Contributors: 13
Author Tokens Token Proportion Commits Commit Proportion
Giuseppe Cavallaro 641 69.37% 10 33.33%
Corentin Labbe 125 13.53% 4 13.33%
Vince Bridgers 73 7.90% 2 6.67%
Jose Abreu 45 4.87% 2 6.67%
Joao Pinto 9 0.97% 2 6.67%
Jiri Pirko 8 0.87% 3 10.00%
Florian Fainelli 8 0.87% 1 3.33%
Deepak Sikri 7 0.76% 1 3.33%
Domen Puncer 3 0.32% 1 3.33%
Thomas Gleixner 2 0.22% 1 3.33%
Jakub Kiciński 1 0.11% 1 3.33%
Stephen Hemminger 1 0.11% 1 3.33%
Alexandre Torgue 1 0.11% 1 3.33%
Total 924 30


// SPDX-License-Identifier: GPL-2.0-only
/*******************************************************************************
  This is the driver for the MAC 10/100 on-chip Ethernet controller
  currently tested on all the ST boards based on STb7109 and stx7200 SoCs.

  DWC Ether MAC 10/100 Universal version 4.0 has been used for developing
  this code.

  This only implements the mac core functions for this chip.

  Copyright (C) 2007-2009  STMicroelectronics Ltd


  Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
*******************************************************************************/

#include <linux/crc32.h>
#include <asm/io.h>
#include "stmmac.h"
#include "dwmac100.h"

static void dwmac100_core_init(struct mac_device_info *hw,
			       struct net_device *dev)
{
	void __iomem *ioaddr = hw->pcsr;
	u32 value = readl(ioaddr + MAC_CONTROL);

	value |= MAC_CORE_INIT;

	writel(value, ioaddr + MAC_CONTROL);

#ifdef STMMAC_VLAN_TAG_USED
	writel(ETH_P_8021Q, ioaddr + MAC_VLAN1);
#endif
}

static void dwmac100_dump_mac_regs(struct mac_device_info *hw, u32 *reg_space)
{
	void __iomem *ioaddr = hw->pcsr;

	reg_space[MAC_CONTROL / 4] = readl(ioaddr + MAC_CONTROL);
	reg_space[MAC_ADDR_HIGH / 4] = readl(ioaddr + MAC_ADDR_HIGH);
	reg_space[MAC_ADDR_LOW / 4] = readl(ioaddr + MAC_ADDR_LOW);
	reg_space[MAC_HASH_HIGH / 4] = readl(ioaddr + MAC_HASH_HIGH);
	reg_space[MAC_HASH_LOW / 4] = readl(ioaddr + MAC_HASH_LOW);
	reg_space[MAC_FLOW_CTRL / 4] = readl(ioaddr + MAC_FLOW_CTRL);
	reg_space[MAC_VLAN1 / 4] = readl(ioaddr + MAC_VLAN1);
	reg_space[MAC_VLAN2 / 4] = readl(ioaddr + MAC_VLAN2);
}

static int dwmac100_rx_ipc_enable(struct mac_device_info *hw)
{
	return 0;
}

static int dwmac100_irq_status(struct mac_device_info *hw,
			       struct stmmac_extra_stats *x)
{
	return 0;
}

static void dwmac100_set_umac_addr(struct mac_device_info *hw,
				   const unsigned char *addr,
				   unsigned int reg_n)
{
	void __iomem *ioaddr = hw->pcsr;
	stmmac_set_mac_addr(ioaddr, addr, MAC_ADDR_HIGH, MAC_ADDR_LOW);
}

static void dwmac100_get_umac_addr(struct mac_device_info *hw,
				   unsigned char *addr,
				   unsigned int reg_n)
{
	void __iomem *ioaddr = hw->pcsr;
	stmmac_get_mac_addr(ioaddr, addr, MAC_ADDR_HIGH, MAC_ADDR_LOW);
}

static void dwmac100_set_filter(struct mac_device_info *hw,
				struct net_device *dev)
{
	void __iomem *ioaddr = (void __iomem *)dev->base_addr;
	u32 value = readl(ioaddr + MAC_CONTROL);

	if (dev->flags & IFF_PROMISC) {
		value |= MAC_CONTROL_PR;
		value &= ~(MAC_CONTROL_PM | MAC_CONTROL_IF | MAC_CONTROL_HO |
			   MAC_CONTROL_HP);
	} else if ((netdev_mc_count(dev) > HASH_TABLE_SIZE)
		   || (dev->flags & IFF_ALLMULTI)) {
		value |= MAC_CONTROL_PM;
		value &= ~(MAC_CONTROL_PR | MAC_CONTROL_IF | MAC_CONTROL_HO);
		writel(0xffffffff, ioaddr + MAC_HASH_HIGH);
		writel(0xffffffff, ioaddr + MAC_HASH_LOW);
	} else if (netdev_mc_empty(dev)) {	/* no multicast */
		value &= ~(MAC_CONTROL_PM | MAC_CONTROL_PR | MAC_CONTROL_IF |
			   MAC_CONTROL_HO | MAC_CONTROL_HP);
	} else {
		u32 mc_filter[2];
		struct netdev_hw_addr *ha;

		/* Perfect filter mode for physical address and Hash
		 * filter for multicast
		 */
		value |= MAC_CONTROL_HP;
		value &= ~(MAC_CONTROL_PM | MAC_CONTROL_PR |
			   MAC_CONTROL_IF | MAC_CONTROL_HO);

		memset(mc_filter, 0, sizeof(mc_filter));
		netdev_for_each_mc_addr(ha, dev) {
			/* The upper 6 bits of the calculated CRC are used to
			 * index the contens of the hash table
			 */
			int bit_nr = ether_crc(ETH_ALEN, ha->addr) >> 26;
			/* The most significant bit determines the register to
			 * use (H/L) while the other 5 bits determine the bit
			 * within the register.
			 */
			mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
		}
		writel(mc_filter[0], ioaddr + MAC_HASH_LOW);
		writel(mc_filter[1], ioaddr + MAC_HASH_HIGH);
	}

	writel(value, ioaddr + MAC_CONTROL);
}

static void dwmac100_flow_ctrl(struct mac_device_info *hw, unsigned int duplex,
			       unsigned int fc, unsigned int pause_time,
			       u32 tx_cnt)
{
	void __iomem *ioaddr = hw->pcsr;
	unsigned int flow = MAC_FLOW_CTRL_ENABLE;

	if (duplex)
		flow |= (pause_time << MAC_FLOW_CTRL_PT_SHIFT);
	writel(flow, ioaddr + MAC_FLOW_CTRL);
}

/* No PMT module supported on ST boards with this Eth chip. */
static void dwmac100_pmt(struct mac_device_info *hw, unsigned long mode)
{
	return;
}

static void dwmac100_set_mac_loopback(void __iomem *ioaddr, bool enable)
{
	u32 value = readl(ioaddr + MAC_CONTROL);

	if (enable)
		value |= MAC_CONTROL_OM;
	else
		value &= ~MAC_CONTROL_OM;

	writel(value, ioaddr + MAC_CONTROL);
}

const struct stmmac_ops dwmac100_ops = {
	.core_init = dwmac100_core_init,
	.set_mac = stmmac_set_mac,
	.rx_ipc = dwmac100_rx_ipc_enable,
	.dump_regs = dwmac100_dump_mac_regs,
	.host_irq_status = dwmac100_irq_status,
	.set_filter = dwmac100_set_filter,
	.flow_ctrl = dwmac100_flow_ctrl,
	.pmt = dwmac100_pmt,
	.set_umac_addr = dwmac100_set_umac_addr,
	.get_umac_addr = dwmac100_get_umac_addr,
	.set_mac_loopback = dwmac100_set_mac_loopback,
};

int dwmac100_setup(struct stmmac_priv *priv)
{
	struct mac_device_info *mac = priv->hw;

	dev_info(priv->device, "\tDWMAC100\n");

	mac->pcsr = priv->ioaddr;
	mac->link.duplex = MAC_CONTROL_F;
	mac->link.speed10 = 0;
	mac->link.speed100 = 0;
	mac->link.speed1000 = 0;
	mac->link.speed_mask = MAC_CONTROL_PS;
	mac->mii.addr = MAC_MII_ADDR;
	mac->mii.data = MAC_MII_DATA;
	mac->mii.addr_shift = 11;
	mac->mii.addr_mask = 0x0000F800;
	mac->mii.reg_shift = 6;
	mac->mii.reg_mask = 0x000007C0;
	mac->mii.clk_csr_shift = 2;
	mac->mii.clk_csr_mask = GENMASK(5, 2);

	return 0;
}