "rx_xdp_tx_errors", },
	{ ETHTOOL_XDP_XMIT, T_SW, "tx_xdp_xmit", },
	{ ETHTOOL_XDP_XMIT_ERR, T_SW, "tx_xdp_xmit_errors", },
};

struct mvneta_stats {
	u64	rx_packets;
	u64	rx_bytes;
	u64	tx_packets;
	u64	tx_bytes;
	/* xdp */
	u64	xdp_redirect;
	u64	xdp_pass;
	u64	xdp_drop;
	u64	xdp_xmit;
	u64	xdp_xmit_err;
	u64	xdp_tx;
	u64	xdp_tx_err;
};

struct mvneta_ethtool_stats {
	struct mvneta_stats ps;
	u64	skb_alloc_error;
	u64	refill_error;
};

struct mvneta_pcpu_stats {
	struct u64_stats_sync syncp;

	struct mvneta_ethtool_stats es;
	u64	rx_dropped;
	u64	rx_errors;
};

struct mvneta_pcpu_port {
	/* Pointer to the shared port */
	struct mvneta_port	*pp;

	/* Pointer to the CPU-local NAPI struct */
	struct napi_struct	napi;

	/* Cause of the previous interrupt */
	u32			cause_rx_tx;
};

enum {
	__MVNETA_DOWN,
};

struct mvneta_port {
	u8 id;
	struct mvneta_pcpu_port __percpu	*ports;
	struct mvneta_pcpu_stats __percpu	*stats;

	unsigned long state;

	int pkt_size;
	void __iomem *base;
	struct mvneta_rx_queue *rxqs;
	struct mvneta_tx_queue *txqs;
	struct net_device *dev;
	struct hlist_node node_online;
	struct hlist_node node_dead;
	int rxq_def;
	/* Protect the access to the percpu interrupt registers,
	 * ensuring that the configuration remains coherent.
	 */
	spinlock_t lock;
	bool is_stopped;

	u32 cause_rx_tx;
	struct napi_struct napi;

	struct bpf_prog *xdp_prog;

	/* Core clock */
	struct clk *clk;
	/* AXI clock */
	struct clk *clk_bus;
	u8 mcast_count[256];
	u16 tx_ring_size;
	u16 rx_ring_size;

	phy_interface_t phy_interface;
	struct device_node *dn;
	unsigned int tx_csum_limit;
	struct phylink *phylink;
	struct phylink_config phylink_config;
	struct phylink_pcs phylink_pcs;
	struct phy *comphy;

	struct mvneta_bm *bm_priv;
	struct mvneta_bm_pool *pool_long;
	struct mvneta_bm_pool *pool_short;
	int bm_win_id;

	bool eee_enabled;
	bool eee_active;
	bool tx_lpi_enabled;

	u64 ethtool_stats[ARRAY_SIZE(mvneta_statistics)];

	u32 indir[MVNETA_RSS_LU_TABLE_SIZE];

	/* Flags for special SoC configurations */
	bool neta_armada3700;
	bool neta_ac5;
	u16 rx_offset_correction;
	const struct mbus_dram_target_info *dram_target_info;
};

/* The mvneta_tx_desc and mvneta_rx_desc structures describe the
 * layout of the transmit and reception DMA descriptors, and their
 * layout is therefore defined by the hardware design
 */

#define MVNETA_TX_L3_OFF_SHIFT	0
#define MVNETA_TX_IP_HLEN_SHIFT	8
#define MVNETA_TX_L4_UDP	BIT(16)
#define MVNETA_TX_L3_IP6	BIT(17)
#define MVNETA_TXD_IP_CSUM	BIT(18)
#define MVNETA_TXD_Z_PAD	BIT(19)
#define MVNETA_TXD_L_DESC	BIT(20)
#define MVNETA_TXD_F_DESC	BIT(21)
#define MVNETA_TXD_FLZ_DESC	(MVNETA_TXD_Z_PAD  | \
				 MVNETA_TXD_L_DESC | \
				 MVNETA_TXD_F_DESC)
#define MVNETA_TX_L4_CSUM_FULL	BIT(30)
#define MVNETA_TX_L4_CSUM_NOT	BIT(31)

#define MVNETA_RXD_ERR_CRC		0x0
#define MVNETA_RXD_BM_POOL_SHIFT	13
#define MVNETA_RXD_BM_POOL_MASK		(BIT(13) | BIT(14))
#define MVNETA_RXD_ERR_SUMMARY		BIT(16)
#define MVNETA_RXD_ERR_OVERRUN		BIT(17)
#define MVNETA_RXD_ERR_LEN		BIT(18)
#define MVNETA_RXD_ERR_RESOURCE		(BIT(17) | BIT(18))
#define MVNETA_RXD_ERR_CODE_MASK	(BIT(17) | BIT(18))
#define MVNETA_RXD_L3_IP4		BIT(25)
#define MVNETA_RXD_LAST_DESC		BIT(26)
#define MVNETA_RXD_FIRST_DESC		BIT(27)
#define MVNETA_RXD_FIRST_LAST_DESC	(MVNETA_RXD_FIRST_DESC | \
					 MVNETA_RXD_LAST_DESC)
#define MVNETA_RXD_L4_CSUM_OK		BIT(30)

#if defined(__LITTLE_ENDIAN)
struct mvneta_tx_desc {
	u32  command;		/* Options used by HW for packet transmitting.*/
	u16  reserved1;		/* csum_l4 (for future use)		*/
	u16  data_size;		/* Data size of transmitted packet in bytes */
	u32  buf_phys_addr;	/* Physical addr of transmitted buffer	*/
	u32  reserved2;		/* hw_cmd - (for future use, PMT)	*/
	u32  reserved3[4];	/* Reserved - (for future use)		*/
};

struct mvneta_rx_desc {
	u32  status;		/* Info about received packet		*/
	u16  reserved1;		/* pnc_info - (for future use, PnC)	*/
	u16  data_size;		/* Size of received packet in bytes	*/

	u32  buf_phys_addr;	/* Physical address of the buffer	*/
	u32  reserved2;		/* pnc_flow_id  (for future use, PnC)	*/

	u32  buf_cookie;	/* cookie for access to RX buffer in rx path */
	u16  reserved3;		/* prefetch_cmd, for future use		*/
	u16  reserved4;		/* csum_l4 - (for future use, PnC)	*/

	u32  reserved5;		/* pnc_extra PnC (for future use, PnC)	*/
	u32  reserved6;		/* hw_cmd (for future use, PnC and HWF)	*/
};
#else
struct mvneta_tx_desc {
	u16  data_size;		/* Data size of transmitted packet in bytes */
	u16  reserved1;		/* csum_l4 (for future use)		*/
	u32  command;		/* Options used by HW for packet transmitting.*/
	u32  reserved2;		/* hw_cmd - (for future use, PMT)	*/
	u32  buf_phys_addr;	/* Physical addr of transmitted buffer	*/
	u32  reserved3[4];	/* Reserved - (for future use)		*/
};

struct mvneta_rx_desc {
	u16  data_size;		/* Size of received packet in bytes	*/
	u16  reserved1;		/* pnc_info - (for future use, PnC)	*/
	u32  status;		/* Info about received packet		*/

	u32  reserved2;		/* pnc_flow_id  (for future use, PnC)	*/
	u32  buf_phys_addr;	/* Physical address of the buffer	*/

	u16  reserved4;		/* csum_l4 - (for future use, PnC)	*/
	u16  reserved3;		/* prefetch_cmd, for future use		*/
	u32  buf_cookie;	/* cookie for access to RX buffer in rx path */

	u32  reserved5;		/* pnc_extra PnC (for future use, PnC)	*/
	u32  reserved6;		/* hw_cmd (for future use, PnC and HWF)	*/
};
#endif

enum mvneta_tx_buf_type {
	MVNETA_TYPE_TSO,
	MVNETA_TYPE_SKB,
	MVNETA_TYPE_XDP_TX,
	MVNETA_TYPE_XDP_NDO,
};

struct mvneta_tx_buf {
	enum mvneta_tx_buf_type type;
	union {
		struct xdp_frame *xdpf;
		struct sk_buff *skb;
	};
};

struct mvneta_tx_queue {
	/* Number of this TX queue, in the range 0-7 */
	u8 id;

	/* Number of TX DMA descriptors in the descriptor ring */
	int size;

	/* Number of currently used TX DMA descriptor in the
	 * descriptor ring
	 */
	int count;
	int pending;
	int tx_stop_threshold;
	int tx_wake_threshold;

	/* Array of transmitted buffers */
	struct mvneta_tx_buf *buf;

	/* Index of last TX DMA descriptor that was inserted */
	int txq_put_index;

	/* Index of the TX DMA descriptor to be cleaned up */
	int txq_get_index;

	u32 done_pkts_coal;

	/* Virtual address of the TX DMA descriptors array */
	struct mvneta_tx_desc *descs;

	/* DMA address of the TX DMA descriptors array */
	dma_addr_t descs_phys;

	/* Index of the last TX DMA descriptor */
	int last_desc;

	/* Index of the next TX DMA descriptor to process */
	int next_desc_to_proc;

	/* DMA buffers for TSO headers */
	char *tso_hdrs[MVNETA_MAX_TSO_PAGES];

	/* DMA address of TSO headers */
	dma_addr_t tso_hdrs_phys[MVNETA_MAX_TSO_PAGES];

	/* Affinity mask for CPUs*/
	cpumask_t affinity_mask;
};

struct mvneta_rx_queue {
	/* rx queue number, in the range 0-7 */
	u8 id;

	/* num of rx descriptors in the rx descriptor ring */
	int size;

	u32 pkts_coal;
	u32 time_coal;

	/* page_pool */
	struct page_pool *page_pool;
	struct xdp_rxq_info xdp_rxq;

	/* Virtual address of the RX buffer */
	void  **buf_virt_addr;

	/* Virtual address of the RX DMA descriptors array */
	struct mvneta_rx_desc *descs;

	/* DMA address of the RX DMA descriptors array */
	dma_addr_t descs_phys;

	/* Index of the last RX DMA descriptor */
	int last_desc;

	/* Index of the next RX DMA descriptor to process */
	int next_desc_to_proc;

	/* Index of first RX DMA descriptor to refill */
	int first_to_refill;
	u32 refill_num;
};

static enum cpuhp_state online_hpstate;
/* The hardware supports eight (8) rx queues, but we are only allowing
 * the first one to be used. Therefore, let's just allocate one queue.
 */
static int rxq_number = 8;
static int txq_number = 8;

static int rxq_def;

static int rx_copybreak __read_mostly = 256;

/* HW BM need that each port be identify by a unique ID */
static int global_port_id;

#define MVNETA_DRIVER_NAME "mvneta"
#define MVNETA_DRIVER_VERSION "1.0"

/* Utility/helper methods */

/* Write helper method */
static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data)
{
	writel(data, pp->base + offset);
}

/* Read helper method */
static u32 mvreg_read(struct mvneta_port *pp, u32 offset)
{
	return readl(pp->base + offset);
}

/* Increment txq get counter */
static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq)
{
	txq->txq_get_index++;
	if (txq->txq_get_index == txq->size)
		txq->txq_get_index = 0;
}

/* Increment txq put counter */
static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq)
{
	txq->txq_put_index++;
	if (txq->txq_put_index == txq->size)
		txq->txq_put_index = 0;
}


/* Clear all MIB counters */
static void mvneta_mib_counters_clear(struct mvneta_port *pp)
{
	int i;

	/* Perform dummy reads from MIB counters */
	for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4)
		mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i));
	mvreg_read(pp, MVNETA_RX_DISCARD_FRAME_COUNT);
	mvreg_read(pp, MVNETA_OVERRUN_FRAME_COUNT);
}

/* Get System Network Statistics */
static void
mvneta_get_stats64(struct net_device *dev,
		   struct rtnl_link_stats64 *stats)
{
	struct mvneta_port *pp = netdev_priv(dev);
	unsigned int start;
	int cpu;

	for_each_possible_cpu(cpu) {
		struct mvneta_pcpu_stats *cpu_stats;
		u64 rx_packets;
		u64 rx_bytes;
		u64 rx_dropped;
		u64 rx_errors;
		u64 tx_packets;
		u64 tx_bytes;

		cpu_stats = per_cpu_ptr(pp->stats, cpu);
		do {
			start = u64_stats_fetch_begin(&cpu_stats->syncp);
			rx_packets = cpu_stats->es.ps.rx_packets;
			rx_bytes   = cpu_stats->es.ps.rx_bytes;
			rx_dropped = cpu_stats->rx_dropped;
			rx_errors  = cpu_stats->rx_errors;
			tx_packets = cpu_stats->es.ps.tx_packets;
			tx_bytes   = cpu_stats->es.ps.tx_bytes;
		} while (u64_stats_fetch_retry(&cpu_stats->syncp, start));

		stats->rx_packets += rx_packets;
		stats->rx_bytes   += rx_bytes;
		stats->rx_dropped += rx_dropped;
		stats->rx_errors  += rx_errors;
		stats->tx_packets += tx_packets;
		stats->tx_bytes   += tx_bytes;
	}

	stats->tx_dropped	= dev->stats.tx_dropped;
}

/* Rx descriptors helper methods */

/* Checks whether the RX descriptor having this status is both the first
 * and the last descriptor for the RX packet. Each RX packet is currently
 * received through a single RX descriptor, so not having each RX
 * descriptor with its first and last bits set is an error
 */
static int mvneta_rxq_desc_is_first_last(u32 status)
{
	return (status & MVNETA_RXD_FIRST_LAST_DESC) ==
		MVNETA_RXD_FIRST_LAST_DESC;
}

/* Add number of descriptors ready to receive new packets */
static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp,
					  struct mvneta_rx_queue *rxq,
					  int ndescs)
{
	/* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
	 * be added at once
	 */
	while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) {
		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
			    (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX <<
			     MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
		ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX;
	}

	mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
		    (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
}

/* Get number of RX descriptors occupied by received packets */
static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp,
					struct mvneta_rx_queue *rxq)
{
	u32 val;

	val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id));
	return val & MVNETA_RXQ_OCCUPIED_ALL_MASK;
}

/* Update num of rx desc called upon return from rx path or
 * from mvneta_rxq_drop_pkts().
 */
static void mvneta_rxq_desc_num_update(struct mvneta_port *pp,
				       struct mvneta_rx_queue *rxq,
				       int rx_done, int rx_filled)
{
	u32 val;

	if ((rx_done <= 0xff) && (rx_filled <= 0xff)) {
		val = rx_done |
		  (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT);
		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
		return;
	}

	/* Only 255 descriptors can be added at once */
	while ((rx_done > 0) || (rx_filled > 0)) {
		if (rx_done <= 0xff) {
			val = rx_done;
			rx_done = 0;
		} else {
			val = 0xff;
			rx_done -= 0xff;
		}
		if (rx_filled <= 0xff) {
			val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
			rx_filled = 0;
		} else {
			val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
			rx_filled -= 0xff;
		}
		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
	}
}

/* Get pointer to next RX descriptor to be processed by SW */
static struct mvneta_rx_desc *
mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq)
{
	int rx_desc = rxq->next_desc_to_proc;

	rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc);
	prefetch(rxq->descs + rxq->next_desc_to_proc);
	return rxq->descs + rx_desc;
}

/* Change maximum receive size of the port. */
static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size)
{
	u32 val;

	val =  mvreg_read(pp, MVNETA_GMAC_CTRL_0);
	val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK;
	val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) <<
		MVNETA_GMAC_MAX_RX_SIZE_SHIFT;
	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
}


/* Set rx queue offset */
static void mvneta_rxq_offset_set(struct mvneta_port *pp,
				  struct mvneta_rx_queue *rxq,
				  int offset)
{
	u32 val;

	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
	val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK;

	/* Offset is in */
	val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3);
	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
}


/* Tx descriptors helper methods */

/* Update HW with number of TX descriptors to be sent */
static void mvneta_txq_pend_desc_add(struct mvneta_port *pp,
				     struct mvneta_tx_queue *txq,
				     int pend_desc)
{
	u32 val;

	pend_desc += txq->pending;

	/* Only 255 Tx descriptors can be added at once */
	do {
		val = min(pend_desc, 255);
		mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
		pend_desc -= val;
	} while (pend_desc > 0);
	txq->pending = 0;
}

/* Get pointer to next TX descriptor to be processed (send) by HW */
static struct mvneta_tx_desc *
mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq)
{
	int tx_desc = txq->next_desc_to_proc;

	txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc);
	return txq->descs + tx_desc;
}

/* Release the last allocated TX descriptor. Useful to handle DMA
 * mapping failures in the TX path.
 */
static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq)
{
	if (txq->next_desc_to_proc == 0)
		txq->next_desc_to_proc = txq->last_desc - 1;
	else
		txq->next_desc_to_proc--;
}

/* Set rxq buf size */
static void mvneta_rxq_buf_size_set(struct mvneta_port *pp,
				    struct mvneta_rx_queue *rxq,
				    int buf_size)
{
	u32 val;

	val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id));

	val &= ~MVNETA_RXQ_BUF_SIZE_MASK;
	val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT);

	mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val);
}

/* Disable buffer management (BM) */
static void mvneta_rxq_bm_disable(struct mvneta_port *pp,
				  struct mvneta_rx_queue *rxq)
{
	u32 val;

	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
	val &= ~MVNETA_RXQ_HW_BUF_ALLOC;
	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
}

/* Enable buffer management (BM) */
static void mvneta_rxq_bm_enable(struct mvneta_port *pp,
				 struct mvneta_rx_queue *rxq)
{
	u32 val;

	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
	val |= MVNETA_RXQ_HW_BUF_ALLOC;
	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
}

/* Notify HW about port's assignment of pool for bigger packets */
static void mvneta_rxq_long_pool_set(struct mvneta_port *pp,
				     struct mvneta_rx_queue *rxq)
{
	u32 val;

	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
	val &= ~MVNETA_RXQ_LONG_POOL_ID_MASK;
	val |= (pp->pool_long->id << MVNETA_RXQ_LONG_POOL_ID_SHIFT);

	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
}

/* Notify HW about port's assignment of pool for smaller packets */
static void mvneta_rxq_short_pool_set(struct mvneta_port *pp,
				      struct mvneta_rx_queue *rxq)
{
	u32 val;

	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
	val &= ~MVNETA_RXQ_SHORT_POOL_ID_MASK;
	val |= (pp->pool_short->id << MVNETA_RXQ_SHORT_POOL_ID_SHIFT);

	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
}

/* Set port's receive buffer size for assigned BM pool */
static inline void mvneta_bm_pool_bufsize_set(struct mvneta_port *pp,
					      int buf_size,
					      u8 pool_id)
{
	u32 val;

	if (!IS_ALIGNED(buf_size, 8)) {
		dev_warn(pp->dev->dev.parent,
			 "illegal buf_size value %d, round to %d\n",
			 buf_size, ALIGN(buf_size, 8));
		buf_size = ALIGN(buf_size, 8);
	}

	val = mvreg_read(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id));
	val |= buf_size & MVNETA_PORT_POOL_BUFFER_SZ_MASK;
	mvreg_write(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id), val);
}

/* Configure MBUS window in order to enable access BM internal SRAM */
static int mvneta_mbus_io_win_set(struct mvneta_port *pp, u32 base, u32 wsize,
				  u8 target, u8 attr)
{
	u32 win_enable, win_protect;
	int i;

	win_enable = mvreg_read(pp, MVNETA_BASE_ADDR_ENABLE);

	if (pp->bm_win_id < 0) {
		/* Find first not occupied window */
		for (i = 0; i < MVNETA_MAX_DECODE_WIN; i++) {
			if (win_enable & (1 << i)) {
				pp->bm_win_id = i;
				break;
			}
		}
		if (i == MVNETA_MAX_DECODE_WIN)
			return -ENOMEM;
	} else {
		i = pp->bm_win_id;
	}

	mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
	mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);

	if (i < 4)
		mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);

	mvreg_write(pp, MVNETA_WIN_BASE(i), (base & 0xffff0000) |
		    (attr << 8) | target);

	mvreg_write(pp, MVNETA_WIN_SIZE(i), (wsize - 1) & 0xffff0000);

	win_protect = mvreg_read(pp, MVNETA_ACCESS_PROTECT_ENABLE);
	win_protect |= 3 << (2 * i);
	mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);

	win_enable &= ~(1 << i);
	mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);

	return 0;
}

static int mvneta_bm_port_mbus_init(struct mvneta_port *pp)
{
	u32 wsize;
	u8 target, attr;
	int err;

	/* Get BM window information */
	err = mvebu_mbus_get_io_win_info(pp->bm_priv->bppi_phys_addr, &wsize,
					 &target, &attr);
	if (err < 0)
		return err;

	pp->bm_win_id = -1;

	/* Open NETA -> BM window */
	err = mvneta_mbus_io_win_set(pp, pp->bm_priv->bppi_phys_addr, wsize,
				     target, attr);
	if (err < 0) {
		netdev_info(pp->dev, "fail to configure mbus window to BM\n");
		return err;
	}
	return 0;
}

/* Assign and initialize pools for port. In case of fail
 * buffer manager will remain disabled for current port.
 */
static int mvneta_bm_port_init(struct platform_device *pdev,
			       struct mvneta_port *pp)
{
	struct device_node *dn = pdev->dev.of_node;
	u32 long_pool_id, short_pool_id;

	if (!pp->neta_armada3700) {
		int ret;

		ret = mvneta_bm_port_mbus_init(pp);
		if (ret)
			return ret;
	}

	if (of_property_read_u32(dn, "bm,pool-long", &long_pool_id)) {
		netdev_info(pp->dev, "missing long pool id\n");
		return -EINVAL;
	}

	/* Create port's long pool depending on mtu */
	pp->pool_long = mvneta_bm_pool_use(pp->bm_priv, long_pool_id,
					   MVNETA_BM_LONG, pp->id,
					   MVNETA_RX_PKT_SIZE(pp->dev->mtu));
	if (!pp->pool_long) {
		netdev_info(pp->dev, "fail to obtain long pool for port\n");
		return -ENOMEM;
	}

	pp->pool_long->port_map |= 1 << pp->id;

	mvneta_bm_pool_bufsize_set(pp, pp->pool_long->buf_size,
				   pp->pool_long->id);

	/* If short pool id is not defined, assume using single pool */
	if (of_property_read_u32(dn, "bm,pool-short", &short_pool_id))
		short_pool_id = long_pool_id;

	/* Create port's short pool */
	pp->pool_short = mvneta_bm_pool_use(pp->bm_priv, short_pool_id,
					    MVNETA_BM_SHORT, pp->id,
					    MVNETA_BM_SHORT_PKT_SIZE);
	if (!pp->pool_short) {
		netdev_info(pp->dev, "fail to obtain short pool for port\n");
		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
		return -ENOMEM;
	}

	if (short_pool_id != long_pool_id) {
		pp->pool_short->port_map |= 1 << pp->id;
		mvneta_bm_pool_bufsize_set(pp, pp->pool_short->buf_size,
					   pp->pool_short->id);
	}

	return 0;
}

/* Update settings of a pool for bigger packets */
static void mvneta_bm_update_mtu(struct mvneta_port *pp, int mtu)
{
	struct mvneta_bm_pool *bm_pool = pp->pool_long;
	struct hwbm_pool *hwbm_pool = &bm_pool->hwbm_pool;
	int num;

	/* Release all buffers from long pool */
	mvneta_bm_bufs_free(pp->bm_priv, bm_pool, 1 << pp->id);
	if (hwbm_pool->buf_num) {
		WARN(1, "cannot free all buffers in pool %d\n",
		     bm_pool->id);
		goto bm_mtu_err;
	}

	bm_pool->pkt_size = MVNETA_RX_PKT_SIZE(mtu);
	bm_pool->buf_size = MVNETA_RX_BUF_SIZE(bm_pool->pkt_size);
	hwbm_pool->frag_size = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
			SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(bm_pool->pkt_size));

	/* Fill entire long pool */
	num = hwbm_pool_add(hwbm_pool, hwbm_pool->size);
	if (num != hwbm_pool->size) {
		WARN(1, "pool %d: %d of %d allocated\n",
		     bm_pool->id, num, hwbm_pool->size);
		goto bm_mtu_err;
	}
	mvneta_bm_pool_bufsize_set(pp, bm_pool->buf_size, bm_pool->id);

	return;

bm_mtu_err:
	mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
	mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 1 << pp->id);

	pp->bm_priv = NULL;
	pp->rx_offset_correction = MVNETA_SKB_HEADROOM;
	mvreg_write(pp, MVNETA_ACC_MODE, MVNETA_ACC_MODE_EXT1);
	netdev_info(pp->dev, "fail to update MTU, fall back to software BM\n");
}

/* Start the Ethernet port RX and TX activity */
static void mvneta_port_up(struct mvneta_port *pp)
{
	int queue;
	u32 q_map;

	/* Enable all initialized TXs. */
	q_map = 0;
	for (queue = 0; queue < txq_number; queue++) {
		struct mvneta_tx_queue *txq = &pp->txqs[queue];
		if (txq->descs)
			q_map |= (1 << queue);
	}
	mvreg_write(pp, MVNETA_TXQ_CMD, q_map);

	q_map = 0;
	/* Enable all initialized RXQs. */
	for (queue = 0; queue < rxq_number; queue++) {
		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];

		if (rxq->descs)
			q_map |= (1 << queue);
	}
	mvreg_write(pp, MVNETA_RXQ_CMD, q_map);
}

/* Stop the Ethernet port activity */
static void mvneta_port_down(struct mvneta_port *pp)
{
	u32 val;
	int count;

	/* Stop Rx port activity. Check port Rx activity. */
	val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK;

	/* Issue stop command for active channels only */
	if (val != 0)
		mvreg_write(pp, MVNETA_RXQ_CMD,
			    val << MVNETA_RXQ_DISABLE_SHIFT);

	/* Wait for all Rx activity to terminate. */
	count = 0;
	do {
		if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) {
			netdev_warn(pp->dev,
				    "TIMEOUT for RX stopped ! rx_queue_cmd: 0x%08x\n",
				    val);
			break;
		}
		mdelay(1);

		val = mvreg_read(pp, MVNETA_RXQ_CMD);
	} while (val & MVNETA_RXQ_ENABLE_MASK);

	/* Stop Tx port activity. Check port Tx activity. Issue stop
	 * command for active channels only
	 */
	val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK;

	if (val != 0)
		mvreg_write(pp, MVNETA_TXQ_CMD,
			    (val << MVNETA_TXQ_DISABLE_SHIFT));

	/* Wait for all Tx activity to terminate. */
	count = 0;
	do {
		if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) {
			netdev_warn(pp->dev,
				    "TIMEOUT for TX stopped status=0x%08x\n",
				    val);
			break;
		}
		mdelay(1);

		/* Check TX Command reg that all Txqs are stopped */
		val = mvreg_read(pp, MVNETA_TXQ_CMD);

	} while (val & MVNETA_TXQ_ENABLE_MASK);

	/* Double check to verify that TX FIFO is empty */
	count = 0;
	do {
		if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) {
			netdev_warn(pp->dev,
				    "TX FIFO empty timeout status=0x%08x\n",
				    val);
			break;
		}
		mdelay(1);

		val = mvreg_read(pp, MVNETA_PORT_STATUS);
	} while (!(val & MVNETA_TX_FIFO_EMPTY) &&
		 (val & MVNETA_TX_IN_PRGRS));

	udelay(200);
}

/* Enable the port by setting the port enable bit of the MAC control register */
static void mvneta_port_enable(struct mvneta_port *pp)
{
	u32 val;

	/* Enable port */
	val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
	val |= MVNETA_GMAC0_PORT_ENABLE;
	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
}

/* Disable the port and wait for about 200 usec before retuning */
static void mvneta_port_disable(struct mvneta_port *pp)
{
	u32 val;

	/* Reset the Enable bit in the Serial Control Register */
	val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
	val &= ~MVNETA_GMAC0_PORT_ENABLE;
	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);

	udelay(200);
}

/* Multicast tables methods */

/* Set all entries in Unicast MAC Table; queue==-1 means reject all */
static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue)
{
	int offset;
	u32 val;

	if (queue == -1) {
		val = 0;
	} else {
		val = 0x1 | (queue << 1);
		val |= (val << 24) | (val << 16) | (val << 8);
	}

	for (offset = 0; offset <= 0xc; offset += 4)
		mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val);
}

/* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue)
{
	int offset;
	u32 val;

	if (queue == -1) {
		val = 0;
	} else {
		val = 0x1 | (queue << 1);
		val |= (val << 24) | (val << 16) | (val << 8);
	}

	for (offset = 0; offset <= 0xfc; offset += 4)
		mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val);

}

/* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue)
{
	int offset;
	u32 val;

	if (queue == -1) {
		memset(pp->mcast_count, 0, sizeof(pp->mcast_count));
		val = 0;
	} else {
		memset(pp->mcast_count, 1, sizeof(pp->mcast_count));
		val = 0x1 | (queue << 1);
		val |= (val << 24) | (val << 16) | (val << 8);
	}

	for (offset = 0; offset <= 0xfc; offset += 4)
		mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val);
}

static void mvneta_percpu_unmask_interrupt(void *arg)
{
	struct mvneta_port *pp = arg;

	/* All the queue are unmasked, but actually only the ones
	 * mapped to this CPU will be unmasked
	 */
	mvreg_write(pp, MVNETA_INTR_NEW_MASK,
		    MVNETA_RX_INTR_MASK_ALL |
		    MVNETA_TX_INTR_MASK_ALL |
		    MVNETA_MISCINTR_INTR_MASK);
}

static void mvneta_percpu_mask_interrupt(void *arg)
{
	struct mvneta_port *pp = arg;

	/* All the queue are masked, but actually only the ones
	 * mapped to this CPU will be masked
	 */
	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
	mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
	mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
}

static void mvneta_percpu_clear_intr_cause(void *arg)
{
	struct mvneta_port *pp = arg;

	/* All the queue are cleared, but actually only the ones
	 * mapped to this CPU will be cleared
	 */
	mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0);
	mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
	mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
}

/* This method sets defaults to the NETA port:
 *	Clears interrupt Cause and Mask registers.
 *	Clears all MAC tables.
 *	Sets defaults to all registers.
 *	Resets RX and TX descriptor rings.
 *	Resets PHY.
 * This method can be called after mvneta_port_down() to return the port
 *	settings to defaults.
 */
static void mvneta_defaults_set(struct mvneta_port *pp)
{
	int cpu;
	int queue;
	u32 val;
	int max_cpu = num_present_cpus();

	/* Clear all Cause registers */
	on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);

	/* Mask all interrupts */
	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
	mvreg_write(pp, MVNETA_INTR_ENABLE, 0);

	/* Enable MBUS Retry bit16 */
	mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20);

	/* Set CPU queue access map. CPUs are assigned to the RX and
	 * TX queues modulo their number. If there is only one TX
	 * queue then it is assigned to the CPU associated to the
	 * default RX queue.
	 */
	for_each_present_cpu(cpu) {
		int rxq_map = 0, txq_map = 0;
		int rxq, txq;
		if (!pp->neta_armada3700) {
			for (rxq = 0; rxq < rxq_number; rxq++)
				if ((rxq % max_cpu) == cpu)
					rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);

			for (txq = 0; txq < txq_number; txq++)
				if ((txq % max_cpu) == cpu)
					txq_map |= MVNETA_CPU_TXQ_ACCESS(txq);

			/* With only one TX queue we configure a special case
			 * which will allow to get all the irq on a single
			 * CPU
			 */
			if (txq_number == 1)
				txq_map = (cpu == pp->rxq_def) ?
					MVNETA_CPU_TXQ_ACCESS(0) : 0;

		} else {
			txq_map = MVNETA_CPU_TXQ_ACCESS_ALL_MASK;
			rxq_map = MVNETA_CPU_RXQ_ACCESS_ALL_MASK;
		}

		mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
	}

	/* Reset RX and TX DMAs */
	mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
	mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);

	/* Disable Legacy WRR, Disable EJP, Release from reset */
	mvreg_write(pp, MVNETA_TXQ_CMD_1, 0);
	for (queue = 0; queue < txq_number; queue++) {
		mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0);
		mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0);
	}

	mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
	mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);

	/* Set Port Acceleration Mode */
	if (pp->bm_priv)
		/* HW buffer management + legacy parser */
		val = MVNETA_ACC_MODE_EXT2;
	else
		/* SW buffer management + legacy parser */
		val = MVNETA_ACC_MODE_EXT1;
	mvreg_write(pp, MVNETA_ACC_MODE, val);

	if (pp->bm_priv)
		mvreg_write(pp, MVNETA_BM_ADDRESS, pp->bm_priv->bppi_phys_addr);

	/* Update val of portCfg register accordingly with all RxQueue types */
	val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
	mvreg_write(pp, MVNETA_PORT_CONFIG, val);

	val = 0;
	mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val);
	mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64);

	/* Build PORT_SDMA_CONFIG_REG */
	val = 0;

	/* Default burst size */
	val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
	val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
	val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP;

#if defined(__BIG_ENDIAN)
	val |= MVNETA_DESC_SWAP;
#endif

	/* Assign port SDMA configuration */
	mvreg_write(pp, MVNETA_SDMA_CONFIG, val);

	/* Disable PHY polling in hardware, since we're using the
	 * kernel phylib to do this.
	 */
	val = mvreg_read(pp, MVNETA_UNIT_CONTROL);
	val &= ~MVNETA_PHY_POLLING_ENABLE;
	mvreg_write(pp, MVNETA_UNIT_CONTROL, val);

	mvneta_set_ucast_table(pp, -1);
	mvneta_set_special_mcast_table(pp, -1);
	mvneta_set_other_mcast_table(pp, -1);

	/* Set port interrupt enable register - default enable all */
	mvreg_write(pp, MVNETA_INTR_ENABLE,
		    (MVNETA_RXQ_INTR_ENABLE_ALL_MASK
		     | MVNETA_TXQ_INTR_ENABLE_ALL_MASK));

	mvneta_mib_counters_clear(pp);
}

/* Set max sizes for tx queues */
static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size)

{
	u32 val, size, mtu;
	int queue;

	mtu = max_tx_size * 8;
	if (mtu > MVNETA_TX_MTU_MAX)
		mtu = MVNETA_TX_MTU_MAX;

	/* Set MTU */
	val = mvreg_read(pp, MVNETA_TX_MTU);
	val &= ~MVNETA_TX_MTU_MAX;
	val |= mtu;
	mvreg_write(pp, MVNETA_TX_MTU, val);

	/* TX token size and all TXQs token size must be larger that MTU */
	val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE);

	size = val & MVNETA_TX_TOKEN_SIZE_MAX;
	if (size < mtu) {
		size = mtu;
		val &= ~MVNETA_TX_TOKEN_SIZE_MAX;
		val |= size;
		mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val);
	}
	for (queue = 0; queue < txq_number; queue++) {
		val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue));

		size = val & MVNETA_TXQ_TOKEN_SIZE_MAX;
		if (size < mtu) {
			size = mtu;
			val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX;
			val |= size;
			mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val);
		}
	}
}

/* Set unicast address */
static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble,
				  int queue)
{
	unsigned int unicast_reg;
	unsigned int tbl_offset;
	unsigned int reg_offset;

	/* Locate the Unicast table entry */
	last_nibble = (0xf & last_nibble);

	/* offset from unicast tbl base */
	tbl_offset = (last_nibble / 4) * 4;

	/* offset within the above reg  */
	reg_offset = last_nibble % 4;

	unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset));

	if (queue == -1) {
		/* Clear accepts frame bit at specified unicast DA tbl entry */
		unicast_reg &= ~(0xff << (8 * reg_offset));
	} else {
		unicast_reg &= ~(0xff << (8 * reg_offset));
		unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
	}

	mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg);
}

/* Set mac address */
static void mvneta_mac_addr_set(struct mvneta_port *pp,
				const unsigned char *addr, int queue)
{
	unsigned int mac_h;
	unsigned int mac_l;

	if (queue != -1) {
		mac_l = (addr[4] << 8) | (addr[5]);
		mac_h = (addr[0] << 24) | (addr[1] << 16) |
			(addr[2] << 8) | (addr[3] << 0);

		mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l);
		mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h);
	}

	/* Accept frames of this address */
	mvneta_set_ucast_addr(pp, addr[5], queue);
}

/* Set the number of packets that will be received before RX interrupt
 * will be generated by HW.
 */
static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp,
				    struct mvneta_rx_queue *rxq, u32 value)
{
	mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id),
		    value | MVNETA_RXQ_NON_OCCUPIED(0));
}

/* Set the time delay in usec before RX interrupt will be generated by
 * HW.
 */
static void mvneta_rx_time_coal_set(struct mvneta_port *pp,
				    struct mvneta_rx_queue *rxq, u32 value)
{
	u32 val;
	unsigned long clk_rate;

	clk_rate = clk_get_rate(pp->clk);
	val = (clk_rate / 1000000) * value;

	mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val);
}

/* Set threshold for TX_DONE pkts coalescing */
static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp,
					 struct mvneta_tx_queue *txq, u32 value)
{
	u32 val;

	val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id));

	val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK;
	val |= MVNETA_TXQ_SENT_THRESH_MASK(value);

	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val);
}

/* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc,
				u32 phys_addr, void *virt_addr,
				struct mvneta_rx_queue *rxq)
{
	int i;

	rx_desc->buf_phys_addr = phys_addr;
	i = rx_desc - rxq->descs;
	rxq->buf_virt_addr[i] = virt_addr;
}

/* Decrement sent descriptors counter */
static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp,
				     struct mvneta_tx_queue *txq,
				     int sent_desc)
{
	u32 val;

	/* Only 255 TX descriptors can be updated at once */
	while (sent_desc > 0xff) {
		val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT;
		mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
		sent_desc = sent_desc - 0xff;
	}

	val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT;
	mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
}

/* Get number of TX descriptors already sent by HW */
static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp,
					struct mvneta_tx_queue *txq)
{
	u32 val;
	int sent_desc;

	val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id));
	sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >>
		MVNETA_TXQ_SENT_DESC_SHIFT;

	return sent_desc;
}

/* Get number of sent descriptors and decrement counter.
 *  The number of sent descriptors is returned.
 */
static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp,
				     struct mvneta_tx_queue *txq)
{
	int sent_desc;

	/* Get number of sent descriptors */
	sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);

	/* Decrement sent descriptors counter */
	if (sent_desc)
		mvneta_txq_sent_desc_dec(pp, txq, sent_desc);

	return sent_desc;
}

/* Set TXQ descriptors fields relevant for CSUM calculation */
static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto,
				int ip_hdr_len, int l4_proto)
{
	u32 command;

	/* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
	 * G_L4_chk, L4_type; required only for checksum
	 * calculation
	 */
	command =  l3_offs    << MVNETA_TX_L3_OFF_SHIFT;
	command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT;

	if (l3_proto == htons(ETH_P_IP))
		command |= MVNETA_TXD_IP_CSUM;
	else
		command |= MVNETA_TX_L3_IP6;

	if (l4_proto == IPPROTO_TCP)
		command |=  MVNETA_TX_L4_CSUM_FULL;
	else if (l4_proto == IPPROTO_UDP)
		command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL;
	else
		command |= MVNETA_TX_L4_CSUM_NOT;

	return command;
}


/* Display more error info */
static void mvneta_rx_error(struct mvneta_port *pp,
			    struct mvneta_rx_desc *rx_desc)
{
	struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
	u32 status = rx_desc->status;

	/* update per-cpu counter */
	u64_stats_update_begin(&stats->syncp);
	stats->rx_errors++;
	u64_stats_update_end(&stats->syncp);

	switch (status & MVNETA_RXD_ERR_CODE_MASK) {
	case MVNETA_RXD_ERR_CRC:
		netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n",
			   status, rx_desc->data_size);
		break;
	case MVNETA_RXD_ERR_OVERRUN:
		netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n",
			   status, rx_desc->data_size);
		break;
	case MVNETA_RXD_ERR_LEN:
		netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n",
			   status, rx_desc->data_size);
		break;
	case MVNETA_RXD_ERR_RESOURCE:
		netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n",
			   status, rx_desc->data_size);
		break;
	}
}

/* Handle RX checksum offload based on the descriptor's status */
static int mvneta_rx_csum(struct mvneta_port *pp, u32 status)
{
	if ((pp->dev->features & NETIF_F_RXCSUM) &&
	    (status & MVNETA_RXD_L3_IP4) &&
	    (status & MVNETA_RXD_L4_CSUM_OK))
		return CHECKSUM_UNNECESSARY;

	return CHECKSUM_NONE;
}

/* Return tx queue pointer (find last set bit) according to <cause> returned
 * form tx_done reg. <cause> must not be null. The return value is always a
 * valid queue for matching the first one found in <cause>.
 */
static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp,
						     u32 cause)
{
	int queue = fls(cause) - 1;

	return &pp->txqs[queue];
}

/* Free tx queue skbuffs */
static void mvneta_txq_bufs_free(struct mvneta_port *pp,
				 struct mvneta_tx_queue *txq, int num,
				 struct netdev_queue *nq, bool napi)
{
	unsigned int bytes_compl = 0, pkts_compl = 0;
	struct xdp_frame_bulk bq;
	int i;

	xdp_frame_bulk_init(&bq);

	rcu_read_lock(); /* need for xdp_return_frame_bulk */

	for (i = 0; i < num; i++) {
		struct mvneta_tx_buf *buf = &txq->buf[txq->txq_get_index];
		struct mvneta_tx_desc *tx_desc = txq->descs +
			txq->txq_get_index;

		mvneta_txq_inc_get(txq);

		if (buf->type == MVNETA_TYPE_XDP_NDO ||
		    buf->type == MVNETA_TYPE_SKB)
			dma_unmap_single(pp->dev->dev.parent,
					 tx_desc->buf_phys_addr,
					 tx_desc->data_size, DMA_TO_DEVICE);
		if ((buf->type == MVNETA_TYPE_TSO ||
		     buf->type == MVNETA_TYPE_SKB) && buf->skb) {
			bytes_compl += buf->skb->len;
			pkts_compl++;
			dev_kfree_skb_any(buf->skb);
		} else if ((buf->type == MVNETA_TYPE_XDP_TX ||
			    buf->type == MVNETA_TYPE_XDP_NDO) && buf->xdpf) {
			if (napi && buf->type == MVNETA_TYPE_XDP_TX)
				xdp_return_frame_rx_napi(buf->xdpf);
			else
				xdp_return_frame_bulk(buf->xdpf, &bq);
		}
	}
	xdp_flush_frame_bulk(&bq);

	rcu_read_unlock();

	netdev_tx_completed_queue(nq, pkts_compl, bytes_compl);
}

/* Handle end of transmission */
static void mvneta_txq_done(struct mvneta_port *pp,
			   struct mvneta_tx_queue *txq)
{
	struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
	int tx_done;

	tx_done = mvneta_txq_sent_desc_proc(pp, txq);
	if (!tx_done)
		return;

	mvneta_txq_bufs_free(pp, txq, tx_done, nq, true);

	txq->count -= tx_done;

	if (netif_tx_queue_stopped(nq)) {
		if (txq->count <= txq->tx_wake_threshold)
			netif_tx_wake_queue(nq);
	}
}

/* Refill processing for SW buffer management */
/* Allocate page per descriptor */
static int mvneta_rx_refill(struct mvneta_port *pp,
			    struct mvneta_rx_desc *rx_desc,
			    struct mvneta_rx_queue *rxq,
			    gfp_t gfp_mask)
{
	dma_addr_t phys_addr;
	struct page *page;

	page = page_pool_alloc_pages(rxq->page_pool,
				     gfp_mask | __GFP_NOWARN);
	if (!page)
		return -ENOMEM;

	phys_addr = page_pool_get_dma_addr(page) + pp->rx_offset_correction;
	mvneta_rx_desc_fill(rx_desc, phys_addr, page, rxq);

	return 0;
}

/* Handle tx checksum */
static u32 mvneta_skb_tx_csum(struct sk_buff *skb)
{
	if (skb->ip_summed == CHECKSUM_PARTIAL) {
		int ip_hdr_len = 0;
		__be16 l3_proto = vlan_get_protocol(skb);
		u8 l4_proto;

		if (l3_proto == htons(ETH_P_IP)) {
			struct iphdr *ip4h = ip_hdr(skb);

			/* Calculate IPv4 checksum and L4 checksum */
			ip_hdr_len = ip4h->ihl;
			l4_proto = ip4h->protocol;
		} else if (l3_proto == htons(ETH_P_IPV6)) {
			struct ipv6hdr *ip6h = ipv6_hdr(skb);

			/* Read l4_protocol from one of IPv6 extra headers */
			if (skb_network_header_len(skb) > 0)
				ip_hdr_len = (skb_network_header_len(skb) >> 2);
			l4_proto = ip6h->nexthdr;
		} else
			return MVNETA_TX_L4_CSUM_NOT;

		return mvneta_txq_desc_csum(skb_network_offset(skb),
					    l3_proto, ip_hdr_len, l4_proto);
	}

	return MVNETA_TX_L4_CSUM_NOT;
}

/* Drop packets received by the RXQ and free buffers */
static void mvneta_rxq_drop_pkts(struct mvneta_port *pp,
				 struct mvneta_rx_queue *rxq)
{
	int rx_done, i;

	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
	if (rx_done)
		mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);

	if (pp->bm_priv) {
		for (i = 0; i < rx_done; i++) {
			struct mvneta_rx_desc *rx_desc =
						  mvneta_rxq_next_desc_get(rxq);
			u8 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
			struct mvneta_bm_pool *bm_pool;

			bm_pool = &pp->bm_priv->bm_pools[pool_id];
			/* Return dropped buffer to the pool */
			mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
					      rx_desc->buf_phys_addr);
		}
		return;
	}

	for (i = 0; i < rxq->size; i++) {
		struct mvneta_rx_desc *rx_desc = rxq->descs + i;
		void *data = rxq->buf_virt_addr[i];
		if (!data || !(rx_desc->buf_phys_addr))
			continue;

		page_pool_put_full_page(rxq->page_pool, data, false);
	}
	if (xdp_rxq_info_is_reg(&rxq->xdp_rxq))
		xdp_rxq_info_unreg(&rxq->xdp_rxq);
	page_pool_destroy(rxq->page_pool);
	rxq->page_pool = NULL;
}

static void
mvneta_update_stats(struct mvneta_port *pp,
		    struct mvneta_stats *ps)
{
	struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);

	u64_stats_update_begin(&stats->syncp);
	stats->es.ps.rx_packets += ps->rx_packets;
	stats->es.ps.rx_bytes += ps->rx_bytes;
	/* xdp */
	stats->es.ps.xdp_redirect += ps->xdp_redirect;
	stats->es.ps.xdp_pass += ps->xdp_pass;
	stats->es.ps.xdp_drop += ps->xdp_drop;
	u64_stats_update_end(&stats->syncp);
}

static inline
int mvneta_rx_refill_queue(struct mvneta_port *pp, struct mvneta_rx_queue *rxq)
{
	struct mvneta_rx_desc *rx_desc;
	int curr_desc = rxq->first_to_refill;
	int i;

	for (i = 0; (i < rxq->refill_num) && (i < 64); i++) {
		rx_desc = rxq->descs + curr_desc;
		if (!(rx_desc->buf_phys_addr)) {
			if (mvneta_rx_refill(pp, rx_desc, rxq, GFP_ATOMIC)) {
				struct mvneta_pcpu_stats *stats;

				pr_err("Can't refill queue %d. Done %d from %d\n",
				       rxq->id, i, rxq->refill_num);

				stats = this_cpu_ptr(pp->stats);
				u64_stats_update_begin(&stats->syncp);
				stats->es.refill_error++;
				u64_stats_update_end(&stats->syncp);
				break;
			}
		}
		curr_desc = MVNETA_QUEUE_NEXT_DESC(rxq, curr_desc);
	}
	rxq->refill_num -= i;
	rxq->first_to_refill = curr_desc;

	return i;
}

static void
mvneta_xdp_put_buff(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
		    struct xdp_buff *xdp, int sync_len)
{
	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
	int i;

	if (likely(!xdp_buff_has_frags(xdp)))
		goto out;

	for (i = 0; i < sinfo->nr_frags; i++)
		page_pool_put_full_page(rxq->page_pool,
					skb_frag_page(&sinfo->frags[i]), true);

out:
	page_pool_put_page(rxq->page_pool, virt_to_head_page(xdp->data),
			   sync_len, true);
}

static int
mvneta_xdp_submit_frame(struct mvneta_port *pp, struct mvneta_tx_queue *txq,
			struct xdp_frame *xdpf, int *nxmit_byte, bool dma_map)
{
	struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
	struct device *dev = pp->dev->dev.parent;
	struct mvneta_tx_desc *tx_desc;
	int i, num_frames = 1;
	struct page *page;

	if (unlikely(xdp_frame_has_frags(xdpf)))
		num_frames += sinfo->nr_frags;

	if (txq->count + num_frames >= txq->size)
		return MVNETA_XDP_DROPPED;

	for (i = 0; i < num_frames; i++) {
		struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index];
		skb_frag_t *frag = NULL;
		int len = xdpf->len;
		dma_addr_t dma_addr;

		if (unlikely(i)) { /* paged area */
			frag = &sinfo->frags[i - 1];
			len = skb_frag_size(frag);
		}

		tx_desc = mvneta_txq_next_desc_get(txq);
		if (dma_map) {
			/* ndo_xdp_xmit */
			void *data;

			data = unlikely(frag) ? skb_frag_address(frag)
					      : xdpf->data;
			dma_addr = dma_map_single(dev, data, len,
						  DMA_TO_DEVICE);
			if (dma_mapping_error(dev, dma_addr)) {
				mvneta_txq_desc_put(txq);
				goto unmap;
			}

			buf->type = MVNETA_TYPE_XDP_NDO;
		} else {
			page = unlikely(frag) ? skb_frag_page(frag)
					      : virt_to_page(xdpf->data);
			dma_addr = page_pool_get_dma_addr(page);
			if (unlikely(frag))
				dma_addr += skb_frag_off(frag);
			else
				dma_addr += sizeof(*xdpf) + xdpf->headroom;
			dma_sync_single_for_device(dev, dma_addr, len,
						   DMA_BIDIRECTIONAL);
			buf->type = MVNETA_TYPE_XDP_TX;
		}
		buf->xdpf = unlikely(i) ? NULL : xdpf;

		tx_desc->command = unlikely(i) ? 0 : MVNETA_TXD_F_DESC;
		tx_desc->buf_phys_addr = dma_addr;
		tx_desc->data_size = len;
		*nxmit_byte += len;

		mvneta_txq_inc_put(txq);
	}
	/*last descriptor */
	tx_desc->command |= MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD;

	txq->pending += num_frames;
	txq->count += num_frames;

	return MVNETA_XDP_TX;

unmap:
	for (i--; i >= 0; i--) {
		mvneta_txq_desc_put(txq);
		tx_desc = txq->descs + txq->next_desc_to_proc;
		dma_unmap_single(dev, tx_desc->buf_phys_addr,
				 tx_desc->data_size,
				 DMA_TO_DEVICE);
	}

	return MVNETA_XDP_DROPPED;
}

static int
mvneta_xdp_xmit_back(struct mvneta_port *pp, struct xdp_buff *xdp)
{
	struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
	struct mvneta_tx_queue *txq;
	struct netdev_queue *nq;
	int cpu, nxmit_byte = 0;
	struct xdp_frame *xdpf;
	u32 ret;

	xdpf = xdp_convert_buff_to_frame(xdp);
	if (unlikely(!xdpf))
		return MVNETA_XDP_DROPPED;

	cpu = smp_processor_id();
	txq = &pp->txqs[cpu % txq_number];
	nq = netdev_get_tx_queue(pp->dev, txq->id);

	__netif_tx_lock(nq, cpu);
	ret = mvneta_xdp_submit_frame(pp, txq, xdpf, &nxmit_byte, false);
	if (ret == MVNETA_XDP_TX) {
		u64_stats_update_begin(&stats->syncp);
		stats->es.ps.tx_bytes += nxmit_byte;
		stats->es.ps.tx_packets++;
		stats->es.ps.xdp_tx++;
		u64_stats_update_end(&stats->syncp);

		mvneta_txq_pend_desc_add(pp, txq, 0);
	} else {
		u64_stats_update_begin(&stats->syncp);
		stats->es.ps.xdp_tx_err++;
		u64_stats_update_end(&stats->syncp);
	}
	__netif_tx_unlock(nq);

	return ret;
}

static int
mvneta_xdp_xmit(struct net_device *dev, int num_frame,
		struct xdp_frame **frames, u32 flags)
{
	struct mvneta_port *pp = netdev_priv(dev);
	struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
	int i, nxmit_byte = 0, nxmit = 0;
	int cpu = smp_processor_id();
	struct mvneta_tx_queue *txq;
	struct netdev_queue *nq;
	u32 ret;

	if (unlikely(test_bit(__MVNETA_DOWN, &pp->state)))
		return -ENETDOWN;

	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
		return -EINVAL;

	txq = &pp->txqs[cpu % txq_number];
	nq = netdev_get_tx_queue(pp->dev, txq->id);

	__netif_tx_lock(nq, cpu);
	for (i = 0; i < num_frame; i++) {
		ret = mvneta_xdp_submit_frame(pp, txq, frames[i], &nxmit_byte,
					      true);
		if (ret != MVNETA_XDP_TX)
			break;

		nxmit++;
	}

	if (unlikely(flags & XDP_XMIT_FLUSH))
		mvneta_txq_pend_desc_add(pp, txq, 0);
	__netif_tx_unlock(nq);

	u64_stats_update_begin(&stats->syncp);
	stats->es.ps.tx_bytes += nxmit_byte;
	stats->es.ps.tx_packets += nxmit;
	stats->es.ps.xdp_xmit += nxmit;
	stats->es.ps.xdp_xmit_err += num_frame - nxmit;
	u64_stats_update_end(&stats->syncp);

	return nxmit;
}

static int
mvneta_run_xdp(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
	       struct bpf_prog *prog, struct xdp_buff *xdp,
	       u32 frame_sz, struct mvneta_stats *stats)
{
	unsigned int len, data_len, sync;
	u32 ret, act;

	len = xdp->data_end - xdp->data_hard_start - pp->rx_offset_correction;
	data_len = xdp->data_end - xdp->data;
	act = bpf_prog_run_xdp(prog, xdp);

	/* Due xdp_adjust_tail: DMA sync for_device cover max len CPU touch */
	sync = xdp->data_end - xdp->data_hard_start - pp->rx_offset_correction;
	sync = max(sync, len);

	switch (act) {
	case XDP_PASS:
		stats->xdp_pass++;
		return MVNETA_XDP_PASS;
	case XDP_REDIRECT: {
		int err;

		err = xdp_do_redirect(pp->dev, xdp, prog);
		if (unlikely(err)) {
			mvneta_xdp_put_buff(pp, rxq, xdp, sync);
			ret = MVNETA_XDP_DROPPED;
		} else {
			ret = MVNETA_XDP_REDIR;
			stats->xdp_redirect++;
		}
		break;
	}
	case XDP_TX:
		ret = mvneta_xdp_xmit_back(pp, xdp);
		if (ret != MVNETA_XDP_TX)
			mvneta_xdp_put_buff(pp, rxq, xdp, sync);
		break;
	default:
		bpf_warn_invalid_xdp_action(pp->dev, prog, act);
		fallthrough;
	case XDP_ABORTED:
		trace_xdp_exception(pp->dev, prog, act);
		fallthrough;
	case XDP_DROP:
		mvneta_xdp_put_buff(pp, rxq, xdp, sync);
		ret = MVNETA_XDP_DROPPED;
		stats->xdp_drop++;
		break;
	}

	stats->rx_bytes += frame_sz + xdp->data_end - xdp->data - data_len;
	stats->rx_packets++;

	return ret;
}

static void
mvneta_swbm_rx_frame(struct mvneta_port *pp,
		     struct mvneta_rx_desc *rx_desc,
		     struct mvneta_rx_queue *rxq,
		     struct xdp_buff *xdp, int *size,
		     struct page *page)
{
	unsigned char *data = page_address(page);
	int data_len = -MVNETA_MH_SIZE, len;
	struct net_device *dev = pp->dev;
	enum dma_data_direction dma_dir;

	if (*size > MVNETA_MAX_RX_BUF_SIZE) {
		len = MVNETA_MAX_RX_BUF_SIZE;
		data_len += len;
	} else {
		len = *size;
		data_len += len - ETH_FCS_LEN;
	}
	*size = *size - len;

	dma_dir = page_pool_get_dma_dir(rxq->page_pool);
	dma_sync_single_for_cpu(dev->dev.parent,
				rx_desc->buf_phys_addr,
				len, dma_dir);

	rx_desc->buf_phys_addr = 0;

	/* Prefetch header */
	prefetch(data);
	xdp_buff_clear_frags_flag(xdp);
	xdp_prepare_buff(xdp, data, pp->rx_offset_correction + MVNETA_MH_SIZE,
			 data_len, false);
}

static void
mvneta_swbm_add_rx_fragment(struct mvneta_port *pp,
			    struct mvneta_rx_desc *rx_desc,
			    struct mvneta_rx_queue *rxq,
			    struct xdp_buff *xdp, int *size,
			    struct page *page)
{
	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
	struct net_device *dev = pp->dev;
	enum dma_data_direction dma_dir;
	int data_len, len;

	if (*size > MVNETA_MAX_RX_BUF_SIZE) {
		len = MVNETA_MAX_RX_BUF_SIZE;
		data_len = len;
	} else {
		len = *size;
		data_len = len - ETH_FCS_LEN;
	}
	dma_dir = page_pool_get_dma_dir(rxq->page_pool);
	dma_sync_single_for_cpu(dev->dev.parent,
				rx_desc->buf_phys_addr,
				len, dma_dir);
	rx_desc->buf_phys_addr = 0;

	if (!xdp_buff_has_frags(xdp))
		sinfo->nr_frags = 0;

	if (data_len > 0 && sinfo->nr_frags < MAX_SKB_FRAGS) {
		skb_frag_t *frag = &sinfo->frags[sinfo->nr_frags++];

		skb_frag_fill_page_desc(frag, page,
					pp->rx_offset_correction, data_len);

		if (!xdp_buff_has_frags(xdp)) {
			sinfo->xdp_frags_size = *size;
			xdp_buff_set_frags_flag(xdp);
		}
		if (page_is_pfmemalloc(page))
			xdp_buff_set_frag_pfmemalloc(xdp);
	} else {
		page_pool_put_full_page(rxq->page_pool, page, true);
	}
	*size -= len;
}

static struct sk_buff *
mvneta_swbm_build_skb(struct mvneta_port *pp, struct page_pool *pool,
		      struct xdp_buff *xdp, u32 desc_status)
{
	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
	struct sk_buff *skb;
	u8 num_frags;

	if (unlikely(xdp_buff_has_frags(xdp)))
		num_frags = sinfo->nr_frags;

	skb = build_skb(xdp->data_hard_start, PAGE_SIZE);
	if (!skb)
		return ERR_PTR(-ENOMEM);

	skb_mark_for_recycle(skb);

	skb_reserve(skb, xdp->data - xdp->data_hard_start);
	skb_put(skb, xdp->data_end - xdp->data);
	skb->ip_summed = mvneta_rx_csum(pp, desc_status);

	if (unlikely(xdp_buff_has_frags(xdp)))
		xdp_update_skb_shared_info(skb, num_frags,
					   sinfo->xdp_frags_size,
					   num_frags * xdp->frame_sz,
					   xdp_buff_is_frag_pfmemalloc(xdp));

	return skb;
}

/* Main rx processing when using software buffer management */
static int mvneta_rx_swbm(struct napi_struct *napi,
			  struct mvneta_port *pp, int budget,
			  struct mvneta_rx_queue *rxq)
{
	int rx_proc = 0, rx_todo, refill, size = 0;
	struct net_device *dev = pp->dev;
	struct mvneta_stats ps = {};
	struct bpf_prog *xdp_prog;
	u32 desc_status, frame_sz;
	struct xdp_buff xdp_buf;

	xdp_init_buff(&xdp_buf, PAGE_SIZE, &rxq->xdp_rxq);
	xdp_buf.data_hard_start = NULL;

	/* Get number of received packets */
	rx_todo = mvneta_rxq_busy_desc_num_get(pp, rxq);

	xdp_prog = READ_ONCE(pp->xdp_prog);

	/* Fairness NAPI loop */
	while (rx_proc < budget && rx_proc < rx_todo) {
		struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
		u32 rx_status, index;
		struct sk_buff *skb;
		struct page *page;

		index = rx_desc - rxq->descs;
		page = (struct page *)rxq->buf_virt_addr[index];

		rx_status = rx_desc->status;
		rx_proc++;
		rxq->refill_num++;

		if (rx_status & MVNETA_RXD_FIRST_DESC) {
			/* Check errors only for FIRST descriptor */
			if (rx_status & MVNETA_RXD_ERR_SUMMARY) {
				mvneta_rx_error(pp, rx_desc);
				goto next;
			}

			size = rx_desc->data_size;
			frame_sz = size - ETH_FCS_LEN;
			desc_status = rx_status;

			mvneta_swbm_rx_frame(pp, rx_desc, rxq, &xdp_buf,
					     &size, page);
		} else {
			if (unlikely(!xdp_buf.data_hard_start)) {
				rx_desc->buf_phys_addr = 0;
				page_pool_put_full_page(rxq->page_pool, page,
							true);
				goto next;
			}

			mvneta_swbm_add_rx_fragment(pp, rx_desc, rxq, &xdp_buf,
						    &size, page);
		} /* Middle or Last descriptor */

		if (!(rx_status & MVNETA_RXD_LAST_DESC))
			/* no last descriptor this time */
			continue;

		if (size) {
			mvneta_xdp_put_buff(pp, rxq, &xdp_buf, -1);
			goto next;
		}

		if (xdp_prog &&
		    mvneta_run_xdp(pp, rxq, xdp_prog, &xdp_buf, frame_sz, &ps))
			goto next;

		skb = mvneta_swbm_build_skb(pp, rxq->page_pool, &xdp_buf, desc_status);
		if (IS_ERR(skb)) {
			struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);

			mvneta_xdp_put_buff(pp, rxq, &xdp_buf, -1);

			u64_stats_update_begin(&stats->syncp);
			stats->es.skb_alloc_error++;
			stats->rx_dropped++;
			u64_stats_update_end(&stats->syncp);

			goto next;
		}

		ps.rx_bytes += skb->len;
		ps.rx_packets++;

		skb->protocol = eth_type_trans(skb, dev);
		napi_gro_receive(napi, skb);
next:
		xdp_buf.data_hard_start = NULL;
	}

	if (xdp_buf.data_hard_start)
		mvneta_xdp_put_buff(pp, rxq, &xdp_buf, -1);

	if (ps.xdp_redirect)
		xdp_do_flush();

	if (ps.rx_packets)
		mvneta_update_stats(pp, &ps);

	/* return some buffers to hardware queue, one at a time is too slow */
	refill = mvneta_rx_refill_queue(pp, rxq);

	/* Update rxq management counters */
	mvneta_rxq_desc_num_update(pp, rxq, rx_proc, refill);

	return ps.rx_packets;
}

/* Main rx processing when using hardware buffer management */
static int mvneta_rx_hwbm(struct napi_struct *napi,
			  struct mvneta_port *pp, int rx_todo,
			  struct mvneta_rx_queue *rxq)
{
	struct net_device *dev = pp->dev;
	int rx_done;
	u32 rcvd_pkts = 0;
	u32 rcvd_bytes = 0;

	/* Get number of received packets */
	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);

	if (rx_todo > rx_done)
		rx_todo = rx_done;

	rx_done = 0;

	/* Fairness NAPI loop */
	while (rx_done < rx_todo) {
		struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
		struct mvneta_bm_pool *bm_pool = NULL;
		struct sk_buff *skb;
		unsigned char *data;
		dma_addr_t phys_addr;
		u32 rx_status, frag_size;
		int rx_bytes, err;
		u8 pool_id;

		rx_done++;
		rx_status = rx_desc->status;
		rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE);
		data = (u8 *)(uintptr_t)rx_desc->buf_cookie;
		phys_addr = rx_desc->buf_phys_addr;
		pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
		bm_pool = &pp->bm_priv->bm_pools[pool_id];

		if (!mvneta_rxq_desc_is_first_last(rx_status) ||
		    (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
err_drop_frame_ret_pool:
			/* Return the buffer to the pool */
			mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
					      rx_desc->buf_phys_addr);
err_drop_frame:
			mvneta_rx_error(pp, rx_desc);
			/* leave the descriptor untouched */
			continue;
		}

		if (rx_bytes <= rx_copybreak) {
			/* better copy a small frame and not unmap the DMA region */
			skb = netdev_alloc_skb_ip_align(dev, rx_bytes);
			if (unlikely(!skb))
				goto err_drop_frame_ret_pool;

			dma_sync_single_range_for_cpu(&pp->bm_priv->pdev->dev,
			                              rx_desc->buf_phys_addr,
			                              MVNETA_MH_SIZE + NET_SKB_PAD,
			                              rx_bytes,
			                              DMA_FROM_DEVICE);
			skb_put_data(skb, data + MVNETA_MH_SIZE + NET_SKB_PAD,
				     rx_bytes);

			skb->protocol = eth_type_trans(skb, dev);
			skb->ip_summed = mvneta_rx_csum(pp, rx_status);
			napi_gro_receive(napi, skb);

			rcvd_pkts++;
			rcvd_bytes += rx_bytes;

			/* Return the buffer to the pool */
			mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
					      rx_desc->buf_phys_addr);

			/* leave the descriptor and buffer untouched */
			continue;
		}

		/* Refill processing */
		err = hwbm_pool_refill(&bm_pool->hwbm_pool, GFP_ATOMIC);
		if (err) {
			struct mvneta_pcpu_stats *stats;

			netdev_err(dev, "Linux processing - Can't refill\n");

			stats = this_cpu_ptr(pp->stats);
			u64_stats_update_begin(&stats->syncp);
			stats->es.refill_error++;
			u64_stats_update_end(&stats->syncp);

			goto err_drop_frame_ret_pool;
		}

		frag_size = bm_pool->hwbm_pool.frag_size;

		skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size);

		/* After refill old buffer has to be unmapped regardless
		 * the skb is successfully built or not.
		 */
		dma_unmap_single(&pp->bm_priv->pdev->dev, phys_addr,
				 bm_pool->buf_size, DMA_FROM_DEVICE);
		if (!skb)
			goto err_drop_frame;

		rcvd_pkts++;
		rcvd_bytes += rx_bytes;

		/* Linux processing */
		skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD);
		skb_put(skb, rx_bytes);

		skb->protocol = eth_type_trans(skb, dev);
		skb->ip_summed = mvneta_rx_csum(pp, rx_status);

		napi_gro_receive(napi, skb);
	}

	if (rcvd_pkts) {
		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);

		u64_stats_update_begin(&stats->syncp);
		stats->es.ps.rx_packets += rcvd_pkts;
		stats->es.ps.rx_bytes += rcvd_bytes;
		u64_stats_update_end(&stats->syncp);
	}

	/* Update rxq management counters */
	mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);

	return rx_done;
}

static void mvneta_free_tso_hdrs(struct mvneta_port *pp,
				 struct mvneta_tx_queue *txq)
{
	struct device *dev = pp->dev->dev.parent;
	int i;

	for (i = 0; i < MVNETA_MAX_TSO_PAGES; i++) {
		if (txq->tso_hdrs[i]) {
			dma_free_coherent(dev, MVNETA_TSO_PAGE_SIZE,
					  txq->tso_hdrs[i],
					  txq->tso_hdrs_phys[i]);
			txq->tso_hdrs[i] = NULL;
		}
	}
}

static int mvneta_alloc_tso_hdrs(struct mvneta_port *pp,
				 struct mvneta_tx_queue *txq)
{
	struct device *dev = pp->dev->dev.parent;
	int i, num;

	num = DIV_ROUND_UP(txq->size, MVNETA_TSO_PER_PAGE);
	for (i = 0; i < num; i++) {
		txq->tso_hdrs[i] = dma_alloc_coherent(dev, MVNETA_TSO_PAGE_SIZE,
						      &txq->tso_hdrs_phys[i],
						      GFP_KERNEL);
		if (!txq->tso_hdrs[i]) {
			mvneta_free_tso_hdrs(pp, txq);
			return -ENOMEM;
		}
	}

	return 0;
}

static char *mvneta_get_tso_hdr(struct mvneta_tx_queue *txq, dma_addr_t *dma)
{
	int index, offset;

	index = txq->txq_put_index / MVNETA_TSO_PER_PAGE;
	offset = (txq->txq_put_index % MVNETA_TSO_PER_PAGE) * TSO_HEADER_SIZE;

	*dma = txq->tso_hdrs_phys[index] + offset;

	return txq->tso_hdrs[index] + offset;
}

static void mvneta_tso_put_hdr(struct sk_buff *skb, struct mvneta_tx_queue *txq,
			       struct tso_t *tso, int size, bool is_last)
{
	struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index];
	int hdr_len = skb_tcp_all_headers(skb);
	struct mvneta_tx_desc *tx_desc;
	dma_addr_t hdr_phys;
	char *hdr;

	hdr = mvneta_get_tso_hdr(txq, &hdr_phys);
	tso_build_hdr(skb, hdr, tso, size, is_last);

	tx_desc = mvneta_txq_next_desc_get(txq);
	tx_desc->data_size = hdr_len;
	tx_desc->command = mvneta_skb_tx_csum(skb);
	tx_desc->command |= MVNETA_TXD_F_DESC;
	tx_desc->buf_phys_addr = hdr_phys;
	buf->type = MVNETA_TYPE_TSO;
	buf->skb = NULL;

	mvneta_txq_inc_put(txq);
}

static inline int
mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq,
		    struct sk_buff *skb, char *data, int size,
		    bool last_tcp, bool is_last)
{
	struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index];
	struct mvneta_tx_desc *tx_desc;

	tx_desc = mvneta_txq_next_desc_get(txq);
	tx_desc->data_size = size;
	tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data,
						size, DMA_TO_DEVICE);
	if (unlikely(dma_mapping_error(dev->dev.parent,
		     tx_desc->buf_phys_addr))) {
		mvneta_txq_desc_put(txq);
		return -ENOMEM;
	}

	tx_desc->command = 0;
	buf->type = MVNETA_TYPE_SKB;
	buf->skb = NULL;

	if (last_tcp) {
		/* last descriptor in the TCP packet */
		tx_desc->command = MVNETA_TXD_L_DESC;

		/* last descriptor in SKB */
		if (is_last)
			buf->skb = skb;
	}
	mvneta_txq_inc_put(txq);
	return 0;
}

static void mvneta_release_descs(struct mvneta_port *pp,
				 struct mvneta_tx_queue *txq,
				 int first, int num)
{
	int desc_idx, i;

	desc_idx = first + num;
	if (desc_idx >= txq->size)
		desc_idx -= txq->size;

	for (i = num; i >= 0; i--) {
		struct mvneta_tx_desc *tx_desc = txq->descs + desc_idx;
		struct mvneta_tx_buf *buf = &txq->buf[desc_idx];

		if (buf->type == MVNETA_TYPE_SKB)
			dma_unmap_single(pp->dev->dev.parent,
					 tx_desc->buf_phys_addr,
					 tx_desc->data_size,
					 DMA_TO_DEVICE);

		mvneta_txq_desc_put(txq);

		if (desc_idx == 0)
			desc_idx = txq->size;
		desc_idx -= 1;
	}
}

static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev,
			 struct mvneta_tx_queue *txq)
{
	int hdr_len, total_len, data_left;
	int first_desc, desc_count = 0;
	struct mvneta_port *pp = netdev_priv(dev);
	struct tso_t tso;

	/* Count needed descriptors */
	if ((txq->count + tso_count_descs(skb)) >= txq->size)
		return 0;

	if (skb_headlen(skb) < skb_tcp_all_headers(skb)) {
		pr_info("*** Is this even possible?\n");
		return 0;
	}

	first_desc = txq->txq_put_index;

	/* Initialize the TSO handler, and prepare the first payload */
	hdr_len = tso_start(skb, &tso);

	total_len = skb->len - hdr_len;
	while (total_len > 0) {
		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
		total_len -= data_left;
		desc_count++;

		/* prepare packet headers: MAC + IP + TCP */
		mvneta_tso_put_hdr(skb, txq, &tso, data_left, total_len == 0);

		while (data_left > 0) {
			int size;
			desc_count++;

			size = min_t(int, tso.size, data_left);

			if (mvneta_tso_put_data(dev, txq, skb,
						 tso.data, size,
						 size == data_left,
						 total_len == 0))
				goto err_release;
			data_left -= size;

			tso_build_data(skb, &tso, size);
		}
	}

	return desc_count;

err_release:
	/* Release all used data descriptors; header descriptors must not
	 * be DMA-unmapped.
	 */
	mvneta_release_descs(pp, txq, first_desc, desc_count - 1);
	return 0;
}

/* Handle tx fragmentation processing */
static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb,
				  struct mvneta_tx_queue *txq)
{
	struct mvneta_tx_desc *tx_desc;
	int i, nr_frags = skb_shinfo(skb)->nr_frags;
	int first_desc = txq->txq_put_index;

	for (i = 0; i < nr_frags; i++) {
		struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index];
		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
		void *addr = skb_frag_address(frag);

		tx_desc = mvneta_txq_next_desc_get(txq);
		tx_desc->data_size = skb_frag_size(frag);

		tx_desc->buf_phys_addr =
			dma_map_single(pp->dev->dev.parent, addr,
				       tx_desc->data_size, DMA_TO_DEVICE);

		if (dma_mapping_error(pp->dev->dev.parent,
				      tx_desc->buf_phys_addr)) {
			mvneta_txq_desc_put(txq);
			goto error;
		}

		if (i == nr_frags - 1) {
			/* Last descriptor */
			tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD;
			buf->skb = skb;
		} else {
			/* Descriptor in the middle: Not First, Not Last */
			tx_desc->command = 0;
			buf->skb = NULL;
		}
		buf->type = MVNETA_TYPE_SKB;
		mvneta_txq_inc_put(txq);
	}

	return 0;

error:
	/* Release all descriptors that were used to map fragments of
	 * this packet, as well as the corresponding DMA mappings
	 */
	mvneta_release_descs(pp, txq, first_desc, i - 1);
	return -ENOMEM;
}

/* Main tx processing */
static netdev_tx_t mvneta_tx(struct sk_buff *skb, struct net_device *dev)
{
	struct mvneta_port *pp = netdev_priv(dev);
	u16 txq_id = skb_get_queue_mapping(skb);
	struct mvneta_tx_queue *txq = &pp->txqs[txq_id];
	struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index];
	struct mvneta_tx_desc *tx_desc;
	int len = skb->len;
	int frags = 0;
	u32 tx_cmd;

	if (!netif_running(dev))
		goto out;

	if (skb_is_gso(skb)) {
		frags = mvneta_tx_tso(skb, dev, txq);
		goto out;
	}

	frags = skb_shinfo(skb)->nr_frags + 1;

	/* Get a descriptor for the first part of the packet */
	tx_desc = mvneta_txq_next_desc_get(txq);

	tx_cmd = mvneta_skb_tx_csum(skb);

	tx_desc->data_size = skb_headlen(skb);

	tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data,
						tx_desc->data_size,
						DMA_TO_DEVICE);
	if (unlikely(dma_mapping_error(dev->dev.parent,
				       tx_desc->buf_phys_addr))) {
		mvneta_txq_desc_put(txq);
		frags = 0;
		goto out;
	}

	buf->type = MVNETA_TYPE_SKB;
	if (frags == 1) {
		/* First and Last descriptor */
		tx_cmd |= MVNETA_TXD_FLZ_DESC;
		tx_desc->command = tx_cmd;
		buf->skb = skb;
		mvneta_txq_inc_put(txq);
	} else {
		/* First but not Last */
		tx_cmd |= MVNETA_TXD_F_DESC;
		buf->skb = NULL;
		mvneta_txq_inc_put(txq);
		tx_desc->command = tx_cmd;
		/* Continue with other skb fragments */
		if (mvneta_tx_frag_process(pp, skb, txq)) {
			dma_unmap_single(dev->dev.parent,
					 tx_desc->buf_phys_addr,
					 tx_desc->data_size,
					 DMA_TO_DEVICE);
			mvneta_txq_desc_put(txq);
			frags = 0;
			goto out;
		}
	}

out:
	if (frags > 0) {
		struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id);
		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);

		netdev_tx_sent_queue(nq, len);

		txq->count += frags;
		if (txq->count >= txq->tx_stop_threshold)
			netif_tx_stop_queue(nq);

		if (!netdev_xmit_more() || netif_xmit_stopped(nq) ||
		    txq->pending + frags > MVNETA_TXQ_DEC_SENT_MASK)
			mvneta_txq_pend_desc_add(pp, txq, frags);
		else
			txq->pending += frags;

		u64_stats_update_begin(&stats->syncp);
		stats->es.ps.tx_bytes += len;
		stats->es.ps.tx_packets++;
		u64_stats_update_end(&stats->syncp);
	} else {
		dev->stats.tx_dropped++;
		dev_kfree_skb_any(skb);
	}

	return NETDEV_TX_OK;
}


/* Free tx resources, when resetting a port */
static void mvneta_txq_done_force(struct mvneta_port *pp,
				  struct mvneta_tx_queue *txq)

{
	struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
	int tx_done = txq->count;

	mvneta_txq_bufs_free(pp, txq, tx_done, nq, false);

	/* reset txq */
	txq->count = 0;
	txq->txq_put_index = 0;
	txq->txq_get_index = 0;
}

/* Handle tx done - called in softirq context. The <cause_tx_done> argument
 * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL.
 */
static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done)
{
	struct mvneta_tx_queue *txq;
	struct netdev_queue *nq;
	int cpu = smp_processor_id();

	while (cause_tx_done) {
		txq = mvneta_tx_done_policy(pp, cause_tx_done);

		nq = netdev_get_tx_queue(pp->dev, txq->id);
		__netif_tx_lock(nq, cpu);

		if (txq->count)
			mvneta_txq_done(pp, txq);

		__netif_tx_unlock(nq);
		cause_tx_done &= ~((1 << txq->id));
	}
}

/* Compute crc8 of the specified address, using a unique algorithm ,
 * according to hw spec, different than generic crc8 algorithm
 */
static int mvneta_addr_crc(unsigned char *addr)
{
	int crc = 0;
	int i;

	for (i = 0; i < ETH_ALEN; i++) {
		int j;

		crc = (crc ^ addr[i]) << 8;
		for (j = 7; j >= 0; j--) {
			if (crc & (0x100 << j))
				crc ^= 0x107 << j;
		}
	}

	return crc;
}

/* This method controls the net device special MAC multicast support.
 * The Special Multicast Table for MAC addresses supports MAC of the form
 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
 * Table entries in the DA-Filter table. This method set the Special
 * Multicast Table appropriate entry.
 */
static void mvneta_set_special_mcast_addr(struct mvneta_port *pp,
					  unsigned char last_byte,
					  int queue)
{
	unsigned int smc_table_reg;
	unsigned int tbl_offset;
	unsigned int reg_offset;

	/* Register offset from SMC table base    */
	tbl_offset = (last_byte / 4);
	/* Entry offset within the above reg */
	reg_offset = last_byte % 4;

	smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST
					+ tbl_offset * 4));

	if (queue == -1)
		smc_table_reg &= ~(0xff << (8 * reg_offset));
	else {
		smc_table_reg &= ~(0xff << (8 * reg_offset));
		smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
	}

	mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4,
		    smc_table_reg);
}

/* This method controls the network device Other MAC multicast support.
 * The Other Multicast Table is used for multicast of another type.
 * A CRC-8 is used as an index to the Other Multicast Table entries
 * in the DA-Filter table.
 * The method gets the CRC-8 value from the calling routine and
 * sets the Other Multicast Table appropriate entry according to the
 * specified CRC-8 .
 */
static void mvneta_set_other_mcast_addr(struct mvneta_port *pp,
					unsigned char crc8,
					int queue)
{
	unsigned int omc_table_reg;
	unsigned int tbl_offset;
	unsigned int reg_offset;

	tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */
	reg_offset = crc8 % 4;	     /* Entry offset within the above reg   */

	omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset);

	if (queue == -1) {
		/* Clear accepts frame bit at specified Other DA table entry */
		omc_table_reg &= ~(0xff << (8 * reg_offset));
	} else {
		omc_table_reg &= ~(0xff << (8 * reg_offset));
		omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
	}

	mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg);
}

/* The network device supports multicast using two tables:
 *    1) Special Multicast Table for MAC addresses of the form
 *       0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
 *       The MAC DA[7:0] bits are used as a pointer to the Special Multicast
 *       Table entries in the DA-Filter table.
 *    2) Other Multicast Table for multicast of another type. A CRC-8 value
 *       is used as an index to the Other Multicast Table entries in the
 *       DA-Filter table.
 */
static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr,
				 int queue)
{
	unsigned char crc_result = 0;

	if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) {
		mvneta_set_special_mcast_addr(pp, p_addr[5], queue);
		return 0;
	}

	crc_result = mvneta_addr_crc(p_addr);
	if (queue == -1) {
		if (pp->mcast_count[crc_result] == 0) {
			netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n",
				    crc_result);
			return -EINVAL;
		}

		pp->mcast_count[crc_result]--;
		if (pp->mcast_count[crc_result] != 0) {
			netdev_info(pp->dev,
				    "After delete there are %d valid Mcast for crc8=0x%02x\n",
				    pp->mcast_count[crc_result], crc_result);
			return -EINVAL;
		}
	} else
		pp->mcast_count[crc_result]++;

	mvneta_set_other_mcast_addr(pp, crc_result, queue);

	return 0;
}

/* Configure Fitering mode of Ethernet port */
static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp,
					  int is_promisc)
{
	u32 port_cfg_reg, val;

	port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG);

	val = mvreg_read(pp, MVNETA_TYPE_PRIO);

	/* Set / Clear UPM bit in port configuration register */
	if (is_promisc) {
		/* Accept all Unicast addresses */
		port_cfg_reg |= MVNETA_UNI_PROMISC_MODE;
		val |= MVNETA_FORCE_UNI;
		mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff);
		mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff);
	} else {
		/* Reject all Unicast addresses */
		port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE;
		val &= ~MVNETA_FORCE_UNI;
	}

	mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg);
	mvreg_write(pp, MVNETA_TYPE_PRIO, val);
}

/* register unicast and multicast addresses */
static void mvneta_set_rx_mode(struct net_device *dev)
{
	struct mvneta_port *pp = netdev_priv(dev);
	struct netdev_hw_addr *ha;

	if (dev->flags & IFF_PROMISC) {
		/* Accept all: Multicast + Unicast */
		mvneta_rx_unicast_promisc_set(pp, 1);
		mvneta_set_ucast_table(pp, pp->rxq_def);
		mvneta_set_special_mcast_table(pp, pp->rxq_def);
		mvneta_set_other_mcast_table(pp, pp->rxq_def);
	} else {
		/* Accept single Unicast */
		mvneta_rx_unicast_promisc_set(pp, 0);
		mvneta_set_ucast_table(pp, -1);
		mvneta_mac_addr_set(pp, dev->dev_addr, pp->rxq_def);

		if (dev->flags & IFF_ALLMULTI) {
			/* Accept all multicast */
			mvneta_set_special_mcast_table(pp, pp->rxq_def);
			mvneta_set_other_mcast_table(pp, pp->rxq_def);
		} else {
			/* Accept only initialized multicast */
			mvneta_set_special_mcast_table(pp, -1);
			mvneta_set_other_mcast_table(pp, -1);

			if (!netdev_mc_empty(dev)) {
				netdev_for_each_mc_addr(ha, dev) {
					mvneta_mcast_addr_set(pp, ha->addr,
							      pp->rxq_def);
				}
			}
		}
	}
}

/* Interrupt handling - the callback for request_irq() */
static irqreturn_t mvneta_isr(int irq, void *dev_id)
{
	struct mvneta_port *pp = (struct mvneta_port *)dev_id;

	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
	napi_schedule(&pp->napi);

	return IRQ_HANDLED;
}

/* Interrupt handling - the callback for request_percpu_irq() */
static irqreturn_t mvneta_percpu_isr(int irq, void *dev_id)
{
	struct mvneta_pcpu_port *port = (struct mvneta_pcpu_port *)dev_id;

	disable_percpu_irq(port->pp->dev->irq);
	napi_schedule(&port->napi);

	return IRQ_HANDLED;
}

static void mvneta_link_change(struct mvneta_port *pp)
{
	u32 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS);

	phylink_mac_change(pp->phylink, !!(gmac_stat & MVNETA_GMAC_LINK_UP));
}

/* NAPI handler
 * Bits 0 - 7 of the causeRxTx register indicate that are transmitted
 * packets on the corresponding TXQ (Bit 0 is for TX queue 1).
 * Bits 8 -15 of the cause Rx Tx register indicate that are received
 * packets on the corresponding RXQ (Bit 8 is for RX queue 0).
 * Each CPU has its own causeRxTx register
 */
static int mvneta_poll(struct napi_struct *napi, int budget)
{
	int rx_done = 0;
	u32 cause_rx_tx;
	int rx_queue;
	struct mvneta_port *pp = netdev_priv(napi->dev);
	struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);

	if (!netif_running(pp->dev)) {
		napi_complete(napi);
		return rx_done;
	}

	/* Read cause register */
	cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE);
	if (cause_rx_tx & MVNETA_MISCINTR_INTR_MASK) {
		u32 cause_misc = mvreg_read(pp, MVNETA_INTR_MISC_CAUSE);

		mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);

		if (cause_misc & (MVNETA_CAUSE_PHY_STATUS_CHANGE |
				  MVNETA_CAUSE_LINK_CHANGE))
			mvneta_link_change(pp);
	}

	/* Release Tx descriptors */
	if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) {
		mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL));
		cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL;
	}

	/* For the case where the last mvneta_poll did not process all
	 * RX packets
	 */
	cause_rx_tx |= pp->neta_armada3700 ? pp->cause_rx_tx :
		port->cause_rx_tx;

	rx_queue = fls(((cause_rx_tx >> 8) & 0xff));
	if (rx_queue) {
		rx_queue = rx_queue - 1;
		if (pp->bm_priv)
			rx_done = mvneta_rx_hwbm(napi, pp, budget,
						 &pp->rxqs[rx_queue]);
		else
			rx_done = mvneta_rx_swbm(napi, pp, budget,
						 &pp->rxqs[rx_queue]);
	}

	if (rx_done < budget) {
		cause_rx_tx = 0;
		napi_complete_done(napi, rx_done);

		if (pp->neta_armada3700) {
			unsigned long flags;

			local_irq_save(flags);
			mvreg_write(pp, MVNETA_INTR_NEW_MASK,
				    MVNETA_RX_INTR_MASK(rxq_number) |
				    MVNETA_TX_INTR_MASK(txq_number) |
				    MVNETA_MISCINTR_INTR_MASK);
			local_irq_restore(flags);
		} else {
			enable_percpu_irq(pp->dev->irq, 0);
		}
	}

	if (pp->neta_armada3700)
		pp->cause_rx_tx = cause_rx_tx;
	else
		port->cause_rx_tx = cause_rx_tx;

	return rx_done;
}

static int mvneta_create_page_pool(struct mvneta_port *pp,
				   struct mvneta_rx_queue *rxq, int size)
{
	struct bpf_prog *xdp_prog = READ_ONCE(pp->xdp_prog);
	struct page_pool_params pp_params = {
		.order = 0,
		.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV,
		.pool_size = size,
		.nid = NUMA_NO_NODE,
		.dev = pp->dev->dev.parent,
		.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE,
		.offset = pp->rx_offset_correction,
		.max_len = MVNETA_MAX_RX_BUF_SIZE,
	};
	int err;

	rxq->page_pool = page_pool_create(&pp_params);
	if (IS_ERR(rxq->page_pool)) {
		err = PTR_ERR(rxq->page_pool);
		rxq->page_pool = NULL;
		return err;
	}

	err = __xdp_rxq_info_reg(&rxq->xdp_rxq, pp->dev, rxq->id, 0,
				 PAGE_SIZE);
	if (err < 0)
		goto err_free_pp;

	err = xdp_rxq_info_reg_mem_model(&rxq->xdp_rxq, MEM_TYPE_PAGE_POOL,
					 rxq->page_pool);
	if (err)
		goto err_unregister_rxq;

	return 0;

err_unregister_rxq:
	xdp_rxq_info_unreg(&rxq->xdp_rxq);
err_free_pp:
	page_pool_destroy(rxq->page_pool);
	rxq->page_pool = NULL;
	return err;
}

/* Handle rxq fill: allocates rxq skbs; called when initializing a port */
static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
			   int num)
{
	int i, err;

	err = mvneta_create_page_pool(pp, rxq, num);
	if (err < 0)
		return err;

	for (i = 0; i < num; i++) {
		memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc));
		if (mvneta_rx_refill(pp, rxq->descs + i, rxq,
				     GFP_KERNEL) != 0) {
			netdev_err(pp->dev,
				   "%s:rxq %d, %d of %d buffs  filled\n",
				   __func__, rxq->id, i, num);
			break;
		}
	}

	/* Add this number of RX descriptors as non occupied (ready to
	 * get packets)
	 */
	mvneta_rxq_non_occup_desc_add(pp, rxq, i);

	return i;
}

/* Free all packets pending transmit from all TXQs and reset TX port */
static void mvneta_tx_reset(struct mvneta_port *pp)
{
	int queue;

	/* free the skb's in the tx ring */
	for (queue = 0; queue < txq_number; queue++)
		mvneta_txq_done_force(pp, &pp->txqs[queue]);

	mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
	mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
}

static void mvneta_rx_reset(struct mvneta_port *pp)
{
	mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
	mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
}

/* Rx/Tx queue initialization/cleanup methods */

static int mvneta_rxq_sw_init(struct mvneta_port *pp,
			      struct mvneta_rx_queue *rxq)
{
	rxq->size = pp->rx_ring_size;

	/* Allocate memory for RX descriptors */
	rxq->descs = dma_alloc_coherent(pp->dev->dev.parent,
					rxq->size * MVNETA_DESC_ALIGNED_SIZE,
					&rxq->descs_phys, GFP_KERNEL);
	if (!rxq->descs)
		return -ENOMEM;

	rxq->last_desc = rxq->size - 1;

	return 0;
}

static void mvneta_rxq_hw_init(struct mvneta_port *pp,
			       struct mvneta_rx_queue *rxq)
{
	/* Set Rx descriptors queue starting address */
	mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys);
	mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size);

	/* Set coalescing pkts and time */
	mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
	mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);

	if (!pp->bm_priv) {
		/* Set Offset */
		mvneta_rxq_offset_set(pp, rxq, 0);
		mvneta_rxq_buf_size_set(pp, rxq, PAGE_SIZE < SZ_64K ?
					MVNETA_MAX_RX_BUF_SIZE :
					MVNETA_RX_BUF_SIZE(pp->pkt_size));
		mvneta_rxq_bm_disable(pp, rxq);
		mvneta_rxq_fill(pp, rxq, rxq->size);
	} else {
		/* Set Offset */
		mvneta_rxq_offset_set(pp, rxq,
				      NET_SKB_PAD - pp->rx_offset_correction);

		mvneta_rxq_bm_enable(pp, rxq);
		/* Fill RXQ with buffers from RX pool */
		mvneta_rxq_long_pool_set(pp, rxq);
		mvneta_rxq_short_pool_set(pp, rxq);
		mvneta_rxq_non_occup_desc_add(pp, rxq, rxq->size);
	}
}

/* Create a specified RX queue */
static int mvneta_rxq_init(struct mvneta_port *pp,
			   struct mvneta_rx_queue *rxq)

{
	int ret;

	ret = mvneta_rxq_sw_init(pp, rxq);
	if (ret < 0)
		return ret;

	mvneta_rxq_hw_init(pp, rxq);

	return 0;
}

/* Cleanup Rx queue */
static void mvneta_rxq_deinit(struct mvneta_port *pp,
			      struct mvneta_rx_queue *rxq)
{
	mvneta_rxq_drop_pkts(pp, rxq);

	if (rxq->descs)
		dma_free_coherent(pp->dev->dev.parent,
				  rxq->size * MVNETA_DESC_ALIGNED_SIZE,
				  rxq->descs,
				  rxq->descs_phys);

	rxq->descs             = NULL;
	rxq->last_desc         = 0;
	rxq->next_desc_to_proc = 0;
	rxq->descs_phys        = 0;
	rxq->first_to_refill   = 0;
	rxq->refill_num        = 0;
}

static int mvneta_txq_sw_init(struct mvneta_port *pp,
			      struct mvneta_tx_queue *txq)
{
	int cpu, err;

	txq->size = pp->tx_ring_size;

	/* A queue must always have room for at least one skb.
	 * Therefore, stop the queue when the free entries reaches
	 * the maximum number of descriptors per skb.
	 */
	txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS;
	txq->tx_wake_threshold = txq->tx_stop_threshold / 2;

	/* Allocate memory for TX descriptors */
	txq->descs = dma_alloc_coherent(pp->dev->dev.parent,
					txq->size * MVNETA_DESC_ALIGNED_SIZE,
					&txq->descs_phys, GFP_KERNEL);
	if (!txq->descs)
		return -ENOMEM;

	txq->last_desc = txq->size - 1;

	txq->buf = kmalloc_array(txq->size, sizeof(*txq->buf), GFP_KERNEL);
	if (!txq->buf)
		return -ENOMEM;

	/* Allocate DMA buffers for TSO MAC/IP/TCP headers */
	err = mvneta_alloc_tso_hdrs(pp, txq);
	if (err)
		return err;

	/* Setup XPS mapping */
	if (pp->neta_armada3700)
		cpu = 0;
	else if (txq_number > 1)
		cpu = txq->id % num_present_cpus();
	else
		cpu = pp->rxq_def % num_present_cpus();
	cpumask_set_cpu(cpu, &txq->affinity_mask);
	netif_set_xps_queue(pp->dev, &txq->affinity_mask, txq->id);

	return 0;
}

static void mvneta_txq_hw_init(struct mvneta_port *pp,
			       struct mvneta_tx_queue *txq)
{
	/* Set maximum bandwidth for enabled TXQs */
	mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff);
	mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff);

	/* Set Tx descriptors queue starting address */
	mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys);
	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size);

	mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
}

/* Create and initialize a tx queue */
static int mvneta_txq_init(struct mvneta_port *pp,
			   struct mvneta_tx_queue *txq)
{
	int ret;

	ret = mvneta_txq_sw_init(pp, txq);
	if (ret < 0)
		return ret;

	mvneta_txq_hw_init(pp, txq);

	return 0;
}

/* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
static void mvneta_txq_sw_deinit(struct mvneta_port *pp,
				 struct mvneta_tx_queue *txq)
{
	struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);

	kfree(txq->buf);

	mvneta_free_tso_hdrs(pp, txq);
	if (txq->descs)
		dma_free_coherent(pp->dev->dev.parent,
				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
				  txq->descs, txq->descs_phys);

	netdev_tx_reset_queue(nq);

	txq->buf               = NULL;
	txq->descs             = NULL;
	txq->last_desc         = 0;
	txq->next_desc_to_proc = 0;
	txq->descs_phys        = 0;
}

static void mvneta_txq_hw_deinit(struct mvneta_port *pp,
				 struct mvneta_tx_queue *txq)
{
	/* Set minimum bandwidth for disabled TXQs */
	mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0);
	mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0);

	/* Set Tx descriptors queue starting address and size */
	mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0);
	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0);
}

static void mvneta_txq_deinit(struct mvneta_port *pp,
			      struct mvneta_tx_queue *txq)
{
	mvneta_txq_sw_deinit(pp, txq);
	mvneta_txq_hw_deinit(pp, txq);
}

/* Cleanup all Tx queues */
static void mvneta_cleanup_txqs(struct mvneta_port *pp)
{
	int queue;

	for (queue = 0; queue < txq_number; queue++)
		mvneta_txq_deinit(pp, &pp->txqs[queue]);
}

/* Cleanup all Rx queues */
static void mvneta_cleanup_rxqs(struct mvneta_port *pp)
{
	int queue;

	for (queue = 0; queue < rxq_number; queue++)
		mvneta_rxq_deinit(pp, &pp->rxqs[queue]);
}


/* Init all Rx queues */
static int mvneta_setup_rxqs(struct mvneta_port *pp)
{
	int queue;

	for (queue = 0; queue < rxq_number; queue++) {
		int err = mvneta_rxq_init(pp, &pp->rxqs[queue]);

		if (err) {
			netdev_err(pp->dev, "%s: can't create rxq=%d\n",
				   __func__, queue);
			mvneta_cleanup_rxqs(pp);
			return err;
		}
	}

	return 0;
}

/* Init all tx queues */
static int mvneta_setup_txqs(struct mvneta_port *pp)
{
	int queue;

	for (queue = 0; queue < txq_number; queue++) {
		int err = mvneta_txq_init(pp, &pp->txqs[queue]);
		if (err) {
			netdev_err(pp->dev, "%s: can't create txq=%d\n",
				   __func__, queue);
			mvneta_cleanup_txqs(pp);
			return err;
		}
	}

	return 0;
}

static int mvneta_comphy_init(struct mvneta_port *pp, phy_interface_t interface)
{
	int ret;

	ret = phy_set_mode_ext(pp->comphy, PHY_MODE_ETHERNET, interface);
	if (ret)
		return ret;

	return phy_power_on(pp->comphy);
}

static int mvneta_config_interface(struct mvneta_port *pp,
				   phy_interface_t interface)
{
	int ret = 0;

	if (pp->comphy) {
		if (interface == PHY_INTERFACE_MODE_SGMII ||
		    interface == PHY_INTERFACE_MODE_1000BASEX ||
		    interface == PHY_INTERFACE_MODE_2500BASEX) {
			ret = mvneta_comphy_init(pp, interface);
		}
	} else {
		switch (interface) {
		case PHY_INTERFACE_MODE_QSGMII:
			mvreg_write(pp, MVNETA_SERDES_CFG,
				    MVNETA_QSGMII_SERDES_PROTO);
			break;

		case PHY_INTERFACE_MODE_SGMII:
		case PHY_INTERFACE_MODE_1000BASEX:
			mvreg_write(pp, MVNETA_SERDES_CFG,
				    MVNETA_SGMII_SERDES_PROTO);
			break;

		case PHY_INTERFACE_MODE_2500BASEX:
			mvreg_write(pp, MVNETA_SERDES_CFG,
				    MVNETA_HSGMII_SERDES_PROTO);
			break;
		default:
			break;
		}
	}

	pp->phy_interface = interface;

	return ret;
}

static void mvneta_start_dev(struct mvneta_port *pp)
{
	int cpu;

	WARN_ON(mvneta_config_interface(pp, pp->phy_interface));

	mvneta_max_rx_size_set(pp, pp->pkt_size);
	mvneta_txq_max_tx_size_set(pp, pp->pkt_size);

	/* start the Rx/Tx activity */
	mvneta_port_enable(pp);

	if (!pp->neta_armada3700) {
		/* Enable polling on the port */
		for_each_online_cpu(cpu) {
			struct mvneta_pcpu_port *port =
				per_cpu_ptr(pp->ports, cpu);

			napi_enable(&port->napi);
		}
	} else {
		napi_enable(&pp->napi);
	}

	/* Unmask interrupts. It has to be done from each CPU */
	on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);

	mvreg_write(pp, MVNETA_INTR_MISC_MASK,
		    MVNETA_CAUSE_PHY_STATUS_CHANGE |
		    MVNETA_CAUSE_LINK_CHANGE);

	phylink_start(pp->phylink);

	/* We may have called phylink_speed_down before */
	phylink_speed_up(pp->phylink);

	netif_tx_start_all_queues(pp->dev);

	clear_bit(__MVNETA_DOWN, &pp->state);
}

static void mvneta_stop_dev(struct mvneta_port *pp)
{
	unsigned int cpu;

	set_bit(__MVNETA_DOWN, &pp->state);

	if (device_may_wakeup(&pp->dev->dev))
		phylink_speed_down(pp->phylink, false);

	phylink_stop(pp->phylink);

	if (!pp->neta_armada3700) {
		for_each_online_cpu(cpu) {
			struct mvneta_pcpu_port *port =
				per_cpu_ptr(pp->ports, cpu);

			napi_disable(&port->napi);
		}
	} else {
		napi_disable(&pp->napi);
	}

	netif_carrier_off(pp->dev);

	mvneta_port_down(pp);
	netif_tx_stop_all_queues(pp->dev);

	/* Stop the port activity */
	mvneta_port_disable(pp);

	/* Clear all ethernet port interrupts */
	on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);

	/* Mask all ethernet port interrupts */
	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);

	mvneta_tx_reset(pp);
	mvneta_rx_reset(pp);

	WARN_ON(phy_power_off(pp->comphy));
}

static void mvneta_percpu_enable(void *arg)
{
	struct mvneta_port *pp = arg;

	enable_percpu_irq(pp->dev->irq, IRQ_TYPE_NONE);
}

static void mvneta_percpu_disable(void *arg)
{
	struct mvneta_port *pp = arg;

	disable_percpu_irq(pp->dev->irq);
}

/* Change the device mtu */
static int mvneta_change_mtu(struct net_device *dev, int mtu)
{
	struct mvneta_port *pp = netdev_priv(dev);
	struct bpf_prog *prog = pp->xdp_prog;
	int ret;

	if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) {
		netdev_info(dev, "Illegal MTU value %d, rounding to %d\n",
			    mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8));
		mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8);
	}

	if (prog && !prog->aux->xdp_has_frags &&
	    mtu > MVNETA_MAX_RX_BUF_SIZE) {
		netdev_info(dev, "Illegal MTU %d for XDP prog without frags\n",
			    mtu);

		return -EINVAL;
	}

	dev->mtu = mtu;

	if (!netif_running(dev)) {
		if (pp->bm_priv)
			mvneta_bm_update_mtu(pp, mtu);

		netdev_update_features(dev);
		return 0;
	}

	/* The interface is running, so we have to force a
	 * reallocation of the queues
	 */
	mvneta_stop_dev(pp);
	on_each_cpu(mvneta_percpu_disable, pp, true);

	mvneta_cleanup_txqs(pp);
	mvneta_cleanup_rxqs(pp);

	if (pp->bm_priv)
		mvneta_bm_update_mtu(pp, mtu);

	pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu);

	ret = mvneta_setup_rxqs(pp);
	if (ret) {
		netdev_err(dev, "unable to setup rxqs after MTU change\n");
		return ret;
	}

	ret = mvneta_setup_txqs(pp);
	if (ret) {
		netdev_err(dev, "unable to setup txqs after MTU change\n");
		return ret;
	}

	on_each_cpu(mvneta_percpu_enable, pp, true);
	mvneta_start_dev(pp);

	netdev_update_features(dev);

	return 0;
}

static netdev_features_t mvneta_fix_features(struct net_device *dev,
					     netdev_features_t features)
{
	struct mvneta_port *pp = netdev_priv(dev);

	if (pp->tx_csum_limit && dev->mtu > pp->tx_csum_limit) {
		features &= ~(NETIF_F_IP_CSUM | NETIF_F_TSO);
		netdev_info(dev,
			    "Disable IP checksum for MTU greater than %dB\n",
			    pp->tx_csum_limit);
	}

	return features;
}

/* Get mac address */
static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr)
{
	u32 mac_addr_l, mac_addr_h;

	mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW);
	mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH);
	addr[0] = (mac_addr_h >> 24) & 0xFF;
	addr[1] = (mac_addr_h >> 16) & 0xFF;
	addr[2] = (mac_addr_h >> 8) & 0xFF;
	addr[3] = mac_addr_h & 0xFF;
	addr[4] = (mac_addr_l >> 8) & 0xFF;
	addr[5] = mac_addr_l & 0xFF;
}

/* Handle setting mac address */
static int mvneta_set_mac_addr(struct net_device *dev, void *addr)
{
	struct mvneta_port *pp = netdev_priv(dev);
	struct sockaddr *sockaddr = addr;
	int ret;

	ret = eth_prepare_mac_addr_change(dev, addr);
	if (ret < 0)
		return ret;
	/* Remove previous address table entry */
	mvneta_mac_addr_set(pp, dev->dev_addr, -1);

	/* Set new addr in hw */
	mvneta_mac_addr_set(pp, sockaddr->sa_data, pp->rxq_def);

	eth_commit_mac_addr_change(dev, addr);
	return 0;
}

static struct mvneta_port *mvneta_pcs_to_port(struct phylink_pcs *pcs)
{
	return container_of(pcs, struct mvneta_port, phylink_pcs);
}

static int mvneta_pcs_validate(struct phylink_pcs *pcs,
			       unsigned long *supported,
			       const struct phylink_link_state *state)
{
	/* We only support QSGMII, SGMII, 802.3z and RGMII modes.
	 * When in 802.3z mode, we must have AN enabled:
	 * "Bit 2 Field InBandAnEn In-band Auto-Negotiation enable. ...
	 * When <PortType> = 1 (1000BASE-X) this field must be set to 1."
	 */
	if (phy_interface_mode_is_8023z(state->interface) &&
	    !phylink_test(state->advertising, Autoneg))
		return -EINVAL;

	return 0;
}

static void mvneta_pcs_get_state(struct phylink_pcs *pcs,
				 struct phylink_link_state *state)
{
	struct mvneta_port *pp = mvneta_pcs_to_port(pcs);
	u32 gmac_stat;

	gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS);

	if (gmac_stat & MVNETA_GMAC_SPEED_1000)
		state->speed =
			state->interface == PHY_INTERFACE_MODE_2500BASEX ?
			SPEED_2500 : SPEED_1000;
	else if (gmac_stat & MVNETA_GMAC_SPEED_100)
		state->speed = SPEED_100;
	else
		state->speed = SPEED_10;

	state->an_complete = !!(gmac_stat & MVNETA_GMAC_AN_COMPLETE);
	state->link = !!(gmac_stat & MVNETA_GMAC_LINK_UP);
	state->duplex = !!(gmac_stat & MVNETA_GMAC_FULL_DUPLEX);

	if (gmac_stat & MVNETA_GMAC_RX_FLOW_CTRL_ENABLE)
		state->pause |= MLO_PAUSE_RX;
	if (gmac_stat & MVNETA_GMAC_TX_FLOW_CTRL_ENABLE)
		state->pause |= MLO_PAUSE_TX;
}

static int mvneta_pcs_config(struct phylink_pcs *pcs, unsigned int neg_mode,
			     phy_interface_t interface,
			     const unsigned long *advertising,
			     bool permit_pause_to_mac)
{
	struct mvneta_port *pp = mvneta_pcs_to_port(pcs);
	u32 mask, val, an, old_an, changed;

	mask = MVNETA_GMAC_INBAND_AN_ENABLE |
	       MVNETA_GMAC_INBAND_RESTART_AN |
	       MVNETA_GMAC_AN_SPEED_EN |
	       MVNETA_GMAC_AN_FLOW_CTRL_EN |
	       MVNETA_GMAC_AN_DUPLEX_EN;

	if (neg_mode == PHYLINK_PCS_NEG_INBAND_ENABLED) {
		mask |= MVNETA_GMAC_CONFIG_MII_SPEED |
			MVNETA_GMAC_CONFIG_GMII_SPEED |
			MVNETA_GMAC_CONFIG_FULL_DUPLEX;
		val = MVNETA_GMAC_INBAND_AN_ENABLE;

		if (interface == PHY_INTERFACE_MODE_SGMII) {
			/* SGMII mode receives the speed and duplex from PHY */
			val |= MVNETA_GMAC_AN_SPEED_EN |
			       MVNETA_GMAC_AN_DUPLEX_EN;
		} else {
			/* 802.3z mode has fixed speed and duplex */
			val |= MVNETA_GMAC_CONFIG_GMII_SPEED |
			       MVNETA_GMAC_CONFIG_FULL_DUPLEX;

			/* The FLOW_CTRL_EN bit selects either the hardware
			 * automatically or the CONFIG_FLOW_CTRL manually
			 * controls the GMAC pause mode.
			 */
			if (permit_pause_to_mac)
				val |= MVNETA_GMAC_AN_FLOW_CTRL_EN;

			/* Update the advertisement bits */
			mask |= MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL;
			if (phylink_test(advertising, Pause))
				val |= MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL;
		}
	} else {
		/* Phy or fixed speed - disable in-band AN modes */
		val = 0;
	}

	old_an = an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
	an = (an & ~mask) | val;
	changed = old_an ^ an;
	if (changed)
		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, an);

	/* We are only interested in the advertisement bits changing */
	return !!(changed & MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL);
}

static void mvneta_pcs_an_restart(struct phylink_pcs *pcs)
{
	struct mvneta_port *pp = mvneta_pcs_to_port(pcs);
	u32 gmac_an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);

	mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
		    gmac_an | MVNETA_GMAC_INBAND_RESTART_AN);
	mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
		    gmac_an & ~MVNETA_GMAC_INBAND_RESTART_AN);
}

static const struct phylink_pcs_ops mvneta_phylink_pcs_ops = {
	.pcs_validate = mvneta_pcs_validate,
	.pcs_get_state = mvneta_pcs_get_state,
	.pcs_config = mvneta_pcs_config,
	.pcs_an_restart = mvneta_pcs_an_restart,
};

static struct phylink_pcs *mvneta_mac_select_pcs(struct phylink_config *config,
						 phy_interface_t interface)
{
	struct net_device *ndev = to_net_dev(config->dev);
	struct mvneta_port *pp = netdev_priv(ndev);

	return &pp->phylink_pcs;
}

static int mvneta_mac_prepare(struct phylink_config *config, unsigned int mode,
			      phy_interface_t interface)
{
	struct net_device *ndev = to_net_dev(config->dev);
	struct mvneta_port *pp = netdev_priv(ndev);
	u32 val;

	if (pp->phy_interface != interface ||
	    phylink_autoneg_inband(mode)) {
		/* Force the link down when changing the interface or if in
		 * in-band mode. According to Armada 370 documentation, we
		 * can only change the port mode and in-band enable when the
		 * link is down.
		 */
		val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
		val &= ~MVNETA_GMAC_FORCE_LINK_PASS;
		val |= MVNETA_GMAC_FORCE_LINK_DOWN;
		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
	}

	if (pp->phy_interface != interface)
		WARN_ON(phy_power_off(pp->comphy));

	/* Enable the 1ms clock */
	if (phylink_autoneg_inband(mode)) {
		unsigned long rate = clk_get_rate(pp->clk);

		mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER,
			    MVNETA_GMAC_1MS_CLOCK_ENABLE | (rate / 1000));
	}

	return 0;
}

static void mvneta_mac_config(struct phylink_config *config, unsigned int mode,
			      const struct phylink_link_state *state)
{
	struct net_device *ndev = to_net_dev(config->dev);
	struct mvneta_port *pp = netdev_priv(ndev);
	u32 new_ctrl0, gmac_ctrl0 = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
	u32 new_ctrl2, gmac_ctrl2 = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
	u32 new_ctrl4, gmac_ctrl4 = mvreg_read(pp, MVNETA_GMAC_CTRL_4);

	new_ctrl0 = gmac_ctrl0 & ~MVNETA_GMAC0_PORT_1000BASE_X;
	new_ctrl2 = gmac_ctrl2 & ~(MVNETA_GMAC2_INBAND_AN_ENABLE |
				   MVNETA_GMAC2_PORT_RESET);
	new_ctrl4 = gmac_ctrl4 & ~(MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE);

	/* Even though it might look weird, when we're configured in
	 * SGMII or QSGMII mode, the RGMII bit needs to be set.
	 */
	new_ctrl2 |= MVNETA_GMAC2_PORT_RGMII;

	if (state->interface == PHY_INTERFACE_MODE_QSGMII ||
	    state->interface == PHY_INTERFACE_MODE_SGMII ||
	    phy_interface_mode_is_8023z(state->interface))
		new_ctrl2 |= MVNETA_GMAC2_PCS_ENABLE;

	if (!phylink_autoneg_inband(mode)) {
		/* Phy or fixed speed - nothing to do, leave the
		 * configured speed, duplex and flow control as-is.
		 */
	} else if (state->interface == PHY_INTERFACE_MODE_SGMII) {
		/* SGMII mode receives the state from the PHY */
		new_ctrl2 |= MVNETA_GMAC2_INBAND_AN_ENABLE;
	} else {
		/* 802.3z negotiation - only 1000base-X */
		new_ctrl0 |= MVNETA_GMAC0_PORT_1000BASE_X;
	}

	/* When at 2.5G, the link partner can send frames with shortened
	 * preambles.
	 */
	if (state->interface == PHY_INTERFACE_MODE_2500BASEX)
		new_ctrl4 |= MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE;

	if (new_ctrl0 != gmac_ctrl0)
		mvreg_write(pp, MVNETA_GMAC_CTRL_0, new_ctrl0);
	if (new_ctrl2 != gmac_ctrl2)
		mvreg_write(pp, MVNETA_GMAC_CTRL_2, new_ctrl2);
	if (new_ctrl4 != gmac_ctrl4)
		mvreg_write(pp, MVNETA_GMAC_CTRL_4, new_ctrl4);

	if (gmac_ctrl2 & MVNETA_GMAC2_PORT_RESET) {
		while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) &
			MVNETA_GMAC2_PORT_RESET) != 0)
			continue;
	}
}

static int mvneta_mac_finish(struct phylink_config *config, unsigned int mode,
			     phy_interface_t interface)
{
	struct net_device *ndev = to_net_dev(config->dev);
	struct mvneta_port *pp = netdev_priv(ndev);
	u32 val, clk;

	/* Disable 1ms clock if not in in-band mode */
	if (!phylink_autoneg_inband(mode)) {
		clk = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER);
		clk &= ~MVNETA_GMAC_1MS_CLOCK_ENABLE;
		mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, clk);
	}

	if (pp->phy_interface != interface)
		/* Enable the Serdes PHY */
		WARN_ON(mvneta_config_interface(pp, interface));

	/* Allow the link to come up if in in-band mode, otherwise the
	 * link is forced via mac_link_down()/mac_link_up()
	 */
	if (phylink_autoneg_inband(mode)) {
		val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
		val &= ~MVNETA_GMAC_FORCE_LINK_DOWN;
		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
	}

	return 0;
}

static void mvneta_set_eee(struct mvneta_port *pp, bool enable)
{
	u32 lpi_ctl1;

	lpi_ctl1 = mvreg_read(pp, MVNETA_LPI_CTRL_1);
	if (enable)
		lpi_ctl1 |= MVNETA_LPI_REQUEST_ENABLE;
	else
		lpi_ctl1 &= ~MVNETA_LPI_REQUEST_ENABLE;
	mvreg_write(pp, MVNETA_LPI_CTRL_1, lpi_ctl1);
}

static void mvneta_mac_link_down(struct phylink_config *config,
				 unsigned int mode, phy_interface_t interface)
{
	struct net_device *ndev = to_net_dev(config->dev);
	struct mvneta_port *pp = netdev_priv(ndev);
	u32 val;

	mvneta_port_down(pp);

	if (!phylink_autoneg_inband(mode)) {
		val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
		val &= ~MVNETA_GMAC_FORCE_LINK_PASS;
		val |= MVNETA_GMAC_FORCE_LINK_DOWN;
		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
	}

	pp->eee_active = false;
	mvneta_set_eee(pp, false);
}

static void mvneta_mac_link_up(struct phylink_config *config,
			       struct phy_device *phy,
			       unsigned int mode, phy_interface_t interface,
			       int speed, int duplex,
			       bool tx_pause, bool rx_pause)
{
	struct net_device *ndev = to_net_dev(config->dev);
	struct mvneta_port *pp = netdev_priv(ndev);
	u32 val;

	if (!phylink_autoneg_inband(mode)) {
		val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
		val &= ~(MVNETA_GMAC_FORCE_LINK_DOWN |
			 MVNETA_GMAC_CONFIG_MII_SPEED |
			 MVNETA_GMAC_CONFIG_GMII_SPEED |
			 MVNETA_GMAC_CONFIG_FLOW_CTRL |
			 MVNETA_GMAC_CONFIG_FULL_DUPLEX);
		val |= MVNETA_GMAC_FORCE_LINK_PASS;

		if (speed == SPEED_1000 || speed == SPEED_2500)
			val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
		else if (speed == SPEED_100)
			val |= MVNETA_GMAC_CONFIG_MII_SPEED;

		if (duplex == DUPLEX_FULL)
			val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;

		if (tx_pause || rx_pause)
			val |= MVNETA_GMAC_CONFIG_FLOW_CTRL;

		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
	} else {
		/* When inband doesn't cover flow control or flow control is
		 * disabled, we need to manually configure it. This bit will
		 * only have effect if MVNETA_GMAC_AN_FLOW_CTRL_EN is unset.
		 */
		val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
		val &= ~MVNETA_GMAC_CONFIG_FLOW_CTRL;

		if (tx_pause || rx_pause)
			val |= MVNETA_GMAC_CONFIG_FLOW_CTRL;

		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
	}

	mvneta_port_up(pp);

	if (phy && pp->eee_enabled) {
		pp->eee_active = phy_init_eee(phy, false) >= 0;
		mvneta_set_eee(pp, pp->eee_active && pp->tx_lpi_enabled);
	}
}

static const struct phylink_mac_ops mvneta_phylink_ops = {
	.mac_select_pcs = mvneta_mac_select_pcs,
	.mac_prepare = mvneta_mac_prepare,
	.mac_config = mvneta_mac_config,
	.mac_finish = mvneta_mac_finish,
	.mac_link_down = mvneta_mac_link_down,
	.mac_link_up = mvneta_mac_link_up,
};

static int mvneta_mdio_probe(struct mvneta_port *pp)
{
	struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
	int err = phylink_of_phy_connect(pp->phylink, pp->dn, 0);

	if (err)
		netdev_err(pp->dev, "could not attach PHY: %d\n", err);

	phylink_ethtool_get_wol(pp->phylink, &wol);
	device_set_wakeup_capable(&pp->dev->dev, !!wol.supported);

	/* PHY WoL may be enabled but device wakeup disabled */
	if (wol.supported)
		device_set_wakeup_enable(&pp->dev->dev, !!wol.wolopts);

	return err;
}

static void mvneta_mdio_remove(struct mvneta_port *pp)
{
	phylink_disconnect_phy(pp->phylink);
}

/* Electing a CPU must be done in an atomic way: it should be done
 * after or before the removal/insertion of a CPU and this function is
 * not reentrant.
 */
static void mvneta_percpu_elect(struct mvneta_port *pp)
{
	int elected_cpu = 0, max_cpu, cpu;

	/* Use the cpu associated to the rxq when it is online, in all
	 * the other cases, use the cpu 0 which can't be offline.
	 */
	if (pp->rxq_def < nr_cpu_ids && cpu_online(pp->rxq_def))
		elected_cpu = pp->rxq_def;

	max_cpu = num_present_cpus();

	for_each_online_cpu(cpu) {
		int rxq_map = 0, txq_map = 0;
		int rxq;

		for (rxq = 0; rxq < rxq_number; rxq++)
			if ((rxq % max_cpu) == cpu)
				rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);

		if (cpu == elected_cpu)
			/* Map the default receive queue to the elected CPU */
			rxq_map |= MVNETA_CPU_RXQ_ACCESS(pp->rxq_def);

		/* We update the TX queue map only if we have one
		 * queue. In this case we associate the TX queue to
		 * the CPU bound to the default RX queue
		 */
		if (txq_number == 1)
			txq_map = (cpu == elected_cpu) ?
				MVNETA_CPU_TXQ_ACCESS(0) : 0;
		else
			txq_map = mvreg_read(pp, MVNETA_CPU_MAP(cpu)) &
				MVNETA_CPU_TXQ_ACCESS_ALL_MASK;

		mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);

		/* Update the interrupt mask on each CPU according the
		 * new mapping
		 */
		smp_call_function_single(cpu, mvneta_percpu_unmask_interrupt,
					 pp, true);
	}
};

static int mvneta_cpu_online(unsigned int cpu, struct hlist_node *node)
{
	int other_cpu;
	struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
						  node_online);
	struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);

	/* Armada 3700's per-cpu interrupt for mvneta is broken, all interrupts
	 * are routed to CPU 0, so we don't need all the cpu-hotplug support
	 */
	if (pp->neta_armada3700)
		return 0;

	spin_lock(&pp->lock);
	/*
	 * Configuring the driver for a new CPU while the driver is
	 * stopping is racy, so just avoid it.
	 */
	if (pp->is_stopped) {
		spin_unlock(&pp->lock);
		return 0;
	}
	netif_tx_stop_all_queues(pp->dev);

	/*
	 * We have to synchronise on tha napi of each CPU except the one
	 * just being woken up
	 */
	for_each_online_cpu(other_cpu) {
		if (other_cpu != cpu) {
			struct mvneta_pcpu_port *other_port =
				per_cpu_ptr(pp->ports, other_cpu);

			napi_synchronize(&other_port->napi);
		}
	}

	/* Mask all ethernet port interrupts */
	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
	napi_enable(&port->napi);

	/*
	 * Enable per-CPU interrupts on the CPU that is
	 * brought up.
	 */
	mvneta_percpu_enable(pp);

	/*
	 * Enable per-CPU interrupt on the one CPU we care
	 * about.
	 */
	mvneta_percpu_elect(pp);

	/* Unmask all ethernet port interrupts */
	on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
	mvreg_write(pp, MVNETA_INTR_MISC_MASK,
		    MVNETA_CAUSE_PHY_STATUS_CHANGE |
		    MVNETA_CAUSE_LINK_CHANGE);
	netif_tx_start_all_queues(pp->dev);
	spin_unlock(&pp->lock);
	return 0;
}

static int mvneta_cpu_down_prepare(unsigned int cpu, struct hlist_node *node)
{
	struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
						  node_online);
	struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);

	/*
	 * Thanks to this lock we are sure that any pending cpu election is
	 * done.
	 */
	spin_lock(&pp->lock);
	/* Mask all ethernet port interrupts */
	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
	spin_unlock(&pp->lock);

	napi_synchronize(&port->napi);
	napi_disable(&port->napi);
	/* Disable per-CPU interrupts on the CPU that is brought down. */
	mvneta_percpu_disable(pp);
	return 0;
}

static int mvneta_cpu_dead(unsigned int cpu, struct hlist_node *node)
{
	struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
						  node_dead);

	/* Check if a new CPU must be elected now this on is down */
	spin_lock(&pp->lock);
	mvneta_percpu_elect(pp);
	spin_unlock(&pp->lock);
	/* Unmask all ethernet port interrupts */
	on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
	mvreg_write(pp, MVNETA_INTR_MISC_MASK,
		    MVNETA_CAUSE_PHY_STATUS_CHANGE |
		    MVNETA_CAUSE_LINK_CHANGE);
	netif_tx_start_all_queues(pp->dev);
	return 0;
}

static int mvneta_open(struct net_device *dev)
{
	struct mvneta_port *pp = netdev_priv(dev);
	int ret;

	pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu);

	ret = mvneta_setup_rxqs(pp);
	if (ret)
		return ret;

	ret = mvneta_setup_txqs(pp);
	if (ret)
		goto err_cleanup_rxqs;

	/* Connect to port interrupt line */
	if (pp->neta_armada3700)
		ret = request_irq(pp->dev->irq, mvneta_isr, 0,
				  dev->name, pp);
	else
		ret = request_percpu_irq(pp->dev->irq, mvneta_percpu_isr,
					 dev->name, pp->ports);
	if (ret) {
		netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq);
		goto err_cleanup_txqs;
	}

	if (!pp->neta_armada3700) {
		/* Enable per-CPU interrupt on all the CPU to handle our RX
		 * queue interrupts
		 */
		on_each_cpu(mvneta_percpu_enable, pp, true);

		pp->is_stopped = false;
		/* Register a CPU notifier to handle the case where our CPU
		 * might be taken offline.
		 */
		ret = cpuhp_state_add_instance_nocalls(online_hpstate,
						       &pp->node_online);
		if (ret)
			goto err_free_irq;

		ret = cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
						       &pp->node_dead);
		if (ret)
			goto err_free_online_hp;
	}

	ret = mvneta_mdio_probe(pp);
	if (ret < 0) {
		netdev_err(dev, "cannot probe MDIO bus\n");
		goto err_free_dead_hp;
	}

	mvneta_start_dev(pp);

	return 0;

err_free_dead_hp:
	if (!pp->neta_armada3700)
		cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
						    &pp->node_dead);
err_free_online_hp:
	if (!pp->neta_armada3700)
		cpuhp_state_remove_instance_nocalls(online_hpstate,
						    &pp->node_online);
err_free_irq:
	if (pp->neta_armada3700) {
		free_irq(pp->dev->irq, pp);
	} else {
		on_each_cpu(mvneta_percpu_disable, pp, true);
		free_percpu_irq(pp->dev->irq, pp->ports);
	}
err_cleanup_txqs:
	mvneta_cleanup_txqs(pp);
err_cleanup_rxqs:
	mvneta_cleanup_rxqs(pp);
	return ret;
}

/* Stop the port, free port interrupt line */
static int mvneta_stop(struct net_device *dev)
{
	struct mvneta_port *pp = netdev_priv(dev);

	if (!pp->neta_armada3700) {
		/* Inform that we are stopping so we don't want to setup the
		 * driver for new CPUs in the notifiers. The code of the
		 * notifier for CPU online is protected by the same spinlock,
		 * so when we get the lock, the notifer work is done.
		 */
		spin_lock(&pp->lock);
		pp->is_stopped = true;
		spin_unlock(&pp->lock);

		mvneta_stop_dev(pp);
		mvneta_mdio_remove(pp);

		cpuhp_state_remove_instance_nocalls(online_hpstate,
						    &pp->node_online);
		cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
						    &pp->node_dead);
		on_each_cpu(mvneta_percpu_disable, pp, true);
		free_percpu_irq(dev->irq, pp->ports);
	} else {
		mvneta_stop_dev(pp);
		mvneta_mdio_remove(pp);
		free_irq(dev->irq, pp);
	}

	mvneta_cleanup_rxqs(pp);
	mvneta_cleanup_txqs(pp);

	return 0;
}

static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
	struct mvneta_port *pp = netdev_priv(dev);

	return phylink_mii_ioctl(pp->phylink, ifr, cmd);
}

static int mvneta_xdp_setup(struct net_device *dev, struct bpf_prog *prog,
			    struct netlink_ext_ack *extack)
{
	bool need_update, running = netif_running(dev);
	struct mvneta_port *pp = netdev_priv(dev);
	struct bpf_prog *old_prog;

	if (prog && !prog->aux->xdp_has_frags &&
	    dev->mtu > MVNETA_MAX_RX_BUF_SIZE) {
		NL_SET_ERR_MSG_MOD(extack, "prog does not support XDP frags");
		return -EOPNOTSUPP;
	}

	if (pp->bm_priv) {
		NL_SET_ERR_MSG_MOD(extack,
				   "Hardware Buffer Management not supported on XDP");
		return -EOPNOTSUPP;
	}

	need_update = !!pp->xdp_prog != !!prog;
	if (running && need_update)
		mvneta_stop(dev);

	old_prog = xchg(&pp->xdp_prog, prog);
	if (old_prog)
		bpf_prog_put(old_prog);

	if (running && need_update)
		return mvneta_open(dev);

	return 0;
}

static int mvneta_xdp(struct net_device *dev, struct netdev_bpf *xdp)
{
	switch (xdp->command) {
	case XDP_SETUP_PROG:
		return mvneta_xdp_setup(dev, xdp->prog, xdp->extack);
	default:
		return -EINVAL;
	}
}

/* Ethtool methods */

/* Set link ksettings (phy address, speed) for ethtools */
static int
mvneta_ethtool_set_link_ksettings(struct net_device *ndev,
				  const struct ethtool_link_ksettings *cmd)
{
	struct mvneta_port *pp = netdev_priv(ndev);

	return phylink_ethtool_ksettings_set(pp->phylink, cmd);
}

/* Get link ksettings for ethtools */
static int
mvneta_ethtool_get_link_ksettings(struct net_device *ndev,
				  struct ethtool_link_ksettings *cmd)
{
	struct mvneta_port *pp = netdev_priv(ndev);

	return phylink_ethtool_ksettings_get(pp->phylink, cmd);
}

static int mvneta_ethtool_nway_reset(struct net_device *dev)
{
	struct mvneta_port *pp = netdev_priv(dev);

	return phylink_ethtool_nway_reset(pp->phylink);
}

/* Set interrupt coalescing for ethtools */
static int
mvneta_ethtool_set_coalesce(struct net_device *dev,
			    struct ethtool_coalesce *c,
			    struct kernel_ethtool_coalesce *kernel_coal,
			    struct netlink_ext_ack *extack)
{
	struct mvneta_port *pp = netdev_priv(dev);
	int queue;

	for (queue = 0; queue < rxq_number; queue++) {
		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
		rxq->time_coal = c->rx_coalesce_usecs;
		rxq->pkts_coal = c->rx_max_coalesced_frames;
		mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
		mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
	}

	for (queue = 0; queue < txq_number; queue++) {
		struct mvneta_tx_queue *txq = &pp->txqs[queue];
		txq->done_pkts_coal = c->tx_max_coalesced_frames;
		mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
	}

	return 0;
}

/* get coalescing for ethtools */
static int
mvneta_ethtool_get_coalesce(struct net_device *dev,
			    struct ethtool_coalesce *c,
			    struct kernel_ethtool_coalesce *kernel_coal,
			    struct netlink_ext_ack *extack)
{
	struct mvneta_port *pp = netdev_priv(dev);

	c->rx_coalesce_usecs        = pp->rxqs[0].time_coal;
	c->rx_max_coalesced_frames  = pp->rxqs[0].pkts_coal;

	c->tx_max_coalesced_frames =  pp->txqs[0].done_pkts_coal;
	return 0;
}


static void mvneta_ethtool_get_drvinfo(struct net_device *dev,
				    struct ethtool_drvinfo *drvinfo)
{
	strscpy(drvinfo->driver, MVNETA_DRIVER_NAME,
		sizeof(drvinfo->driver));
	strscpy(drvinfo->version, MVNETA_DRIVER_VERSION,
		sizeof(drvinfo->version));
	strscpy(drvinfo->bus_info, dev_name(&dev->dev),
		sizeof(drvinfo->bus_info));
}


static void
mvneta_ethtool_get_ringparam(struct net_device *netdev,
			     struct ethtool_ringparam *ring,
			     struct kernel_ethtool_ringparam *kernel_ring,
			     struct netlink_ext_ack *extack)
{
	struct mvneta_port *pp = netdev_priv(netdev);

	ring->rx_max_pending = MVNETA_MAX_RXD;
	ring->tx_max_pending = MVNETA_MAX_TXD;
	ring->rx_pending = pp->rx_ring_size;
	ring->tx_pending = pp->tx_ring_size;
}

static int
mvneta_ethtool_set_ringparam(struct net_device *dev,
			     struct ethtool_ringparam *ring,
			     struct kernel_ethtool_ringparam *kernel_ring,
			     struct netlink_ext_ack *extack)
{
	struct mvneta_port *pp = netdev_priv(dev);

	if ((ring->rx_pending == 0) || (ring->tx_pending == 0))
		return -EINVAL;
	pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ?
		ring->rx_pending : MVNETA_MAX_RXD;

	pp->tx_ring_size = clamp_t(u16, ring->tx_pending,
				   MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD);
	if (pp->tx_ring_size != ring->tx_pending)
		netdev_warn(dev, "TX queue size set to %u (requested %u)\n",
			    pp->tx_ring_size, ring->tx_pending);

	if (netif_running(dev)) {
		mvneta_stop(dev);
		if (mvneta_open(dev)) {
			netdev_err(dev,
				   "error on opening device after ring param change\n");
			return -ENOMEM;
		}
	}

	return 0;
}

static void mvneta_ethtool_get_pauseparam(struct net_device *dev,
					  struct ethtool_pauseparam *pause)
{
	struct mvneta_port *pp = netdev_priv(dev);

	phylink_ethtool_get_pauseparam(pp->phylink, pause);
}

static int mvneta_ethtool_set_pauseparam(struct net_device *dev,
					 struct ethtool_pauseparam *pause)
{
	struct mvneta_port *pp = netdev_priv(dev);

	return phylink_ethtool_set_pauseparam(pp->phylink, pause);
}

static void mvneta_ethtool_get_strings(struct net_device *netdev, u32 sset,
				       u8 *data)
{
	if (sset == ETH_SS_STATS) {
		struct mvneta_port *pp = netdev_priv(netdev);
		int i;

		for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
			memcpy(data + i * ETH_GSTRING_LEN,
			       mvneta_statistics[i].name, ETH_GSTRING_LEN);

		if (!pp->bm_priv) {
			data += ETH_GSTRING_LEN * ARRAY_SIZE(mvneta_statistics);
			page_pool_ethtool_stats_get_strings(data);
		}
	}
}

static void
mvneta_ethtool_update_pcpu_stats(struct mvneta_port *pp,
				 struct mvneta_ethtool_stats *es)
{
	unsigned int start;
	int cpu;

	for_each_possible_cpu(cpu) {
		struct mvneta_pcpu_stats *stats;
		u64 skb_alloc_error;
		u64 refill_error;
		u64 xdp_redirect;
		u64 xdp_xmit_err;
		u64 xdp_tx_err;
		u64 xdp_pass;
		u64 xdp_drop;
		u64 xdp_xmit;
		u64 xdp_tx;

		stats = per_cpu_ptr(pp->stats, cpu);
		do {
			start = u64_stats_fetch_begin(&stats->syncp);
			skb_alloc_error = stats->es.skb_alloc_error;
			refill_error = stats->es.refill_error;
			xdp_redirect = stats->es.ps.xdp_redirect;
			xdp_pass = stats->es.ps.xdp_pass;
			xdp_drop = stats->es.ps.xdp_drop;
			xdp_xmit = stats->es.ps.xdp_xmit;
			xdp_xmit_err = stats->es.ps.xdp_xmit_err;
			xdp_tx = stats->es.ps.xdp_tx;
			xdp_tx_err = stats->es.ps.xdp_tx_err;
		} while (u64_stats_fetch_retry(&stats->syncp, start));

		es->skb_alloc_error += skb_alloc_error;
		es->refill_error += refill_error;
		es->ps.xdp_redirect += xdp_redirect;
		es->ps.xdp_pass += xdp_pass;
		es->ps.xdp_drop += xdp_drop;
		es->ps.xdp_xmit += xdp_xmit;
		es->ps.xdp_xmit_err += xdp_xmit_err;
		es->ps.xdp_tx += xdp_tx;
		es->ps.xdp_tx_err += xdp_tx_err;
	}
}

static void mvneta_ethtool_update_stats(struct mvneta_port *pp)
{
	struct mvneta_ethtool_stats stats = {};
	const struct mvneta_statistic *s;
	void __iomem *base = pp->base;
	u32 high, low;
	u64 val;
	int i;

	mvneta_ethtool_update_pcpu_stats(pp, &stats);
	for (i = 0, s = mvneta_statistics;
	     s < mvneta_statistics + ARRAY_SIZE(mvneta_statistics);
	     s++, i++) {
		switch (s->type) {
		case T_REG_32:
			val = readl_relaxed(base + s->offset);
			pp->ethtool_stats[i] += val;
			break;
		case T_REG_64:
			/* Docs say to read low 32-bit then high */
			low = readl_relaxed(base + s->offset);
			high = readl_relaxed(base + s->offset + 4);
			val = (u64)high << 32 | low;
			pp->ethtool_stats[i] += val;
			break;
		case T_SW:
			switch (s->offset) {
			case ETHTOOL_STAT_EEE_WAKEUP:
				val = phylink_get_eee_err(pp->phylink);
				pp->ethtool_stats[i] += val;
				break;
			case ETHTOOL_STAT_SKB_ALLOC_ERR:
				pp->ethtool_stats[i] = stats.skb_alloc_error;
				break;
			case ETHTOOL_STAT_REFILL_ERR:
				pp->ethtool_stats[i] = stats.refill_error;
				break;
			case ETHTOOL_XDP_REDIRECT:
				pp->ethtool_stats[i] = stats.ps.xdp_redirect;
				break;
			case ETHTOOL_XDP_PASS:
				pp->ethtool_stats[i] = stats.ps.xdp_pass;
				break;
			case ETHTOOL_XDP_DROP:
				pp->ethtool_stats[i] = stats.ps.xdp_drop;
				break;
			case ETHTOOL_XDP_TX:
				pp->ethtool_stats[i] = stats.ps.xdp_tx;
				break;
			case ETHTOOL_XDP_TX_ERR:
				pp->ethtool_stats[i] = stats.ps.xdp_tx_err;
				break;
			case ETHTOOL_XDP_XMIT:
				pp->ethtool_stats[i] = stats.ps.xdp_xmit;
				break;
			case ETHTOOL_XDP_XMIT_ERR:
				pp->ethtool_stats[i] = stats.ps.xdp_xmit_err;
				break;
			}
			break;
		}
	}
}

static void mvneta_ethtool_pp_stats(struct mvneta_port *pp, u64 *data)
{
	struct page_pool_stats stats = {};
	int i;

	for (i = 0; i < rxq_number; i++) {
		if (pp->rxqs[i].page_pool)
			page_pool_get_stats(pp->rxqs[i].page_pool, &stats);
	}

	page_pool_ethtool_stats_get(data, &stats);
}

static void mvneta_ethtool_get_stats(struct net_device *dev,
				     struct ethtool_stats *stats, u64 *data)
{
	struct mvneta_port *pp = netdev_priv(dev);
	int i;

	mvneta_ethtool_update_stats(pp);

	for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
		*data++ = pp->ethtool_stats[i];

	if (!pp->bm_priv)
		mvneta_ethtool_pp_stats(pp, data);
}

static int mvneta_ethtool_get_sset_count(struct net_device *dev, int sset)
{
	if (sset == ETH_SS_STATS) {
		int count = ARRAY_SIZE(mvneta_statistics);
		struct mvneta_port *pp = netdev_priv(dev);

		if (!pp->bm_priv)
			count += page_pool_ethtool_stats_get_count();

		return count;
	}

	return -EOPNOTSUPP;
}

static u32 mvneta_ethtool_get_rxfh_indir_size(struct net_device *dev)
{
	return MVNETA_RSS_LU_TABLE_SIZE;
}

static int mvneta_ethtool_get_rxnfc(struct net_device *dev,
				    struct ethtool_rxnfc *info,
				    u32 *rules __always_unused)
{
	switch (info->cmd) {
	case ETHTOOL_GRXRINGS:
		info->data =  rxq_number;
		return 0;
	case ETHTOOL_GRXFH:
		return -EOPNOTSUPP;
	default:
		return -EOPNOTSUPP;
	}
}

static int  mvneta_config_rss(struct mvneta_port *pp)
{
	int cpu;
	u32 val;

	netif_tx_stop_all_queues(pp->dev);

	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);

	if (!pp->neta_armada3700) {
		/* We have to synchronise on the napi of each CPU */
		for_each_online_cpu(cpu) {
			struct mvneta_pcpu_port *pcpu_port =
				per_cpu_ptr(pp->ports, cpu);

			napi_synchronize(&pcpu_port->napi);
			napi_disable(&pcpu_port->napi);
		}
	} else {
		napi_synchronize(&pp->napi);
		napi_disable(&pp->napi);
	}

	pp->rxq_def = pp->indir[0];

	/* Update unicast mapping */
	mvneta_set_rx_mode(pp->dev);

	/* Update val of portCfg register accordingly with all RxQueue types */
	val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
	mvreg_write(pp, MVNETA_PORT_CONFIG, val);

	/* Update the elected CPU matching the new rxq_def */
	spin_lock(&pp->lock);
	mvneta_percpu_elect(pp);
	spin_unlock(&pp->lock);

	if (!pp->neta_armada3700) {
		/* We have to synchronise on the napi of each CPU */
		for_each_online_cpu(cpu) {
			struct mvneta_pcpu_port *pcpu_port =
				per_cpu_ptr(pp->ports, cpu);

			napi_enable(&pcpu_port->napi);
		}
	} else {
		napi_enable(&pp->napi);
	}

	netif_tx_start_all_queues(pp->dev);

	return 0;
}

static int mvneta_ethtool_set_rxfh(struct net_device *dev, const u32 *indir,
				   const u8 *key, const u8 hfunc)
{
	struct mvneta_port *pp = netdev_priv(dev);

	/* Current code for Armada 3700 doesn't support RSS features yet */
	if (pp->neta_armada3700)
		return -EOPNOTSUPP;

	/* We require at least one supported parameter to be changed
	 * and no change in any of the unsupported parameters
	 */
	if (key ||
	    (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP))
		return -EOPNOTSUPP;

	if (!indir)
		return 0;

	memcpy(pp->indir, indir, MVNETA_RSS_LU_TABLE_SIZE);

	return mvneta_config_rss(pp);
}

static int mvneta_ethtool_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
				   u8 *hfunc)
{
	struct mvneta_port *pp = netdev_priv(dev);

	/* Current code for Armada 3700 doesn't support RSS features yet */
	if (pp->neta_armada3700)
		return -EOPNOTSUPP;

	if (hfunc)
		*hfunc = ETH_RSS_HASH_TOP;

	if (!indir)
		return 0;

	memcpy(indir, pp->indir, MVNETA_RSS_LU_TABLE_SIZE);

	return 0;
}

static void mvneta_ethtool_get_wol(struct net_device *dev,
				   struct ethtool_wolinfo *wol)
{
	struct mvneta_port *pp = netdev_priv(dev);

	phylink_ethtool_get_wol(pp->phylink, wol);
}

static int mvneta_ethtool_set_wol(struct net_device *dev,
				  struct ethtool_wolinfo *wol)
{
	struct mvneta_port *pp = netdev_priv(dev);
	int ret;

	ret = phylink_ethtool_set_wol(pp->phylink, wol);
	if (!ret)
		device_set_wakeup_enable(&dev->dev, !!wol->wolopts);

	return ret;
}

static int mvneta_ethtool_get_eee(struct net_device *dev,
				  struct ethtool_eee *eee)
{
	struct mvneta_port *pp = netdev_priv(dev);
	u32 lpi_ctl0;

	lpi_ctl0 = mvreg_read(pp, MVNETA_LPI_CTRL_0);

	eee->eee_enabled = pp->eee_enabled;
	eee->eee_active = pp->eee_active;
	eee->tx_lpi_enabled = pp->tx_lpi_enabled;
	eee->tx_lpi_timer = (lpi_ctl0) >> 8; // * scale;

	return phylink_ethtool_get_eee(pp->phylink, eee);
}

static int mvneta_ethtool_set_eee(struct net_device *dev,
				  struct ethtool_eee *eee)
{
	struct mvneta_port *pp = netdev_priv(dev);
	u32 lpi_ctl0;

	/* The Armada 37x documents do not give limits for this other than
	 * it being an 8-bit register.
	 */
	if (eee->tx_lpi_enabled && eee->tx_lpi_timer > 255)
		return -EINVAL;

	lpi_ctl0 = mvreg_read(pp, MVNETA_LPI_CTRL_0);
	lpi_ctl0 &= ~(0xff << 8);
	lpi_ctl0 |= eee->tx_lpi_timer << 8;
	mvreg_write(pp, MVNETA_LPI_CTRL_0, lpi_ctl0);

	pp->eee_enabled = eee->eee_enabled;
	pp->tx_lpi_enabled = eee->tx_lpi_enabled;

	mvneta_set_eee(pp, eee->tx_lpi_enabled && eee->eee_enabled);

	return phylink_ethtool_set_eee(pp->phylink, eee);
}

static void mvneta_clear_rx_prio_map(struct mvneta_port *pp)
{
	mvreg_write(pp, MVNETA_VLAN_PRIO_TO_RXQ, 0);
}

static void mvneta_map_vlan_prio_to_rxq(struct mvneta_port *pp, u8 pri, u8 rxq)
{
	u32 val = mvreg_read(pp, MVNETA_VLAN_PRIO_TO_RXQ);

	val &= ~MVNETA_VLAN_PRIO_RXQ_MAP(pri, 0x7);
	val |= MVNETA_VLAN_PRIO_RXQ_MAP(pri, rxq);

	mvreg_write(pp, MVNETA_VLAN_PRIO_TO_RXQ, val);
}

static int mvneta_enable_per_queue_rate_limit(struct mvneta_port *pp)
{
	unsigned long core_clk_rate;
	u32 refill_cycles;
	u32 val;

	core_clk_rate = clk_get_rate(pp->clk);
	if (!core_clk_rate)
		return -EINVAL;

	refill_cycles = MVNETA_TXQ_BUCKET_REFILL_BASE_PERIOD_NS /
			(NSEC_PER_SEC / core_clk_rate);

	if (refill_cycles > MVNETA_REFILL_MAX_NUM_CLK)
		return -EINVAL;

	/* Enable bw limit algorithm version 3 */
	val = mvreg_read(pp, MVNETA_TXQ_CMD1_REG);
	val &= ~(MVNETA_TXQ_CMD1_BW_LIM_SEL_V1 | MVNETA_TXQ_CMD1_BW_LIM_EN);
	mvreg_write(pp, MVNETA_TXQ_CMD1_REG, val);

	/* Set the base refill rate */
	mvreg_write(pp, MVNETA_REFILL_NUM_CLK_REG, refill_cycles);

	return 0;
}

static void mvneta_disable_per_queue_rate_limit(struct mvneta_port *pp)
{
	u32 val = mvreg_read(pp, MVNETA_TXQ_CMD1_REG);

	val |= (MVNETA_TXQ_CMD1_BW_LIM_SEL_V1 | MVNETA_TXQ_CMD1_BW_LIM_EN);
	mvreg_write(pp, MVNETA_TXQ_CMD1_REG, val);
}

static int mvneta_setup_queue_rates(struct mvneta_port *pp, int queue,
				    u64 min_rate, u64 max_rate)
{
	u32 refill_val, rem;
	u32 val = 0;

	/* Convert to from Bps to bps */
	max_rate *= 8;

	if (min_rate)
		return -EINVAL;

	refill_val = div_u64_rem(max_rate, MVNETA_TXQ_RATE_LIMIT_RESOLUTION,
				 &rem);

	if (rem || !refill_val ||
	    refill_val > MVNETA_TXQ_BUCKET_REFILL_VALUE_MAX)
		return -EINVAL;

	val = refill_val;
	val |= (MVNETA_TXQ_BUCKET_REFILL_PERIOD <<
		MVNETA_TXQ_BUCKET_REFILL_PERIOD_SHIFT);

	mvreg_write(pp, MVNETA_TXQ_BUCKET_REFILL_REG(queue), val);

	return 0;
}

static int mvneta_setup_mqprio(struct net_device *dev,
			       struct tc_mqprio_qopt_offload *mqprio)
{
	struct mvneta_port *pp = netdev_priv(dev);
	int rxq, txq, tc, ret;
	u8 num_tc;

	if (mqprio->qopt.hw != TC_MQPRIO_HW_OFFLOAD_TCS)
		return 0;

	num_tc = mqprio->qopt.num_tc;

	if (num_tc > rxq_number)
		return -EINVAL;

	mvneta_clear_rx_prio_map(pp);

	if (!num_tc) {
		mvneta_disable_per_queue_rate_limit(pp);
		netdev_reset_tc(dev);
		return 0;
	}

	netdev_set_num_tc(dev, mqprio->qopt.num_tc);

	for (tc = 0; tc < mqprio->qopt.num_tc; tc++) {
		netdev_set_tc_queue(dev, tc, mqprio->qopt.count[tc],
				    mqprio->qopt.offset[tc]);

		for (rxq = mqprio->qopt.offset[tc];
		     rxq < mqprio->qopt.count[tc] + mqprio->qopt.offset[tc];
		     rxq++) {
			if (rxq >= rxq_number)
				return -EINVAL;

			mvneta_map_vlan_prio_to_rxq(pp, tc, rxq);
		}
	}

	if (mqprio->shaper != TC_MQPRIO_SHAPER_BW_RATE) {
		mvneta_disable_per_queue_rate_limit(pp);
		return 0;
	}

	if (mqprio->qopt.num_tc > txq_number)
		return -EINVAL;

	ret = mvneta_enable_per_queue_rate_limit(pp);
	if (ret)
		return ret;

	for (tc = 0; tc < mqprio->qopt.num_tc; tc++) {
		for (txq = mqprio->qopt.offset[tc];
		     txq < mqprio->qopt.count[tc] + mqprio->qopt.offset[tc];
		     txq++) {
			if (txq >= txq_number)
				return -EINVAL;

			ret = mvneta_setup_queue_rates(pp, txq,
						       mqprio->min_rate[tc],
						       mqprio->max_rate[tc]);
			if (ret)
				return ret;
		}
	}

	return 0;
}

static int mvneta_setup_tc(struct net_device *dev, enum tc_setup_type type,
			   void *type_data)
{
	switch (type) {
	case TC_SETUP_QDISC_MQPRIO:
		return mvneta_setup_mqprio(dev, type_data);
	default:
		return -EOPNOTSUPP;
	}
}

static const struct net_device_ops mvneta_netdev_ops = {
	.ndo_open            = mvneta_open,
	.ndo_stop            = mvneta_stop,
	.ndo_start_xmit      = mvneta_tx,
	.ndo_set_rx_mode     = mvneta_set_rx_mode,
	.ndo_set_mac_address = mvneta_set_mac_addr,
	.ndo_change_mtu      = mvneta_change_mtu,
	.ndo_fix_features    = mvneta_fix_features,
	.ndo_get_stats64     = mvneta_get_stats64,
	.ndo_eth_ioctl        = mvneta_ioctl,
	.ndo_bpf	     = mvneta_xdp,
	.ndo_xdp_xmit        = mvneta_xdp_xmit,
	.ndo_setup_tc	     = mvneta_setup_tc,
};

static const struct ethtool_ops mvneta_eth_tool_ops = {
	.supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS |
				     ETHTOOL_COALESCE_MAX_FRAMES,
	.nway_reset	= mvneta_ethtool_nway_reset,
	.get_link       = ethtool_op_get_link,
	.set_coalesce   = mvneta_ethtool_set_coalesce,
	.get_coalesce   = mvneta_ethtool_get_coalesce,
	.get_drvinfo    = mvneta_ethtool_get_drvinfo,
	.get_ringparam  = mvneta_ethtool_get_ringparam,
	.set_ringparam	= mvneta_ethtool_set_ringparam,
	.get_pauseparam	= mvneta_ethtool_get_pauseparam,
	.set_pauseparam	= mvneta_ethtool_set_pauseparam,
	.get_strings	= mvneta_ethtool_get_strings,
	.get_ethtool_stats = mvneta_ethtool_get_stats,
	.get_sset_count	= mvneta_ethtool_get_sset_count,
	.get_rxfh_indir_size = mvneta_ethtool_get_rxfh_indir_size,
	.get_rxnfc	= mvneta_ethtool_get_rxnfc,
	.get_rxfh	= mvneta_ethtool_get_rxfh,
	.set_rxfh	= mvneta_ethtool_set_rxfh,
	.get_link_ksettings = mvneta_ethtool_get_link_ksettings,
	.set_link_ksettings = mvneta_ethtool_set_link_ksettings,
	.get_wol        = mvneta_ethtool_get_wol,
	.set_wol        = mvneta_ethtool_set_wol,
	.get_eee	= mvneta_ethtool_get_eee,
	.set_eee	= mvneta_ethtool_set_eee,
};

/* Initialize hw */
static int mvneta_init(struct device *dev, struct mvneta_port *pp)
{
	int queue;

	/* Disable port */
	mvneta_port_disable(pp);

	/* Set port default values */
	mvneta_defaults_set(pp);

	pp->txqs = devm_kcalloc(dev, txq_number, sizeof(*pp->txqs), GFP_KERNEL);
	if (!pp->txqs)
		return -ENOMEM;

	/* Initialize TX descriptor rings */
	for (queue = 0; queue < txq_number; queue++) {
		struct mvneta_tx_queue *txq = &pp->txqs[queue];
		txq->id = queue;
		txq->size = pp->tx_ring_size;
		txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS;
	}

	pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(*pp->rxqs), GFP_KERNEL);
	if (!pp->rxqs)
		return -ENOMEM;

	/* Create Rx descriptor rings */
	for (queue = 0; queue < rxq_number; queue++) {
		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
		rxq->id = queue;
		rxq->size = pp->rx_ring_size;
		rxq->pkts_coal = MVNETA_RX_COAL_PKTS;
		rxq->time_coal = MVNETA_RX_COAL_USEC;
		rxq->buf_virt_addr
			= devm_kmalloc_array(pp->dev->dev.parent,
					     rxq->size,
					     sizeof(*rxq->buf_virt_addr),
					     GFP_KERNEL);
		if (!rxq->buf_virt_addr)
			return -ENOMEM;
	}

	return 0;
}

/* platform glue : initialize decoding windows */
static void mvneta_conf_mbus_windows(struct mvneta_port *pp,
				     const struct mbus_dram_target_info *dram)
{
	u32 win_enable;
	u32 win_protect;
	int i;

	for (i = 0; i < 6; i++) {
		mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
		mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);

		if (i < 4)
			mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
	}

	win_enable = 0x3f;
	win_protect = 0;

	if (dram) {
		for (i = 0; i < dram->num_cs; i++) {
			const struct mbus_dram_window *cs = dram->cs + i;

			mvreg_write(pp, MVNETA_WIN_BASE(i),
				    (cs->base & 0xffff0000) |
				    (cs->mbus_attr << 8) |
				    dram->mbus_dram_target_id);

			mvreg_write(pp, MVNETA_WIN_SIZE(i),
				    (cs->size - 1) & 0xffff0000);

			win_enable &= ~(1 << i);
			win_protect |= 3 << (2 * i);
		}
	} else {
		if (pp->neta_ac5)
			mvreg_write(pp, MVNETA_WIN_BASE(0),
				    (MVNETA_AC5_CNM_DDR_ATTR << 8) |
				    MVNETA_AC5_CNM_DDR_TARGET);
		/* For Armada3700 open default 4GB Mbus window, leaving
		 * arbitration of target/attribute to a different layer
		 * of configuration.
		 */
		mvreg_write(pp, MVNETA_WIN_SIZE(0), 0xffff0000);
		win_enable &= ~BIT(0);
		win_protect = 3;
	}

	mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
	mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
}

/* Power up the port */
static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode)
{
	/* MAC Cause register should be cleared */
	mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0);

	if (phy_mode != PHY_INTERFACE_MODE_QSGMII &&
	    phy_mode != PHY_INTERFACE_MODE_SGMII &&
	    !phy_interface_mode_is_8023z(phy_mode) &&
	    !phy_interface_mode_is_rgmii(phy_mode))
		return -EINVAL;

	return 0;
}

/* Device initialization routine */
static int mvneta_probe(struct platform_device *pdev)
{
	struct device_node *dn = pdev->dev.of_node;
	struct device_node *bm_node;
	struct mvneta_port *pp;
	struct net_device *dev;
	struct phylink *phylink;
	struct phy *comphy;
	char hw_mac_addr[ETH_ALEN];
	phy_interface_t phy_mode;
	const char *mac_from;
	int tx_csum_limit;
	int err;
	int cpu;

	dev = devm_alloc_etherdev_mqs(&pdev->dev, sizeof(struct mvneta_port),
				      txq_number, rxq_number);
	if (!dev)
		return -ENOMEM;

	dev->tx_queue_len = MVNETA_MAX_TXD;
	dev->watchdog_timeo = 5 * HZ;
	dev->netdev_ops = &mvneta_netdev_ops;
	dev->ethtool_ops = &mvneta_eth_tool_ops;

	pp = netdev_priv(dev);
	spin_lock_init(&pp->lock);
	pp->dn = dn;

	pp->rxq_def = rxq_def;
	pp->indir[0] = rxq_def;

	err = of_get_phy_mode(dn, &phy_mode);
	if (err) {
		dev_err(&pdev->dev, "incorrect phy-mode\n");
		return err;
	}

	pp->phy_interface = phy_mode;

	comphy = devm_of_phy_get(&pdev->dev, dn, NULL);
	if (comphy == ERR_PTR(-EPROBE_DEFER))
		return -EPROBE_DEFER;

	if (IS_ERR(comphy))
		comphy = NULL;

	pp->comphy = comphy;

	pp->base = devm_platform_ioremap_resource(pdev, 0);
	if (IS_ERR(pp->base))
		return PTR_ERR(pp->base);

	/* Get special SoC configurations */
	if (of_device_is_compatible(dn, "marvell,armada-3700-neta"))
		pp->neta_armada3700 = true;
	if (of_device_is_compatible(dn, "marvell,armada-ac5-neta")) {
		pp->neta_armada3700 = true;
		pp->neta_ac5 = true;
	}

	dev->irq = irq_of_parse_and_map(dn, 0);
	if (dev->irq == 0)
		return -EINVAL;

	pp->clk = devm_clk_get(&pdev->dev, "core");
	if (IS_ERR(pp->clk))
		pp->clk = devm_clk_get(&pdev->dev, NULL);
	if (IS_ERR(pp->clk)) {
		err = PTR_ERR(pp->clk);
		goto err_free_irq;
	}

	clk_prepare_enable(pp->clk);

	pp->clk_bus = devm_clk_get(&pdev->dev, "bus");
	if (!IS_ERR(pp->clk_bus))
		clk_prepare_enable(pp->clk_bus);

	pp->phylink_pcs.ops = &mvneta_phylink_pcs_ops;
	pp->phylink_pcs.neg_mode = true;

	pp->phylink_config.dev = &dev->dev;
	pp->phylink_config.type = PHYLINK_NETDEV;
	pp->phylink_config.mac_capabilities = MAC_SYM_PAUSE | MAC_10 |
		MAC_100 | MAC_1000FD | MAC_2500FD;

	phy_interface_set_rgmii(pp->phylink_config.supported_interfaces);
	__set_bit(PHY_INTERFACE_MODE_QSGMII,
		  pp->phylink_config.supported_interfaces);
	if (comphy) {
		/* If a COMPHY is present, we can support any of the serdes
		 * modes and switch between them.
		 */
		__set_bit(PHY_INTERFACE_MODE_SGMII,
			  pp->phylink_config.supported_interfaces);
		__set_bit(PHY_INTERFACE_MODE_1000BASEX,
			  pp->phylink_config.supported_interfaces);
		__set_bit(PHY_INTERFACE_MODE_2500BASEX,
			  pp->phylink_config.supported_interfaces);
	} else if (phy_mode == PHY_INTERFACE_MODE_2500BASEX) {
		/* No COMPHY, with only 2500BASE-X mode supported */
		__set_bit(PHY_INTERFACE_MODE_2500BASEX,
			  pp->phylink_config.supported_interfaces);
	} else if (phy_mode == PHY_INTERFACE_MODE_1000BASEX ||
		   phy_mode == PHY_INTERFACE_MODE_SGMII) {
		/* No COMPHY, we can switch between 1000BASE-X and SGMII */
		__set_bit(PHY_INTERFACE_MODE_1000BASEX,
			  pp->phylink_config.supported_interfaces);
		__set_bit(PHY_INTERFACE_MODE_SGMII,
			  pp->phylink_config.supported_interfaces);
	}

	phylink = phylink_create(&pp->phylink_config, pdev->dev.fwnode,
				 phy_mode, &mvneta_phylink_ops);
	if (IS_ERR(phylink)) {
		err = PTR_ERR(phylink);
		goto err_clk;
	}

	pp->phylink = phylink;

	/* Alloc per-cpu port structure */
	pp->ports = alloc_percpu(struct mvneta_pcpu_port);
	if (!pp->ports) {
		err = -ENOMEM;
		goto err_free_phylink;
	}

	/* Alloc per-cpu stats */
	pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats);
	if (!pp->stats) {
		err = -ENOMEM;
		goto err_free_ports;
	}

	err = of_get_ethdev_address(dn, dev);
	if (!err) {
		mac_from = "device tree";
	} else {
		mvneta_get_mac_addr(pp, hw_mac_addr);
		if (is_valid_ether_addr(hw_mac_addr)) {
			mac_from = "hardware";
			eth_hw_addr_set(dev, hw_mac_addr);
		} else {
			mac_from = "random";
			eth_hw_addr_random(dev);
		}
	}

	if (!of_property_read_u32(dn, "tx-csum-limit", &tx_csum_limit)) {
		if (tx_csum_limit < 0 ||
		    tx_csum_limit > MVNETA_TX_CSUM_MAX_SIZE) {
			tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
			dev_info(&pdev->dev,
				 "Wrong TX csum limit in DT, set to %dB\n",
				 MVNETA_TX_CSUM_DEF_SIZE);
		}
	} else if (of_device_is_compatible(dn, "marvell,armada-370-neta")) {
		tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
	} else {
		tx_csum_limit = MVNETA_TX_CSUM_MAX_SIZE;
	}

	pp->tx_csum_limit = tx_csum_limit;

	pp->dram_target_info = mv_mbus_dram_info();
	/* Armada3700 requires setting default configuration of Mbus
	 * windows, however without using filled mbus_dram_target_info
	 * structure.
	 */
	if (pp->dram_target_info || pp->neta_armada3700)
		mvneta_conf_mbus_windows(pp, pp->dram_target_info);

	pp->tx_ring_size = MVNETA_MAX_TXD;
	pp->rx_ring_size = MVNETA_MAX_RXD;

	pp->dev = dev;
	SET_NETDEV_DEV(dev, &pdev->dev);

	pp->id = global_port_id++;

	/* Obtain access to BM resources if enabled and already initialized */
	bm_node = of_parse_phandle(dn, "buffer-manager", 0);
	if (bm_node) {
		pp->bm_priv = mvneta_bm_get(bm_node);
		if (pp->bm_priv) {
			err = mvneta_bm_port_init(pdev, pp);
			if (err < 0) {
				dev_info(&pdev->dev,
					 "use SW buffer management\n");
				mvneta_bm_put(pp->bm_priv);
				pp->bm_priv = NULL;
			}
		}
		/* Set RX packet offset correction for platforms, whose
		 * NET_SKB_PAD, exceeds 64B. It should be 64B for 64-bit
		 * platforms and 0B for 32-bit ones.
		 */
		pp->rx_offset_correction = max(0,
					       NET_SKB_PAD -
					       MVNETA_RX_PKT_OFFSET_CORRECTION);
	}
	of_node_put(bm_node);

	/* sw buffer management */
	if (!pp->bm_priv)
		pp->rx_offset_correction = MVNETA_SKB_HEADROOM;

	err = mvneta_init(&pdev->dev, pp);
	if (err < 0)
		goto err_netdev;

	err = mvneta_port_power_up(pp, pp->phy_interface);
	if (err < 0) {
		dev_err(&pdev->dev, "can't power up port\n");
		goto err_netdev;
	}

	/* Armada3700 network controller does not support per-cpu
	 * operation, so only single NAPI should be initialized.
	 */
	if (pp->neta_armada3700) {
		netif_napi_add(dev, &pp->napi, mvneta_poll);
	} else {
		for_each_present_cpu(cpu) {
			struct mvneta_pcpu_port *port =
				per_cpu_ptr(pp->ports, cpu);

			netif_napi_add(dev, &port->napi, mvneta_poll);
			port->pp = pp;
		}
	}

	dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
			NETIF_F_TSO | NETIF_F_RXCSUM;
	dev->hw_features |= dev->features;
	dev->vlan_features |= dev->features;
	if (!pp->bm_priv)
		dev->xdp_features = NETDEV_XDP_ACT_BASIC |
				    NETDEV_XDP_ACT_REDIRECT |
				    NETDEV_XDP_ACT_NDO_XMIT |
				    NETDEV_XDP_ACT_RX_SG |
				    NETDEV_XDP_ACT_NDO_XMIT_SG;
	dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
	netif_set_tso_max_segs(dev, MVNETA_MAX_TSO_SEGS);

	/* MTU range: 68 - 9676 */
	dev->min_mtu = ETH_MIN_MTU;
	/* 9676 == 9700 - 20 and rounding to 8 */
	dev->max_mtu = 9676;

	err = register_netdev(dev);
	if (err < 0) {
		dev_err(&pdev->dev, "failed to register\n");
		goto err_netdev;
	}

	netdev_info(dev, "Using %s mac address %pM\n", mac_from,
		    dev->dev_addr);

	platform_set_drvdata(pdev, pp->dev);

	return 0;

err_netdev:
	if (pp->bm_priv) {
		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
				       1 << pp->id);
		mvneta_bm_put(pp->bm_priv);
	}
	free_percpu(pp->stats);
err_free_ports:
	free_percpu(pp->ports);
err_free_phylink:
	if (pp->phylink)
		phylink_destroy(pp->phylink);
err_clk:
	clk_disable_unprepare(pp->clk_bus);
	clk_disable_unprepare(pp->clk);
err_free_irq:
	irq_dispose_mapping(dev->irq);
	return err;
}

/* Device removal routine */
static void mvneta_remove(struct platform_device *pdev)
{
	struct net_device  *dev = platform_get_drvdata(pdev);
	struct mvneta_port *pp = netdev_priv(dev);

	unregister_netdev(dev);
	clk_disable_unprepare(pp->clk_bus);
	clk_disable_unprepare(pp->clk);
	free_percpu(pp->ports);
	free_percpu(pp->stats);
	irq_dispose_mapping(dev->irq);
	phylink_destroy(pp->phylink);

	if (pp->bm_priv) {
		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
				       1 << pp->id);
		mvneta_bm_put(pp->bm_priv);
	}
}

#ifdef CONFIG_PM_SLEEP
static int mvneta_suspend(struct device *device)
{
	int queue;
	struct net_device *dev = dev_get_drvdata(device);
	struct mvneta_port *pp = netdev_priv(dev);

	if (!netif_running(dev))
		goto clean_exit;

	if (!pp->neta_armada3700) {
		spin_lock(&pp->lock);
		pp->is_stopped = true;
		spin_unlock(&pp->lock);

		cpuhp_state_remove_instance_nocalls(online_hpstate,
						    &pp->node_online);
		cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
						    &pp->node_dead);
	}

	rtnl_lock();
	mvneta_stop_dev(pp);
	rtnl_unlock();

	for (queue = 0; queue < rxq_number; queue++) {
		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];

		mvneta_rxq_drop_pkts(pp, rxq);
	}

	for (queue = 0; queue < txq_number; queue++) {
		struct mvneta_tx_queue *txq = &pp->txqs[queue];

		mvneta_txq_hw_deinit(pp, txq);
	}

clean_exit:
	netif_device_detach(dev);
	clk_disable_unprepare(pp->clk_bus);
	clk_disable_unprepare(pp->clk);

	return 0;
}

static int mvneta_resume(struct device *device)
{
	struct platform_device *pdev = to_platform_device(device);
	struct net_device *dev = dev_get_drvdata(device);
	struct mvneta_port *pp = netdev_priv(dev);
	int err, queue;

	clk_prepare_enable(pp->clk);
	if (!IS_ERR(pp->clk_bus))
		clk_prepare_enable(pp->clk_bus);
	if (pp->dram_target_info || pp->neta_armada3700)
		mvneta_conf_mbus_windows(pp, pp->dram_target_info);
	if (pp->bm_priv) {
		err = mvneta_bm_port_init(pdev, pp);
		if (err < 0) {
			dev_info(&pdev->dev, "use SW buffer management\n");
			pp->rx_offset_correction = MVNETA_SKB_HEADROOM;
			pp->bm_priv = NULL;
		}
	}
	mvneta_defaults_set(pp);
	err = mvneta_port_power_up(pp, pp->phy_interface);
	if (err < 0) {
		dev_err(device, "can't power up port\n");
		return err;
	}

	netif_device_attach(dev);

	if (!netif_running(dev))
		return 0;

	for (queue = 0; queue < rxq_number; queue++) {
		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];

		rxq->next_desc_to_proc = 0;
		mvneta_rxq_hw_init(pp, rxq);
	}

	for (queue = 0; queue < txq_number; queue++) {
		struct mvneta_tx_queue *txq = &pp->txqs[queue];

		txq->next_desc_to_proc = 0;
		mvneta_txq_hw_init(pp, txq);
	}

	if (!pp->neta_armada3700) {
		spin_lock(&pp->lock);
		pp->is_stopped = false;
		spin_unlock(&pp->lock);
		cpuhp_state_add_instance_nocalls(online_hpstate,
						 &pp->node_online);
		cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
						 &pp->node_dead);
	}

	rtnl_lock();
	mvneta_start_dev(pp);
	rtnl_unlock();
	mvneta_set_rx_mode(dev);

	return 0;
}
#endif

static SIMPLE_DEV_PM_OPS(mvneta_pm_ops, mvneta_suspend, mvneta_resume);

static const struct of_device_id mvneta_match[] = {
	{ .compatible = "marvell,armada-370-neta" },
	{ .compatible = "marvell,armada-xp-neta" },
	{ .compatible = "marvell,armada-3700-neta" },
	{ .compatible = "marvell,armada-ac5-neta" },
	{ }
};
MODULE_DEVICE_TABLE(of, mvneta_match);

static struct platform_driver mvneta_driver = {
	.probe = mvneta_probe,
	.remove_new = mvneta_remove,
	.driver = {
		.name = MVNETA_DRIVER_NAME,
		.of_match_table = mvneta_match,
		.pm = &mvneta_pm_ops,
	},
};

static int __init mvneta_driver_init(void)
{
	int ret;

	BUILD_BUG_ON_NOT_POWER_OF_2(MVNETA_TSO_PER_PAGE);

	ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, "net/mvneta:online",
				      mvneta_cpu_online,
				      mvneta_cpu_down_prepare);
	if (ret < 0)
		goto out;
	online_hpstate = ret;
	ret = cpuhp_setup_state_multi(CPUHP_NET_MVNETA_DEAD, "net/mvneta:dead",
				      NULL, mvneta_cpu_dead);
	if (ret)
		goto err_dead;

	ret = platform_driver_register(&mvneta_driver);
	if (ret)
		goto err;
	return 0;

err:
	cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD);
err_dead:
	cpuhp_remove_multi_state(online_hpstate);
out:
	return ret;
}
module_init(mvneta_driver_init);

static void __exit mvneta_driver_exit(void)
{
	platform_driver_unregister(&mvneta_driver);
	cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD);
	cpuhp_remove_multi_state(online_hpstate);
}
module_exit(mvneta_driver_exit);

MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com");
MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>");
MODULE_LICENSE("GPL");

module_param(rxq_number, int, 0444);
module_param(txq_number, int, 0444);

module_param(rxq_def, int, 0444);
module_param(rx_copybreak, int, 0644);