Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
David Thompson | 1458 | 99.59% | 5 | 71.43% |
Peng Wu | 3 | 0.20% | 1 | 14.29% |
caihuoqing | 3 | 0.20% | 1 | 14.29% |
Total | 1464 | 7 |
// SPDX-License-Identifier: GPL-2.0-only OR BSD-3-Clause /* MDIO support for Mellanox Gigabit Ethernet driver * * Copyright (C) 2020-2021 NVIDIA CORPORATION & AFFILIATES */ #include <linux/acpi.h> #include <linux/bitfield.h> #include <linux/delay.h> #include <linux/device.h> #include <linux/err.h> #include <linux/io.h> #include <linux/iopoll.h> #include <linux/ioport.h> #include <linux/irqreturn.h> #include <linux/jiffies.h> #include <linux/module.h> #include <linux/mod_devicetable.h> #include <linux/phy.h> #include <linux/platform_device.h> #include <linux/property.h> #include "mlxbf_gige.h" #include "mlxbf_gige_regs.h" #include "mlxbf_gige_mdio_bf2.h" #include "mlxbf_gige_mdio_bf3.h" static struct mlxbf_gige_mdio_gw mlxbf_gige_mdio_gw_t[] = { [MLXBF_GIGE_VERSION_BF2] = { .gw_address = MLXBF2_GIGE_MDIO_GW_OFFSET, .read_data_address = MLXBF2_GIGE_MDIO_GW_OFFSET, .busy = { .mask = MLXBF2_GIGE_MDIO_GW_BUSY_MASK, .shift = MLXBF2_GIGE_MDIO_GW_BUSY_SHIFT, }, .read_data = { .mask = MLXBF2_GIGE_MDIO_GW_AD_MASK, .shift = MLXBF2_GIGE_MDIO_GW_AD_SHIFT, }, .write_data = { .mask = MLXBF2_GIGE_MDIO_GW_AD_MASK, .shift = MLXBF2_GIGE_MDIO_GW_AD_SHIFT, }, .devad = { .mask = MLXBF2_GIGE_MDIO_GW_DEVAD_MASK, .shift = MLXBF2_GIGE_MDIO_GW_DEVAD_SHIFT, }, .partad = { .mask = MLXBF2_GIGE_MDIO_GW_PARTAD_MASK, .shift = MLXBF2_GIGE_MDIO_GW_PARTAD_SHIFT, }, .opcode = { .mask = MLXBF2_GIGE_MDIO_GW_OPCODE_MASK, .shift = MLXBF2_GIGE_MDIO_GW_OPCODE_SHIFT, }, .st1 = { .mask = MLXBF2_GIGE_MDIO_GW_ST1_MASK, .shift = MLXBF2_GIGE_MDIO_GW_ST1_SHIFT, }, }, [MLXBF_GIGE_VERSION_BF3] = { .gw_address = MLXBF3_GIGE_MDIO_GW_OFFSET, .read_data_address = MLXBF3_GIGE_MDIO_DATA_READ, .busy = { .mask = MLXBF3_GIGE_MDIO_GW_BUSY_MASK, .shift = MLXBF3_GIGE_MDIO_GW_BUSY_SHIFT, }, .read_data = { .mask = MLXBF3_GIGE_MDIO_GW_DATA_READ_MASK, .shift = MLXBF3_GIGE_MDIO_GW_DATA_READ_SHIFT, }, .write_data = { .mask = MLXBF3_GIGE_MDIO_GW_DATA_MASK, .shift = MLXBF3_GIGE_MDIO_GW_DATA_SHIFT, }, .devad = { .mask = MLXBF3_GIGE_MDIO_GW_DEVAD_MASK, .shift = MLXBF3_GIGE_MDIO_GW_DEVAD_SHIFT, }, .partad = { .mask = MLXBF3_GIGE_MDIO_GW_PARTAD_MASK, .shift = MLXBF3_GIGE_MDIO_GW_PARTAD_SHIFT, }, .opcode = { .mask = MLXBF3_GIGE_MDIO_GW_OPCODE_MASK, .shift = MLXBF3_GIGE_MDIO_GW_OPCODE_SHIFT, }, .st1 = { .mask = MLXBF3_GIGE_MDIO_GW_ST1_MASK, .shift = MLXBF3_GIGE_MDIO_GW_ST1_SHIFT, }, }, }; #define MLXBF_GIGE_MDIO_FREQ_REFERENCE 156250000ULL #define MLXBF_GIGE_MDIO_COREPLL_CONST 16384ULL #define MLXBF_GIGE_MDC_CLK_NS 400 #define MLXBF_GIGE_MDIO_PLL_I1CLK_REG1 0x4 #define MLXBF_GIGE_MDIO_PLL_I1CLK_REG2 0x8 #define MLXBF_GIGE_MDIO_CORE_F_SHIFT 0 #define MLXBF_GIGE_MDIO_CORE_F_MASK GENMASK(25, 0) #define MLXBF_GIGE_MDIO_CORE_R_SHIFT 26 #define MLXBF_GIGE_MDIO_CORE_R_MASK GENMASK(31, 26) #define MLXBF_GIGE_MDIO_CORE_OD_SHIFT 0 #define MLXBF_GIGE_MDIO_CORE_OD_MASK GENMASK(3, 0) /* Support clause 22 */ #define MLXBF_GIGE_MDIO_CL22_ST1 0x1 #define MLXBF_GIGE_MDIO_CL22_WRITE 0x1 #define MLXBF_GIGE_MDIO_CL22_READ 0x2 /* Busy bit is set by software and cleared by hardware */ #define MLXBF_GIGE_MDIO_SET_BUSY 0x1 #define MLXBF_GIGE_BF2_COREPLL_ADDR 0x02800c30 #define MLXBF_GIGE_BF2_COREPLL_SIZE 0x0000000c #define MLXBF_GIGE_BF3_COREPLL_ADDR 0x13409824 #define MLXBF_GIGE_BF3_COREPLL_SIZE 0x00000010 static struct resource corepll_params[] = { [MLXBF_GIGE_VERSION_BF2] = { .start = MLXBF_GIGE_BF2_COREPLL_ADDR, .end = MLXBF_GIGE_BF2_COREPLL_ADDR + MLXBF_GIGE_BF2_COREPLL_SIZE - 1, .name = "COREPLL_RES" }, [MLXBF_GIGE_VERSION_BF3] = { .start = MLXBF_GIGE_BF3_COREPLL_ADDR, .end = MLXBF_GIGE_BF3_COREPLL_ADDR + MLXBF_GIGE_BF3_COREPLL_SIZE - 1, .name = "COREPLL_RES" } }; /* Returns core clock i1clk in Hz */ static u64 calculate_i1clk(struct mlxbf_gige *priv) { u8 core_od, core_r; u64 freq_output; u32 reg1, reg2; u32 core_f; reg1 = readl(priv->clk_io + MLXBF_GIGE_MDIO_PLL_I1CLK_REG1); reg2 = readl(priv->clk_io + MLXBF_GIGE_MDIO_PLL_I1CLK_REG2); core_f = (reg1 & MLXBF_GIGE_MDIO_CORE_F_MASK) >> MLXBF_GIGE_MDIO_CORE_F_SHIFT; core_r = (reg1 & MLXBF_GIGE_MDIO_CORE_R_MASK) >> MLXBF_GIGE_MDIO_CORE_R_SHIFT; core_od = (reg2 & MLXBF_GIGE_MDIO_CORE_OD_MASK) >> MLXBF_GIGE_MDIO_CORE_OD_SHIFT; /* Compute PLL output frequency as follow: * * CORE_F / 16384 * freq_output = freq_reference * ---------------------------- * (CORE_R + 1) * (CORE_OD + 1) */ freq_output = div_u64((MLXBF_GIGE_MDIO_FREQ_REFERENCE * core_f), MLXBF_GIGE_MDIO_COREPLL_CONST); freq_output = div_u64(freq_output, (core_r + 1) * (core_od + 1)); return freq_output; } /* Formula for encoding the MDIO period. The encoded value is * passed to the MDIO config register. * * mdc_clk = 2*(val + 1)*(core clock in sec) * * i1clk is in Hz: * 400 ns = 2*(val + 1)*(1/i1clk) * * val = (((400/10^9) / (1/i1clk) / 2) - 1) * val = (400/2 * i1clk)/10^9 - 1 */ static u8 mdio_period_map(struct mlxbf_gige *priv) { u8 mdio_period; u64 i1clk; i1clk = calculate_i1clk(priv); mdio_period = div_u64((MLXBF_GIGE_MDC_CLK_NS >> 1) * i1clk, 1000000000) - 1; return mdio_period; } static u32 mlxbf_gige_mdio_create_cmd(struct mlxbf_gige_mdio_gw *mdio_gw, u16 data, int phy_add, int phy_reg, u32 opcode) { u32 gw_reg = 0; gw_reg |= ((data << mdio_gw->write_data.shift) & mdio_gw->write_data.mask); gw_reg |= ((phy_reg << mdio_gw->devad.shift) & mdio_gw->devad.mask); gw_reg |= ((phy_add << mdio_gw->partad.shift) & mdio_gw->partad.mask); gw_reg |= ((opcode << mdio_gw->opcode.shift) & mdio_gw->opcode.mask); gw_reg |= ((MLXBF_GIGE_MDIO_CL22_ST1 << mdio_gw->st1.shift) & mdio_gw->st1.mask); gw_reg |= ((MLXBF_GIGE_MDIO_SET_BUSY << mdio_gw->busy.shift) & mdio_gw->busy.mask); return gw_reg; } static int mlxbf_gige_mdio_read(struct mii_bus *bus, int phy_add, int phy_reg) { struct mlxbf_gige *priv = bus->priv; u32 cmd; int ret; u32 val; /* Send mdio read request */ cmd = mlxbf_gige_mdio_create_cmd(priv->mdio_gw, 0, phy_add, phy_reg, MLXBF_GIGE_MDIO_CL22_READ); writel(cmd, priv->mdio_io + priv->mdio_gw->gw_address); ret = readl_poll_timeout_atomic(priv->mdio_io + priv->mdio_gw->gw_address, val, !(val & priv->mdio_gw->busy.mask), 5, 1000000); if (ret) { writel(0, priv->mdio_io + priv->mdio_gw->gw_address); return ret; } ret = readl(priv->mdio_io + priv->mdio_gw->read_data_address); /* Only return ad bits of the gw register */ ret &= priv->mdio_gw->read_data.mask; /* The MDIO lock is set on read. To release it, clear gw register */ writel(0, priv->mdio_io + priv->mdio_gw->gw_address); return ret; } static int mlxbf_gige_mdio_write(struct mii_bus *bus, int phy_add, int phy_reg, u16 val) { struct mlxbf_gige *priv = bus->priv; u32 temp; u32 cmd; int ret; /* Send mdio write request */ cmd = mlxbf_gige_mdio_create_cmd(priv->mdio_gw, val, phy_add, phy_reg, MLXBF_GIGE_MDIO_CL22_WRITE); writel(cmd, priv->mdio_io + priv->mdio_gw->gw_address); /* If the poll timed out, drop the request */ ret = readl_poll_timeout_atomic(priv->mdio_io + priv->mdio_gw->gw_address, temp, !(temp & priv->mdio_gw->busy.mask), 5, 1000000); /* The MDIO lock is set on read. To release it, clear gw register */ writel(0, priv->mdio_io + priv->mdio_gw->gw_address); return ret; } static void mlxbf_gige_mdio_cfg(struct mlxbf_gige *priv) { u8 mdio_period; u32 val; mdio_period = mdio_period_map(priv); if (priv->hw_version == MLXBF_GIGE_VERSION_BF2) { val = MLXBF2_GIGE_MDIO_CFG_VAL; val |= FIELD_PREP(MLXBF2_GIGE_MDIO_CFG_MDC_PERIOD_MASK, mdio_period); writel(val, priv->mdio_io + MLXBF2_GIGE_MDIO_CFG_OFFSET); } else { val = FIELD_PREP(MLXBF3_GIGE_MDIO_CFG_MDIO_MODE_MASK, 1) | FIELD_PREP(MLXBF3_GIGE_MDIO_CFG_MDIO_FULL_DRIVE_MASK, 1); writel(val, priv->mdio_io + MLXBF3_GIGE_MDIO_CFG_REG0); val = FIELD_PREP(MLXBF3_GIGE_MDIO_CFG_MDC_PERIOD_MASK, mdio_period); writel(val, priv->mdio_io + MLXBF3_GIGE_MDIO_CFG_REG1); val = FIELD_PREP(MLXBF3_GIGE_MDIO_CFG_MDIO_IN_SAMP_MASK, 6) | FIELD_PREP(MLXBF3_GIGE_MDIO_CFG_MDIO_OUT_SAMP_MASK, 13); writel(val, priv->mdio_io + MLXBF3_GIGE_MDIO_CFG_REG2); } } int mlxbf_gige_mdio_probe(struct platform_device *pdev, struct mlxbf_gige *priv) { struct device *dev = &pdev->dev; struct resource *res; int ret; if (priv->hw_version > MLXBF_GIGE_VERSION_BF3) return -ENODEV; priv->mdio_io = devm_platform_ioremap_resource(pdev, MLXBF_GIGE_RES_MDIO9); if (IS_ERR(priv->mdio_io)) return PTR_ERR(priv->mdio_io); /* clk resource shared with other drivers so cannot use * devm_platform_ioremap_resource */ res = platform_get_resource(pdev, IORESOURCE_MEM, MLXBF_GIGE_RES_CLK); if (!res) { /* For backward compatibility with older ACPI tables, also keep * CLK resource internal to the driver. */ res = &corepll_params[priv->hw_version]; } priv->clk_io = devm_ioremap(dev, res->start, resource_size(res)); if (!priv->clk_io) return -ENOMEM; priv->mdio_gw = &mlxbf_gige_mdio_gw_t[priv->hw_version]; mlxbf_gige_mdio_cfg(priv); priv->mdiobus = devm_mdiobus_alloc(dev); if (!priv->mdiobus) { dev_err(dev, "Failed to alloc MDIO bus\n"); return -ENOMEM; } priv->mdiobus->name = "mlxbf-mdio"; priv->mdiobus->read = mlxbf_gige_mdio_read; priv->mdiobus->write = mlxbf_gige_mdio_write; priv->mdiobus->parent = dev; priv->mdiobus->priv = priv; snprintf(priv->mdiobus->id, MII_BUS_ID_SIZE, "%s", dev_name(dev)); ret = mdiobus_register(priv->mdiobus); if (ret) dev_err(dev, "Failed to register MDIO bus\n"); return ret; } void mlxbf_gige_mdio_remove(struct mlxbf_gige *priv) { mdiobus_unregister(priv->mdiobus); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1