Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Daniel Machon | 2360 | 97.20% | 7 | 77.78% |
Steen Hegelund | 68 | 2.80% | 2 | 22.22% |
Total | 2428 | 9 |
// SPDX-License-Identifier: GPL-2.0+ /* Microchip Sparx5 Switch driver * * Copyright (c) 2022 Microchip Technology Inc. and its subsidiaries. */ #include <net/pkt_cls.h> #include "sparx5_main.h" #include "sparx5_qos.h" /* Calculate new base_time based on cycle_time. * * The hardware requires a base_time that is always in the future. * We define threshold_time as current_time + (2 * cycle_time). * If base_time is below threshold_time this function recalculates it to be in * the interval: * threshold_time <= base_time < (threshold_time + cycle_time) * * A very simple algorithm could be like this: * new_base_time = org_base_time + N * cycle_time * using the lowest N so (new_base_time >= threshold_time */ void sparx5_new_base_time(struct sparx5 *sparx5, const u32 cycle_time, const ktime_t org_base_time, ktime_t *new_base_time) { ktime_t current_time, threshold_time, new_time; struct timespec64 ts; u64 nr_of_cycles_p2; u64 nr_of_cycles; u64 diff_time; new_time = org_base_time; sparx5_ptp_gettime64(&sparx5->phc[SPARX5_PHC_PORT].info, &ts); current_time = timespec64_to_ktime(ts); threshold_time = current_time + (2 * cycle_time); diff_time = threshold_time - new_time; nr_of_cycles = div_u64(diff_time, cycle_time); nr_of_cycles_p2 = 1; /* Use 2^0 as start value */ if (new_time >= threshold_time) { *new_base_time = new_time; return; } /* Calculate the smallest power of 2 (nr_of_cycles_p2) * that is larger than nr_of_cycles. */ while (nr_of_cycles_p2 < nr_of_cycles) nr_of_cycles_p2 <<= 1; /* Next (higher) power of 2 */ /* Add as big chunks (power of 2 * cycle_time) * as possible for each power of 2 */ while (nr_of_cycles_p2) { if (new_time < threshold_time) { new_time += cycle_time * nr_of_cycles_p2; while (new_time < threshold_time) new_time += cycle_time * nr_of_cycles_p2; new_time -= cycle_time * nr_of_cycles_p2; } nr_of_cycles_p2 >>= 1; /* Next (lower) power of 2 */ } new_time += cycle_time; *new_base_time = new_time; } /* Max rates for leak groups */ static const u32 spx5_hsch_max_group_rate[SPX5_HSCH_LEAK_GRP_CNT] = { 1048568, /* 1.049 Gbps */ 2621420, /* 2.621 Gbps */ 10485680, /* 10.486 Gbps */ 26214200 /* 26.214 Gbps */ }; static struct sparx5_layer layers[SPX5_HSCH_LAYER_CNT]; static u32 sparx5_lg_get_leak_time(struct sparx5 *sparx5, u32 layer, u32 group) { u32 value; value = spx5_rd(sparx5, HSCH_HSCH_TIMER_CFG(layer, group)); return HSCH_HSCH_TIMER_CFG_LEAK_TIME_GET(value); } static void sparx5_lg_set_leak_time(struct sparx5 *sparx5, u32 layer, u32 group, u32 leak_time) { spx5_wr(HSCH_HSCH_TIMER_CFG_LEAK_TIME_SET(leak_time), sparx5, HSCH_HSCH_TIMER_CFG(layer, group)); } static u32 sparx5_lg_get_first(struct sparx5 *sparx5, u32 layer, u32 group) { u32 value; value = spx5_rd(sparx5, HSCH_HSCH_LEAK_CFG(layer, group)); return HSCH_HSCH_LEAK_CFG_LEAK_FIRST_GET(value); } static u32 sparx5_lg_get_next(struct sparx5 *sparx5, u32 layer, u32 group, u32 idx) { u32 value; value = spx5_rd(sparx5, HSCH_SE_CONNECT(idx)); return HSCH_SE_CONNECT_SE_LEAK_LINK_GET(value); } static u32 sparx5_lg_get_last(struct sparx5 *sparx5, u32 layer, u32 group) { u32 itr, next; itr = sparx5_lg_get_first(sparx5, layer, group); for (;;) { next = sparx5_lg_get_next(sparx5, layer, group, itr); if (itr == next) return itr; itr = next; } } static bool sparx5_lg_is_last(struct sparx5 *sparx5, u32 layer, u32 group, u32 idx) { return idx == sparx5_lg_get_next(sparx5, layer, group, idx); } static bool sparx5_lg_is_first(struct sparx5 *sparx5, u32 layer, u32 group, u32 idx) { return idx == sparx5_lg_get_first(sparx5, layer, group); } static bool sparx5_lg_is_empty(struct sparx5 *sparx5, u32 layer, u32 group) { return sparx5_lg_get_leak_time(sparx5, layer, group) == 0; } static bool sparx5_lg_is_singular(struct sparx5 *sparx5, u32 layer, u32 group) { if (sparx5_lg_is_empty(sparx5, layer, group)) return false; return sparx5_lg_get_first(sparx5, layer, group) == sparx5_lg_get_last(sparx5, layer, group); } static void sparx5_lg_enable(struct sparx5 *sparx5, u32 layer, u32 group, u32 leak_time) { sparx5_lg_set_leak_time(sparx5, layer, group, leak_time); } static void sparx5_lg_disable(struct sparx5 *sparx5, u32 layer, u32 group) { sparx5_lg_set_leak_time(sparx5, layer, group, 0); } static int sparx5_lg_get_group_by_index(struct sparx5 *sparx5, u32 layer, u32 idx, u32 *group) { u32 itr, next; int i; for (i = 0; i < SPX5_HSCH_LEAK_GRP_CNT; i++) { if (sparx5_lg_is_empty(sparx5, layer, i)) continue; itr = sparx5_lg_get_first(sparx5, layer, i); for (;;) { next = sparx5_lg_get_next(sparx5, layer, i, itr); if (itr == idx) { *group = i; return 0; /* Found it */ } if (itr == next) break; /* Was not found */ itr = next; } } return -1; } static int sparx5_lg_get_group_by_rate(u32 layer, u32 rate, u32 *group) { struct sparx5_layer *l = &layers[layer]; struct sparx5_lg *lg; u32 i; for (i = 0; i < SPX5_HSCH_LEAK_GRP_CNT; i++) { lg = &l->leak_groups[i]; if (rate <= lg->max_rate) { *group = i; return 0; } } return -1; } static int sparx5_lg_get_adjacent(struct sparx5 *sparx5, u32 layer, u32 group, u32 idx, u32 *prev, u32 *next, u32 *first) { u32 itr; *first = sparx5_lg_get_first(sparx5, layer, group); *prev = *first; *next = *first; itr = *first; for (;;) { *next = sparx5_lg_get_next(sparx5, layer, group, itr); if (itr == idx) return 0; /* Found it */ if (itr == *next) return -1; /* Was not found */ *prev = itr; itr = *next; } return -1; } static int sparx5_lg_conf_set(struct sparx5 *sparx5, u32 layer, u32 group, u32 se_first, u32 idx, u32 idx_next, bool empty) { u32 leak_time = layers[layer].leak_groups[group].leak_time; /* Stop leaking */ sparx5_lg_disable(sparx5, layer, group); if (empty) return 0; /* Select layer */ spx5_rmw(HSCH_HSCH_CFG_CFG_HSCH_LAYER_SET(layer), HSCH_HSCH_CFG_CFG_HSCH_LAYER, sparx5, HSCH_HSCH_CFG_CFG); /* Link elements */ spx5_wr(HSCH_SE_CONNECT_SE_LEAK_LINK_SET(idx_next), sparx5, HSCH_SE_CONNECT(idx)); /* Set the first element. */ spx5_rmw(HSCH_HSCH_LEAK_CFG_LEAK_FIRST_SET(se_first), HSCH_HSCH_LEAK_CFG_LEAK_FIRST, sparx5, HSCH_HSCH_LEAK_CFG(layer, group)); /* Start leaking */ sparx5_lg_enable(sparx5, layer, group, leak_time); return 0; } static int sparx5_lg_del(struct sparx5 *sparx5, u32 layer, u32 group, u32 idx) { u32 first, next, prev; bool empty = false; /* idx *must* be present in the leak group */ WARN_ON(sparx5_lg_get_adjacent(sparx5, layer, group, idx, &prev, &next, &first) < 0); if (sparx5_lg_is_singular(sparx5, layer, group)) { empty = true; } else if (sparx5_lg_is_last(sparx5, layer, group, idx)) { /* idx is removed, prev is now last */ idx = prev; next = prev; } else if (sparx5_lg_is_first(sparx5, layer, group, idx)) { /* idx is removed and points to itself, first is next */ first = next; next = idx; } else { /* Next is not touched */ idx = prev; } return sparx5_lg_conf_set(sparx5, layer, group, first, idx, next, empty); } static int sparx5_lg_add(struct sparx5 *sparx5, u32 layer, u32 new_group, u32 idx) { u32 first, next, old_group; pr_debug("ADD: layer: %d, new_group: %d, idx: %d", layer, new_group, idx); /* Is this SE already shaping ? */ if (sparx5_lg_get_group_by_index(sparx5, layer, idx, &old_group) >= 0) { if (old_group != new_group) { /* Delete from old group */ sparx5_lg_del(sparx5, layer, old_group, idx); } else { /* Nothing to do here */ return 0; } } /* We always add to head of the list */ first = idx; if (sparx5_lg_is_empty(sparx5, layer, new_group)) next = idx; else next = sparx5_lg_get_first(sparx5, layer, new_group); return sparx5_lg_conf_set(sparx5, layer, new_group, first, idx, next, false); } static int sparx5_shaper_conf_set(struct sparx5_port *port, const struct sparx5_shaper *sh, u32 layer, u32 idx, u32 group) { int (*sparx5_lg_action)(struct sparx5 *, u32, u32, u32); struct sparx5 *sparx5 = port->sparx5; if (!sh->rate && !sh->burst) sparx5_lg_action = &sparx5_lg_del; else sparx5_lg_action = &sparx5_lg_add; /* Select layer */ spx5_rmw(HSCH_HSCH_CFG_CFG_HSCH_LAYER_SET(layer), HSCH_HSCH_CFG_CFG_HSCH_LAYER, sparx5, HSCH_HSCH_CFG_CFG); /* Set frame mode */ spx5_rmw(HSCH_SE_CFG_SE_FRM_MODE_SET(sh->mode), HSCH_SE_CFG_SE_FRM_MODE, sparx5, HSCH_SE_CFG(idx)); /* Set committed rate and burst */ spx5_wr(HSCH_CIR_CFG_CIR_RATE_SET(sh->rate) | HSCH_CIR_CFG_CIR_BURST_SET(sh->burst), sparx5, HSCH_CIR_CFG(idx)); /* This has to be done after the shaper configuration has been set */ sparx5_lg_action(sparx5, layer, group, idx); return 0; } static u32 sparx5_weight_to_hw_cost(u32 weight_min, u32 weight) { return ((((SPX5_DWRR_COST_MAX << 4) * weight_min / weight) + 8) >> 4) - 1; } static int sparx5_dwrr_conf_set(struct sparx5_port *port, struct sparx5_dwrr *dwrr) { int i; spx5_rmw(HSCH_HSCH_CFG_CFG_HSCH_LAYER_SET(2) | HSCH_HSCH_CFG_CFG_CFG_SE_IDX_SET(port->portno), HSCH_HSCH_CFG_CFG_HSCH_LAYER | HSCH_HSCH_CFG_CFG_CFG_SE_IDX, port->sparx5, HSCH_HSCH_CFG_CFG); /* Number of *lower* indexes that are arbitrated dwrr */ spx5_rmw(HSCH_SE_CFG_SE_DWRR_CNT_SET(dwrr->count), HSCH_SE_CFG_SE_DWRR_CNT, port->sparx5, HSCH_SE_CFG(port->portno)); for (i = 0; i < dwrr->count; i++) { spx5_rmw(HSCH_DWRR_ENTRY_DWRR_COST_SET(dwrr->cost[i]), HSCH_DWRR_ENTRY_DWRR_COST, port->sparx5, HSCH_DWRR_ENTRY(i)); } return 0; } static int sparx5_leak_groups_init(struct sparx5 *sparx5) { struct sparx5_layer *layer; u32 sys_clk_per_100ps; struct sparx5_lg *lg; u32 leak_time_us; int i, ii; sys_clk_per_100ps = spx5_rd(sparx5, HSCH_SYS_CLK_PER); for (i = 0; i < SPX5_HSCH_LAYER_CNT; i++) { layer = &layers[i]; for (ii = 0; ii < SPX5_HSCH_LEAK_GRP_CNT; ii++) { lg = &layer->leak_groups[ii]; lg->max_rate = spx5_hsch_max_group_rate[ii]; /* Calculate the leak time in us, to serve a maximum * rate of 'max_rate' for this group */ leak_time_us = (SPX5_SE_RATE_MAX * 1000) / lg->max_rate; /* Hardware wants leak time in ns */ lg->leak_time = 1000 * leak_time_us; /* Calculate resolution */ lg->resolution = 1000 / leak_time_us; /* Maximum number of shapers that can be served by * this leak group */ lg->max_ses = (1000 * leak_time_us) / sys_clk_per_100ps; /* Example: * Wanted bandwidth is 100Mbit: * * 100 mbps can be served by leak group zero. * * leak_time is 125000 ns. * resolution is: 8 * * cir = 100000 / 8 = 12500 * leaks_pr_sec = 125000 / 10^9 = 8000 * bw = 12500 * 8000 = 10^8 (100 Mbit) */ /* Disable by default - this also indicates an empty * leak group */ sparx5_lg_disable(sparx5, i, ii); } } return 0; } int sparx5_qos_init(struct sparx5 *sparx5) { int ret; ret = sparx5_leak_groups_init(sparx5); if (ret < 0) return ret; ret = sparx5_dcb_init(sparx5); if (ret < 0) return ret; sparx5_psfp_init(sparx5); return 0; } int sparx5_tc_mqprio_add(struct net_device *ndev, u8 num_tc) { int i; if (num_tc != SPX5_PRIOS) { netdev_err(ndev, "Only %d traffic classes supported\n", SPX5_PRIOS); return -EINVAL; } netdev_set_num_tc(ndev, num_tc); for (i = 0; i < num_tc; i++) netdev_set_tc_queue(ndev, i, 1, i); netdev_dbg(ndev, "dev->num_tc %u dev->real_num_tx_queues %u\n", ndev->num_tc, ndev->real_num_tx_queues); return 0; } int sparx5_tc_mqprio_del(struct net_device *ndev) { netdev_reset_tc(ndev); netdev_dbg(ndev, "dev->num_tc %u dev->real_num_tx_queues %u\n", ndev->num_tc, ndev->real_num_tx_queues); return 0; } int sparx5_tc_tbf_add(struct sparx5_port *port, struct tc_tbf_qopt_offload_replace_params *params, u32 layer, u32 idx) { struct sparx5_shaper sh = { .mode = SPX5_SE_MODE_DATARATE, .rate = div_u64(params->rate.rate_bytes_ps, 1000) * 8, .burst = params->max_size, }; struct sparx5_lg *lg; u32 group; /* Find suitable group for this se */ if (sparx5_lg_get_group_by_rate(layer, sh.rate, &group) < 0) { pr_debug("Could not find leak group for se with rate: %d", sh.rate); return -EINVAL; } lg = &layers[layer].leak_groups[group]; pr_debug("Found matching group (speed: %d)\n", lg->max_rate); if (sh.rate < SPX5_SE_RATE_MIN || sh.burst < SPX5_SE_BURST_MIN) return -EINVAL; /* Calculate committed rate and burst */ sh.rate = DIV_ROUND_UP(sh.rate, lg->resolution); sh.burst = DIV_ROUND_UP(sh.burst, SPX5_SE_BURST_UNIT); if (sh.rate > SPX5_SE_RATE_MAX || sh.burst > SPX5_SE_BURST_MAX) return -EINVAL; return sparx5_shaper_conf_set(port, &sh, layer, idx, group); } int sparx5_tc_tbf_del(struct sparx5_port *port, u32 layer, u32 idx) { struct sparx5_shaper sh = {0}; u32 group; sparx5_lg_get_group_by_index(port->sparx5, layer, idx, &group); return sparx5_shaper_conf_set(port, &sh, layer, idx, group); } int sparx5_tc_ets_add(struct sparx5_port *port, struct tc_ets_qopt_offload_replace_params *params) { struct sparx5_dwrr dwrr = {0}; /* Minimum weight for each iteration */ unsigned int w_min = 100; int i; /* Find minimum weight for all dwrr bands */ for (i = 0; i < SPX5_PRIOS; i++) { if (params->quanta[i] == 0) continue; w_min = min(w_min, params->weights[i]); } for (i = 0; i < SPX5_PRIOS; i++) { /* Strict band; skip */ if (params->quanta[i] == 0) continue; dwrr.count++; /* On the sparx5, bands with higher indexes are preferred and * arbitrated strict. Strict bands are put in the lower indexes, * by tc, so we reverse the bands here. * * Also convert the weight to something the hardware * understands. */ dwrr.cost[SPX5_PRIOS - i - 1] = sparx5_weight_to_hw_cost(w_min, params->weights[i]); } return sparx5_dwrr_conf_set(port, &dwrr); } int sparx5_tc_ets_del(struct sparx5_port *port) { struct sparx5_dwrr dwrr = {0}; return sparx5_dwrr_conf_set(port, &dwrr); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1