Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jakub Kiciński | 9215 | 74.80% | 139 | 70.56% |
Yinjun Zhang | 1264 | 10.26% | 10 | 5.08% |
Diana Wang | 471 | 3.82% | 4 | 2.03% |
Pablo Cascón | 418 | 3.39% | 4 | 2.03% |
Niklas Söderlund | 348 | 2.82% | 4 | 2.03% |
Dirk van der Merwe | 192 | 1.56% | 3 | 1.52% |
Ziyang Chen | 129 | 1.05% | 1 | 0.51% |
Edwin Peer | 93 | 0.75% | 2 | 1.02% |
Huanhuan Wang | 47 | 0.38% | 4 | 2.03% |
Marek Majtyka | 34 | 0.28% | 1 | 0.51% |
Jarod Wilson | 17 | 0.14% | 1 | 0.51% |
Kees Cook | 14 | 0.11% | 1 | 0.51% |
Fei Qin | 12 | 0.10% | 1 | 0.51% |
Bin Chen | 10 | 0.08% | 2 | 1.02% |
Jiri Pirko | 9 | 0.07% | 2 | 1.02% |
Simon Horman | 8 | 0.06% | 2 | 1.02% |
Florian Fainelli | 7 | 0.06% | 2 | 1.02% |
Eric Dumazet | 6 | 0.05% | 2 | 1.02% |
Jaco Coetzee | 4 | 0.03% | 1 | 0.51% |
Thomas Gleixner | 4 | 0.03% | 1 | 0.51% |
David S. Miller | 4 | 0.03% | 1 | 0.51% |
Daniel Borkmann | 2 | 0.02% | 1 | 0.51% |
Tom Herbert | 2 | 0.02% | 1 | 0.51% |
Pieter Jansen van Vuuren | 2 | 0.02% | 1 | 0.51% |
Quentin Monnet | 2 | 0.02% | 1 | 0.51% |
Stephen Hemminger | 1 | 0.01% | 1 | 0.51% |
John Hurley | 1 | 0.01% | 1 | 0.51% |
Alexander Duyck | 1 | 0.01% | 1 | 0.51% |
Yu Xiao | 1 | 0.01% | 1 | 0.51% |
Guo Zhengkui | 1 | 0.01% | 1 | 0.51% |
Total | 12319 | 197 |
// SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause) /* Copyright (C) 2015-2019 Netronome Systems, Inc. */ /* * nfp_net_common.c * Netronome network device driver: Common functions between PF and VF * Authors: Jakub Kicinski <jakub.kicinski@netronome.com> * Jason McMullan <jason.mcmullan@netronome.com> * Rolf Neugebauer <rolf.neugebauer@netronome.com> * Brad Petrus <brad.petrus@netronome.com> * Chris Telfer <chris.telfer@netronome.com> */ #include <linux/bitfield.h> #include <linux/bpf.h> #include <linux/module.h> #include <linux/kernel.h> #include <linux/init.h> #include <linux/fs.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/interrupt.h> #include <linux/ip.h> #include <linux/ipv6.h> #include <linux/mm.h> #include <linux/overflow.h> #include <linux/page_ref.h> #include <linux/pci.h> #include <linux/pci_regs.h> #include <linux/ethtool.h> #include <linux/log2.h> #include <linux/if_vlan.h> #include <linux/if_bridge.h> #include <linux/random.h> #include <linux/vmalloc.h> #include <linux/ktime.h> #include <net/tls.h> #include <net/vxlan.h> #include <net/xdp_sock_drv.h> #include <net/xfrm.h> #include "nfpcore/nfp_dev.h" #include "nfpcore/nfp_nsp.h" #include "ccm.h" #include "nfp_app.h" #include "nfp_net_ctrl.h" #include "nfp_net.h" #include "nfp_net_dp.h" #include "nfp_net_sriov.h" #include "nfp_net_xsk.h" #include "nfp_port.h" #include "crypto/crypto.h" #include "crypto/fw.h" static int nfp_net_mc_unsync(struct net_device *netdev, const unsigned char *addr); /** * nfp_net_get_fw_version() - Read and parse the FW version * @fw_ver: Output fw_version structure to read to * @ctrl_bar: Mapped address of the control BAR */ void nfp_net_get_fw_version(struct nfp_net_fw_version *fw_ver, void __iomem *ctrl_bar) { u32 reg; reg = readl(ctrl_bar + NFP_NET_CFG_VERSION); put_unaligned_le32(reg, fw_ver); } u32 nfp_qcp_queue_offset(const struct nfp_dev_info *dev_info, u16 queue) { queue &= dev_info->qc_idx_mask; return dev_info->qc_addr_offset + NFP_QCP_QUEUE_ADDR_SZ * queue; } /* Firmware reconfig * * Firmware reconfig may take a while so we have two versions of it - * synchronous and asynchronous (posted). All synchronous callers are holding * RTNL so we don't have to worry about serializing them. */ static void nfp_net_reconfig_start(struct nfp_net *nn, u32 update) { nn_writel(nn, NFP_NET_CFG_UPDATE, update); /* ensure update is written before pinging HW */ nn_pci_flush(nn); nfp_qcp_wr_ptr_add(nn->qcp_cfg, 1); nn->reconfig_in_progress_update = update; } /* Pass 0 as update to run posted reconfigs. */ static void nfp_net_reconfig_start_async(struct nfp_net *nn, u32 update) { update |= nn->reconfig_posted; nn->reconfig_posted = 0; nfp_net_reconfig_start(nn, update); nn->reconfig_timer_active = true; mod_timer(&nn->reconfig_timer, jiffies + NFP_NET_POLL_TIMEOUT * HZ); } static bool nfp_net_reconfig_check_done(struct nfp_net *nn, bool last_check) { u32 reg; reg = nn_readl(nn, NFP_NET_CFG_UPDATE); if (reg == 0) return true; if (reg & NFP_NET_CFG_UPDATE_ERR) { nn_err(nn, "Reconfig error (status: 0x%08x update: 0x%08x ctrl: 0x%08x)\n", reg, nn->reconfig_in_progress_update, nn_readl(nn, NFP_NET_CFG_CTRL)); return true; } else if (last_check) { nn_err(nn, "Reconfig timeout (status: 0x%08x update: 0x%08x ctrl: 0x%08x)\n", reg, nn->reconfig_in_progress_update, nn_readl(nn, NFP_NET_CFG_CTRL)); return true; } return false; } static bool __nfp_net_reconfig_wait(struct nfp_net *nn, unsigned long deadline) { bool timed_out = false; int i; /* Poll update field, waiting for NFP to ack the config. * Do an opportunistic wait-busy loop, afterward sleep. */ for (i = 0; i < 50; i++) { if (nfp_net_reconfig_check_done(nn, false)) return false; udelay(4); } while (!nfp_net_reconfig_check_done(nn, timed_out)) { usleep_range(250, 500); timed_out = time_is_before_eq_jiffies(deadline); } return timed_out; } static int nfp_net_reconfig_wait(struct nfp_net *nn, unsigned long deadline) { if (__nfp_net_reconfig_wait(nn, deadline)) return -EIO; if (nn_readl(nn, NFP_NET_CFG_UPDATE) & NFP_NET_CFG_UPDATE_ERR) return -EIO; return 0; } static void nfp_net_reconfig_timer(struct timer_list *t) { struct nfp_net *nn = from_timer(nn, t, reconfig_timer); spin_lock_bh(&nn->reconfig_lock); nn->reconfig_timer_active = false; /* If sync caller is present it will take over from us */ if (nn->reconfig_sync_present) goto done; /* Read reconfig status and report errors */ nfp_net_reconfig_check_done(nn, true); if (nn->reconfig_posted) nfp_net_reconfig_start_async(nn, 0); done: spin_unlock_bh(&nn->reconfig_lock); } /** * nfp_net_reconfig_post() - Post async reconfig request * @nn: NFP Net device to reconfigure * @update: The value for the update field in the BAR config * * Record FW reconfiguration request. Reconfiguration will be kicked off * whenever reconfiguration machinery is idle. Multiple requests can be * merged together! */ static void nfp_net_reconfig_post(struct nfp_net *nn, u32 update) { spin_lock_bh(&nn->reconfig_lock); /* Sync caller will kick off async reconf when it's done, just post */ if (nn->reconfig_sync_present) { nn->reconfig_posted |= update; goto done; } /* Opportunistically check if the previous command is done */ if (!nn->reconfig_timer_active || nfp_net_reconfig_check_done(nn, false)) nfp_net_reconfig_start_async(nn, update); else nn->reconfig_posted |= update; done: spin_unlock_bh(&nn->reconfig_lock); } static void nfp_net_reconfig_sync_enter(struct nfp_net *nn) { bool cancelled_timer = false; u32 pre_posted_requests; spin_lock_bh(&nn->reconfig_lock); WARN_ON(nn->reconfig_sync_present); nn->reconfig_sync_present = true; if (nn->reconfig_timer_active) { nn->reconfig_timer_active = false; cancelled_timer = true; } pre_posted_requests = nn->reconfig_posted; nn->reconfig_posted = 0; spin_unlock_bh(&nn->reconfig_lock); if (cancelled_timer) { del_timer_sync(&nn->reconfig_timer); nfp_net_reconfig_wait(nn, nn->reconfig_timer.expires); } /* Run the posted reconfigs which were issued before we started */ if (pre_posted_requests) { nfp_net_reconfig_start(nn, pre_posted_requests); nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT); } } static void nfp_net_reconfig_wait_posted(struct nfp_net *nn) { nfp_net_reconfig_sync_enter(nn); spin_lock_bh(&nn->reconfig_lock); nn->reconfig_sync_present = false; spin_unlock_bh(&nn->reconfig_lock); } /** * __nfp_net_reconfig() - Reconfigure the firmware * @nn: NFP Net device to reconfigure * @update: The value for the update field in the BAR config * * Write the update word to the BAR and ping the reconfig queue. The * poll until the firmware has acknowledged the update by zeroing the * update word. * * Return: Negative errno on error, 0 on success */ int __nfp_net_reconfig(struct nfp_net *nn, u32 update) { int ret; nfp_net_reconfig_sync_enter(nn); nfp_net_reconfig_start(nn, update); ret = nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT); spin_lock_bh(&nn->reconfig_lock); if (nn->reconfig_posted) nfp_net_reconfig_start_async(nn, 0); nn->reconfig_sync_present = false; spin_unlock_bh(&nn->reconfig_lock); return ret; } int nfp_net_reconfig(struct nfp_net *nn, u32 update) { int ret; nn_ctrl_bar_lock(nn); ret = __nfp_net_reconfig(nn, update); nn_ctrl_bar_unlock(nn); return ret; } int nfp_net_mbox_lock(struct nfp_net *nn, unsigned int data_size) { if (nn->tlv_caps.mbox_len < NFP_NET_CFG_MBOX_SIMPLE_VAL + data_size) { nn_err(nn, "mailbox too small for %u of data (%u)\n", data_size, nn->tlv_caps.mbox_len); return -EIO; } nn_ctrl_bar_lock(nn); return 0; } /** * nfp_net_mbox_reconfig() - Reconfigure the firmware via the mailbox * @nn: NFP Net device to reconfigure * @mbox_cmd: The value for the mailbox command * * Helper function for mailbox updates * * Return: Negative errno on error, 0 on success */ int nfp_net_mbox_reconfig(struct nfp_net *nn, u32 mbox_cmd) { u32 mbox = nn->tlv_caps.mbox_off; int ret; nn_writeq(nn, mbox + NFP_NET_CFG_MBOX_SIMPLE_CMD, mbox_cmd); ret = __nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_MBOX); if (ret) { nn_err(nn, "Mailbox update error\n"); return ret; } return -nn_readl(nn, mbox + NFP_NET_CFG_MBOX_SIMPLE_RET); } void nfp_net_mbox_reconfig_post(struct nfp_net *nn, u32 mbox_cmd) { u32 mbox = nn->tlv_caps.mbox_off; nn_writeq(nn, mbox + NFP_NET_CFG_MBOX_SIMPLE_CMD, mbox_cmd); nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_MBOX); } int nfp_net_mbox_reconfig_wait_posted(struct nfp_net *nn) { u32 mbox = nn->tlv_caps.mbox_off; nfp_net_reconfig_wait_posted(nn); return -nn_readl(nn, mbox + NFP_NET_CFG_MBOX_SIMPLE_RET); } int nfp_net_mbox_reconfig_and_unlock(struct nfp_net *nn, u32 mbox_cmd) { int ret; ret = nfp_net_mbox_reconfig(nn, mbox_cmd); nn_ctrl_bar_unlock(nn); return ret; } /* Interrupt configuration and handling */ /** * nfp_net_irqs_alloc() - allocates MSI-X irqs * @pdev: PCI device structure * @irq_entries: Array to be initialized and used to hold the irq entries * @min_irqs: Minimal acceptable number of interrupts * @wanted_irqs: Target number of interrupts to allocate * * Return: Number of irqs obtained or 0 on error. */ unsigned int nfp_net_irqs_alloc(struct pci_dev *pdev, struct msix_entry *irq_entries, unsigned int min_irqs, unsigned int wanted_irqs) { unsigned int i; int got_irqs; for (i = 0; i < wanted_irqs; i++) irq_entries[i].entry = i; got_irqs = pci_enable_msix_range(pdev, irq_entries, min_irqs, wanted_irqs); if (got_irqs < 0) { dev_err(&pdev->dev, "Failed to enable %d-%d MSI-X (err=%d)\n", min_irqs, wanted_irqs, got_irqs); return 0; } if (got_irqs < wanted_irqs) dev_warn(&pdev->dev, "Unable to allocate %d IRQs got only %d\n", wanted_irqs, got_irqs); return got_irqs; } /** * nfp_net_irqs_assign() - Assign interrupts allocated externally to netdev * @nn: NFP Network structure * @irq_entries: Table of allocated interrupts * @n: Size of @irq_entries (number of entries to grab) * * After interrupts are allocated with nfp_net_irqs_alloc() this function * should be called to assign them to a specific netdev (port). */ void nfp_net_irqs_assign(struct nfp_net *nn, struct msix_entry *irq_entries, unsigned int n) { struct nfp_net_dp *dp = &nn->dp; nn->max_r_vecs = n - NFP_NET_NON_Q_VECTORS; dp->num_r_vecs = nn->max_r_vecs; memcpy(nn->irq_entries, irq_entries, sizeof(*irq_entries) * n); if (dp->num_rx_rings > dp->num_r_vecs || dp->num_tx_rings > dp->num_r_vecs) dev_warn(nn->dp.dev, "More rings (%d,%d) than vectors (%d).\n", dp->num_rx_rings, dp->num_tx_rings, dp->num_r_vecs); dp->num_rx_rings = min(dp->num_r_vecs, dp->num_rx_rings); dp->num_tx_rings = min(dp->num_r_vecs, dp->num_tx_rings); dp->num_stack_tx_rings = dp->num_tx_rings; } /** * nfp_net_irqs_disable() - Disable interrupts * @pdev: PCI device structure * * Undoes what @nfp_net_irqs_alloc() does. */ void nfp_net_irqs_disable(struct pci_dev *pdev) { pci_disable_msix(pdev); } /** * nfp_net_irq_rxtx() - Interrupt service routine for RX/TX rings. * @irq: Interrupt * @data: Opaque data structure * * Return: Indicate if the interrupt has been handled. */ static irqreturn_t nfp_net_irq_rxtx(int irq, void *data) { struct nfp_net_r_vector *r_vec = data; /* Currently we cannot tell if it's a rx or tx interrupt, * since dim does not need accurate event_ctr to calculate, * we just use this counter for both rx and tx dim. */ r_vec->event_ctr++; napi_schedule_irqoff(&r_vec->napi); /* The FW auto-masks any interrupt, either via the MASK bit in * the MSI-X table or via the per entry ICR field. So there * is no need to disable interrupts here. */ return IRQ_HANDLED; } static irqreturn_t nfp_ctrl_irq_rxtx(int irq, void *data) { struct nfp_net_r_vector *r_vec = data; tasklet_schedule(&r_vec->tasklet); return IRQ_HANDLED; } /** * nfp_net_read_link_status() - Reread link status from control BAR * @nn: NFP Network structure */ static void nfp_net_read_link_status(struct nfp_net *nn) { unsigned long flags; bool link_up; u16 sts; spin_lock_irqsave(&nn->link_status_lock, flags); sts = nn_readw(nn, NFP_NET_CFG_STS); link_up = !!(sts & NFP_NET_CFG_STS_LINK); if (nn->link_up == link_up) goto out; nn->link_up = link_up; if (nn->port) { set_bit(NFP_PORT_CHANGED, &nn->port->flags); if (nn->port->link_cb) nn->port->link_cb(nn->port); } if (nn->link_up) { netif_carrier_on(nn->dp.netdev); netdev_info(nn->dp.netdev, "NIC Link is Up\n"); } else { netif_carrier_off(nn->dp.netdev); netdev_info(nn->dp.netdev, "NIC Link is Down\n"); } out: spin_unlock_irqrestore(&nn->link_status_lock, flags); } /** * nfp_net_irq_lsc() - Interrupt service routine for link state changes * @irq: Interrupt * @data: Opaque data structure * * Return: Indicate if the interrupt has been handled. */ static irqreturn_t nfp_net_irq_lsc(int irq, void *data) { struct nfp_net *nn = data; struct msix_entry *entry; entry = &nn->irq_entries[NFP_NET_IRQ_LSC_IDX]; nfp_net_read_link_status(nn); nfp_net_irq_unmask(nn, entry->entry); return IRQ_HANDLED; } /** * nfp_net_irq_exn() - Interrupt service routine for exceptions * @irq: Interrupt * @data: Opaque data structure * * Return: Indicate if the interrupt has been handled. */ static irqreturn_t nfp_net_irq_exn(int irq, void *data) { struct nfp_net *nn = data; nn_err(nn, "%s: UNIMPLEMENTED.\n", __func__); /* XXX TO BE IMPLEMENTED */ return IRQ_HANDLED; } /** * nfp_net_aux_irq_request() - Request an auxiliary interrupt (LSC or EXN) * @nn: NFP Network structure * @ctrl_offset: Control BAR offset where IRQ configuration should be written * @format: printf-style format to construct the interrupt name * @name: Pointer to allocated space for interrupt name * @name_sz: Size of space for interrupt name * @vector_idx: Index of MSI-X vector used for this interrupt * @handler: IRQ handler to register for this interrupt */ static int nfp_net_aux_irq_request(struct nfp_net *nn, u32 ctrl_offset, const char *format, char *name, size_t name_sz, unsigned int vector_idx, irq_handler_t handler) { struct msix_entry *entry; int err; entry = &nn->irq_entries[vector_idx]; snprintf(name, name_sz, format, nfp_net_name(nn)); err = request_irq(entry->vector, handler, 0, name, nn); if (err) { nn_err(nn, "Failed to request IRQ %d (err=%d).\n", entry->vector, err); return err; } nn_writeb(nn, ctrl_offset, entry->entry); nfp_net_irq_unmask(nn, entry->entry); return 0; } /** * nfp_net_aux_irq_free() - Free an auxiliary interrupt (LSC or EXN) * @nn: NFP Network structure * @ctrl_offset: Control BAR offset where IRQ configuration should be written * @vector_idx: Index of MSI-X vector used for this interrupt */ static void nfp_net_aux_irq_free(struct nfp_net *nn, u32 ctrl_offset, unsigned int vector_idx) { nn_writeb(nn, ctrl_offset, 0xff); nn_pci_flush(nn); free_irq(nn->irq_entries[vector_idx].vector, nn); } struct sk_buff * nfp_net_tls_tx(struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec, struct sk_buff *skb, u64 *tls_handle, int *nr_frags) { #ifdef CONFIG_TLS_DEVICE struct nfp_net_tls_offload_ctx *ntls; struct sk_buff *nskb; bool resync_pending; u32 datalen, seq; if (likely(!dp->ktls_tx)) return skb; if (!tls_is_skb_tx_device_offloaded(skb)) return skb; datalen = skb->len - skb_tcp_all_headers(skb); seq = ntohl(tcp_hdr(skb)->seq); ntls = tls_driver_ctx(skb->sk, TLS_OFFLOAD_CTX_DIR_TX); resync_pending = tls_offload_tx_resync_pending(skb->sk); if (unlikely(resync_pending || ntls->next_seq != seq)) { /* Pure ACK out of order already */ if (!datalen) return skb; u64_stats_update_begin(&r_vec->tx_sync); r_vec->tls_tx_fallback++; u64_stats_update_end(&r_vec->tx_sync); nskb = tls_encrypt_skb(skb); if (!nskb) { u64_stats_update_begin(&r_vec->tx_sync); r_vec->tls_tx_no_fallback++; u64_stats_update_end(&r_vec->tx_sync); return NULL; } /* encryption wasn't necessary */ if (nskb == skb) return skb; /* we don't re-check ring space */ if (unlikely(skb_is_nonlinear(nskb))) { nn_dp_warn(dp, "tls_encrypt_skb() produced fragmented frame\n"); u64_stats_update_begin(&r_vec->tx_sync); r_vec->tx_errors++; u64_stats_update_end(&r_vec->tx_sync); dev_kfree_skb_any(nskb); return NULL; } /* jump forward, a TX may have gotten lost, need to sync TX */ if (!resync_pending && seq - ntls->next_seq < U32_MAX / 4) tls_offload_tx_resync_request(nskb->sk, seq, ntls->next_seq); *nr_frags = 0; return nskb; } if (datalen) { u64_stats_update_begin(&r_vec->tx_sync); if (!skb_is_gso(skb)) r_vec->hw_tls_tx++; else r_vec->hw_tls_tx += skb_shinfo(skb)->gso_segs; u64_stats_update_end(&r_vec->tx_sync); } memcpy(tls_handle, ntls->fw_handle, sizeof(ntls->fw_handle)); ntls->next_seq += datalen; #endif return skb; } void nfp_net_tls_tx_undo(struct sk_buff *skb, u64 tls_handle) { #ifdef CONFIG_TLS_DEVICE struct nfp_net_tls_offload_ctx *ntls; u32 datalen, seq; if (!tls_handle) return; if (WARN_ON_ONCE(!tls_is_skb_tx_device_offloaded(skb))) return; datalen = skb->len - skb_tcp_all_headers(skb); seq = ntohl(tcp_hdr(skb)->seq); ntls = tls_driver_ctx(skb->sk, TLS_OFFLOAD_CTX_DIR_TX); if (ntls->next_seq == seq + datalen) ntls->next_seq = seq; else WARN_ON_ONCE(1); #endif } static void nfp_net_tx_timeout(struct net_device *netdev, unsigned int txqueue) { struct nfp_net *nn = netdev_priv(netdev); nn_warn(nn, "TX watchdog timeout on ring: %u\n", txqueue); } /* Receive processing */ static unsigned int nfp_net_calc_fl_bufsz_data(struct nfp_net_dp *dp) { unsigned int fl_bufsz = 0; if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC) fl_bufsz += NFP_NET_MAX_PREPEND; else fl_bufsz += dp->rx_offset; fl_bufsz += ETH_HLEN + VLAN_HLEN * 2 + dp->mtu; return fl_bufsz; } static unsigned int nfp_net_calc_fl_bufsz(struct nfp_net_dp *dp) { unsigned int fl_bufsz; fl_bufsz = NFP_NET_RX_BUF_HEADROOM; fl_bufsz += dp->rx_dma_off; fl_bufsz += nfp_net_calc_fl_bufsz_data(dp); fl_bufsz = SKB_DATA_ALIGN(fl_bufsz); fl_bufsz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); return fl_bufsz; } static unsigned int nfp_net_calc_fl_bufsz_xsk(struct nfp_net_dp *dp) { unsigned int fl_bufsz; fl_bufsz = XDP_PACKET_HEADROOM; fl_bufsz += nfp_net_calc_fl_bufsz_data(dp); return fl_bufsz; } /* Setup and Configuration */ /** * nfp_net_vecs_init() - Assign IRQs and setup rvecs. * @nn: NFP Network structure */ static void nfp_net_vecs_init(struct nfp_net *nn) { int numa_node = dev_to_node(&nn->pdev->dev); struct nfp_net_r_vector *r_vec; unsigned int r; nn->lsc_handler = nfp_net_irq_lsc; nn->exn_handler = nfp_net_irq_exn; for (r = 0; r < nn->max_r_vecs; r++) { struct msix_entry *entry; entry = &nn->irq_entries[NFP_NET_NON_Q_VECTORS + r]; r_vec = &nn->r_vecs[r]; r_vec->nfp_net = nn; r_vec->irq_entry = entry->entry; r_vec->irq_vector = entry->vector; if (nn->dp.netdev) { r_vec->handler = nfp_net_irq_rxtx; } else { r_vec->handler = nfp_ctrl_irq_rxtx; __skb_queue_head_init(&r_vec->queue); spin_lock_init(&r_vec->lock); tasklet_setup(&r_vec->tasklet, nn->dp.ops->ctrl_poll); tasklet_disable(&r_vec->tasklet); } cpumask_set_cpu(cpumask_local_spread(r, numa_node), &r_vec->affinity_mask); } } static void nfp_net_napi_add(struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec, int idx) { if (dp->netdev) netif_napi_add(dp->netdev, &r_vec->napi, nfp_net_has_xsk_pool_slow(dp, idx) ? dp->ops->xsk_poll : dp->ops->poll); else tasklet_enable(&r_vec->tasklet); } static void nfp_net_napi_del(struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec) { if (dp->netdev) netif_napi_del(&r_vec->napi); else tasklet_disable(&r_vec->tasklet); } static void nfp_net_vector_assign_rings(struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec, int idx) { r_vec->rx_ring = idx < dp->num_rx_rings ? &dp->rx_rings[idx] : NULL; r_vec->tx_ring = idx < dp->num_stack_tx_rings ? &dp->tx_rings[idx] : NULL; r_vec->xdp_ring = idx < dp->num_tx_rings - dp->num_stack_tx_rings ? &dp->tx_rings[dp->num_stack_tx_rings + idx] : NULL; if (nfp_net_has_xsk_pool_slow(dp, idx) || r_vec->xsk_pool) { r_vec->xsk_pool = dp->xdp_prog ? dp->xsk_pools[idx] : NULL; if (r_vec->xsk_pool) xsk_pool_set_rxq_info(r_vec->xsk_pool, &r_vec->rx_ring->xdp_rxq); nfp_net_napi_del(dp, r_vec); nfp_net_napi_add(dp, r_vec, idx); } } static int nfp_net_prepare_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec, int idx) { int err; nfp_net_napi_add(&nn->dp, r_vec, idx); snprintf(r_vec->name, sizeof(r_vec->name), "%s-rxtx-%d", nfp_net_name(nn), idx); err = request_irq(r_vec->irq_vector, r_vec->handler, 0, r_vec->name, r_vec); if (err) { nfp_net_napi_del(&nn->dp, r_vec); nn_err(nn, "Error requesting IRQ %d\n", r_vec->irq_vector); return err; } disable_irq(r_vec->irq_vector); irq_set_affinity_hint(r_vec->irq_vector, &r_vec->affinity_mask); nn_dbg(nn, "RV%02d: irq=%03d/%03d\n", idx, r_vec->irq_vector, r_vec->irq_entry); return 0; } static void nfp_net_cleanup_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec) { irq_set_affinity_hint(r_vec->irq_vector, NULL); nfp_net_napi_del(&nn->dp, r_vec); free_irq(r_vec->irq_vector, r_vec); } /** * nfp_net_rss_write_itbl() - Write RSS indirection table to device * @nn: NFP Net device to reconfigure */ void nfp_net_rss_write_itbl(struct nfp_net *nn) { int i; for (i = 0; i < NFP_NET_CFG_RSS_ITBL_SZ; i += 4) nn_writel(nn, NFP_NET_CFG_RSS_ITBL + i, get_unaligned_le32(nn->rss_itbl + i)); } /** * nfp_net_rss_write_key() - Write RSS hash key to device * @nn: NFP Net device to reconfigure */ void nfp_net_rss_write_key(struct nfp_net *nn) { int i; for (i = 0; i < nfp_net_rss_key_sz(nn); i += 4) nn_writel(nn, NFP_NET_CFG_RSS_KEY + i, get_unaligned_le32(nn->rss_key + i)); } /** * nfp_net_coalesce_write_cfg() - Write irq coalescence configuration to HW * @nn: NFP Net device to reconfigure */ void nfp_net_coalesce_write_cfg(struct nfp_net *nn) { u8 i; u32 factor; u32 value; /* Compute factor used to convert coalesce '_usecs' parameters to * ME timestamp ticks. There are 16 ME clock cycles for each timestamp * count. */ factor = nn->tlv_caps.me_freq_mhz / 16; /* copy RX interrupt coalesce parameters */ value = (nn->rx_coalesce_max_frames << 16) | (factor * nn->rx_coalesce_usecs); for (i = 0; i < nn->dp.num_rx_rings; i++) nn_writel(nn, NFP_NET_CFG_RXR_IRQ_MOD(i), value); /* copy TX interrupt coalesce parameters */ value = (nn->tx_coalesce_max_frames << 16) | (factor * nn->tx_coalesce_usecs); for (i = 0; i < nn->dp.num_tx_rings; i++) nn_writel(nn, NFP_NET_CFG_TXR_IRQ_MOD(i), value); } /** * nfp_net_write_mac_addr() - Write mac address to the device control BAR * @nn: NFP Net device to reconfigure * @addr: MAC address to write * * Writes the MAC address from the netdev to the device control BAR. Does not * perform the required reconfig. We do a bit of byte swapping dance because * firmware is LE. */ static void nfp_net_write_mac_addr(struct nfp_net *nn, const u8 *addr) { nn_writel(nn, NFP_NET_CFG_MACADDR + 0, get_unaligned_be32(addr)); nn_writew(nn, NFP_NET_CFG_MACADDR + 6, get_unaligned_be16(addr + 4)); } /** * nfp_net_clear_config_and_disable() - Clear control BAR and disable NFP * @nn: NFP Net device to reconfigure * * Warning: must be fully idempotent. */ static void nfp_net_clear_config_and_disable(struct nfp_net *nn) { u32 new_ctrl, new_ctrl_w1, update; unsigned int r; int err; new_ctrl = nn->dp.ctrl; new_ctrl &= ~NFP_NET_CFG_CTRL_ENABLE; update = NFP_NET_CFG_UPDATE_GEN; update |= NFP_NET_CFG_UPDATE_MSIX; update |= NFP_NET_CFG_UPDATE_RING; if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG) new_ctrl &= ~NFP_NET_CFG_CTRL_RINGCFG; if (!(nn->cap_w1 & NFP_NET_CFG_CTRL_FREELIST_EN)) { nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0); nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0); } nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); err = nfp_net_reconfig(nn, update); if (err) nn_err(nn, "Could not disable device: %d\n", err); if (nn->cap_w1 & NFP_NET_CFG_CTRL_FREELIST_EN) { new_ctrl_w1 = nn->dp.ctrl_w1; new_ctrl_w1 &= ~NFP_NET_CFG_CTRL_FREELIST_EN; nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0); nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0); nn_writel(nn, NFP_NET_CFG_CTRL_WORD1, new_ctrl_w1); err = nfp_net_reconfig(nn, update); if (err) nn_err(nn, "Could not disable FREELIST_EN: %d\n", err); nn->dp.ctrl_w1 = new_ctrl_w1; } for (r = 0; r < nn->dp.num_rx_rings; r++) { nfp_net_rx_ring_reset(&nn->dp.rx_rings[r]); if (nfp_net_has_xsk_pool_slow(&nn->dp, nn->dp.rx_rings[r].idx)) nfp_net_xsk_rx_bufs_free(&nn->dp.rx_rings[r]); } for (r = 0; r < nn->dp.num_tx_rings; r++) nfp_net_tx_ring_reset(&nn->dp, &nn->dp.tx_rings[r]); for (r = 0; r < nn->dp.num_r_vecs; r++) nfp_net_vec_clear_ring_data(nn, r); nn->dp.ctrl = new_ctrl; } /** * nfp_net_set_config_and_enable() - Write control BAR and enable NFP * @nn: NFP Net device to reconfigure */ static int nfp_net_set_config_and_enable(struct nfp_net *nn) { u32 bufsz, new_ctrl, new_ctrl_w1, update = 0; unsigned int r; int err; new_ctrl = nn->dp.ctrl; new_ctrl_w1 = nn->dp.ctrl_w1; if (nn->dp.ctrl & NFP_NET_CFG_CTRL_RSS_ANY) { nfp_net_rss_write_key(nn); nfp_net_rss_write_itbl(nn); nn_writel(nn, NFP_NET_CFG_RSS_CTRL, nn->rss_cfg); update |= NFP_NET_CFG_UPDATE_RSS; } if (nn->dp.ctrl & NFP_NET_CFG_CTRL_IRQMOD) { nfp_net_coalesce_write_cfg(nn); update |= NFP_NET_CFG_UPDATE_IRQMOD; } for (r = 0; r < nn->dp.num_tx_rings; r++) nfp_net_tx_ring_hw_cfg_write(nn, &nn->dp.tx_rings[r], r); for (r = 0; r < nn->dp.num_rx_rings; r++) nfp_net_rx_ring_hw_cfg_write(nn, &nn->dp.rx_rings[r], r); nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, U64_MAX >> (64 - nn->dp.num_tx_rings)); nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, U64_MAX >> (64 - nn->dp.num_rx_rings)); if (nn->dp.netdev) nfp_net_write_mac_addr(nn, nn->dp.netdev->dev_addr); nn_writel(nn, NFP_NET_CFG_MTU, nn->dp.mtu); bufsz = nn->dp.fl_bufsz - nn->dp.rx_dma_off - NFP_NET_RX_BUF_NON_DATA; nn_writel(nn, NFP_NET_CFG_FLBUFSZ, bufsz); /* Enable device * Step 1: Replace the CTRL_ENABLE by NFP_NET_CFG_CTRL_FREELIST_EN if * FREELIST_EN exits. */ if (nn->cap_w1 & NFP_NET_CFG_CTRL_FREELIST_EN) new_ctrl_w1 |= NFP_NET_CFG_CTRL_FREELIST_EN; else new_ctrl |= NFP_NET_CFG_CTRL_ENABLE; update |= NFP_NET_CFG_UPDATE_GEN; update |= NFP_NET_CFG_UPDATE_MSIX; update |= NFP_NET_CFG_UPDATE_RING; if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG) new_ctrl |= NFP_NET_CFG_CTRL_RINGCFG; /* Step 2: Send the configuration and write the freelist. * - The freelist only need to be written once. */ nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); nn_writel(nn, NFP_NET_CFG_CTRL_WORD1, new_ctrl_w1); err = nfp_net_reconfig(nn, update); if (err) { nfp_net_clear_config_and_disable(nn); return err; } nn->dp.ctrl = new_ctrl; nn->dp.ctrl_w1 = new_ctrl_w1; for (r = 0; r < nn->dp.num_rx_rings; r++) nfp_net_rx_ring_fill_freelist(&nn->dp, &nn->dp.rx_rings[r]); /* Step 3: Do the NFP_NET_CFG_CTRL_ENABLE. Send the configuration. */ if (nn->cap_w1 & NFP_NET_CFG_CTRL_FREELIST_EN) { new_ctrl |= NFP_NET_CFG_CTRL_ENABLE; nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); err = nfp_net_reconfig(nn, update); if (err) { nfp_net_clear_config_and_disable(nn); return err; } nn->dp.ctrl = new_ctrl; } return 0; } /** * nfp_net_close_stack() - Quiesce the stack (part of close) * @nn: NFP Net device to reconfigure */ static void nfp_net_close_stack(struct nfp_net *nn) { struct nfp_net_r_vector *r_vec; unsigned int r; disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector); netif_carrier_off(nn->dp.netdev); nn->link_up = false; for (r = 0; r < nn->dp.num_r_vecs; r++) { r_vec = &nn->r_vecs[r]; disable_irq(r_vec->irq_vector); napi_disable(&r_vec->napi); if (r_vec->rx_ring) cancel_work_sync(&r_vec->rx_dim.work); if (r_vec->tx_ring) cancel_work_sync(&r_vec->tx_dim.work); } netif_tx_disable(nn->dp.netdev); } /** * nfp_net_close_free_all() - Free all runtime resources * @nn: NFP Net device to reconfigure */ static void nfp_net_close_free_all(struct nfp_net *nn) { unsigned int r; nfp_net_tx_rings_free(&nn->dp); nfp_net_rx_rings_free(&nn->dp); for (r = 0; r < nn->dp.num_r_vecs; r++) nfp_net_cleanup_vector(nn, &nn->r_vecs[r]); nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX); nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX); } /** * nfp_net_netdev_close() - Called when the device is downed * @netdev: netdev structure */ static int nfp_net_netdev_close(struct net_device *netdev) { struct nfp_net *nn = netdev_priv(netdev); /* Step 1: Disable RX and TX rings from the Linux kernel perspective */ nfp_net_close_stack(nn); /* Step 2: Tell NFP */ if (nn->cap_w1 & NFP_NET_CFG_CTRL_MCAST_FILTER) __dev_mc_unsync(netdev, nfp_net_mc_unsync); nfp_net_clear_config_and_disable(nn); nfp_port_configure(netdev, false); /* Step 3: Free resources */ nfp_net_close_free_all(nn); nn_dbg(nn, "%s down", netdev->name); return 0; } void nfp_ctrl_close(struct nfp_net *nn) { int r; rtnl_lock(); for (r = 0; r < nn->dp.num_r_vecs; r++) { disable_irq(nn->r_vecs[r].irq_vector); tasklet_disable(&nn->r_vecs[r].tasklet); } nfp_net_clear_config_and_disable(nn); nfp_net_close_free_all(nn); rtnl_unlock(); } static void nfp_net_rx_dim_work(struct work_struct *work) { struct nfp_net_r_vector *r_vec; unsigned int factor, value; struct dim_cq_moder moder; struct nfp_net *nn; struct dim *dim; dim = container_of(work, struct dim, work); moder = net_dim_get_rx_moderation(dim->mode, dim->profile_ix); r_vec = container_of(dim, struct nfp_net_r_vector, rx_dim); nn = r_vec->nfp_net; /* Compute factor used to convert coalesce '_usecs' parameters to * ME timestamp ticks. There are 16 ME clock cycles for each timestamp * count. */ factor = nn->tlv_caps.me_freq_mhz / 16; if (nfp_net_coalesce_para_check(factor * moder.usec, moder.pkts)) return; /* copy RX interrupt coalesce parameters */ value = (moder.pkts << 16) | (factor * moder.usec); nn_writel(nn, NFP_NET_CFG_RXR_IRQ_MOD(r_vec->rx_ring->idx), value); (void)nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_IRQMOD); dim->state = DIM_START_MEASURE; } static void nfp_net_tx_dim_work(struct work_struct *work) { struct nfp_net_r_vector *r_vec; unsigned int factor, value; struct dim_cq_moder moder; struct nfp_net *nn; struct dim *dim; dim = container_of(work, struct dim, work); moder = net_dim_get_tx_moderation(dim->mode, dim->profile_ix); r_vec = container_of(dim, struct nfp_net_r_vector, tx_dim); nn = r_vec->nfp_net; /* Compute factor used to convert coalesce '_usecs' parameters to * ME timestamp ticks. There are 16 ME clock cycles for each timestamp * count. */ factor = nn->tlv_caps.me_freq_mhz / 16; if (nfp_net_coalesce_para_check(factor * moder.usec, moder.pkts)) return; /* copy TX interrupt coalesce parameters */ value = (moder.pkts << 16) | (factor * moder.usec); nn_writel(nn, NFP_NET_CFG_TXR_IRQ_MOD(r_vec->tx_ring->idx), value); (void)nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_IRQMOD); dim->state = DIM_START_MEASURE; } /** * nfp_net_open_stack() - Start the device from stack's perspective * @nn: NFP Net device to reconfigure */ static void nfp_net_open_stack(struct nfp_net *nn) { struct nfp_net_r_vector *r_vec; unsigned int r; for (r = 0; r < nn->dp.num_r_vecs; r++) { r_vec = &nn->r_vecs[r]; if (r_vec->rx_ring) { INIT_WORK(&r_vec->rx_dim.work, nfp_net_rx_dim_work); r_vec->rx_dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; } if (r_vec->tx_ring) { INIT_WORK(&r_vec->tx_dim.work, nfp_net_tx_dim_work); r_vec->tx_dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; } napi_enable(&r_vec->napi); enable_irq(r_vec->irq_vector); } netif_tx_wake_all_queues(nn->dp.netdev); enable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector); nfp_net_read_link_status(nn); } static int nfp_net_open_alloc_all(struct nfp_net *nn) { int err, r; err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_EXN, "%s-exn", nn->exn_name, sizeof(nn->exn_name), NFP_NET_IRQ_EXN_IDX, nn->exn_handler); if (err) return err; err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_LSC, "%s-lsc", nn->lsc_name, sizeof(nn->lsc_name), NFP_NET_IRQ_LSC_IDX, nn->lsc_handler); if (err) goto err_free_exn; disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector); for (r = 0; r < nn->dp.num_r_vecs; r++) { err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r); if (err) goto err_cleanup_vec_p; } err = nfp_net_rx_rings_prepare(nn, &nn->dp); if (err) goto err_cleanup_vec; err = nfp_net_tx_rings_prepare(nn, &nn->dp); if (err) goto err_free_rx_rings; for (r = 0; r < nn->max_r_vecs; r++) nfp_net_vector_assign_rings(&nn->dp, &nn->r_vecs[r], r); return 0; err_free_rx_rings: nfp_net_rx_rings_free(&nn->dp); err_cleanup_vec: r = nn->dp.num_r_vecs; err_cleanup_vec_p: while (r--) nfp_net_cleanup_vector(nn, &nn->r_vecs[r]); nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX); err_free_exn: nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX); return err; } static int nfp_net_netdev_open(struct net_device *netdev) { struct nfp_net *nn = netdev_priv(netdev); int err; /* Step 1: Allocate resources for rings and the like * - Request interrupts * - Allocate RX and TX ring resources * - Setup initial RSS table */ err = nfp_net_open_alloc_all(nn); if (err) return err; err = netif_set_real_num_tx_queues(netdev, nn->dp.num_stack_tx_rings); if (err) goto err_free_all; err = netif_set_real_num_rx_queues(netdev, nn->dp.num_rx_rings); if (err) goto err_free_all; /* Step 2: Configure the NFP * - Ifup the physical interface if it exists * - Enable rings from 0 to tx_rings/rx_rings - 1. * - Write MAC address (in case it changed) * - Set the MTU * - Set the Freelist buffer size * - Enable the FW */ err = nfp_port_configure(netdev, true); if (err) goto err_free_all; err = nfp_net_set_config_and_enable(nn); if (err) goto err_port_disable; /* Step 3: Enable for kernel * - put some freelist descriptors on each RX ring * - enable NAPI on each ring * - enable all TX queues * - set link state */ nfp_net_open_stack(nn); return 0; err_port_disable: nfp_port_configure(netdev, false); err_free_all: nfp_net_close_free_all(nn); return err; } int nfp_ctrl_open(struct nfp_net *nn) { int err, r; /* ring dumping depends on vNICs being opened/closed under rtnl */ rtnl_lock(); err = nfp_net_open_alloc_all(nn); if (err) goto err_unlock; err = nfp_net_set_config_and_enable(nn); if (err) goto err_free_all; for (r = 0; r < nn->dp.num_r_vecs; r++) enable_irq(nn->r_vecs[r].irq_vector); rtnl_unlock(); return 0; err_free_all: nfp_net_close_free_all(nn); err_unlock: rtnl_unlock(); return err; } int nfp_net_sched_mbox_amsg_work(struct nfp_net *nn, u32 cmd, const void *data, size_t len, int (*cb)(struct nfp_net *, struct nfp_mbox_amsg_entry *)) { struct nfp_mbox_amsg_entry *entry; entry = kmalloc(sizeof(*entry) + len, GFP_ATOMIC); if (!entry) return -ENOMEM; memcpy(entry->msg, data, len); entry->cmd = cmd; entry->cfg = cb; spin_lock_bh(&nn->mbox_amsg.lock); list_add_tail(&entry->list, &nn->mbox_amsg.list); spin_unlock_bh(&nn->mbox_amsg.lock); schedule_work(&nn->mbox_amsg.work); return 0; } static void nfp_net_mbox_amsg_work(struct work_struct *work) { struct nfp_net *nn = container_of(work, struct nfp_net, mbox_amsg.work); struct nfp_mbox_amsg_entry *entry, *tmp; struct list_head tmp_list; INIT_LIST_HEAD(&tmp_list); spin_lock_bh(&nn->mbox_amsg.lock); list_splice_init(&nn->mbox_amsg.list, &tmp_list); spin_unlock_bh(&nn->mbox_amsg.lock); list_for_each_entry_safe(entry, tmp, &tmp_list, list) { int err = entry->cfg(nn, entry); if (err) nn_err(nn, "Config cmd %d to HW failed %d.\n", entry->cmd, err); list_del(&entry->list); kfree(entry); } } static int nfp_net_mc_cfg(struct nfp_net *nn, struct nfp_mbox_amsg_entry *entry) { unsigned char *addr = entry->msg; int ret; ret = nfp_net_mbox_lock(nn, NFP_NET_CFG_MULTICAST_SZ); if (ret) return ret; nn_writel(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_MULTICAST_MAC_HI, get_unaligned_be32(addr)); nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_MULTICAST_MAC_LO, get_unaligned_be16(addr + 4)); return nfp_net_mbox_reconfig_and_unlock(nn, entry->cmd); } static int nfp_net_mc_sync(struct net_device *netdev, const unsigned char *addr) { struct nfp_net *nn = netdev_priv(netdev); if (netdev_mc_count(netdev) > NFP_NET_CFG_MAC_MC_MAX) { nn_err(nn, "Requested number of MC addresses (%d) exceeds maximum (%d).\n", netdev_mc_count(netdev), NFP_NET_CFG_MAC_MC_MAX); return -EINVAL; } return nfp_net_sched_mbox_amsg_work(nn, NFP_NET_CFG_MBOX_CMD_MULTICAST_ADD, addr, NFP_NET_CFG_MULTICAST_SZ, nfp_net_mc_cfg); } static int nfp_net_mc_unsync(struct net_device *netdev, const unsigned char *addr) { struct nfp_net *nn = netdev_priv(netdev); return nfp_net_sched_mbox_amsg_work(nn, NFP_NET_CFG_MBOX_CMD_MULTICAST_DEL, addr, NFP_NET_CFG_MULTICAST_SZ, nfp_net_mc_cfg); } static void nfp_net_set_rx_mode(struct net_device *netdev) { struct nfp_net *nn = netdev_priv(netdev); u32 new_ctrl, new_ctrl_w1; new_ctrl = nn->dp.ctrl; new_ctrl_w1 = nn->dp.ctrl_w1; if (!netdev_mc_empty(netdev) || netdev->flags & IFF_ALLMULTI) new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_L2MC; else new_ctrl &= ~NFP_NET_CFG_CTRL_L2MC; if (netdev->flags & IFF_ALLMULTI) new_ctrl_w1 &= ~NFP_NET_CFG_CTRL_MCAST_FILTER; else new_ctrl_w1 |= nn->cap_w1 & NFP_NET_CFG_CTRL_MCAST_FILTER; if (netdev->flags & IFF_PROMISC) { if (nn->cap & NFP_NET_CFG_CTRL_PROMISC) new_ctrl |= NFP_NET_CFG_CTRL_PROMISC; else nn_warn(nn, "FW does not support promiscuous mode\n"); } else { new_ctrl &= ~NFP_NET_CFG_CTRL_PROMISC; } if ((nn->cap_w1 & NFP_NET_CFG_CTRL_MCAST_FILTER) && __dev_mc_sync(netdev, nfp_net_mc_sync, nfp_net_mc_unsync)) netdev_err(netdev, "Sync mc address failed\n"); if (new_ctrl == nn->dp.ctrl && new_ctrl_w1 == nn->dp.ctrl_w1) return; if (new_ctrl != nn->dp.ctrl) nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); if (new_ctrl_w1 != nn->dp.ctrl_w1) nn_writel(nn, NFP_NET_CFG_CTRL_WORD1, new_ctrl_w1); nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_GEN); nn->dp.ctrl = new_ctrl; nn->dp.ctrl_w1 = new_ctrl_w1; } static void nfp_net_rss_init_itbl(struct nfp_net *nn) { int i; for (i = 0; i < sizeof(nn->rss_itbl); i++) nn->rss_itbl[i] = ethtool_rxfh_indir_default(i, nn->dp.num_rx_rings); } static void nfp_net_dp_swap(struct nfp_net *nn, struct nfp_net_dp *dp) { struct nfp_net_dp new_dp = *dp; *dp = nn->dp; nn->dp = new_dp; nn->dp.netdev->mtu = new_dp.mtu; if (!netif_is_rxfh_configured(nn->dp.netdev)) nfp_net_rss_init_itbl(nn); } static int nfp_net_dp_swap_enable(struct nfp_net *nn, struct nfp_net_dp *dp) { unsigned int r; int err; nfp_net_dp_swap(nn, dp); for (r = 0; r < nn->max_r_vecs; r++) nfp_net_vector_assign_rings(&nn->dp, &nn->r_vecs[r], r); err = netif_set_real_num_queues(nn->dp.netdev, nn->dp.num_stack_tx_rings, nn->dp.num_rx_rings); if (err) return err; return nfp_net_set_config_and_enable(nn); } struct nfp_net_dp *nfp_net_clone_dp(struct nfp_net *nn) { struct nfp_net_dp *new; new = kmalloc(sizeof(*new), GFP_KERNEL); if (!new) return NULL; *new = nn->dp; new->xsk_pools = kmemdup(new->xsk_pools, array_size(nn->max_r_vecs, sizeof(new->xsk_pools)), GFP_KERNEL); if (!new->xsk_pools) { kfree(new); return NULL; } /* Clear things which need to be recomputed */ new->fl_bufsz = 0; new->tx_rings = NULL; new->rx_rings = NULL; new->num_r_vecs = 0; new->num_stack_tx_rings = 0; new->txrwb = NULL; new->txrwb_dma = 0; return new; } static void nfp_net_free_dp(struct nfp_net_dp *dp) { kfree(dp->xsk_pools); kfree(dp); } static int nfp_net_check_config(struct nfp_net *nn, struct nfp_net_dp *dp, struct netlink_ext_ack *extack) { unsigned int r, xsk_min_fl_bufsz; /* XDP-enabled tests */ if (!dp->xdp_prog) return 0; if (dp->fl_bufsz > PAGE_SIZE) { NL_SET_ERR_MSG_MOD(extack, "MTU too large w/ XDP enabled"); return -EINVAL; } if (dp->num_tx_rings > nn->max_tx_rings) { NL_SET_ERR_MSG_MOD(extack, "Insufficient number of TX rings w/ XDP enabled"); return -EINVAL; } xsk_min_fl_bufsz = nfp_net_calc_fl_bufsz_xsk(dp); for (r = 0; r < nn->max_r_vecs; r++) { if (!dp->xsk_pools[r]) continue; if (xsk_pool_get_rx_frame_size(dp->xsk_pools[r]) < xsk_min_fl_bufsz) { NL_SET_ERR_MSG_MOD(extack, "XSK buffer pool chunk size too small"); return -EINVAL; } } return 0; } int nfp_net_ring_reconfig(struct nfp_net *nn, struct nfp_net_dp *dp, struct netlink_ext_ack *extack) { int r, err; dp->fl_bufsz = nfp_net_calc_fl_bufsz(dp); dp->num_stack_tx_rings = dp->num_tx_rings; if (dp->xdp_prog) dp->num_stack_tx_rings -= dp->num_rx_rings; dp->num_r_vecs = max(dp->num_rx_rings, dp->num_stack_tx_rings); err = nfp_net_check_config(nn, dp, extack); if (err) goto exit_free_dp; if (!netif_running(dp->netdev)) { nfp_net_dp_swap(nn, dp); err = 0; goto exit_free_dp; } /* Prepare new rings */ for (r = nn->dp.num_r_vecs; r < dp->num_r_vecs; r++) { err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r); if (err) { dp->num_r_vecs = r; goto err_cleanup_vecs; } } err = nfp_net_rx_rings_prepare(nn, dp); if (err) goto err_cleanup_vecs; err = nfp_net_tx_rings_prepare(nn, dp); if (err) goto err_free_rx; /* Stop device, swap in new rings, try to start the firmware */ nfp_net_close_stack(nn); nfp_net_clear_config_and_disable(nn); err = nfp_net_dp_swap_enable(nn, dp); if (err) { int err2; nfp_net_clear_config_and_disable(nn); /* Try with old configuration and old rings */ err2 = nfp_net_dp_swap_enable(nn, dp); if (err2) nn_err(nn, "Can't restore ring config - FW communication failed (%d,%d)\n", err, err2); } for (r = dp->num_r_vecs - 1; r >= nn->dp.num_r_vecs; r--) nfp_net_cleanup_vector(nn, &nn->r_vecs[r]); nfp_net_rx_rings_free(dp); nfp_net_tx_rings_free(dp); nfp_net_open_stack(nn); exit_free_dp: nfp_net_free_dp(dp); return err; err_free_rx: nfp_net_rx_rings_free(dp); err_cleanup_vecs: for (r = dp->num_r_vecs - 1; r >= nn->dp.num_r_vecs; r--) nfp_net_cleanup_vector(nn, &nn->r_vecs[r]); nfp_net_free_dp(dp); return err; } static int nfp_net_change_mtu(struct net_device *netdev, int new_mtu) { struct nfp_net *nn = netdev_priv(netdev); struct nfp_net_dp *dp; int err; err = nfp_app_check_mtu(nn->app, netdev, new_mtu); if (err) return err; dp = nfp_net_clone_dp(nn); if (!dp) return -ENOMEM; dp->mtu = new_mtu; return nfp_net_ring_reconfig(nn, dp, NULL); } static int nfp_net_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid) { const u32 cmd = NFP_NET_CFG_MBOX_CMD_CTAG_FILTER_ADD; struct nfp_net *nn = netdev_priv(netdev); int err; /* Priority tagged packets with vlan id 0 are processed by the * NFP as untagged packets */ if (!vid) return 0; err = nfp_net_mbox_lock(nn, NFP_NET_CFG_VLAN_FILTER_SZ); if (err) return err; nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_VID, vid); nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_PROTO, ETH_P_8021Q); return nfp_net_mbox_reconfig_and_unlock(nn, cmd); } static int nfp_net_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid) { const u32 cmd = NFP_NET_CFG_MBOX_CMD_CTAG_FILTER_KILL; struct nfp_net *nn = netdev_priv(netdev); int err; /* Priority tagged packets with vlan id 0 are processed by the * NFP as untagged packets */ if (!vid) return 0; err = nfp_net_mbox_lock(nn, NFP_NET_CFG_VLAN_FILTER_SZ); if (err) return err; nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_VID, vid); nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_PROTO, ETH_P_8021Q); return nfp_net_mbox_reconfig_and_unlock(nn, cmd); } static void nfp_net_stat64(struct net_device *netdev, struct rtnl_link_stats64 *stats) { struct nfp_net *nn = netdev_priv(netdev); int r; /* Collect software stats */ for (r = 0; r < nn->max_r_vecs; r++) { struct nfp_net_r_vector *r_vec = &nn->r_vecs[r]; u64 data[3]; unsigned int start; do { start = u64_stats_fetch_begin(&r_vec->rx_sync); data[0] = r_vec->rx_pkts; data[1] = r_vec->rx_bytes; data[2] = r_vec->rx_drops; } while (u64_stats_fetch_retry(&r_vec->rx_sync, start)); stats->rx_packets += data[0]; stats->rx_bytes += data[1]; stats->rx_dropped += data[2]; do { start = u64_stats_fetch_begin(&r_vec->tx_sync); data[0] = r_vec->tx_pkts; data[1] = r_vec->tx_bytes; data[2] = r_vec->tx_errors; } while (u64_stats_fetch_retry(&r_vec->tx_sync, start)); stats->tx_packets += data[0]; stats->tx_bytes += data[1]; stats->tx_errors += data[2]; } /* Add in device stats */ stats->multicast += nn_readq(nn, NFP_NET_CFG_STATS_RX_MC_FRAMES); stats->rx_dropped += nn_readq(nn, NFP_NET_CFG_STATS_RX_DISCARDS); stats->rx_errors += nn_readq(nn, NFP_NET_CFG_STATS_RX_ERRORS); stats->tx_dropped += nn_readq(nn, NFP_NET_CFG_STATS_TX_DISCARDS); stats->tx_errors += nn_readq(nn, NFP_NET_CFG_STATS_TX_ERRORS); } static int nfp_net_set_features(struct net_device *netdev, netdev_features_t features) { netdev_features_t changed = netdev->features ^ features; struct nfp_net *nn = netdev_priv(netdev); u32 new_ctrl; int err; /* Assume this is not called with features we have not advertised */ new_ctrl = nn->dp.ctrl; if (changed & NETIF_F_RXCSUM) { if (features & NETIF_F_RXCSUM) new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY; else new_ctrl &= ~NFP_NET_CFG_CTRL_RXCSUM_ANY; } if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) { if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) new_ctrl |= NFP_NET_CFG_CTRL_TXCSUM; else new_ctrl &= ~NFP_NET_CFG_CTRL_TXCSUM; } if (changed & (NETIF_F_TSO | NETIF_F_TSO6)) { if (features & (NETIF_F_TSO | NETIF_F_TSO6)) new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_LSO2 ?: NFP_NET_CFG_CTRL_LSO; else new_ctrl &= ~NFP_NET_CFG_CTRL_LSO_ANY; } if (changed & NETIF_F_HW_VLAN_CTAG_RX) { if (features & NETIF_F_HW_VLAN_CTAG_RX) new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_RXVLAN_V2 ?: NFP_NET_CFG_CTRL_RXVLAN; else new_ctrl &= ~NFP_NET_CFG_CTRL_RXVLAN_ANY; } if (changed & NETIF_F_HW_VLAN_CTAG_TX) { if (features & NETIF_F_HW_VLAN_CTAG_TX) new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_TXVLAN_V2 ?: NFP_NET_CFG_CTRL_TXVLAN; else new_ctrl &= ~NFP_NET_CFG_CTRL_TXVLAN_ANY; } if (changed & NETIF_F_HW_VLAN_CTAG_FILTER) { if (features & NETIF_F_HW_VLAN_CTAG_FILTER) new_ctrl |= NFP_NET_CFG_CTRL_CTAG_FILTER; else new_ctrl &= ~NFP_NET_CFG_CTRL_CTAG_FILTER; } if (changed & NETIF_F_HW_VLAN_STAG_RX) { if (features & NETIF_F_HW_VLAN_STAG_RX) new_ctrl |= NFP_NET_CFG_CTRL_RXQINQ; else new_ctrl &= ~NFP_NET_CFG_CTRL_RXQINQ; } if (changed & NETIF_F_SG) { if (features & NETIF_F_SG) new_ctrl |= NFP_NET_CFG_CTRL_GATHER; else new_ctrl &= ~NFP_NET_CFG_CTRL_GATHER; } err = nfp_port_set_features(netdev, features); if (err) return err; nn_dbg(nn, "Feature change 0x%llx -> 0x%llx (changed=0x%llx)\n", netdev->features, features, changed); if (new_ctrl == nn->dp.ctrl) return 0; nn_dbg(nn, "NIC ctrl: 0x%x -> 0x%x\n", nn->dp.ctrl, new_ctrl); nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_GEN); if (err) return err; nn->dp.ctrl = new_ctrl; return 0; } static netdev_features_t nfp_net_fix_features(struct net_device *netdev, netdev_features_t features) { if ((features & NETIF_F_HW_VLAN_CTAG_RX) && (features & NETIF_F_HW_VLAN_STAG_RX)) { if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX) { features &= ~NETIF_F_HW_VLAN_CTAG_RX; netdev->wanted_features &= ~NETIF_F_HW_VLAN_CTAG_RX; netdev_warn(netdev, "S-tag and C-tag stripping can't be enabled at the same time. Enabling S-tag stripping and disabling C-tag stripping\n"); } else if (netdev->features & NETIF_F_HW_VLAN_STAG_RX) { features &= ~NETIF_F_HW_VLAN_STAG_RX; netdev->wanted_features &= ~NETIF_F_HW_VLAN_STAG_RX; netdev_warn(netdev, "S-tag and C-tag stripping can't be enabled at the same time. Enabling C-tag stripping and disabling S-tag stripping\n"); } } return features; } static netdev_features_t nfp_net_features_check(struct sk_buff *skb, struct net_device *dev, netdev_features_t features) { u8 l4_hdr; /* We can't do TSO over double tagged packets (802.1AD) */ features &= vlan_features_check(skb, features); if (!skb->encapsulation) return features; /* Ensure that inner L4 header offset fits into TX descriptor field */ if (skb_is_gso(skb)) { u32 hdrlen; hdrlen = skb_inner_tcp_all_headers(skb); /* Assume worst case scenario of having longest possible * metadata prepend - 8B */ if (unlikely(hdrlen > NFP_NET_LSO_MAX_HDR_SZ - 8)) features &= ~NETIF_F_GSO_MASK; } if (xfrm_offload(skb)) return features; /* VXLAN/GRE check */ switch (vlan_get_protocol(skb)) { case htons(ETH_P_IP): l4_hdr = ip_hdr(skb)->protocol; break; case htons(ETH_P_IPV6): l4_hdr = ipv6_hdr(skb)->nexthdr; break; default: return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); } if (skb->inner_protocol_type != ENCAP_TYPE_ETHER || skb->inner_protocol != htons(ETH_P_TEB) || (l4_hdr != IPPROTO_UDP && l4_hdr != IPPROTO_GRE) || (l4_hdr == IPPROTO_UDP && (skb_inner_mac_header(skb) - skb_transport_header(skb) != sizeof(struct udphdr) + sizeof(struct vxlanhdr)))) return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); return features; } static int nfp_net_get_phys_port_name(struct net_device *netdev, char *name, size_t len) { struct nfp_net *nn = netdev_priv(netdev); int n; /* If port is defined, devlink_port is registered and devlink core * is taking care of name formatting. */ if (nn->port) return -EOPNOTSUPP; if (nn->dp.is_vf || nn->vnic_no_name) return -EOPNOTSUPP; n = snprintf(name, len, "n%d", nn->id); if (n >= len) return -EINVAL; return 0; } static int nfp_net_xdp_setup_drv(struct nfp_net *nn, struct netdev_bpf *bpf) { struct bpf_prog *prog = bpf->prog; struct nfp_net_dp *dp; int err; if (!prog == !nn->dp.xdp_prog) { WRITE_ONCE(nn->dp.xdp_prog, prog); xdp_attachment_setup(&nn->xdp, bpf); return 0; } dp = nfp_net_clone_dp(nn); if (!dp) return -ENOMEM; dp->xdp_prog = prog; dp->num_tx_rings += prog ? nn->dp.num_rx_rings : -nn->dp.num_rx_rings; dp->rx_dma_dir = prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE; dp->rx_dma_off = prog ? XDP_PACKET_HEADROOM - nn->dp.rx_offset : 0; /* We need RX reconfig to remap the buffers (BIDIR vs FROM_DEV) */ err = nfp_net_ring_reconfig(nn, dp, bpf->extack); if (err) return err; xdp_attachment_setup(&nn->xdp, bpf); return 0; } static int nfp_net_xdp_setup_hw(struct nfp_net *nn, struct netdev_bpf *bpf) { int err; err = nfp_app_xdp_offload(nn->app, nn, bpf->prog, bpf->extack); if (err) return err; xdp_attachment_setup(&nn->xdp_hw, bpf); return 0; } static int nfp_net_xdp(struct net_device *netdev, struct netdev_bpf *xdp) { struct nfp_net *nn = netdev_priv(netdev); switch (xdp->command) { case XDP_SETUP_PROG: return nfp_net_xdp_setup_drv(nn, xdp); case XDP_SETUP_PROG_HW: return nfp_net_xdp_setup_hw(nn, xdp); case XDP_SETUP_XSK_POOL: return nfp_net_xsk_setup_pool(netdev, xdp->xsk.pool, xdp->xsk.queue_id); default: return nfp_app_bpf(nn->app, nn, xdp); } } static int nfp_net_set_mac_address(struct net_device *netdev, void *addr) { struct nfp_net *nn = netdev_priv(netdev); struct sockaddr *saddr = addr; int err; err = eth_prepare_mac_addr_change(netdev, addr); if (err) return err; nfp_net_write_mac_addr(nn, saddr->sa_data); err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_MACADDR); if (err) return err; eth_commit_mac_addr_change(netdev, addr); return 0; } static int nfp_net_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, struct net_device *dev, u32 filter_mask, int nlflags) { struct nfp_net *nn = netdev_priv(dev); u16 mode; if (!(nn->cap & NFP_NET_CFG_CTRL_VEPA)) return -EOPNOTSUPP; mode = (nn->dp.ctrl & NFP_NET_CFG_CTRL_VEPA) ? BRIDGE_MODE_VEPA : BRIDGE_MODE_VEB; return ndo_dflt_bridge_getlink(skb, pid, seq, dev, mode, 0, 0, nlflags, filter_mask, NULL); } static int nfp_net_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, u16 flags, struct netlink_ext_ack *extack) { struct nfp_net *nn = netdev_priv(dev); struct nlattr *attr, *br_spec; int rem, err; u32 new_ctrl; u16 mode; if (!(nn->cap & NFP_NET_CFG_CTRL_VEPA)) return -EOPNOTSUPP; br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); if (!br_spec) return -EINVAL; nla_for_each_nested(attr, br_spec, rem) { if (nla_type(attr) != IFLA_BRIDGE_MODE) continue; new_ctrl = nn->dp.ctrl; mode = nla_get_u16(attr); if (mode == BRIDGE_MODE_VEPA) new_ctrl |= NFP_NET_CFG_CTRL_VEPA; else if (mode == BRIDGE_MODE_VEB) new_ctrl &= ~NFP_NET_CFG_CTRL_VEPA; else return -EOPNOTSUPP; if (new_ctrl == nn->dp.ctrl) return 0; nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_GEN); if (!err) nn->dp.ctrl = new_ctrl; return err; } return -EINVAL; } const struct net_device_ops nfp_nfd3_netdev_ops = { .ndo_init = nfp_app_ndo_init, .ndo_uninit = nfp_app_ndo_uninit, .ndo_open = nfp_net_netdev_open, .ndo_stop = nfp_net_netdev_close, .ndo_start_xmit = nfp_net_tx, .ndo_get_stats64 = nfp_net_stat64, .ndo_vlan_rx_add_vid = nfp_net_vlan_rx_add_vid, .ndo_vlan_rx_kill_vid = nfp_net_vlan_rx_kill_vid, .ndo_set_vf_mac = nfp_app_set_vf_mac, .ndo_set_vf_vlan = nfp_app_set_vf_vlan, .ndo_set_vf_rate = nfp_app_set_vf_rate, .ndo_set_vf_spoofchk = nfp_app_set_vf_spoofchk, .ndo_set_vf_trust = nfp_app_set_vf_trust, .ndo_get_vf_config = nfp_app_get_vf_config, .ndo_set_vf_link_state = nfp_app_set_vf_link_state, .ndo_setup_tc = nfp_port_setup_tc, .ndo_tx_timeout = nfp_net_tx_timeout, .ndo_set_rx_mode = nfp_net_set_rx_mode, .ndo_change_mtu = nfp_net_change_mtu, .ndo_set_mac_address = nfp_net_set_mac_address, .ndo_set_features = nfp_net_set_features, .ndo_fix_features = nfp_net_fix_features, .ndo_features_check = nfp_net_features_check, .ndo_get_phys_port_name = nfp_net_get_phys_port_name, .ndo_bpf = nfp_net_xdp, .ndo_xsk_wakeup = nfp_net_xsk_wakeup, .ndo_bridge_getlink = nfp_net_bridge_getlink, .ndo_bridge_setlink = nfp_net_bridge_setlink, }; const struct net_device_ops nfp_nfdk_netdev_ops = { .ndo_init = nfp_app_ndo_init, .ndo_uninit = nfp_app_ndo_uninit, .ndo_open = nfp_net_netdev_open, .ndo_stop = nfp_net_netdev_close, .ndo_start_xmit = nfp_net_tx, .ndo_get_stats64 = nfp_net_stat64, .ndo_vlan_rx_add_vid = nfp_net_vlan_rx_add_vid, .ndo_vlan_rx_kill_vid = nfp_net_vlan_rx_kill_vid, .ndo_set_vf_mac = nfp_app_set_vf_mac, .ndo_set_vf_vlan = nfp_app_set_vf_vlan, .ndo_set_vf_rate = nfp_app_set_vf_rate, .ndo_set_vf_spoofchk = nfp_app_set_vf_spoofchk, .ndo_set_vf_trust = nfp_app_set_vf_trust, .ndo_get_vf_config = nfp_app_get_vf_config, .ndo_set_vf_link_state = nfp_app_set_vf_link_state, .ndo_setup_tc = nfp_port_setup_tc, .ndo_tx_timeout = nfp_net_tx_timeout, .ndo_set_rx_mode = nfp_net_set_rx_mode, .ndo_change_mtu = nfp_net_change_mtu, .ndo_set_mac_address = nfp_net_set_mac_address, .ndo_set_features = nfp_net_set_features, .ndo_fix_features = nfp_net_fix_features, .ndo_features_check = nfp_net_features_check, .ndo_get_phys_port_name = nfp_net_get_phys_port_name, .ndo_bpf = nfp_net_xdp, .ndo_bridge_getlink = nfp_net_bridge_getlink, .ndo_bridge_setlink = nfp_net_bridge_setlink, }; static int nfp_udp_tunnel_sync(struct net_device *netdev, unsigned int table) { struct nfp_net *nn = netdev_priv(netdev); int i; BUILD_BUG_ON(NFP_NET_N_VXLAN_PORTS & 1); for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i += 2) { struct udp_tunnel_info ti0, ti1; udp_tunnel_nic_get_port(netdev, table, i, &ti0); udp_tunnel_nic_get_port(netdev, table, i + 1, &ti1); nn_writel(nn, NFP_NET_CFG_VXLAN_PORT + i * sizeof(ti0.port), be16_to_cpu(ti1.port) << 16 | be16_to_cpu(ti0.port)); } return nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_VXLAN); } static const struct udp_tunnel_nic_info nfp_udp_tunnels = { .sync_table = nfp_udp_tunnel_sync, .flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP | UDP_TUNNEL_NIC_INFO_OPEN_ONLY, .tables = { { .n_entries = NFP_NET_N_VXLAN_PORTS, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN, }, }, }; /** * nfp_net_info() - Print general info about the NIC * @nn: NFP Net device to reconfigure */ void nfp_net_info(struct nfp_net *nn) { nn_info(nn, "NFP-6xxx %sNetdev: TxQs=%d/%d RxQs=%d/%d\n", nn->dp.is_vf ? "VF " : "", nn->dp.num_tx_rings, nn->max_tx_rings, nn->dp.num_rx_rings, nn->max_rx_rings); nn_info(nn, "VER: %d.%d.%d.%d, Maximum supported MTU: %d\n", nn->fw_ver.extend, nn->fw_ver.class, nn->fw_ver.major, nn->fw_ver.minor, nn->max_mtu); nn_info(nn, "CAP: %#x %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", nn->cap, nn->cap & NFP_NET_CFG_CTRL_PROMISC ? "PROMISC " : "", nn->cap & NFP_NET_CFG_CTRL_L2BC ? "L2BCFILT " : "", nn->cap & NFP_NET_CFG_CTRL_L2MC ? "L2MCFILT " : "", nn->cap & NFP_NET_CFG_CTRL_RXCSUM ? "RXCSUM " : "", nn->cap & NFP_NET_CFG_CTRL_TXCSUM ? "TXCSUM " : "", nn->cap & NFP_NET_CFG_CTRL_RXVLAN ? "RXVLAN " : "", nn->cap & NFP_NET_CFG_CTRL_TXVLAN ? "TXVLAN " : "", nn->cap & NFP_NET_CFG_CTRL_RXQINQ ? "RXQINQ " : "", nn->cap & NFP_NET_CFG_CTRL_RXVLAN_V2 ? "RXVLANv2 " : "", nn->cap & NFP_NET_CFG_CTRL_TXVLAN_V2 ? "TXVLANv2 " : "", nn->cap & NFP_NET_CFG_CTRL_SCATTER ? "SCATTER " : "", nn->cap & NFP_NET_CFG_CTRL_GATHER ? "GATHER " : "", nn->cap & NFP_NET_CFG_CTRL_LSO ? "TSO1 " : "", nn->cap & NFP_NET_CFG_CTRL_LSO2 ? "TSO2 " : "", nn->cap & NFP_NET_CFG_CTRL_RSS ? "RSS1 " : "", nn->cap & NFP_NET_CFG_CTRL_RSS2 ? "RSS2 " : "", nn->cap & NFP_NET_CFG_CTRL_CTAG_FILTER ? "CTAG_FILTER " : "", nn->cap & NFP_NET_CFG_CTRL_MSIXAUTO ? "AUTOMASK " : "", nn->cap & NFP_NET_CFG_CTRL_IRQMOD ? "IRQMOD " : "", nn->cap & NFP_NET_CFG_CTRL_TXRWB ? "TXRWB " : "", nn->cap & NFP_NET_CFG_CTRL_VEPA ? "VEPA " : "", nn->cap & NFP_NET_CFG_CTRL_VXLAN ? "VXLAN " : "", nn->cap & NFP_NET_CFG_CTRL_NVGRE ? "NVGRE " : "", nn->cap & NFP_NET_CFG_CTRL_CSUM_COMPLETE ? "RXCSUM_COMPLETE " : "", nn->cap & NFP_NET_CFG_CTRL_LIVE_ADDR ? "LIVE_ADDR " : "", nn->cap_w1 & NFP_NET_CFG_CTRL_MCAST_FILTER ? "MULTICAST_FILTER " : "", nfp_app_extra_cap(nn->app, nn)); } /** * nfp_net_alloc() - Allocate netdev and related structure * @pdev: PCI device * @dev_info: NFP ASIC params * @ctrl_bar: PCI IOMEM with vNIC config memory * @needs_netdev: Whether to allocate a netdev for this vNIC * @max_tx_rings: Maximum number of TX rings supported by device * @max_rx_rings: Maximum number of RX rings supported by device * * This function allocates a netdev device and fills in the initial * part of the @struct nfp_net structure. In case of control device * nfp_net structure is allocated without the netdev. * * Return: NFP Net device structure, or ERR_PTR on error. */ struct nfp_net * nfp_net_alloc(struct pci_dev *pdev, const struct nfp_dev_info *dev_info, void __iomem *ctrl_bar, bool needs_netdev, unsigned int max_tx_rings, unsigned int max_rx_rings) { u64 dma_mask = dma_get_mask(&pdev->dev); struct nfp_net *nn; int err; if (needs_netdev) { struct net_device *netdev; netdev = alloc_etherdev_mqs(sizeof(struct nfp_net), max_tx_rings, max_rx_rings); if (!netdev) return ERR_PTR(-ENOMEM); SET_NETDEV_DEV(netdev, &pdev->dev); nn = netdev_priv(netdev); nn->dp.netdev = netdev; } else { nn = vzalloc(sizeof(*nn)); if (!nn) return ERR_PTR(-ENOMEM); } nn->dp.dev = &pdev->dev; nn->dp.ctrl_bar = ctrl_bar; nn->dev_info = dev_info; nn->pdev = pdev; nfp_net_get_fw_version(&nn->fw_ver, ctrl_bar); switch (FIELD_GET(NFP_NET_CFG_VERSION_DP_MASK, nn->fw_ver.extend)) { case NFP_NET_CFG_VERSION_DP_NFD3: nn->dp.ops = &nfp_nfd3_ops; break; case NFP_NET_CFG_VERSION_DP_NFDK: if (nn->fw_ver.major < 5) { dev_err(&pdev->dev, "NFDK must use ABI 5 or newer, found: %d\n", nn->fw_ver.major); err = -EINVAL; goto err_free_nn; } nn->dp.ops = &nfp_nfdk_ops; break; default: err = -EINVAL; goto err_free_nn; } if ((dma_mask & nn->dp.ops->dma_mask) != dma_mask) { dev_err(&pdev->dev, "DMA mask of loaded firmware: %llx, required DMA mask: %llx\n", nn->dp.ops->dma_mask, dma_mask); err = -EINVAL; goto err_free_nn; } nn->max_tx_rings = max_tx_rings; nn->max_rx_rings = max_rx_rings; nn->dp.num_tx_rings = min_t(unsigned int, max_tx_rings, num_online_cpus()); nn->dp.num_rx_rings = min_t(unsigned int, max_rx_rings, netif_get_num_default_rss_queues()); nn->dp.num_r_vecs = max(nn->dp.num_tx_rings, nn->dp.num_rx_rings); nn->dp.num_r_vecs = min_t(unsigned int, nn->dp.num_r_vecs, num_online_cpus()); nn->max_r_vecs = nn->dp.num_r_vecs; nn->dp.xsk_pools = kcalloc(nn->max_r_vecs, sizeof(nn->dp.xsk_pools), GFP_KERNEL); if (!nn->dp.xsk_pools) { err = -ENOMEM; goto err_free_nn; } nn->dp.txd_cnt = NFP_NET_TX_DESCS_DEFAULT; nn->dp.rxd_cnt = NFP_NET_RX_DESCS_DEFAULT; sema_init(&nn->bar_lock, 1); spin_lock_init(&nn->reconfig_lock); spin_lock_init(&nn->link_status_lock); timer_setup(&nn->reconfig_timer, nfp_net_reconfig_timer, 0); err = nfp_net_tlv_caps_parse(&nn->pdev->dev, nn->dp.ctrl_bar, &nn->tlv_caps); if (err) goto err_free_nn; err = nfp_ccm_mbox_alloc(nn); if (err) goto err_free_nn; return nn; err_free_nn: if (nn->dp.netdev) free_netdev(nn->dp.netdev); else vfree(nn); return ERR_PTR(err); } /** * nfp_net_free() - Undo what @nfp_net_alloc() did * @nn: NFP Net device to reconfigure */ void nfp_net_free(struct nfp_net *nn) { WARN_ON(timer_pending(&nn->reconfig_timer) || nn->reconfig_posted); nfp_ccm_mbox_free(nn); kfree(nn->dp.xsk_pools); if (nn->dp.netdev) free_netdev(nn->dp.netdev); else vfree(nn); } /** * nfp_net_rss_key_sz() - Get current size of the RSS key * @nn: NFP Net device instance * * Return: size of the RSS key for currently selected hash function. */ unsigned int nfp_net_rss_key_sz(struct nfp_net *nn) { switch (nn->rss_hfunc) { case ETH_RSS_HASH_TOP: return NFP_NET_CFG_RSS_KEY_SZ; case ETH_RSS_HASH_XOR: return 0; case ETH_RSS_HASH_CRC32: return 4; } nn_warn(nn, "Unknown hash function: %u\n", nn->rss_hfunc); return 0; } /** * nfp_net_rss_init() - Set the initial RSS parameters * @nn: NFP Net device to reconfigure */ static void nfp_net_rss_init(struct nfp_net *nn) { unsigned long func_bit, rss_cap_hfunc; u32 reg; /* Read the RSS function capability and select first supported func */ reg = nn_readl(nn, NFP_NET_CFG_RSS_CAP); rss_cap_hfunc = FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC, reg); if (!rss_cap_hfunc) rss_cap_hfunc = FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC, NFP_NET_CFG_RSS_TOEPLITZ); func_bit = find_first_bit(&rss_cap_hfunc, NFP_NET_CFG_RSS_HFUNCS); if (func_bit == NFP_NET_CFG_RSS_HFUNCS) { dev_warn(nn->dp.dev, "Bad RSS config, defaulting to Toeplitz hash\n"); func_bit = ETH_RSS_HASH_TOP_BIT; } nn->rss_hfunc = 1 << func_bit; netdev_rss_key_fill(nn->rss_key, nfp_net_rss_key_sz(nn)); nfp_net_rss_init_itbl(nn); /* Enable IPv4/IPv6 TCP by default */ nn->rss_cfg = NFP_NET_CFG_RSS_IPV4_TCP | NFP_NET_CFG_RSS_IPV6_TCP | NFP_NET_CFG_RSS_IPV4_UDP | NFP_NET_CFG_RSS_IPV6_UDP | FIELD_PREP(NFP_NET_CFG_RSS_HFUNC, nn->rss_hfunc) | NFP_NET_CFG_RSS_MASK; } /** * nfp_net_irqmod_init() - Set the initial IRQ moderation parameters * @nn: NFP Net device to reconfigure */ static void nfp_net_irqmod_init(struct nfp_net *nn) { nn->rx_coalesce_usecs = 50; nn->rx_coalesce_max_frames = 64; nn->tx_coalesce_usecs = 50; nn->tx_coalesce_max_frames = 64; nn->rx_coalesce_adapt_on = true; nn->tx_coalesce_adapt_on = true; } static void nfp_net_netdev_init(struct nfp_net *nn) { struct net_device *netdev = nn->dp.netdev; nfp_net_write_mac_addr(nn, nn->dp.netdev->dev_addr); netdev->mtu = nn->dp.mtu; /* Advertise/enable offloads based on capabilities * * Note: netdev->features show the currently enabled features * and netdev->hw_features advertises which features are * supported. By default we enable most features. */ if (nn->cap & NFP_NET_CFG_CTRL_LIVE_ADDR) netdev->priv_flags |= IFF_LIVE_ADDR_CHANGE; netdev->hw_features = NETIF_F_HIGHDMA; if (nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY) { netdev->hw_features |= NETIF_F_RXCSUM; nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY; } if (nn->cap & NFP_NET_CFG_CTRL_TXCSUM) { netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM; nn->dp.ctrl |= NFP_NET_CFG_CTRL_TXCSUM; } if (nn->cap & NFP_NET_CFG_CTRL_GATHER) { netdev->hw_features |= NETIF_F_SG; nn->dp.ctrl |= NFP_NET_CFG_CTRL_GATHER; } if ((nn->cap & NFP_NET_CFG_CTRL_LSO && nn->fw_ver.major > 2) || nn->cap & NFP_NET_CFG_CTRL_LSO2) { netdev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6; nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_LSO2 ?: NFP_NET_CFG_CTRL_LSO; } if (nn->cap & NFP_NET_CFG_CTRL_RSS_ANY) netdev->hw_features |= NETIF_F_RXHASH; #ifdef CONFIG_NFP_NET_IPSEC if (nn->cap_w1 & NFP_NET_CFG_CTRL_IPSEC) netdev->hw_features |= NETIF_F_HW_ESP | NETIF_F_HW_ESP_TX_CSUM; #endif if (nn->cap & NFP_NET_CFG_CTRL_VXLAN) { if (nn->cap & NFP_NET_CFG_CTRL_LSO) { netdev->hw_features |= NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_PARTIAL; netdev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM; } netdev->udp_tunnel_nic_info = &nfp_udp_tunnels; nn->dp.ctrl |= NFP_NET_CFG_CTRL_VXLAN; } if (nn->cap & NFP_NET_CFG_CTRL_NVGRE) { if (nn->cap & NFP_NET_CFG_CTRL_LSO) netdev->hw_features |= NETIF_F_GSO_GRE; nn->dp.ctrl |= NFP_NET_CFG_CTRL_NVGRE; } if (nn->cap & (NFP_NET_CFG_CTRL_VXLAN | NFP_NET_CFG_CTRL_NVGRE)) netdev->hw_enc_features = netdev->hw_features; netdev->vlan_features = netdev->hw_features; if (nn->cap & NFP_NET_CFG_CTRL_RXVLAN_ANY) { netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX; nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_RXVLAN_V2 ?: NFP_NET_CFG_CTRL_RXVLAN; } if (nn->cap & NFP_NET_CFG_CTRL_TXVLAN_ANY) { if (nn->cap & NFP_NET_CFG_CTRL_LSO2) { nn_warn(nn, "Device advertises both TSO2 and TXVLAN. Refusing to enable TXVLAN.\n"); } else { netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX; nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_TXVLAN_V2 ?: NFP_NET_CFG_CTRL_TXVLAN; } } if (nn->cap & NFP_NET_CFG_CTRL_CTAG_FILTER) { netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER; nn->dp.ctrl |= NFP_NET_CFG_CTRL_CTAG_FILTER; } if (nn->cap & NFP_NET_CFG_CTRL_RXQINQ) { netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX; nn->dp.ctrl |= NFP_NET_CFG_CTRL_RXQINQ; } netdev->features = netdev->hw_features; if (nfp_app_has_tc(nn->app) && nn->port) netdev->hw_features |= NETIF_F_HW_TC; /* C-Tag strip and S-Tag strip can't be supported simultaneously, * so enable C-Tag strip and disable S-Tag strip by default. */ netdev->features &= ~NETIF_F_HW_VLAN_STAG_RX; nn->dp.ctrl &= ~NFP_NET_CFG_CTRL_RXQINQ; netdev->xdp_features = NETDEV_XDP_ACT_BASIC; if (nn->app && nn->app->type->id == NFP_APP_BPF_NIC) netdev->xdp_features |= NETDEV_XDP_ACT_HW_OFFLOAD; /* Finalise the netdev setup */ switch (nn->dp.ops->version) { case NFP_NFD_VER_NFD3: netdev->netdev_ops = &nfp_nfd3_netdev_ops; netdev->xdp_features |= NETDEV_XDP_ACT_XSK_ZEROCOPY; break; case NFP_NFD_VER_NFDK: netdev->netdev_ops = &nfp_nfdk_netdev_ops; break; } netdev->watchdog_timeo = msecs_to_jiffies(5 * 1000); /* MTU range: 68 - hw-specific max */ netdev->min_mtu = ETH_MIN_MTU; netdev->max_mtu = nn->max_mtu; netif_set_tso_max_segs(netdev, NFP_NET_LSO_MAX_SEGS); netif_carrier_off(netdev); nfp_net_set_ethtool_ops(netdev); } static int nfp_net_read_caps(struct nfp_net *nn) { /* Get some of the read-only fields from the BAR */ nn->cap = nn_readl(nn, NFP_NET_CFG_CAP); nn->cap_w1 = nn_readl(nn, NFP_NET_CFG_CAP_WORD1); nn->max_mtu = nn_readl(nn, NFP_NET_CFG_MAX_MTU); /* ABI 4.x and ctrl vNIC always use chained metadata, in other cases * we allow use of non-chained metadata if RSS(v1) is the only * advertised capability requiring metadata. */ nn->dp.chained_metadata_format = nn->fw_ver.major == 4 || !nn->dp.netdev || !(nn->cap & NFP_NET_CFG_CTRL_RSS) || nn->cap & NFP_NET_CFG_CTRL_CHAIN_META; /* RSS(v1) uses non-chained metadata format, except in ABI 4.x where * it has the same meaning as RSSv2. */ if (nn->dp.chained_metadata_format && nn->fw_ver.major != 4) nn->cap &= ~NFP_NET_CFG_CTRL_RSS; /* Determine RX packet/metadata boundary offset */ if (nn->fw_ver.major >= 2) { u32 reg; reg = nn_readl(nn, NFP_NET_CFG_RX_OFFSET); if (reg > NFP_NET_MAX_PREPEND) { nn_err(nn, "Invalid rx offset: %d\n", reg); return -EINVAL; } nn->dp.rx_offset = reg; } else { nn->dp.rx_offset = NFP_NET_RX_OFFSET; } /* Mask out NFD-version-specific features */ nn->cap &= nn->dp.ops->cap_mask; /* For control vNICs mask out the capabilities app doesn't want. */ if (!nn->dp.netdev) nn->cap &= nn->app->type->ctrl_cap_mask; return 0; } /** * nfp_net_init() - Initialise/finalise the nfp_net structure * @nn: NFP Net device structure * * Return: 0 on success or negative errno on error. */ int nfp_net_init(struct nfp_net *nn) { int err; nn->dp.rx_dma_dir = DMA_FROM_DEVICE; err = nfp_net_read_caps(nn); if (err) return err; /* Set default MTU and Freelist buffer size */ if (!nfp_net_is_data_vnic(nn) && nn->app->ctrl_mtu) { nn->dp.mtu = min(nn->app->ctrl_mtu, nn->max_mtu); } else if (nn->max_mtu < NFP_NET_DEFAULT_MTU) { nn->dp.mtu = nn->max_mtu; } else { nn->dp.mtu = NFP_NET_DEFAULT_MTU; } nn->dp.fl_bufsz = nfp_net_calc_fl_bufsz(&nn->dp); if (nfp_app_ctrl_uses_data_vnics(nn->app)) nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_CMSG_DATA; if (nn->cap & NFP_NET_CFG_CTRL_RSS_ANY) { nfp_net_rss_init(nn); nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_RSS2 ?: NFP_NET_CFG_CTRL_RSS; } /* Allow L2 Broadcast and Multicast through by default, if supported */ if (nn->cap & NFP_NET_CFG_CTRL_L2BC) nn->dp.ctrl |= NFP_NET_CFG_CTRL_L2BC; /* Allow IRQ moderation, if supported */ if (nn->cap & NFP_NET_CFG_CTRL_IRQMOD) { nfp_net_irqmod_init(nn); nn->dp.ctrl |= NFP_NET_CFG_CTRL_IRQMOD; } /* Enable TX pointer writeback, if supported */ if (nn->cap & NFP_NET_CFG_CTRL_TXRWB) nn->dp.ctrl |= NFP_NET_CFG_CTRL_TXRWB; if (nn->cap_w1 & NFP_NET_CFG_CTRL_MCAST_FILTER) nn->dp.ctrl_w1 |= NFP_NET_CFG_CTRL_MCAST_FILTER; /* Stash the re-configuration queue away. First odd queue in TX Bar */ nn->qcp_cfg = nn->tx_bar + NFP_QCP_QUEUE_ADDR_SZ; /* Make sure the FW knows the netdev is supposed to be disabled here */ nn_writel(nn, NFP_NET_CFG_CTRL, 0); nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0); nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0); nn_writel(nn, NFP_NET_CFG_CTRL_WORD1, 0); err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_RING | NFP_NET_CFG_UPDATE_GEN); if (err) return err; if (nn->dp.netdev) { nfp_net_netdev_init(nn); err = nfp_ccm_mbox_init(nn); if (err) return err; err = nfp_net_tls_init(nn); if (err) goto err_clean_mbox; nfp_net_ipsec_init(nn); } nfp_net_vecs_init(nn); if (!nn->dp.netdev) return 0; spin_lock_init(&nn->mbox_amsg.lock); INIT_LIST_HEAD(&nn->mbox_amsg.list); INIT_WORK(&nn->mbox_amsg.work, nfp_net_mbox_amsg_work); return register_netdev(nn->dp.netdev); err_clean_mbox: nfp_ccm_mbox_clean(nn); return err; } /** * nfp_net_clean() - Undo what nfp_net_init() did. * @nn: NFP Net device structure */ void nfp_net_clean(struct nfp_net *nn) { if (!nn->dp.netdev) return; unregister_netdev(nn->dp.netdev); nfp_net_ipsec_clean(nn); nfp_ccm_mbox_clean(nn); flush_work(&nn->mbox_amsg.work); nfp_net_reconfig_wait_posted(nn); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1