Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
David Thompson | 2070 | 97.73% | 5 | 45.45% |
Asmaa Mnebhi | 35 | 1.65% | 1 | 9.09% |
caihuoqing | 6 | 0.28% | 1 | 9.09% |
Arnd Bergmann | 3 | 0.14% | 1 | 9.09% |
Uwe Kleine-König | 2 | 0.09% | 1 | 9.09% |
Jakub Kiciński | 1 | 0.05% | 1 | 9.09% |
Lu Wei | 1 | 0.05% | 1 | 9.09% |
Total | 2118 | 11 |
// SPDX-License-Identifier: GPL-2.0-only OR BSD-3-Clause /* Gigabit Ethernet driver for Mellanox BlueField SoC * * Copyright (C) 2020-2021 NVIDIA CORPORATION & AFFILIATES */ #include <linux/acpi.h> #include <linux/device.h> #include <linux/dma-mapping.h> #include <linux/etherdevice.h> #include <linux/interrupt.h> #include <linux/iopoll.h> #include <linux/module.h> #include <linux/phy.h> #include <linux/platform_device.h> #include <linux/skbuff.h> #include "mlxbf_gige.h" #include "mlxbf_gige_regs.h" /* Allocate SKB whose payload pointer aligns with the Bluefield * hardware DMA limitation, i.e. DMA operation can't cross * a 4KB boundary. A maximum packet size of 2KB is assumed in the * alignment formula. The alignment logic overallocates an SKB, * and then adjusts the headroom so that the SKB data pointer is * naturally aligned to a 2KB boundary. */ struct sk_buff *mlxbf_gige_alloc_skb(struct mlxbf_gige *priv, unsigned int map_len, dma_addr_t *buf_dma, enum dma_data_direction dir) { struct sk_buff *skb; u64 addr, offset; /* Overallocate the SKB so that any headroom adjustment (to * provide 2KB natural alignment) does not exceed payload area */ skb = netdev_alloc_skb(priv->netdev, MLXBF_GIGE_DEFAULT_BUF_SZ * 2); if (!skb) return NULL; /* Adjust the headroom so that skb->data is naturally aligned to * a 2KB boundary, which is the maximum packet size supported. */ addr = (long)skb->data; offset = (addr + MLXBF_GIGE_DEFAULT_BUF_SZ - 1) & ~(MLXBF_GIGE_DEFAULT_BUF_SZ - 1); offset -= addr; if (offset) skb_reserve(skb, offset); /* Return streaming DMA mapping to caller */ *buf_dma = dma_map_single(priv->dev, skb->data, map_len, dir); if (dma_mapping_error(priv->dev, *buf_dma)) { dev_kfree_skb(skb); *buf_dma = (dma_addr_t)0; return NULL; } return skb; } static void mlxbf_gige_initial_mac(struct mlxbf_gige *priv) { u8 mac[ETH_ALEN]; u64 local_mac; eth_zero_addr(mac); mlxbf_gige_get_mac_rx_filter(priv, MLXBF_GIGE_LOCAL_MAC_FILTER_IDX, &local_mac); u64_to_ether_addr(local_mac, mac); if (is_valid_ether_addr(mac)) { eth_hw_addr_set(priv->netdev, mac); } else { /* Provide a random MAC if for some reason the device has * not been configured with a valid MAC address already. */ eth_hw_addr_random(priv->netdev); } local_mac = ether_addr_to_u64(priv->netdev->dev_addr); mlxbf_gige_set_mac_rx_filter(priv, MLXBF_GIGE_LOCAL_MAC_FILTER_IDX, local_mac); } static void mlxbf_gige_cache_stats(struct mlxbf_gige *priv) { struct mlxbf_gige_stats *p; /* Cache stats that will be cleared by clean port operation */ p = &priv->stats; p->rx_din_dropped_pkts += readq(priv->base + MLXBF_GIGE_RX_DIN_DROP_COUNTER); p->rx_filter_passed_pkts += readq(priv->base + MLXBF_GIGE_RX_PASS_COUNTER_ALL); p->rx_filter_discard_pkts += readq(priv->base + MLXBF_GIGE_RX_DISC_COUNTER_ALL); } static int mlxbf_gige_clean_port(struct mlxbf_gige *priv) { u64 control; u64 temp; int err; /* Set the CLEAN_PORT_EN bit to trigger SW reset */ control = readq(priv->base + MLXBF_GIGE_CONTROL); control |= MLXBF_GIGE_CONTROL_CLEAN_PORT_EN; writeq(control, priv->base + MLXBF_GIGE_CONTROL); /* Ensure completion of "clean port" write before polling status */ mb(); err = readq_poll_timeout_atomic(priv->base + MLXBF_GIGE_STATUS, temp, (temp & MLXBF_GIGE_STATUS_READY), 100, 100000); /* Clear the CLEAN_PORT_EN bit at end of this loop */ control = readq(priv->base + MLXBF_GIGE_CONTROL); control &= ~MLXBF_GIGE_CONTROL_CLEAN_PORT_EN; writeq(control, priv->base + MLXBF_GIGE_CONTROL); return err; } static int mlxbf_gige_open(struct net_device *netdev) { struct mlxbf_gige *priv = netdev_priv(netdev); struct phy_device *phydev = netdev->phydev; u64 int_en; int err; err = mlxbf_gige_request_irqs(priv); if (err) return err; mlxbf_gige_cache_stats(priv); err = mlxbf_gige_clean_port(priv); if (err) goto free_irqs; /* Clear driver's valid_polarity to match hardware, * since the above call to clean_port() resets the * receive polarity used by hardware. */ priv->valid_polarity = 0; err = mlxbf_gige_rx_init(priv); if (err) goto free_irqs; err = mlxbf_gige_tx_init(priv); if (err) goto rx_deinit; phy_start(phydev); netif_napi_add(netdev, &priv->napi, mlxbf_gige_poll); napi_enable(&priv->napi); netif_start_queue(netdev); /* Set bits in INT_EN that we care about */ int_en = MLXBF_GIGE_INT_EN_HW_ACCESS_ERROR | MLXBF_GIGE_INT_EN_TX_CHECKSUM_INPUTS | MLXBF_GIGE_INT_EN_TX_SMALL_FRAME_SIZE | MLXBF_GIGE_INT_EN_TX_PI_CI_EXCEED_WQ_SIZE | MLXBF_GIGE_INT_EN_SW_CONFIG_ERROR | MLXBF_GIGE_INT_EN_SW_ACCESS_ERROR | MLXBF_GIGE_INT_EN_RX_RECEIVE_PACKET; /* Ensure completion of all initialization before enabling interrupts */ mb(); writeq(int_en, priv->base + MLXBF_GIGE_INT_EN); return 0; rx_deinit: mlxbf_gige_rx_deinit(priv); free_irqs: mlxbf_gige_free_irqs(priv); return err; } static int mlxbf_gige_stop(struct net_device *netdev) { struct mlxbf_gige *priv = netdev_priv(netdev); writeq(0, priv->base + MLXBF_GIGE_INT_EN); netif_stop_queue(netdev); napi_disable(&priv->napi); netif_napi_del(&priv->napi); mlxbf_gige_free_irqs(priv); phy_stop(netdev->phydev); mlxbf_gige_rx_deinit(priv); mlxbf_gige_tx_deinit(priv); mlxbf_gige_cache_stats(priv); mlxbf_gige_clean_port(priv); return 0; } static int mlxbf_gige_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) { if (!(netif_running(netdev))) return -EINVAL; return phy_mii_ioctl(netdev->phydev, ifr, cmd); } static void mlxbf_gige_set_rx_mode(struct net_device *netdev) { struct mlxbf_gige *priv = netdev_priv(netdev); bool new_promisc_enabled; new_promisc_enabled = netdev->flags & IFF_PROMISC; /* Only write to the hardware registers if the new setting * of promiscuous mode is different from the current one. */ if (new_promisc_enabled != priv->promisc_enabled) { priv->promisc_enabled = new_promisc_enabled; if (new_promisc_enabled) mlxbf_gige_enable_promisc(priv); else mlxbf_gige_disable_promisc(priv); } } static void mlxbf_gige_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) { struct mlxbf_gige *priv = netdev_priv(netdev); netdev_stats_to_stats64(stats, &netdev->stats); stats->rx_length_errors = priv->stats.rx_truncate_errors; stats->rx_fifo_errors = priv->stats.rx_din_dropped_pkts + readq(priv->base + MLXBF_GIGE_RX_DIN_DROP_COUNTER); stats->rx_crc_errors = priv->stats.rx_mac_errors; stats->rx_errors = stats->rx_length_errors + stats->rx_fifo_errors + stats->rx_crc_errors; stats->tx_fifo_errors = priv->stats.tx_fifo_full; stats->tx_errors = stats->tx_fifo_errors; } static const struct net_device_ops mlxbf_gige_netdev_ops = { .ndo_open = mlxbf_gige_open, .ndo_stop = mlxbf_gige_stop, .ndo_start_xmit = mlxbf_gige_start_xmit, .ndo_set_mac_address = eth_mac_addr, .ndo_validate_addr = eth_validate_addr, .ndo_eth_ioctl = mlxbf_gige_eth_ioctl, .ndo_set_rx_mode = mlxbf_gige_set_rx_mode, .ndo_get_stats64 = mlxbf_gige_get_stats64, }; static void mlxbf_gige_bf2_adjust_link(struct net_device *netdev) { struct phy_device *phydev = netdev->phydev; phy_print_status(phydev); } static void mlxbf_gige_bf3_adjust_link(struct net_device *netdev) { struct mlxbf_gige *priv = netdev_priv(netdev); struct phy_device *phydev = netdev->phydev; u8 sgmii_mode; u16 ipg_size; u32 val; if (phydev->link && phydev->speed != priv->prev_speed) { switch (phydev->speed) { case 1000: ipg_size = MLXBF_GIGE_1G_IPG_SIZE; sgmii_mode = MLXBF_GIGE_1G_SGMII_MODE; break; case 100: ipg_size = MLXBF_GIGE_100M_IPG_SIZE; sgmii_mode = MLXBF_GIGE_100M_SGMII_MODE; break; case 10: ipg_size = MLXBF_GIGE_10M_IPG_SIZE; sgmii_mode = MLXBF_GIGE_10M_SGMII_MODE; break; default: return; } val = readl(priv->plu_base + MLXBF_GIGE_PLU_TX_REG0); val &= ~(MLXBF_GIGE_PLU_TX_IPG_SIZE_MASK | MLXBF_GIGE_PLU_TX_SGMII_MODE_MASK); val |= FIELD_PREP(MLXBF_GIGE_PLU_TX_IPG_SIZE_MASK, ipg_size); val |= FIELD_PREP(MLXBF_GIGE_PLU_TX_SGMII_MODE_MASK, sgmii_mode); writel(val, priv->plu_base + MLXBF_GIGE_PLU_TX_REG0); val = readl(priv->plu_base + MLXBF_GIGE_PLU_RX_REG0); val &= ~MLXBF_GIGE_PLU_RX_SGMII_MODE_MASK; val |= FIELD_PREP(MLXBF_GIGE_PLU_RX_SGMII_MODE_MASK, sgmii_mode); writel(val, priv->plu_base + MLXBF_GIGE_PLU_RX_REG0); priv->prev_speed = phydev->speed; } phy_print_status(phydev); } static void mlxbf_gige_bf2_set_phy_link_mode(struct phy_device *phydev) { /* MAC only supports 1000T full duplex mode */ phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_1000baseT_Half_BIT); phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_100baseT_Full_BIT); phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_100baseT_Half_BIT); phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Full_BIT); phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Half_BIT); /* Only symmetric pause with flow control enabled is supported so no * need to negotiate pause. */ linkmode_clear_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->advertising); linkmode_clear_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->advertising); } static void mlxbf_gige_bf3_set_phy_link_mode(struct phy_device *phydev) { /* MAC only supports full duplex mode */ phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_1000baseT_Half_BIT); phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_100baseT_Half_BIT); phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Half_BIT); /* Only symmetric pause with flow control enabled is supported so no * need to negotiate pause. */ linkmode_clear_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->advertising); linkmode_clear_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->advertising); } static struct mlxbf_gige_link_cfg mlxbf_gige_link_cfgs[] = { [MLXBF_GIGE_VERSION_BF2] = { .set_phy_link_mode = mlxbf_gige_bf2_set_phy_link_mode, .adjust_link = mlxbf_gige_bf2_adjust_link, .phy_mode = PHY_INTERFACE_MODE_GMII }, [MLXBF_GIGE_VERSION_BF3] = { .set_phy_link_mode = mlxbf_gige_bf3_set_phy_link_mode, .adjust_link = mlxbf_gige_bf3_adjust_link, .phy_mode = PHY_INTERFACE_MODE_SGMII } }; static int mlxbf_gige_probe(struct platform_device *pdev) { struct phy_device *phydev; struct net_device *netdev; struct mlxbf_gige *priv; void __iomem *llu_base; void __iomem *plu_base; void __iomem *base; int addr, phy_irq; u64 control; int err; base = devm_platform_ioremap_resource(pdev, MLXBF_GIGE_RES_MAC); if (IS_ERR(base)) return PTR_ERR(base); llu_base = devm_platform_ioremap_resource(pdev, MLXBF_GIGE_RES_LLU); if (IS_ERR(llu_base)) return PTR_ERR(llu_base); plu_base = devm_platform_ioremap_resource(pdev, MLXBF_GIGE_RES_PLU); if (IS_ERR(plu_base)) return PTR_ERR(plu_base); /* Perform general init of GigE block */ control = readq(base + MLXBF_GIGE_CONTROL); control |= MLXBF_GIGE_CONTROL_PORT_EN; writeq(control, base + MLXBF_GIGE_CONTROL); netdev = devm_alloc_etherdev(&pdev->dev, sizeof(*priv)); if (!netdev) return -ENOMEM; SET_NETDEV_DEV(netdev, &pdev->dev); netdev->netdev_ops = &mlxbf_gige_netdev_ops; netdev->ethtool_ops = &mlxbf_gige_ethtool_ops; priv = netdev_priv(netdev); priv->netdev = netdev; platform_set_drvdata(pdev, priv); priv->dev = &pdev->dev; priv->pdev = pdev; spin_lock_init(&priv->lock); priv->hw_version = readq(base + MLXBF_GIGE_VERSION); /* Attach MDIO device */ err = mlxbf_gige_mdio_probe(pdev, priv); if (err) return err; priv->base = base; priv->llu_base = llu_base; priv->plu_base = plu_base; priv->rx_q_entries = MLXBF_GIGE_DEFAULT_RXQ_SZ; priv->tx_q_entries = MLXBF_GIGE_DEFAULT_TXQ_SZ; /* Write initial MAC address to hardware */ mlxbf_gige_initial_mac(priv); err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); if (err) { dev_err(&pdev->dev, "DMA configuration failed: 0x%x\n", err); goto out; } priv->error_irq = platform_get_irq(pdev, MLXBF_GIGE_ERROR_INTR_IDX); priv->rx_irq = platform_get_irq(pdev, MLXBF_GIGE_RECEIVE_PKT_INTR_IDX); priv->llu_plu_irq = platform_get_irq(pdev, MLXBF_GIGE_LLU_PLU_INTR_IDX); phy_irq = acpi_dev_gpio_irq_get_by(ACPI_COMPANION(&pdev->dev), "phy-gpios", 0); if (phy_irq < 0) { dev_err(&pdev->dev, "Error getting PHY irq. Use polling instead"); phy_irq = PHY_POLL; } phydev = phy_find_first(priv->mdiobus); if (!phydev) { err = -ENODEV; goto out; } addr = phydev->mdio.addr; priv->mdiobus->irq[addr] = phy_irq; phydev->irq = phy_irq; err = phy_connect_direct(netdev, phydev, mlxbf_gige_link_cfgs[priv->hw_version].adjust_link, mlxbf_gige_link_cfgs[priv->hw_version].phy_mode); if (err) { dev_err(&pdev->dev, "Could not attach to PHY\n"); goto out; } mlxbf_gige_link_cfgs[priv->hw_version].set_phy_link_mode(phydev); /* Display information about attached PHY device */ phy_attached_info(phydev); err = register_netdev(netdev); if (err) { dev_err(&pdev->dev, "Failed to register netdev\n"); phy_disconnect(phydev); goto out; } return 0; out: mlxbf_gige_mdio_remove(priv); return err; } static void mlxbf_gige_remove(struct platform_device *pdev) { struct mlxbf_gige *priv = platform_get_drvdata(pdev); unregister_netdev(priv->netdev); phy_disconnect(priv->netdev->phydev); mlxbf_gige_mdio_remove(priv); platform_set_drvdata(pdev, NULL); } static void mlxbf_gige_shutdown(struct platform_device *pdev) { struct mlxbf_gige *priv = platform_get_drvdata(pdev); writeq(0, priv->base + MLXBF_GIGE_INT_EN); mlxbf_gige_clean_port(priv); } static const struct acpi_device_id __maybe_unused mlxbf_gige_acpi_match[] = { { "MLNXBF17", 0 }, {}, }; MODULE_DEVICE_TABLE(acpi, mlxbf_gige_acpi_match); static struct platform_driver mlxbf_gige_driver = { .probe = mlxbf_gige_probe, .remove_new = mlxbf_gige_remove, .shutdown = mlxbf_gige_shutdown, .driver = { .name = KBUILD_MODNAME, .acpi_match_table = ACPI_PTR(mlxbf_gige_acpi_match), }, }; module_platform_driver(mlxbf_gige_driver); MODULE_DESCRIPTION("Mellanox BlueField SoC Gigabit Ethernet Driver"); MODULE_AUTHOR("David Thompson <davthompson@nvidia.com>"); MODULE_AUTHOR("Asmaa Mnebhi <asmaa@nvidia.com>"); MODULE_LICENSE("Dual BSD/GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1