Contributors: 6
Author Tokens Token Proportion Commits Commit Proportion
Roger Quadros 10188 92.16% 3 16.67%
MD Danish Anwar 666 6.02% 8 44.44%
Grygorii Strashko 99 0.90% 1 5.56%
Jan Kiszka 84 0.76% 3 16.67%
Rob Herring 9 0.08% 1 5.56%
Dan Carpenter 9 0.08% 2 11.11%
Total 11055 18


// SPDX-License-Identifier: GPL-2.0

/* Texas Instruments ICSSG Ethernet Driver
 *
 * Copyright (C) 2018-2022 Texas Instruments Incorporated - https://www.ti.com/
 *
 */

#include <linux/bitops.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/dma/ti-cppi5.h>
#include <linux/etherdevice.h>
#include <linux/genalloc.h>
#include <linux/if_vlan.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/mfd/syscon.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_mdio.h>
#include <linux/of_net.h>
#include <linux/platform_device.h>
#include <linux/phy.h>
#include <linux/property.h>
#include <linux/remoteproc/pruss.h>
#include <linux/regmap.h>
#include <linux/remoteproc.h>

#include "icssg_prueth.h"
#include "icssg_mii_rt.h"
#include "../k3-cppi-desc-pool.h"

#define PRUETH_MODULE_DESCRIPTION "PRUSS ICSSG Ethernet driver"

/* Netif debug messages possible */
#define PRUETH_EMAC_DEBUG       (NETIF_MSG_DRV | \
				 NETIF_MSG_PROBE | \
				 NETIF_MSG_LINK | \
				 NETIF_MSG_TIMER | \
				 NETIF_MSG_IFDOWN | \
				 NETIF_MSG_IFUP | \
				 NETIF_MSG_RX_ERR | \
				 NETIF_MSG_TX_ERR | \
				 NETIF_MSG_TX_QUEUED | \
				 NETIF_MSG_INTR | \
				 NETIF_MSG_TX_DONE | \
				 NETIF_MSG_RX_STATUS | \
				 NETIF_MSG_PKTDATA | \
				 NETIF_MSG_HW | \
				 NETIF_MSG_WOL)

#define prueth_napi_to_emac(napi) container_of(napi, struct prueth_emac, napi_rx)

/* CTRLMMR_ICSSG_RGMII_CTRL register bits */
#define ICSSG_CTRL_RGMII_ID_MODE                BIT(24)

#define IEP_DEFAULT_CYCLE_TIME_NS	1000000	/* 1 ms */

static void prueth_cleanup_rx_chns(struct prueth_emac *emac,
				   struct prueth_rx_chn *rx_chn,
				   int max_rflows)
{
	if (rx_chn->desc_pool)
		k3_cppi_desc_pool_destroy(rx_chn->desc_pool);

	if (rx_chn->rx_chn)
		k3_udma_glue_release_rx_chn(rx_chn->rx_chn);
}

static void prueth_cleanup_tx_chns(struct prueth_emac *emac)
{
	int i;

	for (i = 0; i < emac->tx_ch_num; i++) {
		struct prueth_tx_chn *tx_chn = &emac->tx_chns[i];

		if (tx_chn->desc_pool)
			k3_cppi_desc_pool_destroy(tx_chn->desc_pool);

		if (tx_chn->tx_chn)
			k3_udma_glue_release_tx_chn(tx_chn->tx_chn);

		/* Assume prueth_cleanup_tx_chns() is called at the
		 * end after all channel resources are freed
		 */
		memset(tx_chn, 0, sizeof(*tx_chn));
	}
}

static void prueth_ndev_del_tx_napi(struct prueth_emac *emac, int num)
{
	int i;

	for (i = 0; i < num; i++) {
		struct prueth_tx_chn *tx_chn = &emac->tx_chns[i];

		if (tx_chn->irq)
			free_irq(tx_chn->irq, tx_chn);
		netif_napi_del(&tx_chn->napi_tx);
	}
}

static void prueth_xmit_free(struct prueth_tx_chn *tx_chn,
			     struct cppi5_host_desc_t *desc)
{
	struct cppi5_host_desc_t *first_desc, *next_desc;
	dma_addr_t buf_dma, next_desc_dma;
	u32 buf_dma_len;

	first_desc = desc;
	next_desc = first_desc;

	cppi5_hdesc_get_obuf(first_desc, &buf_dma, &buf_dma_len);
	k3_udma_glue_tx_cppi5_to_dma_addr(tx_chn->tx_chn, &buf_dma);

	dma_unmap_single(tx_chn->dma_dev, buf_dma, buf_dma_len,
			 DMA_TO_DEVICE);

	next_desc_dma = cppi5_hdesc_get_next_hbdesc(first_desc);
	k3_udma_glue_tx_cppi5_to_dma_addr(tx_chn->tx_chn, &next_desc_dma);
	while (next_desc_dma) {
		next_desc = k3_cppi_desc_pool_dma2virt(tx_chn->desc_pool,
						       next_desc_dma);
		cppi5_hdesc_get_obuf(next_desc, &buf_dma, &buf_dma_len);
		k3_udma_glue_tx_cppi5_to_dma_addr(tx_chn->tx_chn, &buf_dma);

		dma_unmap_page(tx_chn->dma_dev, buf_dma, buf_dma_len,
			       DMA_TO_DEVICE);

		next_desc_dma = cppi5_hdesc_get_next_hbdesc(next_desc);
		k3_udma_glue_tx_cppi5_to_dma_addr(tx_chn->tx_chn, &next_desc_dma);

		k3_cppi_desc_pool_free(tx_chn->desc_pool, next_desc);
	}

	k3_cppi_desc_pool_free(tx_chn->desc_pool, first_desc);
}

static int emac_tx_complete_packets(struct prueth_emac *emac, int chn,
				    int budget)
{
	struct net_device *ndev = emac->ndev;
	struct cppi5_host_desc_t *desc_tx;
	struct netdev_queue *netif_txq;
	struct prueth_tx_chn *tx_chn;
	unsigned int total_bytes = 0;
	struct sk_buff *skb;
	dma_addr_t desc_dma;
	int res, num_tx = 0;
	void **swdata;

	tx_chn = &emac->tx_chns[chn];

	while (true) {
		res = k3_udma_glue_pop_tx_chn(tx_chn->tx_chn, &desc_dma);
		if (res == -ENODATA)
			break;

		/* teardown completion */
		if (cppi5_desc_is_tdcm(desc_dma)) {
			if (atomic_dec_and_test(&emac->tdown_cnt))
				complete(&emac->tdown_complete);
			break;
		}

		desc_tx = k3_cppi_desc_pool_dma2virt(tx_chn->desc_pool,
						     desc_dma);
		swdata = cppi5_hdesc_get_swdata(desc_tx);

		skb = *(swdata);
		prueth_xmit_free(tx_chn, desc_tx);

		ndev = skb->dev;
		ndev->stats.tx_packets++;
		ndev->stats.tx_bytes += skb->len;
		total_bytes += skb->len;
		napi_consume_skb(skb, budget);
		num_tx++;
	}

	if (!num_tx)
		return 0;

	netif_txq = netdev_get_tx_queue(ndev, chn);
	netdev_tx_completed_queue(netif_txq, num_tx, total_bytes);

	if (netif_tx_queue_stopped(netif_txq)) {
		/* If the TX queue was stopped, wake it now
		 * if we have enough room.
		 */
		__netif_tx_lock(netif_txq, smp_processor_id());
		if (netif_running(ndev) &&
		    (k3_cppi_desc_pool_avail(tx_chn->desc_pool) >=
		     MAX_SKB_FRAGS))
			netif_tx_wake_queue(netif_txq);
		__netif_tx_unlock(netif_txq);
	}

	return num_tx;
}

static int emac_napi_tx_poll(struct napi_struct *napi_tx, int budget)
{
	struct prueth_tx_chn *tx_chn = prueth_napi_to_tx_chn(napi_tx);
	struct prueth_emac *emac = tx_chn->emac;
	int num_tx_packets;

	num_tx_packets = emac_tx_complete_packets(emac, tx_chn->id, budget);

	if (num_tx_packets >= budget)
		return budget;

	if (napi_complete_done(napi_tx, num_tx_packets))
		enable_irq(tx_chn->irq);

	return num_tx_packets;
}

static irqreturn_t prueth_tx_irq(int irq, void *dev_id)
{
	struct prueth_tx_chn *tx_chn = dev_id;

	disable_irq_nosync(irq);
	napi_schedule(&tx_chn->napi_tx);

	return IRQ_HANDLED;
}

static int prueth_ndev_add_tx_napi(struct prueth_emac *emac)
{
	struct prueth *prueth = emac->prueth;
	int i, ret;

	for (i = 0; i < emac->tx_ch_num; i++) {
		struct prueth_tx_chn *tx_chn = &emac->tx_chns[i];

		netif_napi_add_tx(emac->ndev, &tx_chn->napi_tx, emac_napi_tx_poll);
		ret = request_irq(tx_chn->irq, prueth_tx_irq,
				  IRQF_TRIGGER_HIGH, tx_chn->name,
				  tx_chn);
		if (ret) {
			netif_napi_del(&tx_chn->napi_tx);
			dev_err(prueth->dev, "unable to request TX IRQ %d\n",
				tx_chn->irq);
			goto fail;
		}
	}

	return 0;
fail:
	prueth_ndev_del_tx_napi(emac, i);
	return ret;
}

static int prueth_init_tx_chns(struct prueth_emac *emac)
{
	static const struct k3_ring_cfg ring_cfg = {
		.elm_size = K3_RINGACC_RING_ELSIZE_8,
		.mode = K3_RINGACC_RING_MODE_RING,
		.flags = 0,
		.size = PRUETH_MAX_TX_DESC,
	};
	struct k3_udma_glue_tx_channel_cfg tx_cfg;
	struct device *dev = emac->prueth->dev;
	struct net_device *ndev = emac->ndev;
	int ret, slice, i;
	u32 hdesc_size;

	slice = prueth_emac_slice(emac);
	if (slice < 0)
		return slice;

	init_completion(&emac->tdown_complete);

	hdesc_size = cppi5_hdesc_calc_size(true, PRUETH_NAV_PS_DATA_SIZE,
					   PRUETH_NAV_SW_DATA_SIZE);
	memset(&tx_cfg, 0, sizeof(tx_cfg));
	tx_cfg.swdata_size = PRUETH_NAV_SW_DATA_SIZE;
	tx_cfg.tx_cfg = ring_cfg;
	tx_cfg.txcq_cfg = ring_cfg;

	for (i = 0; i < emac->tx_ch_num; i++) {
		struct prueth_tx_chn *tx_chn = &emac->tx_chns[i];

		/* To differentiate channels for SLICE0 vs SLICE1 */
		snprintf(tx_chn->name, sizeof(tx_chn->name),
			 "tx%d-%d", slice, i);

		tx_chn->emac = emac;
		tx_chn->id = i;
		tx_chn->descs_num = PRUETH_MAX_TX_DESC;

		tx_chn->tx_chn =
			k3_udma_glue_request_tx_chn(dev, tx_chn->name,
						    &tx_cfg);
		if (IS_ERR(tx_chn->tx_chn)) {
			ret = PTR_ERR(tx_chn->tx_chn);
			tx_chn->tx_chn = NULL;
			netdev_err(ndev,
				   "Failed to request tx dma ch: %d\n", ret);
			goto fail;
		}

		tx_chn->dma_dev = k3_udma_glue_tx_get_dma_device(tx_chn->tx_chn);
		tx_chn->desc_pool =
			k3_cppi_desc_pool_create_name(tx_chn->dma_dev,
						      tx_chn->descs_num,
						      hdesc_size,
						      tx_chn->name);
		if (IS_ERR(tx_chn->desc_pool)) {
			ret = PTR_ERR(tx_chn->desc_pool);
			tx_chn->desc_pool = NULL;
			netdev_err(ndev, "Failed to create tx pool: %d\n", ret);
			goto fail;
		}

		ret = k3_udma_glue_tx_get_irq(tx_chn->tx_chn);
		if (ret < 0) {
			netdev_err(ndev, "failed to get tx irq\n");
			goto fail;
		}
		tx_chn->irq = ret;

		snprintf(tx_chn->name, sizeof(tx_chn->name), "%s-tx%d",
			 dev_name(dev), tx_chn->id);
	}

	return 0;

fail:
	prueth_cleanup_tx_chns(emac);
	return ret;
}

static int prueth_init_rx_chns(struct prueth_emac *emac,
			       struct prueth_rx_chn *rx_chn,
			       char *name, u32 max_rflows,
			       u32 max_desc_num)
{
	struct k3_udma_glue_rx_channel_cfg rx_cfg;
	struct device *dev = emac->prueth->dev;
	struct net_device *ndev = emac->ndev;
	u32 fdqring_id, hdesc_size;
	int i, ret = 0, slice;

	slice = prueth_emac_slice(emac);
	if (slice < 0)
		return slice;

	/* To differentiate channels for SLICE0 vs SLICE1 */
	snprintf(rx_chn->name, sizeof(rx_chn->name), "%s%d", name, slice);

	hdesc_size = cppi5_hdesc_calc_size(true, PRUETH_NAV_PS_DATA_SIZE,
					   PRUETH_NAV_SW_DATA_SIZE);
	memset(&rx_cfg, 0, sizeof(rx_cfg));
	rx_cfg.swdata_size = PRUETH_NAV_SW_DATA_SIZE;
	rx_cfg.flow_id_num = max_rflows;
	rx_cfg.flow_id_base = -1; /* udmax will auto select flow id base */

	/* init all flows */
	rx_chn->dev = dev;
	rx_chn->descs_num = max_desc_num;

	rx_chn->rx_chn = k3_udma_glue_request_rx_chn(dev, rx_chn->name,
						     &rx_cfg);
	if (IS_ERR(rx_chn->rx_chn)) {
		ret = PTR_ERR(rx_chn->rx_chn);
		rx_chn->rx_chn = NULL;
		netdev_err(ndev, "Failed to request rx dma ch: %d\n", ret);
		goto fail;
	}

	rx_chn->dma_dev = k3_udma_glue_rx_get_dma_device(rx_chn->rx_chn);
	rx_chn->desc_pool = k3_cppi_desc_pool_create_name(rx_chn->dma_dev,
							  rx_chn->descs_num,
							  hdesc_size,
							  rx_chn->name);
	if (IS_ERR(rx_chn->desc_pool)) {
		ret = PTR_ERR(rx_chn->desc_pool);
		rx_chn->desc_pool = NULL;
		netdev_err(ndev, "Failed to create rx pool: %d\n", ret);
		goto fail;
	}

	emac->rx_flow_id_base = k3_udma_glue_rx_get_flow_id_base(rx_chn->rx_chn);
	netdev_dbg(ndev, "flow id base = %d\n", emac->rx_flow_id_base);

	fdqring_id = K3_RINGACC_RING_ID_ANY;
	for (i = 0; i < rx_cfg.flow_id_num; i++) {
		struct k3_ring_cfg rxring_cfg = {
			.elm_size = K3_RINGACC_RING_ELSIZE_8,
			.mode = K3_RINGACC_RING_MODE_RING,
			.flags = 0,
		};
		struct k3_ring_cfg fdqring_cfg = {
			.elm_size = K3_RINGACC_RING_ELSIZE_8,
			.flags = K3_RINGACC_RING_SHARED,
		};
		struct k3_udma_glue_rx_flow_cfg rx_flow_cfg = {
			.rx_cfg = rxring_cfg,
			.rxfdq_cfg = fdqring_cfg,
			.ring_rxq_id = K3_RINGACC_RING_ID_ANY,
			.src_tag_lo_sel =
				K3_UDMA_GLUE_SRC_TAG_LO_USE_REMOTE_SRC_TAG,
		};

		rx_flow_cfg.ring_rxfdq0_id = fdqring_id;
		rx_flow_cfg.rx_cfg.size = max_desc_num;
		rx_flow_cfg.rxfdq_cfg.size = max_desc_num;
		rx_flow_cfg.rxfdq_cfg.mode = emac->prueth->pdata.fdqring_mode;

		ret = k3_udma_glue_rx_flow_init(rx_chn->rx_chn,
						i, &rx_flow_cfg);
		if (ret) {
			netdev_err(ndev, "Failed to init rx flow%d %d\n",
				   i, ret);
			goto fail;
		}
		if (!i)
			fdqring_id = k3_udma_glue_rx_flow_get_fdq_id(rx_chn->rx_chn,
								     i);
		rx_chn->irq[i] = k3_udma_glue_rx_get_irq(rx_chn->rx_chn, i);
		if (rx_chn->irq[i] <= 0) {
			ret = rx_chn->irq[i];
			netdev_err(ndev, "Failed to get rx dma irq");
			goto fail;
		}
	}

	return 0;

fail:
	prueth_cleanup_rx_chns(emac, rx_chn, max_rflows);
	return ret;
}

static int prueth_dma_rx_push(struct prueth_emac *emac,
			      struct sk_buff *skb,
			      struct prueth_rx_chn *rx_chn)
{
	struct net_device *ndev = emac->ndev;
	struct cppi5_host_desc_t *desc_rx;
	u32 pkt_len = skb_tailroom(skb);
	dma_addr_t desc_dma;
	dma_addr_t buf_dma;
	void **swdata;

	desc_rx = k3_cppi_desc_pool_alloc(rx_chn->desc_pool);
	if (!desc_rx) {
		netdev_err(ndev, "rx push: failed to allocate descriptor\n");
		return -ENOMEM;
	}
	desc_dma = k3_cppi_desc_pool_virt2dma(rx_chn->desc_pool, desc_rx);

	buf_dma = dma_map_single(rx_chn->dma_dev, skb->data, pkt_len, DMA_FROM_DEVICE);
	if (unlikely(dma_mapping_error(rx_chn->dma_dev, buf_dma))) {
		k3_cppi_desc_pool_free(rx_chn->desc_pool, desc_rx);
		netdev_err(ndev, "rx push: failed to map rx pkt buffer\n");
		return -EINVAL;
	}

	cppi5_hdesc_init(desc_rx, CPPI5_INFO0_HDESC_EPIB_PRESENT,
			 PRUETH_NAV_PS_DATA_SIZE);
	k3_udma_glue_rx_dma_to_cppi5_addr(rx_chn->rx_chn, &buf_dma);
	cppi5_hdesc_attach_buf(desc_rx, buf_dma, skb_tailroom(skb), buf_dma, skb_tailroom(skb));

	swdata = cppi5_hdesc_get_swdata(desc_rx);
	*swdata = skb;

	return k3_udma_glue_push_rx_chn(rx_chn->rx_chn, 0,
					desc_rx, desc_dma);
}

static u64 icssg_ts_to_ns(u32 hi_sw, u32 hi, u32 lo, u32 cycle_time_ns)
{
	u32 iepcount_lo, iepcount_hi, hi_rollover_count;
	u64 ns;

	iepcount_lo = lo & GENMASK(19, 0);
	iepcount_hi = (hi & GENMASK(11, 0)) << 12 | lo >> 20;
	hi_rollover_count = hi >> 11;

	ns = ((u64)hi_rollover_count) << 23 | (iepcount_hi + hi_sw);
	ns = ns * cycle_time_ns + iepcount_lo;

	return ns;
}

static void emac_rx_timestamp(struct prueth_emac *emac,
			      struct sk_buff *skb, u32 *psdata)
{
	struct skb_shared_hwtstamps *ssh;
	u64 ns;

	u32 hi_sw = readl(emac->prueth->shram.va +
			  TIMESYNC_FW_WC_COUNT_HI_SW_OFFSET_OFFSET);
	ns = icssg_ts_to_ns(hi_sw, psdata[1], psdata[0],
			    IEP_DEFAULT_CYCLE_TIME_NS);

	ssh = skb_hwtstamps(skb);
	memset(ssh, 0, sizeof(*ssh));
	ssh->hwtstamp = ns_to_ktime(ns);
}

static int emac_rx_packet(struct prueth_emac *emac, u32 flow_id)
{
	struct prueth_rx_chn *rx_chn = &emac->rx_chns;
	u32 buf_dma_len, pkt_len, port_id = 0;
	struct net_device *ndev = emac->ndev;
	struct cppi5_host_desc_t *desc_rx;
	struct sk_buff *skb, *new_skb;
	dma_addr_t desc_dma, buf_dma;
	void **swdata;
	u32 *psdata;
	int ret;

	ret = k3_udma_glue_pop_rx_chn(rx_chn->rx_chn, flow_id, &desc_dma);
	if (ret) {
		if (ret != -ENODATA)
			netdev_err(ndev, "rx pop: failed: %d\n", ret);
		return ret;
	}

	if (cppi5_desc_is_tdcm(desc_dma)) /* Teardown ? */
		return 0;

	desc_rx = k3_cppi_desc_pool_dma2virt(rx_chn->desc_pool, desc_dma);

	swdata = cppi5_hdesc_get_swdata(desc_rx);
	skb = *swdata;

	psdata = cppi5_hdesc_get_psdata(desc_rx);
	/* RX HW timestamp */
	if (emac->rx_ts_enabled)
		emac_rx_timestamp(emac, skb, psdata);

	cppi5_hdesc_get_obuf(desc_rx, &buf_dma, &buf_dma_len);
	k3_udma_glue_rx_cppi5_to_dma_addr(rx_chn->rx_chn, &buf_dma);
	pkt_len = cppi5_hdesc_get_pktlen(desc_rx);
	/* firmware adds 4 CRC bytes, strip them */
	pkt_len -= 4;
	cppi5_desc_get_tags_ids(&desc_rx->hdr, &port_id, NULL);

	dma_unmap_single(rx_chn->dma_dev, buf_dma, buf_dma_len, DMA_FROM_DEVICE);
	k3_cppi_desc_pool_free(rx_chn->desc_pool, desc_rx);

	skb->dev = ndev;
	new_skb = netdev_alloc_skb_ip_align(ndev, PRUETH_MAX_PKT_SIZE);
	/* if allocation fails we drop the packet but push the
	 * descriptor back to the ring with old skb to prevent a stall
	 */
	if (!new_skb) {
		ndev->stats.rx_dropped++;
		new_skb = skb;
	} else {
		/* send the filled skb up the n/w stack */
		skb_put(skb, pkt_len);
		skb->protocol = eth_type_trans(skb, ndev);
		napi_gro_receive(&emac->napi_rx, skb);
		ndev->stats.rx_bytes += pkt_len;
		ndev->stats.rx_packets++;
	}

	/* queue another RX DMA */
	ret = prueth_dma_rx_push(emac, new_skb, &emac->rx_chns);
	if (WARN_ON(ret < 0)) {
		dev_kfree_skb_any(new_skb);
		ndev->stats.rx_errors++;
		ndev->stats.rx_dropped++;
	}

	return ret;
}

static void prueth_rx_cleanup(void *data, dma_addr_t desc_dma)
{
	struct prueth_rx_chn *rx_chn = data;
	struct cppi5_host_desc_t *desc_rx;
	struct sk_buff *skb;
	dma_addr_t buf_dma;
	u32 buf_dma_len;
	void **swdata;

	desc_rx = k3_cppi_desc_pool_dma2virt(rx_chn->desc_pool, desc_dma);
	swdata = cppi5_hdesc_get_swdata(desc_rx);
	skb = *swdata;
	cppi5_hdesc_get_obuf(desc_rx, &buf_dma, &buf_dma_len);
	k3_udma_glue_rx_cppi5_to_dma_addr(rx_chn->rx_chn, &buf_dma);

	dma_unmap_single(rx_chn->dma_dev, buf_dma, buf_dma_len,
			 DMA_FROM_DEVICE);
	k3_cppi_desc_pool_free(rx_chn->desc_pool, desc_rx);

	dev_kfree_skb_any(skb);
}

static int emac_get_tx_ts(struct prueth_emac *emac,
			  struct emac_tx_ts_response *rsp)
{
	struct prueth *prueth = emac->prueth;
	int slice = prueth_emac_slice(emac);
	int addr;

	addr = icssg_queue_pop(prueth, slice == 0 ?
			       ICSSG_TS_POP_SLICE0 : ICSSG_TS_POP_SLICE1);
	if (addr < 0)
		return addr;

	memcpy_fromio(rsp, prueth->shram.va + addr, sizeof(*rsp));
	/* return buffer back for to pool */
	icssg_queue_push(prueth, slice == 0 ?
			 ICSSG_TS_PUSH_SLICE0 : ICSSG_TS_PUSH_SLICE1, addr);

	return 0;
}

static void tx_ts_work(struct prueth_emac *emac)
{
	struct skb_shared_hwtstamps ssh;
	struct emac_tx_ts_response tsr;
	struct sk_buff *skb;
	int ret = 0;
	u32 hi_sw;
	u64 ns;

	/* There may be more than one pending requests */
	while (1) {
		ret = emac_get_tx_ts(emac, &tsr);
		if (ret) /* nothing more */
			break;

		if (tsr.cookie >= PRUETH_MAX_TX_TS_REQUESTS ||
		    !emac->tx_ts_skb[tsr.cookie]) {
			netdev_err(emac->ndev, "Invalid TX TS cookie 0x%x\n",
				   tsr.cookie);
			break;
		}

		skb = emac->tx_ts_skb[tsr.cookie];
		emac->tx_ts_skb[tsr.cookie] = NULL;	/* free slot */
		if (!skb) {
			netdev_err(emac->ndev, "Driver Bug! got NULL skb\n");
			break;
		}

		hi_sw = readl(emac->prueth->shram.va +
			      TIMESYNC_FW_WC_COUNT_HI_SW_OFFSET_OFFSET);
		ns = icssg_ts_to_ns(hi_sw, tsr.hi_ts, tsr.lo_ts,
				    IEP_DEFAULT_CYCLE_TIME_NS);

		memset(&ssh, 0, sizeof(ssh));
		ssh.hwtstamp = ns_to_ktime(ns);

		skb_tstamp_tx(skb, &ssh);
		dev_consume_skb_any(skb);

		if (atomic_dec_and_test(&emac->tx_ts_pending))	/* no more? */
			break;
	}
}

static int prueth_tx_ts_cookie_get(struct prueth_emac *emac)
{
	int i;

	/* search and get the next free slot */
	for (i = 0; i < PRUETH_MAX_TX_TS_REQUESTS; i++) {
		if (!emac->tx_ts_skb[i]) {
			emac->tx_ts_skb[i] = ERR_PTR(-EBUSY); /* reserve slot */
			return i;
		}
	}

	return -EBUSY;
}

/**
 * emac_ndo_start_xmit - EMAC Transmit function
 * @skb: SKB pointer
 * @ndev: EMAC network adapter
 *
 * Called by the system to transmit a packet  - we queue the packet in
 * EMAC hardware transmit queue
 * Doesn't wait for completion we'll check for TX completion in
 * emac_tx_complete_packets().
 *
 * Return: enum netdev_tx
 */
static enum netdev_tx emac_ndo_start_xmit(struct sk_buff *skb, struct net_device *ndev)
{
	struct cppi5_host_desc_t *first_desc, *next_desc, *cur_desc;
	struct prueth_emac *emac = netdev_priv(ndev);
	struct netdev_queue *netif_txq;
	struct prueth_tx_chn *tx_chn;
	dma_addr_t desc_dma, buf_dma;
	int i, ret = 0, q_idx;
	bool in_tx_ts = 0;
	int tx_ts_cookie;
	void **swdata;
	u32 pkt_len;
	u32 *epib;

	pkt_len = skb_headlen(skb);
	q_idx = skb_get_queue_mapping(skb);

	tx_chn = &emac->tx_chns[q_idx];
	netif_txq = netdev_get_tx_queue(ndev, q_idx);

	/* Map the linear buffer */
	buf_dma = dma_map_single(tx_chn->dma_dev, skb->data, pkt_len, DMA_TO_DEVICE);
	if (dma_mapping_error(tx_chn->dma_dev, buf_dma)) {
		netdev_err(ndev, "tx: failed to map skb buffer\n");
		ret = NETDEV_TX_OK;
		goto drop_free_skb;
	}

	first_desc = k3_cppi_desc_pool_alloc(tx_chn->desc_pool);
	if (!first_desc) {
		netdev_dbg(ndev, "tx: failed to allocate descriptor\n");
		dma_unmap_single(tx_chn->dma_dev, buf_dma, pkt_len, DMA_TO_DEVICE);
		goto drop_stop_q_busy;
	}

	cppi5_hdesc_init(first_desc, CPPI5_INFO0_HDESC_EPIB_PRESENT,
			 PRUETH_NAV_PS_DATA_SIZE);
	cppi5_hdesc_set_pkttype(first_desc, 0);
	epib = first_desc->epib;
	epib[0] = 0;
	epib[1] = 0;
	if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
	    emac->tx_ts_enabled) {
		tx_ts_cookie = prueth_tx_ts_cookie_get(emac);
		if (tx_ts_cookie >= 0) {
			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
			/* Request TX timestamp */
			epib[0] = (u32)tx_ts_cookie;
			epib[1] = 0x80000000;	/* TX TS request */
			emac->tx_ts_skb[tx_ts_cookie] = skb_get(skb);
			in_tx_ts = 1;
		}
	}

	/* set dst tag to indicate internal qid at the firmware which is at
	 * bit8..bit15. bit0..bit7 indicates port num for directed
	 * packets in case of switch mode operation
	 */
	cppi5_desc_set_tags_ids(&first_desc->hdr, 0, (emac->port_id | (q_idx << 8)));
	k3_udma_glue_tx_dma_to_cppi5_addr(tx_chn->tx_chn, &buf_dma);
	cppi5_hdesc_attach_buf(first_desc, buf_dma, pkt_len, buf_dma, pkt_len);
	swdata = cppi5_hdesc_get_swdata(first_desc);
	*swdata = skb;

	/* Handle the case where skb is fragmented in pages */
	cur_desc = first_desc;
	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
		u32 frag_size = skb_frag_size(frag);

		next_desc = k3_cppi_desc_pool_alloc(tx_chn->desc_pool);
		if (!next_desc) {
			netdev_err(ndev,
				   "tx: failed to allocate frag. descriptor\n");
			goto free_desc_stop_q_busy_cleanup_tx_ts;
		}

		buf_dma = skb_frag_dma_map(tx_chn->dma_dev, frag, 0, frag_size,
					   DMA_TO_DEVICE);
		if (dma_mapping_error(tx_chn->dma_dev, buf_dma)) {
			netdev_err(ndev, "tx: Failed to map skb page\n");
			k3_cppi_desc_pool_free(tx_chn->desc_pool, next_desc);
			ret = NETDEV_TX_OK;
			goto cleanup_tx_ts;
		}

		cppi5_hdesc_reset_hbdesc(next_desc);
		k3_udma_glue_tx_dma_to_cppi5_addr(tx_chn->tx_chn, &buf_dma);
		cppi5_hdesc_attach_buf(next_desc,
				       buf_dma, frag_size, buf_dma, frag_size);

		desc_dma = k3_cppi_desc_pool_virt2dma(tx_chn->desc_pool,
						      next_desc);
		k3_udma_glue_tx_dma_to_cppi5_addr(tx_chn->tx_chn, &desc_dma);
		cppi5_hdesc_link_hbdesc(cur_desc, desc_dma);

		pkt_len += frag_size;
		cur_desc = next_desc;
	}
	WARN_ON_ONCE(pkt_len != skb->len);

	/* report bql before sending packet */
	netdev_tx_sent_queue(netif_txq, pkt_len);

	cppi5_hdesc_set_pktlen(first_desc, pkt_len);
	desc_dma = k3_cppi_desc_pool_virt2dma(tx_chn->desc_pool, first_desc);
	/* cppi5_desc_dump(first_desc, 64); */

	skb_tx_timestamp(skb);  /* SW timestamp if SKBTX_IN_PROGRESS not set */
	ret = k3_udma_glue_push_tx_chn(tx_chn->tx_chn, first_desc, desc_dma);
	if (ret) {
		netdev_err(ndev, "tx: push failed: %d\n", ret);
		goto drop_free_descs;
	}

	if (in_tx_ts)
		atomic_inc(&emac->tx_ts_pending);

	if (k3_cppi_desc_pool_avail(tx_chn->desc_pool) < MAX_SKB_FRAGS) {
		netif_tx_stop_queue(netif_txq);
		/* Barrier, so that stop_queue visible to other cpus */
		smp_mb__after_atomic();

		if (k3_cppi_desc_pool_avail(tx_chn->desc_pool) >=
		    MAX_SKB_FRAGS)
			netif_tx_wake_queue(netif_txq);
	}

	return NETDEV_TX_OK;

cleanup_tx_ts:
	if (in_tx_ts) {
		dev_kfree_skb_any(emac->tx_ts_skb[tx_ts_cookie]);
		emac->tx_ts_skb[tx_ts_cookie] = NULL;
	}

drop_free_descs:
	prueth_xmit_free(tx_chn, first_desc);

drop_free_skb:
	dev_kfree_skb_any(skb);

	/* error */
	ndev->stats.tx_dropped++;
	netdev_err(ndev, "tx: error: %d\n", ret);

	return ret;

free_desc_stop_q_busy_cleanup_tx_ts:
	if (in_tx_ts) {
		dev_kfree_skb_any(emac->tx_ts_skb[tx_ts_cookie]);
		emac->tx_ts_skb[tx_ts_cookie] = NULL;
	}
	prueth_xmit_free(tx_chn, first_desc);

drop_stop_q_busy:
	netif_tx_stop_queue(netif_txq);
	return NETDEV_TX_BUSY;
}

static void prueth_tx_cleanup(void *data, dma_addr_t desc_dma)
{
	struct prueth_tx_chn *tx_chn = data;
	struct cppi5_host_desc_t *desc_tx;
	struct sk_buff *skb;
	void **swdata;

	desc_tx = k3_cppi_desc_pool_dma2virt(tx_chn->desc_pool, desc_dma);
	swdata = cppi5_hdesc_get_swdata(desc_tx);
	skb = *(swdata);
	prueth_xmit_free(tx_chn, desc_tx);

	dev_kfree_skb_any(skb);
}

static irqreturn_t prueth_tx_ts_irq(int irq, void *dev_id)
{
	struct prueth_emac *emac = dev_id;

	/* currently only TX timestamp is being returned */
	tx_ts_work(emac);

	return IRQ_HANDLED;
}

static irqreturn_t prueth_rx_irq(int irq, void *dev_id)
{
	struct prueth_emac *emac = dev_id;

	disable_irq_nosync(irq);
	napi_schedule(&emac->napi_rx);

	return IRQ_HANDLED;
}

struct icssg_firmwares {
	char *pru;
	char *rtu;
	char *txpru;
};

static struct icssg_firmwares icssg_emac_firmwares[] = {
	{
		.pru = "ti-pruss/am65x-sr2-pru0-prueth-fw.elf",
		.rtu = "ti-pruss/am65x-sr2-rtu0-prueth-fw.elf",
		.txpru = "ti-pruss/am65x-sr2-txpru0-prueth-fw.elf",
	},
	{
		.pru = "ti-pruss/am65x-sr2-pru1-prueth-fw.elf",
		.rtu = "ti-pruss/am65x-sr2-rtu1-prueth-fw.elf",
		.txpru = "ti-pruss/am65x-sr2-txpru1-prueth-fw.elf",
	}
};

static int prueth_emac_start(struct prueth *prueth, struct prueth_emac *emac)
{
	struct icssg_firmwares *firmwares;
	struct device *dev = prueth->dev;
	int slice, ret;

	firmwares = icssg_emac_firmwares;

	slice = prueth_emac_slice(emac);
	if (slice < 0) {
		netdev_err(emac->ndev, "invalid port\n");
		return -EINVAL;
	}

	ret = icssg_config(prueth, emac, slice);
	if (ret)
		return ret;

	ret = rproc_set_firmware(prueth->pru[slice], firmwares[slice].pru);
	ret = rproc_boot(prueth->pru[slice]);
	if (ret) {
		dev_err(dev, "failed to boot PRU%d: %d\n", slice, ret);
		return -EINVAL;
	}

	ret = rproc_set_firmware(prueth->rtu[slice], firmwares[slice].rtu);
	ret = rproc_boot(prueth->rtu[slice]);
	if (ret) {
		dev_err(dev, "failed to boot RTU%d: %d\n", slice, ret);
		goto halt_pru;
	}

	ret = rproc_set_firmware(prueth->txpru[slice], firmwares[slice].txpru);
	ret = rproc_boot(prueth->txpru[slice]);
	if (ret) {
		dev_err(dev, "failed to boot TX_PRU%d: %d\n", slice, ret);
		goto halt_rtu;
	}

	emac->fw_running = 1;
	return 0;

halt_rtu:
	rproc_shutdown(prueth->rtu[slice]);

halt_pru:
	rproc_shutdown(prueth->pru[slice]);

	return ret;
}

static void prueth_emac_stop(struct prueth_emac *emac)
{
	struct prueth *prueth = emac->prueth;
	int slice;

	switch (emac->port_id) {
	case PRUETH_PORT_MII0:
		slice = ICSS_SLICE0;
		break;
	case PRUETH_PORT_MII1:
		slice = ICSS_SLICE1;
		break;
	default:
		netdev_err(emac->ndev, "invalid port\n");
		return;
	}

	emac->fw_running = 0;
	rproc_shutdown(prueth->txpru[slice]);
	rproc_shutdown(prueth->rtu[slice]);
	rproc_shutdown(prueth->pru[slice]);
}

static void prueth_cleanup_tx_ts(struct prueth_emac *emac)
{
	int i;

	for (i = 0; i < PRUETH_MAX_TX_TS_REQUESTS; i++) {
		if (emac->tx_ts_skb[i]) {
			dev_kfree_skb_any(emac->tx_ts_skb[i]);
			emac->tx_ts_skb[i] = NULL;
		}
	}
}

/* called back by PHY layer if there is change in link state of hw port*/
static void emac_adjust_link(struct net_device *ndev)
{
	struct prueth_emac *emac = netdev_priv(ndev);
	struct phy_device *phydev = ndev->phydev;
	struct prueth *prueth = emac->prueth;
	bool new_state = false;
	unsigned long flags;

	if (phydev->link) {
		/* check the mode of operation - full/half duplex */
		if (phydev->duplex != emac->duplex) {
			new_state = true;
			emac->duplex = phydev->duplex;
		}
		if (phydev->speed != emac->speed) {
			new_state = true;
			emac->speed = phydev->speed;
		}
		if (!emac->link) {
			new_state = true;
			emac->link = 1;
		}
	} else if (emac->link) {
		new_state = true;
		emac->link = 0;

		/* f/w should support 100 & 1000 */
		emac->speed = SPEED_1000;

		/* half duplex may not be supported by f/w */
		emac->duplex = DUPLEX_FULL;
	}

	if (new_state) {
		phy_print_status(phydev);

		/* update RGMII and MII configuration based on PHY negotiated
		 * values
		 */
		if (emac->link) {
			if (emac->duplex == DUPLEX_HALF)
				icssg_config_half_duplex(emac);
			/* Set the RGMII cfg for gig en and full duplex */
			icssg_update_rgmii_cfg(prueth->miig_rt, emac);

			/* update the Tx IPG based on 100M/1G speed */
			spin_lock_irqsave(&emac->lock, flags);
			icssg_config_ipg(emac);
			spin_unlock_irqrestore(&emac->lock, flags);
			icssg_config_set_speed(emac);
			emac_set_port_state(emac, ICSSG_EMAC_PORT_FORWARD);

		} else {
			emac_set_port_state(emac, ICSSG_EMAC_PORT_DISABLE);
		}
	}

	if (emac->link) {
		/* reactivate the transmit queue */
		netif_tx_wake_all_queues(ndev);
	} else {
		netif_tx_stop_all_queues(ndev);
		prueth_cleanup_tx_ts(emac);
	}
}

static int emac_napi_rx_poll(struct napi_struct *napi_rx, int budget)
{
	struct prueth_emac *emac = prueth_napi_to_emac(napi_rx);
	int rx_flow = PRUETH_RX_FLOW_DATA;
	int flow = PRUETH_MAX_RX_FLOWS;
	int num_rx = 0;
	int cur_budget;
	int ret;

	while (flow--) {
		cur_budget = budget - num_rx;

		while (cur_budget--) {
			ret = emac_rx_packet(emac, flow);
			if (ret)
				break;
			num_rx++;
		}

		if (num_rx >= budget)
			break;
	}

	if (num_rx < budget && napi_complete_done(napi_rx, num_rx))
		enable_irq(emac->rx_chns.irq[rx_flow]);

	return num_rx;
}

static int prueth_prepare_rx_chan(struct prueth_emac *emac,
				  struct prueth_rx_chn *chn,
				  int buf_size)
{
	struct sk_buff *skb;
	int i, ret;

	for (i = 0; i < chn->descs_num; i++) {
		skb = __netdev_alloc_skb_ip_align(NULL, buf_size, GFP_KERNEL);
		if (!skb)
			return -ENOMEM;

		ret = prueth_dma_rx_push(emac, skb, chn);
		if (ret < 0) {
			netdev_err(emac->ndev,
				   "cannot submit skb for rx chan %s ret %d\n",
				   chn->name, ret);
			kfree_skb(skb);
			return ret;
		}
	}

	return 0;
}

static void prueth_reset_tx_chan(struct prueth_emac *emac, int ch_num,
				 bool free_skb)
{
	int i;

	for (i = 0; i < ch_num; i++) {
		if (free_skb)
			k3_udma_glue_reset_tx_chn(emac->tx_chns[i].tx_chn,
						  &emac->tx_chns[i],
						  prueth_tx_cleanup);
		k3_udma_glue_disable_tx_chn(emac->tx_chns[i].tx_chn);
	}
}

static void prueth_reset_rx_chan(struct prueth_rx_chn *chn,
				 int num_flows, bool disable)
{
	int i;

	for (i = 0; i < num_flows; i++)
		k3_udma_glue_reset_rx_chn(chn->rx_chn, i, chn,
					  prueth_rx_cleanup, !!i);
	if (disable)
		k3_udma_glue_disable_rx_chn(chn->rx_chn);
}

static int emac_phy_connect(struct prueth_emac *emac)
{
	struct prueth *prueth = emac->prueth;
	struct net_device *ndev = emac->ndev;
	/* connect PHY */
	ndev->phydev = of_phy_connect(emac->ndev, emac->phy_node,
				      &emac_adjust_link, 0,
				      emac->phy_if);
	if (!ndev->phydev) {
		dev_err(prueth->dev, "couldn't connect to phy %s\n",
			emac->phy_node->full_name);
		return -ENODEV;
	}

	if (!emac->half_duplex) {
		dev_dbg(prueth->dev, "half duplex mode is not supported\n");
		phy_remove_link_mode(ndev->phydev, ETHTOOL_LINK_MODE_10baseT_Half_BIT);
		phy_remove_link_mode(ndev->phydev, ETHTOOL_LINK_MODE_100baseT_Half_BIT);
	}

	/* remove unsupported modes */
	phy_remove_link_mode(ndev->phydev, ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
	phy_remove_link_mode(ndev->phydev, ETHTOOL_LINK_MODE_Pause_BIT);
	phy_remove_link_mode(ndev->phydev, ETHTOOL_LINK_MODE_Asym_Pause_BIT);

	if (emac->phy_if == PHY_INTERFACE_MODE_MII)
		phy_set_max_speed(ndev->phydev, SPEED_100);

	return 0;
}

static u64 prueth_iep_gettime(void *clockops_data, struct ptp_system_timestamp *sts)
{
	u32 hi_rollover_count, hi_rollover_count_r;
	struct prueth_emac *emac = clockops_data;
	struct prueth *prueth = emac->prueth;
	void __iomem *fw_hi_r_count_addr;
	void __iomem *fw_count_hi_addr;
	u32 iepcount_hi, iepcount_hi_r;
	unsigned long flags;
	u32 iepcount_lo;
	u64 ts = 0;

	fw_count_hi_addr = prueth->shram.va + TIMESYNC_FW_WC_COUNT_HI_SW_OFFSET_OFFSET;
	fw_hi_r_count_addr = prueth->shram.va + TIMESYNC_FW_WC_HI_ROLLOVER_COUNT_OFFSET;

	local_irq_save(flags);
	do {
		iepcount_hi = icss_iep_get_count_hi(emac->iep);
		iepcount_hi += readl(fw_count_hi_addr);
		hi_rollover_count = readl(fw_hi_r_count_addr);
		ptp_read_system_prets(sts);
		iepcount_lo = icss_iep_get_count_low(emac->iep);
		ptp_read_system_postts(sts);

		iepcount_hi_r = icss_iep_get_count_hi(emac->iep);
		iepcount_hi_r += readl(fw_count_hi_addr);
		hi_rollover_count_r = readl(fw_hi_r_count_addr);
	} while ((iepcount_hi_r != iepcount_hi) ||
		 (hi_rollover_count != hi_rollover_count_r));
	local_irq_restore(flags);

	ts = ((u64)hi_rollover_count) << 23 | iepcount_hi;
	ts = ts * (u64)IEP_DEFAULT_CYCLE_TIME_NS + iepcount_lo;

	return ts;
}

static void prueth_iep_settime(void *clockops_data, u64 ns)
{
	struct icssg_setclock_desc __iomem *sc_descp;
	struct prueth_emac *emac = clockops_data;
	struct icssg_setclock_desc sc_desc;
	u64 cyclecount;
	u32 cycletime;
	int timeout;

	if (!emac->fw_running)
		return;

	sc_descp = emac->prueth->shram.va + TIMESYNC_FW_WC_SETCLOCK_DESC_OFFSET;

	cycletime = IEP_DEFAULT_CYCLE_TIME_NS;
	cyclecount = ns / cycletime;

	memset(&sc_desc, 0, sizeof(sc_desc));
	sc_desc.margin = cycletime - 1000;
	sc_desc.cyclecounter0_set = cyclecount & GENMASK(31, 0);
	sc_desc.cyclecounter1_set = (cyclecount & GENMASK(63, 32)) >> 32;
	sc_desc.iepcount_set = ns % cycletime;
	sc_desc.CMP0_current = cycletime - 4; //Count from 0 to (cycle time)-4

	memcpy_toio(sc_descp, &sc_desc, sizeof(sc_desc));

	writeb(1, &sc_descp->request);

	timeout = 5;	/* fw should take 2-3 ms */
	while (timeout--) {
		if (readb(&sc_descp->acknowledgment))
			return;

		usleep_range(500, 1000);
	}

	dev_err(emac->prueth->dev, "settime timeout\n");
}

static int prueth_perout_enable(void *clockops_data,
				struct ptp_perout_request *req, int on,
				u64 *cmp)
{
	struct prueth_emac *emac = clockops_data;
	u32 reduction_factor = 0, offset = 0;
	struct timespec64 ts;
	u64 ns_period;

	if (!on)
		return 0;

	/* Any firmware specific stuff for PPS/PEROUT handling */
	ts.tv_sec = req->period.sec;
	ts.tv_nsec = req->period.nsec;
	ns_period = timespec64_to_ns(&ts);

	/* f/w doesn't support period less than cycle time */
	if (ns_period < IEP_DEFAULT_CYCLE_TIME_NS)
		return -ENXIO;

	reduction_factor = ns_period / IEP_DEFAULT_CYCLE_TIME_NS;
	offset = ns_period % IEP_DEFAULT_CYCLE_TIME_NS;

	/* f/w requires at least 1uS within a cycle so CMP
	 * can trigger after SYNC is enabled
	 */
	if (offset < 5 * NSEC_PER_USEC)
		offset = 5 * NSEC_PER_USEC;

	/* if offset is close to cycle time then we will miss
	 * the CMP event for last tick when IEP rolls over.
	 * In normal mode, IEP tick is 4ns.
	 * In slow compensation it could be 0ns or 8ns at
	 * every slow compensation cycle.
	 */
	if (offset > IEP_DEFAULT_CYCLE_TIME_NS - 8)
		offset = IEP_DEFAULT_CYCLE_TIME_NS - 8;

	/* we're in shadow mode so need to set upper 32-bits */
	*cmp = (u64)offset << 32;

	writel(reduction_factor, emac->prueth->shram.va +
		TIMESYNC_FW_WC_SYNCOUT_REDUCTION_FACTOR_OFFSET);

	writel(0, emac->prueth->shram.va +
		TIMESYNC_FW_WC_SYNCOUT_START_TIME_CYCLECOUNT_OFFSET);

	return 0;
}

const struct icss_iep_clockops prueth_iep_clockops = {
	.settime = prueth_iep_settime,
	.gettime = prueth_iep_gettime,
	.perout_enable = prueth_perout_enable,
};

/**
 * emac_ndo_open - EMAC device open
 * @ndev: network adapter device
 *
 * Called when system wants to start the interface.
 *
 * Return: 0 for a successful open, or appropriate error code
 */
static int emac_ndo_open(struct net_device *ndev)
{
	struct prueth_emac *emac = netdev_priv(ndev);
	int ret, i, num_data_chn = emac->tx_ch_num;
	struct prueth *prueth = emac->prueth;
	int slice = prueth_emac_slice(emac);
	struct device *dev = prueth->dev;
	int max_rx_flows;
	int rx_flow;

	/* clear SMEM and MSMC settings for all slices */
	if (!prueth->emacs_initialized) {
		memset_io(prueth->msmcram.va, 0, prueth->msmcram.size);
		memset_io(prueth->shram.va, 0, ICSSG_CONFIG_OFFSET_SLICE1 * PRUETH_NUM_MACS);
	}

	/* set h/w MAC as user might have re-configured */
	ether_addr_copy(emac->mac_addr, ndev->dev_addr);

	icssg_class_set_mac_addr(prueth->miig_rt, slice, emac->mac_addr);
	icssg_ft1_set_mac_addr(prueth->miig_rt, slice, emac->mac_addr);

	icssg_class_default(prueth->miig_rt, slice, 0);

	/* Notify the stack of the actual queue counts. */
	ret = netif_set_real_num_tx_queues(ndev, num_data_chn);
	if (ret) {
		dev_err(dev, "cannot set real number of tx queues\n");
		return ret;
	}

	init_completion(&emac->cmd_complete);
	ret = prueth_init_tx_chns(emac);
	if (ret) {
		dev_err(dev, "failed to init tx channel: %d\n", ret);
		return ret;
	}

	max_rx_flows = PRUETH_MAX_RX_FLOWS;
	ret = prueth_init_rx_chns(emac, &emac->rx_chns, "rx",
				  max_rx_flows, PRUETH_MAX_RX_DESC);
	if (ret) {
		dev_err(dev, "failed to init rx channel: %d\n", ret);
		goto cleanup_tx;
	}

	ret = prueth_ndev_add_tx_napi(emac);
	if (ret)
		goto cleanup_rx;

	/* we use only the highest priority flow for now i.e. @irq[3] */
	rx_flow = PRUETH_RX_FLOW_DATA;
	ret = request_irq(emac->rx_chns.irq[rx_flow], prueth_rx_irq,
			  IRQF_TRIGGER_HIGH, dev_name(dev), emac);
	if (ret) {
		dev_err(dev, "unable to request RX IRQ\n");
		goto cleanup_napi;
	}

	/* reset and start PRU firmware */
	ret = prueth_emac_start(prueth, emac);
	if (ret)
		goto free_rx_irq;

	icssg_mii_update_mtu(prueth->mii_rt, slice, ndev->max_mtu);

	if (!prueth->emacs_initialized) {
		ret = icss_iep_init(emac->iep, &prueth_iep_clockops,
				    emac, IEP_DEFAULT_CYCLE_TIME_NS);
	}

	ret = request_threaded_irq(emac->tx_ts_irq, NULL, prueth_tx_ts_irq,
				   IRQF_ONESHOT, dev_name(dev), emac);
	if (ret)
		goto stop;

	/* Prepare RX */
	ret = prueth_prepare_rx_chan(emac, &emac->rx_chns, PRUETH_MAX_PKT_SIZE);
	if (ret)
		goto free_tx_ts_irq;

	ret = k3_udma_glue_enable_rx_chn(emac->rx_chns.rx_chn);
	if (ret)
		goto reset_rx_chn;

	for (i = 0; i < emac->tx_ch_num; i++) {
		ret = k3_udma_glue_enable_tx_chn(emac->tx_chns[i].tx_chn);
		if (ret)
			goto reset_tx_chan;
	}

	/* Enable NAPI in Tx and Rx direction */
	for (i = 0; i < emac->tx_ch_num; i++)
		napi_enable(&emac->tx_chns[i].napi_tx);
	napi_enable(&emac->napi_rx);

	/* start PHY */
	phy_start(ndev->phydev);

	prueth->emacs_initialized++;

	queue_work(system_long_wq, &emac->stats_work.work);

	return 0;

reset_tx_chan:
	/* Since interface is not yet up, there is wouldn't be
	 * any SKB for completion. So set false to free_skb
	 */
	prueth_reset_tx_chan(emac, i, false);
reset_rx_chn:
	prueth_reset_rx_chan(&emac->rx_chns, max_rx_flows, false);
free_tx_ts_irq:
	free_irq(emac->tx_ts_irq, emac);
stop:
	prueth_emac_stop(emac);
free_rx_irq:
	free_irq(emac->rx_chns.irq[rx_flow], emac);
cleanup_napi:
	prueth_ndev_del_tx_napi(emac, emac->tx_ch_num);
cleanup_rx:
	prueth_cleanup_rx_chns(emac, &emac->rx_chns, max_rx_flows);
cleanup_tx:
	prueth_cleanup_tx_chns(emac);

	return ret;
}

/**
 * emac_ndo_stop - EMAC device stop
 * @ndev: network adapter device
 *
 * Called when system wants to stop or down the interface.
 *
 * Return: Always 0 (Success)
 */
static int emac_ndo_stop(struct net_device *ndev)
{
	struct prueth_emac *emac = netdev_priv(ndev);
	struct prueth *prueth = emac->prueth;
	int rx_flow = PRUETH_RX_FLOW_DATA;
	int max_rx_flows;
	int ret, i;

	/* inform the upper layers. */
	netif_tx_stop_all_queues(ndev);

	/* block packets from wire */
	if (ndev->phydev)
		phy_stop(ndev->phydev);

	icssg_class_disable(prueth->miig_rt, prueth_emac_slice(emac));

	atomic_set(&emac->tdown_cnt, emac->tx_ch_num);
	/* ensure new tdown_cnt value is visible */
	smp_mb__after_atomic();
	/* tear down and disable UDMA channels */
	reinit_completion(&emac->tdown_complete);
	for (i = 0; i < emac->tx_ch_num; i++)
		k3_udma_glue_tdown_tx_chn(emac->tx_chns[i].tx_chn, false);

	ret = wait_for_completion_timeout(&emac->tdown_complete,
					  msecs_to_jiffies(1000));
	if (!ret)
		netdev_err(ndev, "tx teardown timeout\n");

	prueth_reset_tx_chan(emac, emac->tx_ch_num, true);
	for (i = 0; i < emac->tx_ch_num; i++)
		napi_disable(&emac->tx_chns[i].napi_tx);

	max_rx_flows = PRUETH_MAX_RX_FLOWS;
	k3_udma_glue_tdown_rx_chn(emac->rx_chns.rx_chn, true);

	prueth_reset_rx_chan(&emac->rx_chns, max_rx_flows, true);

	napi_disable(&emac->napi_rx);

	cancel_work_sync(&emac->rx_mode_work);

	/* Destroying the queued work in ndo_stop() */
	cancel_delayed_work_sync(&emac->stats_work);

	/* stop PRUs */
	prueth_emac_stop(emac);

	if (prueth->emacs_initialized == 1)
		icss_iep_exit(emac->iep);

	/* stop PRUs */
	prueth_emac_stop(emac);

	free_irq(emac->tx_ts_irq, emac);

	free_irq(emac->rx_chns.irq[rx_flow], emac);
	prueth_ndev_del_tx_napi(emac, emac->tx_ch_num);
	prueth_cleanup_tx_chns(emac);

	prueth_cleanup_rx_chns(emac, &emac->rx_chns, max_rx_flows);
	prueth_cleanup_tx_chns(emac);

	prueth->emacs_initialized--;

	return 0;
}

static void emac_ndo_tx_timeout(struct net_device *ndev, unsigned int txqueue)
{
	ndev->stats.tx_errors++;
}

static void emac_ndo_set_rx_mode_work(struct work_struct *work)
{
	struct prueth_emac *emac = container_of(work, struct prueth_emac, rx_mode_work);
	struct net_device *ndev = emac->ndev;
	bool promisc, allmulti;

	if (!netif_running(ndev))
		return;

	promisc = ndev->flags & IFF_PROMISC;
	allmulti = ndev->flags & IFF_ALLMULTI;
	emac_set_port_state(emac, ICSSG_EMAC_PORT_UC_FLOODING_DISABLE);
	emac_set_port_state(emac, ICSSG_EMAC_PORT_MC_FLOODING_DISABLE);

	if (promisc) {
		emac_set_port_state(emac, ICSSG_EMAC_PORT_UC_FLOODING_ENABLE);
		emac_set_port_state(emac, ICSSG_EMAC_PORT_MC_FLOODING_ENABLE);
		return;
	}

	if (allmulti) {
		emac_set_port_state(emac, ICSSG_EMAC_PORT_MC_FLOODING_ENABLE);
		return;
	}

	if (!netdev_mc_empty(ndev)) {
		emac_set_port_state(emac, ICSSG_EMAC_PORT_MC_FLOODING_ENABLE);
		return;
	}
}

/**
 * emac_ndo_set_rx_mode - EMAC set receive mode function
 * @ndev: The EMAC network adapter
 *
 * Called when system wants to set the receive mode of the device.
 *
 */
static void emac_ndo_set_rx_mode(struct net_device *ndev)
{
	struct prueth_emac *emac = netdev_priv(ndev);

	queue_work(emac->cmd_wq, &emac->rx_mode_work);
}

static int emac_set_ts_config(struct net_device *ndev, struct ifreq *ifr)
{
	struct prueth_emac *emac = netdev_priv(ndev);
	struct hwtstamp_config config;

	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
		return -EFAULT;

	switch (config.tx_type) {
	case HWTSTAMP_TX_OFF:
		emac->tx_ts_enabled = 0;
		break;
	case HWTSTAMP_TX_ON:
		emac->tx_ts_enabled = 1;
		break;
	default:
		return -ERANGE;
	}

	switch (config.rx_filter) {
	case HWTSTAMP_FILTER_NONE:
		emac->rx_ts_enabled = 0;
		break;
	case HWTSTAMP_FILTER_ALL:
	case HWTSTAMP_FILTER_SOME:
	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
	case HWTSTAMP_FILTER_PTP_V2_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
	case HWTSTAMP_FILTER_NTP_ALL:
		emac->rx_ts_enabled = 1;
		config.rx_filter = HWTSTAMP_FILTER_ALL;
		break;
	default:
		return -ERANGE;
	}

	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
		-EFAULT : 0;
}

static int emac_get_ts_config(struct net_device *ndev, struct ifreq *ifr)
{
	struct prueth_emac *emac = netdev_priv(ndev);
	struct hwtstamp_config config;

	config.flags = 0;
	config.tx_type = emac->tx_ts_enabled ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
	config.rx_filter = emac->rx_ts_enabled ? HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE;

	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
			    -EFAULT : 0;
}

static int emac_ndo_ioctl(struct net_device *ndev, struct ifreq *ifr, int cmd)
{
	switch (cmd) {
	case SIOCGHWTSTAMP:
		return emac_get_ts_config(ndev, ifr);
	case SIOCSHWTSTAMP:
		return emac_set_ts_config(ndev, ifr);
	default:
		break;
	}

	return phy_do_ioctl(ndev, ifr, cmd);
}

static void emac_ndo_get_stats64(struct net_device *ndev,
				 struct rtnl_link_stats64 *stats)
{
	struct prueth_emac *emac = netdev_priv(ndev);

	emac_update_hardware_stats(emac);

	stats->rx_packets     = emac_get_stat_by_name(emac, "rx_packets");
	stats->rx_bytes       = emac_get_stat_by_name(emac, "rx_bytes");
	stats->tx_packets     = emac_get_stat_by_name(emac, "tx_packets");
	stats->tx_bytes       = emac_get_stat_by_name(emac, "tx_bytes");
	stats->rx_crc_errors  = emac_get_stat_by_name(emac, "rx_crc_errors");
	stats->rx_over_errors = emac_get_stat_by_name(emac, "rx_over_errors");
	stats->multicast      = emac_get_stat_by_name(emac, "rx_multicast_frames");

	stats->rx_errors  = ndev->stats.rx_errors;
	stats->rx_dropped = ndev->stats.rx_dropped;
	stats->tx_errors  = ndev->stats.tx_errors;
	stats->tx_dropped = ndev->stats.tx_dropped;
}

static int emac_ndo_get_phys_port_name(struct net_device *ndev, char *name,
				       size_t len)
{
	struct prueth_emac *emac = netdev_priv(ndev);
	int ret;

	ret = snprintf(name, len, "p%d", emac->port_id);
	if (ret >= len)
		return -EINVAL;

	return 0;
}

static const struct net_device_ops emac_netdev_ops = {
	.ndo_open = emac_ndo_open,
	.ndo_stop = emac_ndo_stop,
	.ndo_start_xmit = emac_ndo_start_xmit,
	.ndo_set_mac_address = eth_mac_addr,
	.ndo_validate_addr = eth_validate_addr,
	.ndo_tx_timeout = emac_ndo_tx_timeout,
	.ndo_set_rx_mode = emac_ndo_set_rx_mode,
	.ndo_eth_ioctl = emac_ndo_ioctl,
	.ndo_get_stats64 = emac_ndo_get_stats64,
	.ndo_get_phys_port_name = emac_ndo_get_phys_port_name,
};

/* get emac_port corresponding to eth_node name */
static int prueth_node_port(struct device_node *eth_node)
{
	u32 port_id;
	int ret;

	ret = of_property_read_u32(eth_node, "reg", &port_id);
	if (ret)
		return ret;

	if (port_id == 0)
		return PRUETH_PORT_MII0;
	else if (port_id == 1)
		return PRUETH_PORT_MII1;
	else
		return PRUETH_PORT_INVALID;
}

/* get MAC instance corresponding to eth_node name */
static int prueth_node_mac(struct device_node *eth_node)
{
	u32 port_id;
	int ret;

	ret = of_property_read_u32(eth_node, "reg", &port_id);
	if (ret)
		return ret;

	if (port_id == 0)
		return PRUETH_MAC0;
	else if (port_id == 1)
		return PRUETH_MAC1;
	else
		return PRUETH_MAC_INVALID;
}

static int prueth_netdev_init(struct prueth *prueth,
			      struct device_node *eth_node)
{
	int ret, num_tx_chn = PRUETH_MAX_TX_QUEUES;
	struct prueth_emac *emac;
	struct net_device *ndev;
	enum prueth_port port;
	const char *irq_name;
	enum prueth_mac mac;

	port = prueth_node_port(eth_node);
	if (port == PRUETH_PORT_INVALID)
		return -EINVAL;

	mac = prueth_node_mac(eth_node);
	if (mac == PRUETH_MAC_INVALID)
		return -EINVAL;

	ndev = alloc_etherdev_mq(sizeof(*emac), num_tx_chn);
	if (!ndev)
		return -ENOMEM;

	emac = netdev_priv(ndev);
	emac->prueth = prueth;
	emac->ndev = ndev;
	emac->port_id = port;
	emac->cmd_wq = create_singlethread_workqueue("icssg_cmd_wq");
	if (!emac->cmd_wq) {
		ret = -ENOMEM;
		goto free_ndev;
	}
	INIT_WORK(&emac->rx_mode_work, emac_ndo_set_rx_mode_work);

	INIT_DELAYED_WORK(&emac->stats_work, emac_stats_work_handler);

	ret = pruss_request_mem_region(prueth->pruss,
				       port == PRUETH_PORT_MII0 ?
				       PRUSS_MEM_DRAM0 : PRUSS_MEM_DRAM1,
				       &emac->dram);
	if (ret) {
		dev_err(prueth->dev, "unable to get DRAM: %d\n", ret);
		ret = -ENOMEM;
		goto free_wq;
	}

	emac->tx_ch_num = 1;

	irq_name = "tx_ts0";
	if (emac->port_id == PRUETH_PORT_MII1)
		irq_name = "tx_ts1";
	emac->tx_ts_irq = platform_get_irq_byname_optional(prueth->pdev, irq_name);
	if (emac->tx_ts_irq < 0) {
		ret = dev_err_probe(prueth->dev, emac->tx_ts_irq, "could not get tx_ts_irq\n");
		goto free;
	}

	SET_NETDEV_DEV(ndev, prueth->dev);
	spin_lock_init(&emac->lock);
	mutex_init(&emac->cmd_lock);

	emac->phy_node = of_parse_phandle(eth_node, "phy-handle", 0);
	if (!emac->phy_node && !of_phy_is_fixed_link(eth_node)) {
		dev_err(prueth->dev, "couldn't find phy-handle\n");
		ret = -ENODEV;
		goto free;
	} else if (of_phy_is_fixed_link(eth_node)) {
		ret = of_phy_register_fixed_link(eth_node);
		if (ret) {
			ret = dev_err_probe(prueth->dev, ret,
					    "failed to register fixed-link phy\n");
			goto free;
		}

		emac->phy_node = eth_node;
	}

	ret = of_get_phy_mode(eth_node, &emac->phy_if);
	if (ret) {
		dev_err(prueth->dev, "could not get phy-mode property\n");
		goto free;
	}

	if (emac->phy_if != PHY_INTERFACE_MODE_MII &&
	    !phy_interface_mode_is_rgmii(emac->phy_if)) {
		dev_err(prueth->dev, "PHY mode unsupported %s\n", phy_modes(emac->phy_if));
		ret = -EINVAL;
		goto free;
	}

	/* AM65 SR2.0 has TX Internal delay always enabled by hardware
	 * and it is not possible to disable TX Internal delay. The below
	 * switch case block describes how we handle different phy modes
	 * based on hardware restriction.
	 */
	switch (emac->phy_if) {
	case PHY_INTERFACE_MODE_RGMII_ID:
		emac->phy_if = PHY_INTERFACE_MODE_RGMII_RXID;
		break;
	case PHY_INTERFACE_MODE_RGMII_TXID:
		emac->phy_if = PHY_INTERFACE_MODE_RGMII;
		break;
	case PHY_INTERFACE_MODE_RGMII:
	case PHY_INTERFACE_MODE_RGMII_RXID:
		dev_err(prueth->dev, "RGMII mode without TX delay is not supported");
		ret = -EINVAL;
		goto free;
	default:
		break;
	}

	/* get mac address from DT and set private and netdev addr */
	ret = of_get_ethdev_address(eth_node, ndev);
	if (!is_valid_ether_addr(ndev->dev_addr)) {
		eth_hw_addr_random(ndev);
		dev_warn(prueth->dev, "port %d: using random MAC addr: %pM\n",
			 port, ndev->dev_addr);
	}
	ether_addr_copy(emac->mac_addr, ndev->dev_addr);

	ndev->min_mtu = PRUETH_MIN_PKT_SIZE;
	ndev->max_mtu = PRUETH_MAX_MTU;
	ndev->netdev_ops = &emac_netdev_ops;
	ndev->ethtool_ops = &icssg_ethtool_ops;
	ndev->hw_features = NETIF_F_SG;
	ndev->features = ndev->hw_features;

	netif_napi_add(ndev, &emac->napi_rx, emac_napi_rx_poll);
	prueth->emac[mac] = emac;

	return 0;

free:
	pruss_release_mem_region(prueth->pruss, &emac->dram);
free_wq:
	destroy_workqueue(emac->cmd_wq);
free_ndev:
	emac->ndev = NULL;
	prueth->emac[mac] = NULL;
	free_netdev(ndev);

	return ret;
}

static void prueth_netdev_exit(struct prueth *prueth,
			       struct device_node *eth_node)
{
	struct prueth_emac *emac;
	enum prueth_mac mac;

	mac = prueth_node_mac(eth_node);
	if (mac == PRUETH_MAC_INVALID)
		return;

	emac = prueth->emac[mac];
	if (!emac)
		return;

	if (of_phy_is_fixed_link(emac->phy_node))
		of_phy_deregister_fixed_link(emac->phy_node);

	netif_napi_del(&emac->napi_rx);

	pruss_release_mem_region(prueth->pruss, &emac->dram);
	destroy_workqueue(emac->cmd_wq);
	free_netdev(emac->ndev);
	prueth->emac[mac] = NULL;
}

static int prueth_get_cores(struct prueth *prueth, int slice)
{
	struct device *dev = prueth->dev;
	enum pruss_pru_id pruss_id;
	struct device_node *np;
	int idx = -1, ret;

	np = dev->of_node;

	switch (slice) {
	case ICSS_SLICE0:
		idx = 0;
		break;
	case ICSS_SLICE1:
		idx = 3;
		break;
	default:
		return -EINVAL;
	}

	prueth->pru[slice] = pru_rproc_get(np, idx, &pruss_id);
	if (IS_ERR(prueth->pru[slice])) {
		ret = PTR_ERR(prueth->pru[slice]);
		prueth->pru[slice] = NULL;
		return dev_err_probe(dev, ret, "unable to get PRU%d\n", slice);
	}
	prueth->pru_id[slice] = pruss_id;

	idx++;
	prueth->rtu[slice] = pru_rproc_get(np, idx, NULL);
	if (IS_ERR(prueth->rtu[slice])) {
		ret = PTR_ERR(prueth->rtu[slice]);
		prueth->rtu[slice] = NULL;
		return dev_err_probe(dev, ret, "unable to get RTU%d\n", slice);
	}

	idx++;
	prueth->txpru[slice] = pru_rproc_get(np, idx, NULL);
	if (IS_ERR(prueth->txpru[slice])) {
		ret = PTR_ERR(prueth->txpru[slice]);
		prueth->txpru[slice] = NULL;
		return dev_err_probe(dev, ret, "unable to get TX_PRU%d\n", slice);
	}

	return 0;
}

static void prueth_put_cores(struct prueth *prueth, int slice)
{
	if (prueth->txpru[slice])
		pru_rproc_put(prueth->txpru[slice]);

	if (prueth->rtu[slice])
		pru_rproc_put(prueth->rtu[slice]);

	if (prueth->pru[slice])
		pru_rproc_put(prueth->pru[slice]);
}

static int prueth_probe(struct platform_device *pdev)
{
	struct device_node *eth_node, *eth_ports_node;
	struct device_node  *eth0_node = NULL;
	struct device_node  *eth1_node = NULL;
	struct genpool_data_align gp_data = {
		.align = SZ_64K,
	};
	struct device *dev = &pdev->dev;
	struct device_node *np;
	struct prueth *prueth;
	struct pruss *pruss;
	u32 msmc_ram_size;
	int i, ret;

	np = dev->of_node;

	prueth = devm_kzalloc(dev, sizeof(*prueth), GFP_KERNEL);
	if (!prueth)
		return -ENOMEM;

	dev_set_drvdata(dev, prueth);
	prueth->pdev = pdev;
	prueth->pdata = *(const struct prueth_pdata *)device_get_match_data(dev);

	prueth->dev = dev;
	eth_ports_node = of_get_child_by_name(np, "ethernet-ports");
	if (!eth_ports_node)
		return -ENOENT;

	for_each_child_of_node(eth_ports_node, eth_node) {
		u32 reg;

		if (strcmp(eth_node->name, "port"))
			continue;
		ret = of_property_read_u32(eth_node, "reg", &reg);
		if (ret < 0) {
			dev_err(dev, "%pOF error reading port_id %d\n",
				eth_node, ret);
		}

		of_node_get(eth_node);

		if (reg == 0) {
			eth0_node = eth_node;
			if (!of_device_is_available(eth0_node)) {
				of_node_put(eth0_node);
				eth0_node = NULL;
			}
		} else if (reg == 1) {
			eth1_node = eth_node;
			if (!of_device_is_available(eth1_node)) {
				of_node_put(eth1_node);
				eth1_node = NULL;
			}
		} else {
			dev_err(dev, "port reg should be 0 or 1\n");
		}
	}

	of_node_put(eth_ports_node);

	/* At least one node must be present and available else we fail */
	if (!eth0_node && !eth1_node) {
		dev_err(dev, "neither port0 nor port1 node available\n");
		return -ENODEV;
	}

	if (eth0_node == eth1_node) {
		dev_err(dev, "port0 and port1 can't have same reg\n");
		of_node_put(eth0_node);
		return -ENODEV;
	}

	prueth->eth_node[PRUETH_MAC0] = eth0_node;
	prueth->eth_node[PRUETH_MAC1] = eth1_node;

	prueth->miig_rt = syscon_regmap_lookup_by_phandle(np, "ti,mii-g-rt");
	if (IS_ERR(prueth->miig_rt)) {
		dev_err(dev, "couldn't get ti,mii-g-rt syscon regmap\n");
		return -ENODEV;
	}

	prueth->mii_rt = syscon_regmap_lookup_by_phandle(np, "ti,mii-rt");
	if (IS_ERR(prueth->mii_rt)) {
		dev_err(dev, "couldn't get ti,mii-rt syscon regmap\n");
		return -ENODEV;
	}

	if (eth0_node) {
		ret = prueth_get_cores(prueth, ICSS_SLICE0);
		if (ret)
			goto put_cores;
	}

	if (eth1_node) {
		ret = prueth_get_cores(prueth, ICSS_SLICE1);
		if (ret)
			goto put_cores;
	}

	pruss = pruss_get(eth0_node ?
			  prueth->pru[ICSS_SLICE0] : prueth->pru[ICSS_SLICE1]);
	if (IS_ERR(pruss)) {
		ret = PTR_ERR(pruss);
		dev_err(dev, "unable to get pruss handle\n");
		goto put_cores;
	}

	prueth->pruss = pruss;

	ret = pruss_request_mem_region(pruss, PRUSS_MEM_SHRD_RAM2,
				       &prueth->shram);
	if (ret) {
		dev_err(dev, "unable to get PRUSS SHRD RAM2: %d\n", ret);
		goto put_pruss;
	}

	prueth->sram_pool = of_gen_pool_get(np, "sram", 0);
	if (!prueth->sram_pool) {
		dev_err(dev, "unable to get SRAM pool\n");
		ret = -ENODEV;

		goto put_mem;
	}

	msmc_ram_size = MSMC_RAM_SIZE;

	/* NOTE: FW bug needs buffer base to be 64KB aligned */
	prueth->msmcram.va =
		(void __iomem *)gen_pool_alloc_algo(prueth->sram_pool,
						    msmc_ram_size,
						    gen_pool_first_fit_align,
						    &gp_data);

	if (!prueth->msmcram.va) {
		ret = -ENOMEM;
		dev_err(dev, "unable to allocate MSMC resource\n");
		goto put_mem;
	}
	prueth->msmcram.pa = gen_pool_virt_to_phys(prueth->sram_pool,
						   (unsigned long)prueth->msmcram.va);
	prueth->msmcram.size = msmc_ram_size;
	memset_io(prueth->msmcram.va, 0, msmc_ram_size);
	dev_dbg(dev, "sram: pa %llx va %p size %zx\n", prueth->msmcram.pa,
		prueth->msmcram.va, prueth->msmcram.size);

	prueth->iep0 = icss_iep_get_idx(np, 0);
	if (IS_ERR(prueth->iep0)) {
		ret = dev_err_probe(dev, PTR_ERR(prueth->iep0), "iep0 get failed\n");
		prueth->iep0 = NULL;
		goto free_pool;
	}

	prueth->iep1 = icss_iep_get_idx(np, 1);
	if (IS_ERR(prueth->iep1)) {
		ret = dev_err_probe(dev, PTR_ERR(prueth->iep1), "iep1 get failed\n");
		goto put_iep0;
	}

	if (prueth->pdata.quirk_10m_link_issue) {
		/* Enable IEP1 for FW in 64bit mode as W/A for 10M FD link detect issue under TX
		 * traffic.
		 */
		icss_iep_init_fw(prueth->iep1);
	}

	/* setup netdev interfaces */
	if (eth0_node) {
		ret = prueth_netdev_init(prueth, eth0_node);
		if (ret) {
			dev_err_probe(dev, ret, "netdev init %s failed\n",
				      eth0_node->name);
			goto exit_iep;
		}

		if (of_find_property(eth0_node, "ti,half-duplex-capable", NULL))
			prueth->emac[PRUETH_MAC0]->half_duplex = 1;

		prueth->emac[PRUETH_MAC0]->iep = prueth->iep0;
	}

	if (eth1_node) {
		ret = prueth_netdev_init(prueth, eth1_node);
		if (ret) {
			dev_err_probe(dev, ret, "netdev init %s failed\n",
				      eth1_node->name);
			goto netdev_exit;
		}

		if (of_find_property(eth1_node, "ti,half-duplex-capable", NULL))
			prueth->emac[PRUETH_MAC1]->half_duplex = 1;

		prueth->emac[PRUETH_MAC1]->iep = prueth->iep0;
	}

	/* register the network devices */
	if (eth0_node) {
		ret = register_netdev(prueth->emac[PRUETH_MAC0]->ndev);
		if (ret) {
			dev_err(dev, "can't register netdev for port MII0");
			goto netdev_exit;
		}

		prueth->registered_netdevs[PRUETH_MAC0] = prueth->emac[PRUETH_MAC0]->ndev;

		emac_phy_connect(prueth->emac[PRUETH_MAC0]);
		phy_attached_info(prueth->emac[PRUETH_MAC0]->ndev->phydev);
	}

	if (eth1_node) {
		ret = register_netdev(prueth->emac[PRUETH_MAC1]->ndev);
		if (ret) {
			dev_err(dev, "can't register netdev for port MII1");
			goto netdev_unregister;
		}

		prueth->registered_netdevs[PRUETH_MAC1] = prueth->emac[PRUETH_MAC1]->ndev;
		emac_phy_connect(prueth->emac[PRUETH_MAC1]);
		phy_attached_info(prueth->emac[PRUETH_MAC1]->ndev->phydev);
	}

	dev_info(dev, "TI PRU ethernet driver initialized: %s EMAC mode\n",
		 (!eth0_node || !eth1_node) ? "single" : "dual");

	if (eth1_node)
		of_node_put(eth1_node);
	if (eth0_node)
		of_node_put(eth0_node);
	return 0;

netdev_unregister:
	for (i = 0; i < PRUETH_NUM_MACS; i++) {
		if (!prueth->registered_netdevs[i])
			continue;
		if (prueth->emac[i]->ndev->phydev) {
			phy_disconnect(prueth->emac[i]->ndev->phydev);
			prueth->emac[i]->ndev->phydev = NULL;
		}
		unregister_netdev(prueth->registered_netdevs[i]);
	}

netdev_exit:
	for (i = 0; i < PRUETH_NUM_MACS; i++) {
		eth_node = prueth->eth_node[i];
		if (!eth_node)
			continue;

		prueth_netdev_exit(prueth, eth_node);
	}

exit_iep:
	if (prueth->pdata.quirk_10m_link_issue)
		icss_iep_exit_fw(prueth->iep1);
	icss_iep_put(prueth->iep1);

put_iep0:
	icss_iep_put(prueth->iep0);
	prueth->iep0 = NULL;
	prueth->iep1 = NULL;

free_pool:
	gen_pool_free(prueth->sram_pool,
		      (unsigned long)prueth->msmcram.va, msmc_ram_size);

put_mem:
	pruss_release_mem_region(prueth->pruss, &prueth->shram);

put_pruss:
	pruss_put(prueth->pruss);

put_cores:
	if (eth1_node) {
		prueth_put_cores(prueth, ICSS_SLICE1);
		of_node_put(eth1_node);
	}

	if (eth0_node) {
		prueth_put_cores(prueth, ICSS_SLICE0);
		of_node_put(eth0_node);
	}

	return ret;
}

static void prueth_remove(struct platform_device *pdev)
{
	struct prueth *prueth = platform_get_drvdata(pdev);
	struct device_node *eth_node;
	int i;

	for (i = 0; i < PRUETH_NUM_MACS; i++) {
		if (!prueth->registered_netdevs[i])
			continue;
		phy_stop(prueth->emac[i]->ndev->phydev);
		phy_disconnect(prueth->emac[i]->ndev->phydev);
		prueth->emac[i]->ndev->phydev = NULL;
		unregister_netdev(prueth->registered_netdevs[i]);
	}

	for (i = 0; i < PRUETH_NUM_MACS; i++) {
		eth_node = prueth->eth_node[i];
		if (!eth_node)
			continue;

		prueth_netdev_exit(prueth, eth_node);
	}

	if (prueth->pdata.quirk_10m_link_issue)
		icss_iep_exit_fw(prueth->iep1);

	icss_iep_put(prueth->iep1);
	icss_iep_put(prueth->iep0);

	gen_pool_free(prueth->sram_pool,
		      (unsigned long)prueth->msmcram.va,
		      MSMC_RAM_SIZE);

	pruss_release_mem_region(prueth->pruss, &prueth->shram);

	pruss_put(prueth->pruss);

	if (prueth->eth_node[PRUETH_MAC1])
		prueth_put_cores(prueth, ICSS_SLICE1);

	if (prueth->eth_node[PRUETH_MAC0])
		prueth_put_cores(prueth, ICSS_SLICE0);
}

#ifdef CONFIG_PM_SLEEP
static int prueth_suspend(struct device *dev)
{
	struct prueth *prueth = dev_get_drvdata(dev);
	struct net_device *ndev;
	int i, ret;

	for (i = 0; i < PRUETH_NUM_MACS; i++) {
		ndev = prueth->registered_netdevs[i];

		if (!ndev)
			continue;

		if (netif_running(ndev)) {
			netif_device_detach(ndev);
			ret = emac_ndo_stop(ndev);
			if (ret < 0) {
				netdev_err(ndev, "failed to stop: %d", ret);
				return ret;
			}
		}
	}

	return 0;
}

static int prueth_resume(struct device *dev)
{
	struct prueth *prueth = dev_get_drvdata(dev);
	struct net_device *ndev;
	int i, ret;

	for (i = 0; i < PRUETH_NUM_MACS; i++) {
		ndev = prueth->registered_netdevs[i];

		if (!ndev)
			continue;

		if (netif_running(ndev)) {
			ret = emac_ndo_open(ndev);
			if (ret < 0) {
				netdev_err(ndev, "failed to start: %d", ret);
				return ret;
			}
			netif_device_attach(ndev);
		}
	}

	return 0;
}
#endif /* CONFIG_PM_SLEEP */

static const struct dev_pm_ops prueth_dev_pm_ops = {
	SET_SYSTEM_SLEEP_PM_OPS(prueth_suspend, prueth_resume)
};

static const struct prueth_pdata am654_icssg_pdata = {
	.fdqring_mode = K3_RINGACC_RING_MODE_MESSAGE,
	.quirk_10m_link_issue = 1,
};

static const struct prueth_pdata am64x_icssg_pdata = {
	.fdqring_mode = K3_RINGACC_RING_MODE_RING,
};

static const struct of_device_id prueth_dt_match[] = {
	{ .compatible = "ti,am654-icssg-prueth", .data = &am654_icssg_pdata },
	{ .compatible = "ti,am642-icssg-prueth", .data = &am64x_icssg_pdata },
	{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, prueth_dt_match);

static struct platform_driver prueth_driver = {
	.probe = prueth_probe,
	.remove_new = prueth_remove,
	.driver = {
		.name = "icssg-prueth",
		.of_match_table = prueth_dt_match,
		.pm = &prueth_dev_pm_ops,
	},
};
module_platform_driver(prueth_driver);

MODULE_AUTHOR("Roger Quadros <rogerq@ti.com>");
MODULE_AUTHOR("Md Danish Anwar <danishanwar@ti.com>");
MODULE_DESCRIPTION("PRUSS ICSSG Ethernet Driver");
MODULE_LICENSE("GPL");