Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jiri Pirko | 1212 | 97.27% | 9 | 56.25% |
Ido Schimmel | 14 | 1.12% | 2 | 12.50% |
Arkadi Sharshevsky | 14 | 1.12% | 2 | 12.50% |
Amit Cohen | 4 | 0.32% | 1 | 6.25% |
Jilin Yuan | 1 | 0.08% | 1 | 6.25% |
Gustavo A. R. Silva | 1 | 0.08% | 1 | 6.25% |
Total | 1246 | 16 |
// SPDX-License-Identifier: BSD-3-Clause OR GPL-2.0 /* Copyright (c) 2018 Mellanox Technologies. All rights reserved */ #include <linux/kernel.h> #include <linux/bitops.h> #include "spectrum.h" #include "core.h" #include "reg.h" #include "resources.h" struct mlxsw_sp2_kvdl_part_info { u8 res_type; /* For each defined partititon we need to know how many * usage bits we need and how many indexes there are * represented by a single bit. This could be got from FW * querying appropriate resources. So have the resource * ids for this purpose in partition definition. */ enum mlxsw_res_id usage_bit_count_res_id; enum mlxsw_res_id index_range_res_id; }; #define MLXSW_SP2_KVDL_PART_INFO(_entry_type, _res_type, \ _usage_bit_count_res_id, _index_range_res_id) \ [MLXSW_SP_KVDL_ENTRY_TYPE_##_entry_type] = { \ .res_type = _res_type, \ .usage_bit_count_res_id = MLXSW_RES_ID_##_usage_bit_count_res_id, \ .index_range_res_id = MLXSW_RES_ID_##_index_range_res_id, \ } static const struct mlxsw_sp2_kvdl_part_info mlxsw_sp2_kvdl_parts_info[] = { MLXSW_SP2_KVDL_PART_INFO(ADJ, 0x21, KVD_SIZE, MAX_KVD_LINEAR_RANGE), MLXSW_SP2_KVDL_PART_INFO(ACTSET, 0x23, MAX_KVD_ACTION_SETS, MAX_KVD_ACTION_SETS), MLXSW_SP2_KVDL_PART_INFO(PBS, 0x24, KVD_SIZE, KVD_SIZE), MLXSW_SP2_KVDL_PART_INFO(MCRIGR, 0x26, KVD_SIZE, KVD_SIZE), MLXSW_SP2_KVDL_PART_INFO(IPV6_ADDRESS, 0x28, KVD_SIZE, KVD_SIZE), MLXSW_SP2_KVDL_PART_INFO(TNUMT, 0x29, KVD_SIZE, KVD_SIZE), }; #define MLXSW_SP2_KVDL_PARTS_INFO_LEN ARRAY_SIZE(mlxsw_sp2_kvdl_parts_info) struct mlxsw_sp2_kvdl_part { const struct mlxsw_sp2_kvdl_part_info *info; unsigned int usage_bit_count; unsigned int indexes_per_usage_bit; unsigned int last_allocated_bit; unsigned long usage[]; /* Usage bits */ }; struct mlxsw_sp2_kvdl { struct mlxsw_sp2_kvdl_part *parts[MLXSW_SP2_KVDL_PARTS_INFO_LEN]; }; static int mlxsw_sp2_kvdl_part_find_zero_bits(struct mlxsw_sp2_kvdl_part *part, unsigned int bit_count, unsigned int *p_bit) { unsigned int start_bit; unsigned int bit; unsigned int i; bool wrap = false; start_bit = part->last_allocated_bit + 1; if (start_bit == part->usage_bit_count) start_bit = 0; bit = start_bit; again: bit = find_next_zero_bit(part->usage, part->usage_bit_count, bit); if (!wrap && bit + bit_count >= part->usage_bit_count) { wrap = true; bit = 0; goto again; } if (wrap && bit + bit_count >= start_bit) return -ENOBUFS; for (i = 0; i < bit_count; i++) { if (test_bit(bit + i, part->usage)) { bit += bit_count; goto again; } } *p_bit = bit; return 0; } static int mlxsw_sp2_kvdl_part_alloc(struct mlxsw_sp2_kvdl_part *part, unsigned int size, u32 *p_kvdl_index) { unsigned int bit_count; unsigned int bit; unsigned int i; int err; bit_count = DIV_ROUND_UP(size, part->indexes_per_usage_bit); err = mlxsw_sp2_kvdl_part_find_zero_bits(part, bit_count, &bit); if (err) return err; for (i = 0; i < bit_count; i++) __set_bit(bit + i, part->usage); *p_kvdl_index = bit * part->indexes_per_usage_bit; return 0; } static int mlxsw_sp2_kvdl_rec_del(struct mlxsw_sp *mlxsw_sp, u8 res_type, u16 size, u32 kvdl_index) { char *iedr_pl; int err; iedr_pl = kmalloc(MLXSW_REG_IEDR_LEN, GFP_KERNEL); if (!iedr_pl) return -ENOMEM; mlxsw_reg_iedr_pack(iedr_pl); mlxsw_reg_iedr_rec_pack(iedr_pl, 0, res_type, size, kvdl_index); err = mlxsw_reg_write(mlxsw_sp->core, MLXSW_REG(iedr), iedr_pl); kfree(iedr_pl); return err; } static void mlxsw_sp2_kvdl_part_free(struct mlxsw_sp *mlxsw_sp, struct mlxsw_sp2_kvdl_part *part, unsigned int size, u32 kvdl_index) { unsigned int bit_count; unsigned int bit; unsigned int i; int err; /* We need to ask FW to delete previously used KVD linear index */ err = mlxsw_sp2_kvdl_rec_del(mlxsw_sp, part->info->res_type, size, kvdl_index); if (err) return; bit_count = DIV_ROUND_UP(size, part->indexes_per_usage_bit); bit = kvdl_index / part->indexes_per_usage_bit; for (i = 0; i < bit_count; i++) __clear_bit(bit + i, part->usage); } static int mlxsw_sp2_kvdl_alloc(struct mlxsw_sp *mlxsw_sp, void *priv, enum mlxsw_sp_kvdl_entry_type type, unsigned int entry_count, u32 *p_entry_index) { unsigned int size = entry_count * mlxsw_sp_kvdl_entry_size(type); struct mlxsw_sp2_kvdl *kvdl = priv; struct mlxsw_sp2_kvdl_part *part = kvdl->parts[type]; return mlxsw_sp2_kvdl_part_alloc(part, size, p_entry_index); } static void mlxsw_sp2_kvdl_free(struct mlxsw_sp *mlxsw_sp, void *priv, enum mlxsw_sp_kvdl_entry_type type, unsigned int entry_count, int entry_index) { unsigned int size = entry_count * mlxsw_sp_kvdl_entry_size(type); struct mlxsw_sp2_kvdl *kvdl = priv; struct mlxsw_sp2_kvdl_part *part = kvdl->parts[type]; return mlxsw_sp2_kvdl_part_free(mlxsw_sp, part, size, entry_index); } static int mlxsw_sp2_kvdl_alloc_size_query(struct mlxsw_sp *mlxsw_sp, void *priv, enum mlxsw_sp_kvdl_entry_type type, unsigned int entry_count, unsigned int *p_alloc_count) { *p_alloc_count = entry_count; return 0; } static struct mlxsw_sp2_kvdl_part * mlxsw_sp2_kvdl_part_init(struct mlxsw_sp *mlxsw_sp, const struct mlxsw_sp2_kvdl_part_info *info) { unsigned int indexes_per_usage_bit; struct mlxsw_sp2_kvdl_part *part; unsigned int index_range; unsigned int usage_bit_count; size_t usage_size; if (!mlxsw_core_res_valid(mlxsw_sp->core, info->usage_bit_count_res_id) || !mlxsw_core_res_valid(mlxsw_sp->core, info->index_range_res_id)) return ERR_PTR(-EIO); usage_bit_count = mlxsw_core_res_get(mlxsw_sp->core, info->usage_bit_count_res_id); index_range = mlxsw_core_res_get(mlxsw_sp->core, info->index_range_res_id); /* For some partitions, one usage bit represents a group of indexes. * That's why we compute the number of indexes per usage bit here, * according to queried resources. */ indexes_per_usage_bit = index_range / usage_bit_count; usage_size = BITS_TO_LONGS(usage_bit_count) * sizeof(unsigned long); part = kzalloc(sizeof(*part) + usage_size, GFP_KERNEL); if (!part) return ERR_PTR(-ENOMEM); part->info = info; part->usage_bit_count = usage_bit_count; part->indexes_per_usage_bit = indexes_per_usage_bit; part->last_allocated_bit = usage_bit_count - 1; return part; } static void mlxsw_sp2_kvdl_part_fini(struct mlxsw_sp2_kvdl_part *part) { kfree(part); } static int mlxsw_sp2_kvdl_parts_init(struct mlxsw_sp *mlxsw_sp, struct mlxsw_sp2_kvdl *kvdl) { const struct mlxsw_sp2_kvdl_part_info *info; int i; int err; for (i = 0; i < MLXSW_SP2_KVDL_PARTS_INFO_LEN; i++) { info = &mlxsw_sp2_kvdl_parts_info[i]; kvdl->parts[i] = mlxsw_sp2_kvdl_part_init(mlxsw_sp, info); if (IS_ERR(kvdl->parts[i])) { err = PTR_ERR(kvdl->parts[i]); goto err_kvdl_part_init; } } return 0; err_kvdl_part_init: for (i--; i >= 0; i--) mlxsw_sp2_kvdl_part_fini(kvdl->parts[i]); return err; } static void mlxsw_sp2_kvdl_parts_fini(struct mlxsw_sp2_kvdl *kvdl) { int i; for (i = 0; i < MLXSW_SP2_KVDL_PARTS_INFO_LEN; i++) mlxsw_sp2_kvdl_part_fini(kvdl->parts[i]); } static int mlxsw_sp2_kvdl_init(struct mlxsw_sp *mlxsw_sp, void *priv) { struct mlxsw_sp2_kvdl *kvdl = priv; return mlxsw_sp2_kvdl_parts_init(mlxsw_sp, kvdl); } static void mlxsw_sp2_kvdl_fini(struct mlxsw_sp *mlxsw_sp, void *priv) { struct mlxsw_sp2_kvdl *kvdl = priv; mlxsw_sp2_kvdl_parts_fini(kvdl); } const struct mlxsw_sp_kvdl_ops mlxsw_sp2_kvdl_ops = { .priv_size = sizeof(struct mlxsw_sp2_kvdl), .init = mlxsw_sp2_kvdl_init, .fini = mlxsw_sp2_kvdl_fini, .alloc = mlxsw_sp2_kvdl_alloc, .free = mlxsw_sp2_kvdl_free, .alloc_size_query = mlxsw_sp2_kvdl_alloc_size_query, };
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1