Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Krzysztof Hałasa | 6104 | 72.25% | 16 | 21.62% |
Richard Cochran | 1099 | 13.01% | 3 | 4.05% |
Linus Walleij | 824 | 9.75% | 12 | 16.22% |
Ben Hutchings | 141 | 1.67% | 4 | 5.41% |
Arnd Bergmann | 104 | 1.23% | 6 | 8.11% |
Philippe Reynes | 29 | 0.34% | 2 | 2.70% |
Jiri Pirko | 27 | 0.32% | 3 | 4.05% |
tangbin | 23 | 0.27% | 1 | 1.35% |
Mikael Pettersson | 17 | 0.20% | 1 | 1.35% |
Xi Wang | 12 | 0.14% | 1 | 1.35% |
caihuoqing | 8 | 0.09% | 1 | 1.35% |
Henk de Groot | 7 | 0.08% | 1 | 1.35% |
John W. Linville | 7 | 0.08% | 1 | 1.35% |
Derrick Pallas | 5 | 0.06% | 1 | 1.35% |
Masakazu Mokuno | 5 | 0.06% | 1 | 1.35% |
Yang Yingliang | 5 | 0.06% | 1 | 1.35% |
Florian Fainelli | 5 | 0.06% | 2 | 2.70% |
Zheng Yongjun | 4 | 0.05% | 1 | 1.35% |
Paul Gortmaker | 3 | 0.04% | 1 | 1.35% |
Ansuel Smith | 2 | 0.02% | 1 | 1.35% |
Linus Torvalds (pre-git) | 2 | 0.02% | 1 | 1.35% |
Wolfram Sang | 2 | 0.02% | 1 | 1.35% |
Thomas Gleixner | 2 | 0.02% | 1 | 1.35% |
Uwe Kleine-König | 2 | 0.02% | 1 | 1.35% |
Jakub Kiciński | 2 | 0.02% | 2 | 2.70% |
Daniel Borkmann | 1 | 0.01% | 1 | 1.35% |
Joe Perches | 1 | 0.01% | 1 | 1.35% |
Wei Yang | 1 | 0.01% | 1 | 1.35% |
FUJITA Tomonori | 1 | 0.01% | 1 | 1.35% |
Stephen Hemminger | 1 | 0.01% | 1 | 1.35% |
GUO Zihua | 1 | 0.01% | 1 | 1.35% |
Linus Torvalds | 1 | 0.01% | 1 | 1.35% |
Jingoo Han | 1 | 0.01% | 1 | 1.35% |
Total | 8449 | 74 |
// SPDX-License-Identifier: GPL-2.0-only /* * Intel IXP4xx Ethernet driver for Linux * * Copyright (C) 2007 Krzysztof Halasa <khc@pm.waw.pl> * * Ethernet port config (0x00 is not present on IXP42X): * * logical port 0x00 0x10 0x20 * NPE 0 (NPE-A) 1 (NPE-B) 2 (NPE-C) * physical PortId 2 0 1 * TX queue 23 24 25 * RX-free queue 26 27 28 * TX-done queue is always 31, per-port RX and TX-ready queues are configurable * * Queue entries: * bits 0 -> 1 - NPE ID (RX and TX-done) * bits 0 -> 2 - priority (TX, per 802.1D) * bits 3 -> 4 - port ID (user-set?) * bits 5 -> 31 - physical descriptor address */ #include <linux/delay.h> #include <linux/dma-mapping.h> #include <linux/dmapool.h> #include <linux/etherdevice.h> #include <linux/if_vlan.h> #include <linux/io.h> #include <linux/kernel.h> #include <linux/net_tstamp.h> #include <linux/of.h> #include <linux/of_mdio.h> #include <linux/of_net.h> #include <linux/phy.h> #include <linux/platform_device.h> #include <linux/ptp_classify.h> #include <linux/slab.h> #include <linux/module.h> #include <linux/soc/ixp4xx/npe.h> #include <linux/soc/ixp4xx/qmgr.h> #include <linux/soc/ixp4xx/cpu.h> #include <linux/types.h> #define IXP4XX_ETH_NPEA 0x00 #define IXP4XX_ETH_NPEB 0x10 #define IXP4XX_ETH_NPEC 0x20 #include "ixp46x_ts.h" #define DEBUG_DESC 0 #define DEBUG_RX 0 #define DEBUG_TX 0 #define DEBUG_PKT_BYTES 0 #define DEBUG_MDIO 0 #define DEBUG_CLOSE 0 #define DRV_NAME "ixp4xx_eth" #define MAX_NPES 3 #define RX_DESCS 64 /* also length of all RX queues */ #define TX_DESCS 16 /* also length of all TX queues */ #define TXDONE_QUEUE_LEN 64 /* dwords */ #define POOL_ALLOC_SIZE (sizeof(struct desc) * (RX_DESCS + TX_DESCS)) #define REGS_SIZE 0x1000 /* MRU is said to be 14320 in a code dump, the SW manual says that * MRU/MTU is 16320 and includes VLAN and ethernet headers. * See "IXP400 Software Programmer's Guide" section 10.3.2, page 161. * * FIXME: we have chosen the safe default (14320) but if you can test * jumboframes, experiment with 16320 and see what happens! */ #define MAX_MRU (14320 - VLAN_ETH_HLEN) #define RX_BUFF_SIZE ALIGN((NET_IP_ALIGN) + MAX_MRU, 4) #define NAPI_WEIGHT 16 #define MDIO_INTERVAL (3 * HZ) #define MAX_MDIO_RETRIES 100 /* microseconds, typically 30 cycles */ #define MAX_CLOSE_WAIT 1000 /* microseconds, typically 2-3 cycles */ #define NPE_ID(port_id) ((port_id) >> 4) #define PHYSICAL_ID(port_id) ((NPE_ID(port_id) + 2) % 3) #define TX_QUEUE(port_id) (NPE_ID(port_id) + 23) #define RXFREE_QUEUE(port_id) (NPE_ID(port_id) + 26) #define TXDONE_QUEUE 31 #define PTP_SLAVE_MODE 1 #define PTP_MASTER_MODE 2 #define PORT2CHANNEL(p) NPE_ID(p->id) /* TX Control Registers */ #define TX_CNTRL0_TX_EN 0x01 #define TX_CNTRL0_HALFDUPLEX 0x02 #define TX_CNTRL0_RETRY 0x04 #define TX_CNTRL0_PAD_EN 0x08 #define TX_CNTRL0_APPEND_FCS 0x10 #define TX_CNTRL0_2DEFER 0x20 #define TX_CNTRL0_RMII 0x40 /* reduced MII */ #define TX_CNTRL1_RETRIES 0x0F /* 4 bits */ /* RX Control Registers */ #define RX_CNTRL0_RX_EN 0x01 #define RX_CNTRL0_PADSTRIP_EN 0x02 #define RX_CNTRL0_SEND_FCS 0x04 #define RX_CNTRL0_PAUSE_EN 0x08 #define RX_CNTRL0_LOOP_EN 0x10 #define RX_CNTRL0_ADDR_FLTR_EN 0x20 #define RX_CNTRL0_RX_RUNT_EN 0x40 #define RX_CNTRL0_BCAST_DIS 0x80 #define RX_CNTRL1_DEFER_EN 0x01 /* Core Control Register */ #define CORE_RESET 0x01 #define CORE_RX_FIFO_FLUSH 0x02 #define CORE_TX_FIFO_FLUSH 0x04 #define CORE_SEND_JAM 0x08 #define CORE_MDC_EN 0x10 /* MDIO using NPE-B ETH-0 only */ #define DEFAULT_TX_CNTRL0 (TX_CNTRL0_TX_EN | TX_CNTRL0_RETRY | \ TX_CNTRL0_PAD_EN | TX_CNTRL0_APPEND_FCS | \ TX_CNTRL0_2DEFER) #define DEFAULT_RX_CNTRL0 RX_CNTRL0_RX_EN #define DEFAULT_CORE_CNTRL CORE_MDC_EN /* NPE message codes */ #define NPE_GETSTATUS 0x00 #define NPE_EDB_SETPORTADDRESS 0x01 #define NPE_EDB_GETMACADDRESSDATABASE 0x02 #define NPE_EDB_SETMACADDRESSSDATABASE 0x03 #define NPE_GETSTATS 0x04 #define NPE_RESETSTATS 0x05 #define NPE_SETMAXFRAMELENGTHS 0x06 #define NPE_VLAN_SETRXTAGMODE 0x07 #define NPE_VLAN_SETDEFAULTRXVID 0x08 #define NPE_VLAN_SETPORTVLANTABLEENTRY 0x09 #define NPE_VLAN_SETPORTVLANTABLERANGE 0x0A #define NPE_VLAN_SETRXQOSENTRY 0x0B #define NPE_VLAN_SETPORTIDEXTRACTIONMODE 0x0C #define NPE_STP_SETBLOCKINGSTATE 0x0D #define NPE_FW_SETFIREWALLMODE 0x0E #define NPE_PC_SETFRAMECONTROLDURATIONID 0x0F #define NPE_PC_SETAPMACTABLE 0x11 #define NPE_SETLOOPBACK_MODE 0x12 #define NPE_PC_SETBSSIDTABLE 0x13 #define NPE_ADDRESS_FILTER_CONFIG 0x14 #define NPE_APPENDFCSCONFIG 0x15 #define NPE_NOTIFY_MAC_RECOVERY_DONE 0x16 #define NPE_MAC_RECOVERY_START 0x17 #ifdef __ARMEB__ typedef struct sk_buff buffer_t; #define free_buffer dev_kfree_skb #define free_buffer_irq dev_consume_skb_irq #else typedef void buffer_t; #define free_buffer kfree #define free_buffer_irq kfree #endif /* Information about built-in Ethernet MAC interfaces */ struct eth_plat_info { u8 rxq; /* configurable, currently 0 - 31 only */ u8 txreadyq; u8 hwaddr[ETH_ALEN]; u8 npe; /* NPE instance used by this interface */ bool has_mdio; /* If this instance has an MDIO bus */ }; struct eth_regs { u32 tx_control[2], __res1[2]; /* 000 */ u32 rx_control[2], __res2[2]; /* 010 */ u32 random_seed, __res3[3]; /* 020 */ u32 partial_empty_threshold, __res4; /* 030 */ u32 partial_full_threshold, __res5; /* 038 */ u32 tx_start_bytes, __res6[3]; /* 040 */ u32 tx_deferral, rx_deferral, __res7[2];/* 050 */ u32 tx_2part_deferral[2], __res8[2]; /* 060 */ u32 slot_time, __res9[3]; /* 070 */ u32 mdio_command[4]; /* 080 */ u32 mdio_status[4]; /* 090 */ u32 mcast_mask[6], __res10[2]; /* 0A0 */ u32 mcast_addr[6], __res11[2]; /* 0C0 */ u32 int_clock_threshold, __res12[3]; /* 0E0 */ u32 hw_addr[6], __res13[61]; /* 0F0 */ u32 core_control; /* 1FC */ }; struct port { struct eth_regs __iomem *regs; struct ixp46x_ts_regs __iomem *timesync_regs; int phc_index; struct npe *npe; struct net_device *netdev; struct napi_struct napi; struct eth_plat_info *plat; buffer_t *rx_buff_tab[RX_DESCS], *tx_buff_tab[TX_DESCS]; struct desc *desc_tab; /* coherent */ dma_addr_t desc_tab_phys; int id; /* logical port ID */ int speed, duplex; u8 firmware[4]; int hwts_tx_en; int hwts_rx_en; }; /* NPE message structure */ struct msg { #ifdef __ARMEB__ u8 cmd, eth_id, byte2, byte3; u8 byte4, byte5, byte6, byte7; #else u8 byte3, byte2, eth_id, cmd; u8 byte7, byte6, byte5, byte4; #endif }; /* Ethernet packet descriptor */ struct desc { u32 next; /* pointer to next buffer, unused */ #ifdef __ARMEB__ u16 buf_len; /* buffer length */ u16 pkt_len; /* packet length */ u32 data; /* pointer to data buffer in RAM */ u8 dest_id; u8 src_id; u16 flags; u8 qos; u8 padlen; u16 vlan_tci; #else u16 pkt_len; /* packet length */ u16 buf_len; /* buffer length */ u32 data; /* pointer to data buffer in RAM */ u16 flags; u8 src_id; u8 dest_id; u16 vlan_tci; u8 padlen; u8 qos; #endif #ifdef __ARMEB__ u8 dst_mac_0, dst_mac_1, dst_mac_2, dst_mac_3; u8 dst_mac_4, dst_mac_5, src_mac_0, src_mac_1; u8 src_mac_2, src_mac_3, src_mac_4, src_mac_5; #else u8 dst_mac_3, dst_mac_2, dst_mac_1, dst_mac_0; u8 src_mac_1, src_mac_0, dst_mac_5, dst_mac_4; u8 src_mac_5, src_mac_4, src_mac_3, src_mac_2; #endif }; #define rx_desc_phys(port, n) ((port)->desc_tab_phys + \ (n) * sizeof(struct desc)) #define rx_desc_ptr(port, n) (&(port)->desc_tab[n]) #define tx_desc_phys(port, n) ((port)->desc_tab_phys + \ ((n) + RX_DESCS) * sizeof(struct desc)) #define tx_desc_ptr(port, n) (&(port)->desc_tab[(n) + RX_DESCS]) #ifndef __ARMEB__ static inline void memcpy_swab32(u32 *dest, u32 *src, int cnt) { int i; for (i = 0; i < cnt; i++) dest[i] = swab32(src[i]); } #endif static DEFINE_SPINLOCK(mdio_lock); static struct eth_regs __iomem *mdio_regs; /* mdio command and status only */ static struct mii_bus *mdio_bus; static struct device_node *mdio_bus_np; static int ports_open; static struct port *npe_port_tab[MAX_NPES]; static struct dma_pool *dma_pool; static int ixp_ptp_match(struct sk_buff *skb, u16 uid_hi, u32 uid_lo, u16 seqid) { u8 *data = skb->data; unsigned int offset; u16 *hi, *id; u32 lo; if (ptp_classify_raw(skb) != PTP_CLASS_V1_IPV4) return 0; offset = ETH_HLEN + IPV4_HLEN(data) + UDP_HLEN; if (skb->len < offset + OFF_PTP_SEQUENCE_ID + sizeof(seqid)) return 0; hi = (u16 *)(data + offset + OFF_PTP_SOURCE_UUID); id = (u16 *)(data + offset + OFF_PTP_SEQUENCE_ID); memcpy(&lo, &hi[1], sizeof(lo)); return (uid_hi == ntohs(*hi) && uid_lo == ntohl(lo) && seqid == ntohs(*id)); } static void ixp_rx_timestamp(struct port *port, struct sk_buff *skb) { struct skb_shared_hwtstamps *shhwtstamps; struct ixp46x_ts_regs *regs; u64 ns; u32 ch, hi, lo, val; u16 uid, seq; if (!port->hwts_rx_en) return; ch = PORT2CHANNEL(port); regs = port->timesync_regs; val = __raw_readl(®s->channel[ch].ch_event); if (!(val & RX_SNAPSHOT_LOCKED)) return; lo = __raw_readl(®s->channel[ch].src_uuid_lo); hi = __raw_readl(®s->channel[ch].src_uuid_hi); uid = hi & 0xffff; seq = (hi >> 16) & 0xffff; if (!ixp_ptp_match(skb, htons(uid), htonl(lo), htons(seq))) goto out; lo = __raw_readl(®s->channel[ch].rx_snap_lo); hi = __raw_readl(®s->channel[ch].rx_snap_hi); ns = ((u64) hi) << 32; ns |= lo; ns <<= TICKS_NS_SHIFT; shhwtstamps = skb_hwtstamps(skb); memset(shhwtstamps, 0, sizeof(*shhwtstamps)); shhwtstamps->hwtstamp = ns_to_ktime(ns); out: __raw_writel(RX_SNAPSHOT_LOCKED, ®s->channel[ch].ch_event); } static void ixp_tx_timestamp(struct port *port, struct sk_buff *skb) { struct skb_shared_hwtstamps shhwtstamps; struct ixp46x_ts_regs *regs; struct skb_shared_info *shtx; u64 ns; u32 ch, cnt, hi, lo, val; shtx = skb_shinfo(skb); if (unlikely(shtx->tx_flags & SKBTX_HW_TSTAMP && port->hwts_tx_en)) shtx->tx_flags |= SKBTX_IN_PROGRESS; else return; ch = PORT2CHANNEL(port); regs = port->timesync_regs; /* * This really stinks, but we have to poll for the Tx time stamp. * Usually, the time stamp is ready after 4 to 6 microseconds. */ for (cnt = 0; cnt < 100; cnt++) { val = __raw_readl(®s->channel[ch].ch_event); if (val & TX_SNAPSHOT_LOCKED) break; udelay(1); } if (!(val & TX_SNAPSHOT_LOCKED)) { shtx->tx_flags &= ~SKBTX_IN_PROGRESS; return; } lo = __raw_readl(®s->channel[ch].tx_snap_lo); hi = __raw_readl(®s->channel[ch].tx_snap_hi); ns = ((u64) hi) << 32; ns |= lo; ns <<= TICKS_NS_SHIFT; memset(&shhwtstamps, 0, sizeof(shhwtstamps)); shhwtstamps.hwtstamp = ns_to_ktime(ns); skb_tstamp_tx(skb, &shhwtstamps); __raw_writel(TX_SNAPSHOT_LOCKED, ®s->channel[ch].ch_event); } static int hwtstamp_set(struct net_device *netdev, struct ifreq *ifr) { struct hwtstamp_config cfg; struct ixp46x_ts_regs *regs; struct port *port = netdev_priv(netdev); int ret; int ch; if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg))) return -EFAULT; ret = ixp46x_ptp_find(&port->timesync_regs, &port->phc_index); if (ret) return ret; ch = PORT2CHANNEL(port); regs = port->timesync_regs; if (cfg.tx_type != HWTSTAMP_TX_OFF && cfg.tx_type != HWTSTAMP_TX_ON) return -ERANGE; switch (cfg.rx_filter) { case HWTSTAMP_FILTER_NONE: port->hwts_rx_en = 0; break; case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: port->hwts_rx_en = PTP_SLAVE_MODE; __raw_writel(0, ®s->channel[ch].ch_control); break; case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: port->hwts_rx_en = PTP_MASTER_MODE; __raw_writel(MASTER_MODE, ®s->channel[ch].ch_control); break; default: return -ERANGE; } port->hwts_tx_en = cfg.tx_type == HWTSTAMP_TX_ON; /* Clear out any old time stamps. */ __raw_writel(TX_SNAPSHOT_LOCKED | RX_SNAPSHOT_LOCKED, ®s->channel[ch].ch_event); return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0; } static int hwtstamp_get(struct net_device *netdev, struct ifreq *ifr) { struct hwtstamp_config cfg; struct port *port = netdev_priv(netdev); cfg.flags = 0; cfg.tx_type = port->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF; switch (port->hwts_rx_en) { case 0: cfg.rx_filter = HWTSTAMP_FILTER_NONE; break; case PTP_SLAVE_MODE: cfg.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC; break; case PTP_MASTER_MODE: cfg.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ; break; default: WARN_ON_ONCE(1); return -ERANGE; } return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0; } static int ixp4xx_mdio_cmd(struct mii_bus *bus, int phy_id, int location, int write, u16 cmd) { int cycles = 0; if (__raw_readl(&mdio_regs->mdio_command[3]) & 0x80) { printk(KERN_ERR "%s: MII not ready to transmit\n", bus->name); return -1; } if (write) { __raw_writel(cmd & 0xFF, &mdio_regs->mdio_command[0]); __raw_writel(cmd >> 8, &mdio_regs->mdio_command[1]); } __raw_writel(((phy_id << 5) | location) & 0xFF, &mdio_regs->mdio_command[2]); __raw_writel((phy_id >> 3) | (write << 2) | 0x80 /* GO */, &mdio_regs->mdio_command[3]); while ((cycles < MAX_MDIO_RETRIES) && (__raw_readl(&mdio_regs->mdio_command[3]) & 0x80)) { udelay(1); cycles++; } if (cycles == MAX_MDIO_RETRIES) { printk(KERN_ERR "%s #%i: MII write failed\n", bus->name, phy_id); return -1; } #if DEBUG_MDIO printk(KERN_DEBUG "%s #%i: mdio_%s() took %i cycles\n", bus->name, phy_id, write ? "write" : "read", cycles); #endif if (write) return 0; if (__raw_readl(&mdio_regs->mdio_status[3]) & 0x80) { #if DEBUG_MDIO printk(KERN_DEBUG "%s #%i: MII read failed\n", bus->name, phy_id); #endif return 0xFFFF; /* don't return error */ } return (__raw_readl(&mdio_regs->mdio_status[0]) & 0xFF) | ((__raw_readl(&mdio_regs->mdio_status[1]) & 0xFF) << 8); } static int ixp4xx_mdio_read(struct mii_bus *bus, int phy_id, int location) { unsigned long flags; int ret; spin_lock_irqsave(&mdio_lock, flags); ret = ixp4xx_mdio_cmd(bus, phy_id, location, 0, 0); spin_unlock_irqrestore(&mdio_lock, flags); #if DEBUG_MDIO printk(KERN_DEBUG "%s #%i: MII read [%i] -> 0x%X\n", bus->name, phy_id, location, ret); #endif return ret; } static int ixp4xx_mdio_write(struct mii_bus *bus, int phy_id, int location, u16 val) { unsigned long flags; int ret; spin_lock_irqsave(&mdio_lock, flags); ret = ixp4xx_mdio_cmd(bus, phy_id, location, 1, val); spin_unlock_irqrestore(&mdio_lock, flags); #if DEBUG_MDIO printk(KERN_DEBUG "%s #%i: MII write [%i] <- 0x%X, err = %i\n", bus->name, phy_id, location, val, ret); #endif return ret; } static int ixp4xx_mdio_register(struct eth_regs __iomem *regs) { int err; if (!(mdio_bus = mdiobus_alloc())) return -ENOMEM; mdio_regs = regs; __raw_writel(DEFAULT_CORE_CNTRL, &mdio_regs->core_control); mdio_bus->name = "IXP4xx MII Bus"; mdio_bus->read = &ixp4xx_mdio_read; mdio_bus->write = &ixp4xx_mdio_write; snprintf(mdio_bus->id, MII_BUS_ID_SIZE, "ixp4xx-eth-0"); err = of_mdiobus_register(mdio_bus, mdio_bus_np); if (err) mdiobus_free(mdio_bus); return err; } static void ixp4xx_mdio_remove(void) { mdiobus_unregister(mdio_bus); mdiobus_free(mdio_bus); } static void ixp4xx_adjust_link(struct net_device *dev) { struct port *port = netdev_priv(dev); struct phy_device *phydev = dev->phydev; if (!phydev->link) { if (port->speed) { port->speed = 0; printk(KERN_INFO "%s: link down\n", dev->name); } return; } if (port->speed == phydev->speed && port->duplex == phydev->duplex) return; port->speed = phydev->speed; port->duplex = phydev->duplex; if (port->duplex) __raw_writel(DEFAULT_TX_CNTRL0 & ~TX_CNTRL0_HALFDUPLEX, &port->regs->tx_control[0]); else __raw_writel(DEFAULT_TX_CNTRL0 | TX_CNTRL0_HALFDUPLEX, &port->regs->tx_control[0]); netdev_info(dev, "%s: link up, speed %u Mb/s, %s duplex\n", dev->name, port->speed, port->duplex ? "full" : "half"); } static inline void debug_pkt(struct net_device *dev, const char *func, u8 *data, int len) { #if DEBUG_PKT_BYTES int i; netdev_debug(dev, "%s(%i) ", func, len); for (i = 0; i < len; i++) { if (i >= DEBUG_PKT_BYTES) break; printk("%s%02X", ((i == 6) || (i == 12) || (i >= 14)) ? " " : "", data[i]); } printk("\n"); #endif } static inline void debug_desc(u32 phys, struct desc *desc) { #if DEBUG_DESC printk(KERN_DEBUG "%X: %X %3X %3X %08X %2X < %2X %4X %X" " %X %X %02X%02X%02X%02X%02X%02X < %02X%02X%02X%02X%02X%02X\n", phys, desc->next, desc->buf_len, desc->pkt_len, desc->data, desc->dest_id, desc->src_id, desc->flags, desc->qos, desc->padlen, desc->vlan_tci, desc->dst_mac_0, desc->dst_mac_1, desc->dst_mac_2, desc->dst_mac_3, desc->dst_mac_4, desc->dst_mac_5, desc->src_mac_0, desc->src_mac_1, desc->src_mac_2, desc->src_mac_3, desc->src_mac_4, desc->src_mac_5); #endif } static inline int queue_get_desc(unsigned int queue, struct port *port, int is_tx) { u32 phys, tab_phys, n_desc; struct desc *tab; if (!(phys = qmgr_get_entry(queue))) return -1; phys &= ~0x1F; /* mask out non-address bits */ tab_phys = is_tx ? tx_desc_phys(port, 0) : rx_desc_phys(port, 0); tab = is_tx ? tx_desc_ptr(port, 0) : rx_desc_ptr(port, 0); n_desc = (phys - tab_phys) / sizeof(struct desc); BUG_ON(n_desc >= (is_tx ? TX_DESCS : RX_DESCS)); debug_desc(phys, &tab[n_desc]); BUG_ON(tab[n_desc].next); return n_desc; } static inline void queue_put_desc(unsigned int queue, u32 phys, struct desc *desc) { debug_desc(phys, desc); BUG_ON(phys & 0x1F); qmgr_put_entry(queue, phys); /* Don't check for queue overflow here, we've allocated sufficient length and queues >= 32 don't support this check anyway. */ } static inline void dma_unmap_tx(struct port *port, struct desc *desc) { #ifdef __ARMEB__ dma_unmap_single(&port->netdev->dev, desc->data, desc->buf_len, DMA_TO_DEVICE); #else dma_unmap_single(&port->netdev->dev, desc->data & ~3, ALIGN((desc->data & 3) + desc->buf_len, 4), DMA_TO_DEVICE); #endif } static void eth_rx_irq(void *pdev) { struct net_device *dev = pdev; struct port *port = netdev_priv(dev); #if DEBUG_RX printk(KERN_DEBUG "%s: eth_rx_irq\n", dev->name); #endif qmgr_disable_irq(port->plat->rxq); napi_schedule(&port->napi); } static int eth_poll(struct napi_struct *napi, int budget) { struct port *port = container_of(napi, struct port, napi); struct net_device *dev = port->netdev; unsigned int rxq = port->plat->rxq, rxfreeq = RXFREE_QUEUE(port->id); int received = 0; #if DEBUG_RX netdev_debug(dev, "eth_poll\n"); #endif while (received < budget) { struct sk_buff *skb; struct desc *desc; int n; #ifdef __ARMEB__ struct sk_buff *temp; u32 phys; #endif if ((n = queue_get_desc(rxq, port, 0)) < 0) { #if DEBUG_RX netdev_debug(dev, "eth_poll napi_complete\n"); #endif napi_complete(napi); qmgr_enable_irq(rxq); if (!qmgr_stat_below_low_watermark(rxq) && napi_schedule(napi)) { /* not empty again */ #if DEBUG_RX netdev_debug(dev, "eth_poll napi_schedule succeeded\n"); #endif qmgr_disable_irq(rxq); continue; } #if DEBUG_RX netdev_debug(dev, "eth_poll all done\n"); #endif return received; /* all work done */ } desc = rx_desc_ptr(port, n); #ifdef __ARMEB__ if ((skb = netdev_alloc_skb(dev, RX_BUFF_SIZE))) { phys = dma_map_single(&dev->dev, skb->data, RX_BUFF_SIZE, DMA_FROM_DEVICE); if (dma_mapping_error(&dev->dev, phys)) { dev_kfree_skb(skb); skb = NULL; } } #else skb = netdev_alloc_skb(dev, ALIGN(NET_IP_ALIGN + desc->pkt_len, 4)); #endif if (!skb) { dev->stats.rx_dropped++; /* put the desc back on RX-ready queue */ desc->buf_len = MAX_MRU; desc->pkt_len = 0; queue_put_desc(rxfreeq, rx_desc_phys(port, n), desc); continue; } /* process received frame */ #ifdef __ARMEB__ temp = skb; skb = port->rx_buff_tab[n]; dma_unmap_single(&dev->dev, desc->data - NET_IP_ALIGN, RX_BUFF_SIZE, DMA_FROM_DEVICE); #else dma_sync_single_for_cpu(&dev->dev, desc->data - NET_IP_ALIGN, RX_BUFF_SIZE, DMA_FROM_DEVICE); memcpy_swab32((u32 *)skb->data, (u32 *)port->rx_buff_tab[n], ALIGN(NET_IP_ALIGN + desc->pkt_len, 4) / 4); #endif skb_reserve(skb, NET_IP_ALIGN); skb_put(skb, desc->pkt_len); debug_pkt(dev, "eth_poll", skb->data, skb->len); ixp_rx_timestamp(port, skb); skb->protocol = eth_type_trans(skb, dev); dev->stats.rx_packets++; dev->stats.rx_bytes += skb->len; netif_receive_skb(skb); /* put the new buffer on RX-free queue */ #ifdef __ARMEB__ port->rx_buff_tab[n] = temp; desc->data = phys + NET_IP_ALIGN; #endif desc->buf_len = MAX_MRU; desc->pkt_len = 0; queue_put_desc(rxfreeq, rx_desc_phys(port, n), desc); received++; } #if DEBUG_RX netdev_debug(dev, "eth_poll(): end, not all work done\n"); #endif return received; /* not all work done */ } static void eth_txdone_irq(void *unused) { u32 phys; #if DEBUG_TX printk(KERN_DEBUG DRV_NAME ": eth_txdone_irq\n"); #endif while ((phys = qmgr_get_entry(TXDONE_QUEUE)) != 0) { u32 npe_id, n_desc; struct port *port; struct desc *desc; int start; npe_id = phys & 3; BUG_ON(npe_id >= MAX_NPES); port = npe_port_tab[npe_id]; BUG_ON(!port); phys &= ~0x1F; /* mask out non-address bits */ n_desc = (phys - tx_desc_phys(port, 0)) / sizeof(struct desc); BUG_ON(n_desc >= TX_DESCS); desc = tx_desc_ptr(port, n_desc); debug_desc(phys, desc); if (port->tx_buff_tab[n_desc]) { /* not the draining packet */ port->netdev->stats.tx_packets++; port->netdev->stats.tx_bytes += desc->pkt_len; dma_unmap_tx(port, desc); #if DEBUG_TX printk(KERN_DEBUG "%s: eth_txdone_irq free %p\n", port->netdev->name, port->tx_buff_tab[n_desc]); #endif free_buffer_irq(port->tx_buff_tab[n_desc]); port->tx_buff_tab[n_desc] = NULL; } start = qmgr_stat_below_low_watermark(port->plat->txreadyq); queue_put_desc(port->plat->txreadyq, phys, desc); if (start) { /* TX-ready queue was empty */ #if DEBUG_TX printk(KERN_DEBUG "%s: eth_txdone_irq xmit ready\n", port->netdev->name); #endif netif_wake_queue(port->netdev); } } } static netdev_tx_t eth_xmit(struct sk_buff *skb, struct net_device *dev) { struct port *port = netdev_priv(dev); unsigned int txreadyq = port->plat->txreadyq; int len, offset, bytes, n; void *mem; u32 phys; struct desc *desc; #if DEBUG_TX netdev_debug(dev, "eth_xmit\n"); #endif if (unlikely(skb->len > MAX_MRU)) { dev_kfree_skb(skb); dev->stats.tx_errors++; return NETDEV_TX_OK; } debug_pkt(dev, "eth_xmit", skb->data, skb->len); len = skb->len; #ifdef __ARMEB__ offset = 0; /* no need to keep alignment */ bytes = len; mem = skb->data; #else offset = (uintptr_t)skb->data & 3; /* keep 32-bit alignment */ bytes = ALIGN(offset + len, 4); if (!(mem = kmalloc(bytes, GFP_ATOMIC))) { dev_kfree_skb(skb); dev->stats.tx_dropped++; return NETDEV_TX_OK; } memcpy_swab32(mem, (u32 *)((uintptr_t)skb->data & ~3), bytes / 4); #endif phys = dma_map_single(&dev->dev, mem, bytes, DMA_TO_DEVICE); if (dma_mapping_error(&dev->dev, phys)) { dev_kfree_skb(skb); #ifndef __ARMEB__ kfree(mem); #endif dev->stats.tx_dropped++; return NETDEV_TX_OK; } n = queue_get_desc(txreadyq, port, 1); BUG_ON(n < 0); desc = tx_desc_ptr(port, n); #ifdef __ARMEB__ port->tx_buff_tab[n] = skb; #else port->tx_buff_tab[n] = mem; #endif desc->data = phys + offset; desc->buf_len = desc->pkt_len = len; /* NPE firmware pads short frames with zeros internally */ wmb(); queue_put_desc(TX_QUEUE(port->id), tx_desc_phys(port, n), desc); if (qmgr_stat_below_low_watermark(txreadyq)) { /* empty */ #if DEBUG_TX netdev_debug(dev, "eth_xmit queue full\n"); #endif netif_stop_queue(dev); /* we could miss TX ready interrupt */ /* really empty in fact */ if (!qmgr_stat_below_low_watermark(txreadyq)) { #if DEBUG_TX netdev_debug(dev, "eth_xmit ready again\n"); #endif netif_wake_queue(dev); } } #if DEBUG_TX netdev_debug(dev, "eth_xmit end\n"); #endif ixp_tx_timestamp(port, skb); skb_tx_timestamp(skb); #ifndef __ARMEB__ dev_kfree_skb(skb); #endif return NETDEV_TX_OK; } static void eth_set_mcast_list(struct net_device *dev) { struct port *port = netdev_priv(dev); struct netdev_hw_addr *ha; u8 diffs[ETH_ALEN], *addr; int i; static const u8 allmulti[] = { 0x01, 0x00, 0x00, 0x00, 0x00, 0x00 }; if ((dev->flags & IFF_ALLMULTI) && !(dev->flags & IFF_PROMISC)) { for (i = 0; i < ETH_ALEN; i++) { __raw_writel(allmulti[i], &port->regs->mcast_addr[i]); __raw_writel(allmulti[i], &port->regs->mcast_mask[i]); } __raw_writel(DEFAULT_RX_CNTRL0 | RX_CNTRL0_ADDR_FLTR_EN, &port->regs->rx_control[0]); return; } if ((dev->flags & IFF_PROMISC) || netdev_mc_empty(dev)) { __raw_writel(DEFAULT_RX_CNTRL0 & ~RX_CNTRL0_ADDR_FLTR_EN, &port->regs->rx_control[0]); return; } eth_zero_addr(diffs); addr = NULL; netdev_for_each_mc_addr(ha, dev) { if (!addr) addr = ha->addr; /* first MAC address */ for (i = 0; i < ETH_ALEN; i++) diffs[i] |= addr[i] ^ ha->addr[i]; } for (i = 0; i < ETH_ALEN; i++) { __raw_writel(addr[i], &port->regs->mcast_addr[i]); __raw_writel(~diffs[i], &port->regs->mcast_mask[i]); } __raw_writel(DEFAULT_RX_CNTRL0 | RX_CNTRL0_ADDR_FLTR_EN, &port->regs->rx_control[0]); } static int eth_ioctl(struct net_device *dev, struct ifreq *req, int cmd) { if (!netif_running(dev)) return -EINVAL; if (cpu_is_ixp46x()) { if (cmd == SIOCSHWTSTAMP) return hwtstamp_set(dev, req); if (cmd == SIOCGHWTSTAMP) return hwtstamp_get(dev, req); } return phy_mii_ioctl(dev->phydev, req, cmd); } /* ethtool support */ static void ixp4xx_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) { struct port *port = netdev_priv(dev); strscpy(info->driver, DRV_NAME, sizeof(info->driver)); snprintf(info->fw_version, sizeof(info->fw_version), "%u:%u:%u:%u", port->firmware[0], port->firmware[1], port->firmware[2], port->firmware[3]); strscpy(info->bus_info, "internal", sizeof(info->bus_info)); } static int ixp4xx_get_ts_info(struct net_device *dev, struct ethtool_ts_info *info) { struct port *port = netdev_priv(dev); if (port->phc_index < 0) ixp46x_ptp_find(&port->timesync_regs, &port->phc_index); info->phc_index = port->phc_index; if (info->phc_index < 0) { info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE | SOF_TIMESTAMPING_RX_SOFTWARE | SOF_TIMESTAMPING_SOFTWARE; return 0; } info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE | SOF_TIMESTAMPING_RX_HARDWARE | SOF_TIMESTAMPING_RAW_HARDWARE; info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON); info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) | (1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) | (1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ); return 0; } static const struct ethtool_ops ixp4xx_ethtool_ops = { .get_drvinfo = ixp4xx_get_drvinfo, .nway_reset = phy_ethtool_nway_reset, .get_link = ethtool_op_get_link, .get_ts_info = ixp4xx_get_ts_info, .get_link_ksettings = phy_ethtool_get_link_ksettings, .set_link_ksettings = phy_ethtool_set_link_ksettings, }; static int request_queues(struct port *port) { int err; err = qmgr_request_queue(RXFREE_QUEUE(port->id), RX_DESCS, 0, 0, "%s:RX-free", port->netdev->name); if (err) return err; err = qmgr_request_queue(port->plat->rxq, RX_DESCS, 0, 0, "%s:RX", port->netdev->name); if (err) goto rel_rxfree; err = qmgr_request_queue(TX_QUEUE(port->id), TX_DESCS, 0, 0, "%s:TX", port->netdev->name); if (err) goto rel_rx; err = qmgr_request_queue(port->plat->txreadyq, TX_DESCS, 0, 0, "%s:TX-ready", port->netdev->name); if (err) goto rel_tx; /* TX-done queue handles skbs sent out by the NPEs */ if (!ports_open) { err = qmgr_request_queue(TXDONE_QUEUE, TXDONE_QUEUE_LEN, 0, 0, "%s:TX-done", DRV_NAME); if (err) goto rel_txready; } return 0; rel_txready: qmgr_release_queue(port->plat->txreadyq); rel_tx: qmgr_release_queue(TX_QUEUE(port->id)); rel_rx: qmgr_release_queue(port->plat->rxq); rel_rxfree: qmgr_release_queue(RXFREE_QUEUE(port->id)); printk(KERN_DEBUG "%s: unable to request hardware queues\n", port->netdev->name); return err; } static void release_queues(struct port *port) { qmgr_release_queue(RXFREE_QUEUE(port->id)); qmgr_release_queue(port->plat->rxq); qmgr_release_queue(TX_QUEUE(port->id)); qmgr_release_queue(port->plat->txreadyq); if (!ports_open) qmgr_release_queue(TXDONE_QUEUE); } static int init_queues(struct port *port) { int i; if (!ports_open) { dma_pool = dma_pool_create(DRV_NAME, &port->netdev->dev, POOL_ALLOC_SIZE, 32, 0); if (!dma_pool) return -ENOMEM; } port->desc_tab = dma_pool_zalloc(dma_pool, GFP_KERNEL, &port->desc_tab_phys); if (!port->desc_tab) return -ENOMEM; memset(port->rx_buff_tab, 0, sizeof(port->rx_buff_tab)); /* tables */ memset(port->tx_buff_tab, 0, sizeof(port->tx_buff_tab)); /* Setup RX buffers */ for (i = 0; i < RX_DESCS; i++) { struct desc *desc = rx_desc_ptr(port, i); buffer_t *buff; /* skb or kmalloc()ated memory */ void *data; #ifdef __ARMEB__ if (!(buff = netdev_alloc_skb(port->netdev, RX_BUFF_SIZE))) return -ENOMEM; data = buff->data; #else if (!(buff = kmalloc(RX_BUFF_SIZE, GFP_KERNEL))) return -ENOMEM; data = buff; #endif desc->buf_len = MAX_MRU; desc->data = dma_map_single(&port->netdev->dev, data, RX_BUFF_SIZE, DMA_FROM_DEVICE); if (dma_mapping_error(&port->netdev->dev, desc->data)) { free_buffer(buff); return -EIO; } desc->data += NET_IP_ALIGN; port->rx_buff_tab[i] = buff; } return 0; } static void destroy_queues(struct port *port) { int i; if (port->desc_tab) { for (i = 0; i < RX_DESCS; i++) { struct desc *desc = rx_desc_ptr(port, i); buffer_t *buff = port->rx_buff_tab[i]; if (buff) { dma_unmap_single(&port->netdev->dev, desc->data - NET_IP_ALIGN, RX_BUFF_SIZE, DMA_FROM_DEVICE); free_buffer(buff); } } for (i = 0; i < TX_DESCS; i++) { struct desc *desc = tx_desc_ptr(port, i); buffer_t *buff = port->tx_buff_tab[i]; if (buff) { dma_unmap_tx(port, desc); free_buffer(buff); } } dma_pool_free(dma_pool, port->desc_tab, port->desc_tab_phys); port->desc_tab = NULL; } if (!ports_open && dma_pool) { dma_pool_destroy(dma_pool); dma_pool = NULL; } } static int ixp4xx_do_change_mtu(struct net_device *dev, int new_mtu) { struct port *port = netdev_priv(dev); struct npe *npe = port->npe; int framesize, chunks; struct msg msg = {}; /* adjust for ethernet headers */ framesize = new_mtu + VLAN_ETH_HLEN; /* max rx/tx 64 byte chunks */ chunks = DIV_ROUND_UP(framesize, 64); msg.cmd = NPE_SETMAXFRAMELENGTHS; msg.eth_id = port->id; /* Firmware wants to know buffer size in 64 byte chunks */ msg.byte2 = chunks << 8; msg.byte3 = chunks << 8; msg.byte4 = msg.byte6 = framesize >> 8; msg.byte5 = msg.byte7 = framesize & 0xff; if (npe_send_recv_message(npe, &msg, "ETH_SET_MAX_FRAME_LENGTH")) return -EIO; netdev_dbg(dev, "set MTU on NPE %s to %d bytes\n", npe_name(npe), new_mtu); return 0; } static int ixp4xx_eth_change_mtu(struct net_device *dev, int new_mtu) { int ret; /* MTU can only be changed when the interface is up. We also * set the MTU from dev->mtu when opening the device. */ if (dev->flags & IFF_UP) { ret = ixp4xx_do_change_mtu(dev, new_mtu); if (ret < 0) return ret; } dev->mtu = new_mtu; return 0; } static int eth_open(struct net_device *dev) { struct port *port = netdev_priv(dev); struct npe *npe = port->npe; struct msg msg; int i, err; if (!npe_running(npe)) { err = npe_load_firmware(npe, npe_name(npe), &dev->dev); if (err) return err; if (npe_recv_message(npe, &msg, "ETH_GET_STATUS")) { netdev_err(dev, "%s not responding\n", npe_name(npe)); return -EIO; } port->firmware[0] = msg.byte4; port->firmware[1] = msg.byte5; port->firmware[2] = msg.byte6; port->firmware[3] = msg.byte7; } memset(&msg, 0, sizeof(msg)); msg.cmd = NPE_VLAN_SETRXQOSENTRY; msg.eth_id = port->id; msg.byte5 = port->plat->rxq | 0x80; msg.byte7 = port->plat->rxq << 4; for (i = 0; i < 8; i++) { msg.byte3 = i; if (npe_send_recv_message(port->npe, &msg, "ETH_SET_RXQ")) return -EIO; } msg.cmd = NPE_EDB_SETPORTADDRESS; msg.eth_id = PHYSICAL_ID(port->id); msg.byte2 = dev->dev_addr[0]; msg.byte3 = dev->dev_addr[1]; msg.byte4 = dev->dev_addr[2]; msg.byte5 = dev->dev_addr[3]; msg.byte6 = dev->dev_addr[4]; msg.byte7 = dev->dev_addr[5]; if (npe_send_recv_message(port->npe, &msg, "ETH_SET_MAC")) return -EIO; memset(&msg, 0, sizeof(msg)); msg.cmd = NPE_FW_SETFIREWALLMODE; msg.eth_id = port->id; if (npe_send_recv_message(port->npe, &msg, "ETH_SET_FIREWALL_MODE")) return -EIO; ixp4xx_do_change_mtu(dev, dev->mtu); if ((err = request_queues(port)) != 0) return err; if ((err = init_queues(port)) != 0) { destroy_queues(port); release_queues(port); return err; } port->speed = 0; /* force "link up" message */ phy_start(dev->phydev); for (i = 0; i < ETH_ALEN; i++) __raw_writel(dev->dev_addr[i], &port->regs->hw_addr[i]); __raw_writel(0x08, &port->regs->random_seed); __raw_writel(0x12, &port->regs->partial_empty_threshold); __raw_writel(0x30, &port->regs->partial_full_threshold); __raw_writel(0x08, &port->regs->tx_start_bytes); __raw_writel(0x15, &port->regs->tx_deferral); __raw_writel(0x08, &port->regs->tx_2part_deferral[0]); __raw_writel(0x07, &port->regs->tx_2part_deferral[1]); __raw_writel(0x80, &port->regs->slot_time); __raw_writel(0x01, &port->regs->int_clock_threshold); /* Populate queues with buffers, no failure after this point */ for (i = 0; i < TX_DESCS; i++) queue_put_desc(port->plat->txreadyq, tx_desc_phys(port, i), tx_desc_ptr(port, i)); for (i = 0; i < RX_DESCS; i++) queue_put_desc(RXFREE_QUEUE(port->id), rx_desc_phys(port, i), rx_desc_ptr(port, i)); __raw_writel(TX_CNTRL1_RETRIES, &port->regs->tx_control[1]); __raw_writel(DEFAULT_TX_CNTRL0, &port->regs->tx_control[0]); __raw_writel(0, &port->regs->rx_control[1]); __raw_writel(DEFAULT_RX_CNTRL0, &port->regs->rx_control[0]); napi_enable(&port->napi); eth_set_mcast_list(dev); netif_start_queue(dev); qmgr_set_irq(port->plat->rxq, QUEUE_IRQ_SRC_NOT_EMPTY, eth_rx_irq, dev); if (!ports_open) { qmgr_set_irq(TXDONE_QUEUE, QUEUE_IRQ_SRC_NOT_EMPTY, eth_txdone_irq, NULL); qmgr_enable_irq(TXDONE_QUEUE); } ports_open++; /* we may already have RX data, enables IRQ */ napi_schedule(&port->napi); return 0; } static int eth_close(struct net_device *dev) { struct port *port = netdev_priv(dev); struct msg msg; int buffs = RX_DESCS; /* allocated RX buffers */ int i; ports_open--; qmgr_disable_irq(port->plat->rxq); napi_disable(&port->napi); netif_stop_queue(dev); while (queue_get_desc(RXFREE_QUEUE(port->id), port, 0) >= 0) buffs--; memset(&msg, 0, sizeof(msg)); msg.cmd = NPE_SETLOOPBACK_MODE; msg.eth_id = port->id; msg.byte3 = 1; if (npe_send_recv_message(port->npe, &msg, "ETH_ENABLE_LOOPBACK")) netdev_crit(dev, "unable to enable loopback\n"); i = 0; do { /* drain RX buffers */ while (queue_get_desc(port->plat->rxq, port, 0) >= 0) buffs--; if (!buffs) break; if (qmgr_stat_empty(TX_QUEUE(port->id))) { /* we have to inject some packet */ struct desc *desc; u32 phys; int n = queue_get_desc(port->plat->txreadyq, port, 1); BUG_ON(n < 0); desc = tx_desc_ptr(port, n); phys = tx_desc_phys(port, n); desc->buf_len = desc->pkt_len = 1; wmb(); queue_put_desc(TX_QUEUE(port->id), phys, desc); } udelay(1); } while (++i < MAX_CLOSE_WAIT); if (buffs) netdev_crit(dev, "unable to drain RX queue, %i buffer(s)" " left in NPE\n", buffs); #if DEBUG_CLOSE if (!buffs) netdev_debug(dev, "draining RX queue took %i cycles\n", i); #endif buffs = TX_DESCS; while (queue_get_desc(TX_QUEUE(port->id), port, 1) >= 0) buffs--; /* cancel TX */ i = 0; do { while (queue_get_desc(port->plat->txreadyq, port, 1) >= 0) buffs--; if (!buffs) break; } while (++i < MAX_CLOSE_WAIT); if (buffs) netdev_crit(dev, "unable to drain TX queue, %i buffer(s) " "left in NPE\n", buffs); #if DEBUG_CLOSE if (!buffs) netdev_debug(dev, "draining TX queues took %i cycles\n", i); #endif msg.byte3 = 0; if (npe_send_recv_message(port->npe, &msg, "ETH_DISABLE_LOOPBACK")) netdev_crit(dev, "unable to disable loopback\n"); phy_stop(dev->phydev); if (!ports_open) qmgr_disable_irq(TXDONE_QUEUE); destroy_queues(port); release_queues(port); return 0; } static const struct net_device_ops ixp4xx_netdev_ops = { .ndo_open = eth_open, .ndo_stop = eth_close, .ndo_change_mtu = ixp4xx_eth_change_mtu, .ndo_start_xmit = eth_xmit, .ndo_set_rx_mode = eth_set_mcast_list, .ndo_eth_ioctl = eth_ioctl, .ndo_set_mac_address = eth_mac_addr, .ndo_validate_addr = eth_validate_addr, }; static struct eth_plat_info *ixp4xx_of_get_platdata(struct device *dev) { struct device_node *np = dev->of_node; struct of_phandle_args queue_spec; struct of_phandle_args npe_spec; struct device_node *mdio_np; struct eth_plat_info *plat; u8 mac[ETH_ALEN]; int ret; plat = devm_kzalloc(dev, sizeof(*plat), GFP_KERNEL); if (!plat) return NULL; ret = of_parse_phandle_with_fixed_args(np, "intel,npe-handle", 1, 0, &npe_spec); if (ret) { dev_err(dev, "no NPE engine specified\n"); return NULL; } /* NPE ID 0x00, 0x10, 0x20... */ plat->npe = (npe_spec.args[0] << 4); /* Check if this device has an MDIO bus */ mdio_np = of_get_child_by_name(np, "mdio"); if (mdio_np) { plat->has_mdio = true; mdio_bus_np = mdio_np; /* DO NOT put the mdio_np, it will be used */ } /* Get the rx queue as a resource from queue manager */ ret = of_parse_phandle_with_fixed_args(np, "queue-rx", 1, 0, &queue_spec); if (ret) { dev_err(dev, "no rx queue phandle\n"); return NULL; } plat->rxq = queue_spec.args[0]; /* Get the txready queue as resource from queue manager */ ret = of_parse_phandle_with_fixed_args(np, "queue-txready", 1, 0, &queue_spec); if (ret) { dev_err(dev, "no txready queue phandle\n"); return NULL; } plat->txreadyq = queue_spec.args[0]; ret = of_get_mac_address(np, mac); if (!ret) { dev_info(dev, "Setting macaddr from DT %pM\n", mac); memcpy(plat->hwaddr, mac, ETH_ALEN); } return plat; } static int ixp4xx_eth_probe(struct platform_device *pdev) { struct phy_device *phydev = NULL; struct device *dev = &pdev->dev; struct device_node *np = dev->of_node; struct eth_plat_info *plat; struct net_device *ndev; struct port *port; int err; plat = ixp4xx_of_get_platdata(dev); if (!plat) return -ENODEV; if (!(ndev = devm_alloc_etherdev(dev, sizeof(struct port)))) return -ENOMEM; SET_NETDEV_DEV(ndev, dev); port = netdev_priv(ndev); port->netdev = ndev; port->id = plat->npe; port->phc_index = -1; /* Get the port resource and remap */ port->regs = devm_platform_get_and_ioremap_resource(pdev, 0, NULL); if (IS_ERR(port->regs)) return PTR_ERR(port->regs); /* Register the MDIO bus if we have it */ if (plat->has_mdio) { err = ixp4xx_mdio_register(port->regs); if (err) { dev_err(dev, "failed to register MDIO bus\n"); return err; } } /* If the instance with the MDIO bus has not yet appeared, * defer probing until it gets probed. */ if (!mdio_bus) return -EPROBE_DEFER; ndev->netdev_ops = &ixp4xx_netdev_ops; ndev->ethtool_ops = &ixp4xx_ethtool_ops; ndev->tx_queue_len = 100; /* Inherit the DMA masks from the platform device */ ndev->dev.dma_mask = dev->dma_mask; ndev->dev.coherent_dma_mask = dev->coherent_dma_mask; ndev->min_mtu = ETH_MIN_MTU; ndev->max_mtu = MAX_MRU; netif_napi_add_weight(ndev, &port->napi, eth_poll, NAPI_WEIGHT); if (!(port->npe = npe_request(NPE_ID(port->id)))) return -EIO; port->plat = plat; npe_port_tab[NPE_ID(port->id)] = port; if (is_valid_ether_addr(plat->hwaddr)) eth_hw_addr_set(ndev, plat->hwaddr); else eth_hw_addr_random(ndev); platform_set_drvdata(pdev, ndev); __raw_writel(DEFAULT_CORE_CNTRL | CORE_RESET, &port->regs->core_control); udelay(50); __raw_writel(DEFAULT_CORE_CNTRL, &port->regs->core_control); udelay(50); phydev = of_phy_get_and_connect(ndev, np, ixp4xx_adjust_link); if (!phydev) { err = -ENODEV; dev_err(dev, "no phydev\n"); goto err_free_mem; } phydev->irq = PHY_POLL; if ((err = register_netdev(ndev))) goto err_phy_dis; netdev_info(ndev, "%s: MII PHY %s on %s\n", ndev->name, phydev_name(phydev), npe_name(port->npe)); return 0; err_phy_dis: phy_disconnect(phydev); err_free_mem: npe_port_tab[NPE_ID(port->id)] = NULL; npe_release(port->npe); return err; } static void ixp4xx_eth_remove(struct platform_device *pdev) { struct net_device *ndev = platform_get_drvdata(pdev); struct phy_device *phydev = ndev->phydev; struct port *port = netdev_priv(ndev); unregister_netdev(ndev); phy_disconnect(phydev); ixp4xx_mdio_remove(); npe_port_tab[NPE_ID(port->id)] = NULL; npe_release(port->npe); } static const struct of_device_id ixp4xx_eth_of_match[] = { { .compatible = "intel,ixp4xx-ethernet", }, { }, }; static struct platform_driver ixp4xx_eth_driver = { .driver = { .name = DRV_NAME, .of_match_table = of_match_ptr(ixp4xx_eth_of_match), }, .probe = ixp4xx_eth_probe, .remove_new = ixp4xx_eth_remove, }; module_platform_driver(ixp4xx_eth_driver); MODULE_AUTHOR("Krzysztof Halasa"); MODULE_DESCRIPTION("Intel IXP4xx Ethernet driver"); MODULE_LICENSE("GPL v2"); MODULE_ALIAS("platform:ixp4xx_eth");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1