Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jonathan Lemon | 4283 | 99.88% | 2 | 66.67% |
Andrew Lunn | 5 | 0.12% | 1 | 33.33% |
Total | 4288 | 3 |
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2022 Meta Platforms Inc. * Copyright (C) 2022 Jonathan Lemon <jonathan.lemon@gmail.com> */ #include <asm/unaligned.h> #include <linux/mii.h> #include <linux/phy.h> #include <linux/ptp_classify.h> #include <linux/ptp_clock_kernel.h> #include <linux/net_tstamp.h> #include <linux/netdevice.h> #include <linux/workqueue.h> #include "bcm-phy-lib.h" /* IEEE 1588 Expansion registers */ #define SLICE_CTRL 0x0810 #define SLICE_TX_EN BIT(0) #define SLICE_RX_EN BIT(8) #define TX_EVENT_MODE 0x0811 #define MODE_TX_UPDATE_CF BIT(0) #define MODE_TX_REPLACE_TS_CF BIT(1) #define MODE_TX_REPLACE_TS GENMASK(1, 0) #define RX_EVENT_MODE 0x0819 #define MODE_RX_UPDATE_CF BIT(0) #define MODE_RX_INSERT_TS_48 BIT(1) #define MODE_RX_INSERT_TS_64 GENMASK(1, 0) #define MODE_EVT_SHIFT_SYNC 0 #define MODE_EVT_SHIFT_DELAY_REQ 2 #define MODE_EVT_SHIFT_PDELAY_REQ 4 #define MODE_EVT_SHIFT_PDELAY_RESP 6 #define MODE_SEL_SHIFT_PORT 0 #define MODE_SEL_SHIFT_CPU 8 #define RX_MODE_SEL(sel, evt, act) \ (((MODE_RX_##act) << (MODE_EVT_SHIFT_##evt)) << (MODE_SEL_SHIFT_##sel)) #define TX_MODE_SEL(sel, evt, act) \ (((MODE_TX_##act) << (MODE_EVT_SHIFT_##evt)) << (MODE_SEL_SHIFT_##sel)) /* needs global TS capture first */ #define TX_TS_CAPTURE 0x0821 #define TX_TS_CAP_EN BIT(0) #define RX_TS_CAPTURE 0x0822 #define RX_TS_CAP_EN BIT(0) #define TIME_CODE_0 0x0854 #define TIME_CODE_1 0x0855 #define TIME_CODE_2 0x0856 #define TIME_CODE_3 0x0857 #define TIME_CODE_4 0x0858 #define DPLL_SELECT 0x085b #define DPLL_HB_MODE2 BIT(6) #define SHADOW_CTRL 0x085c #define SHADOW_LOAD 0x085d #define TIME_CODE_LOAD BIT(10) #define SYNC_OUT_LOAD BIT(9) #define NCO_TIME_LOAD BIT(7) #define FREQ_LOAD BIT(6) #define INTR_MASK 0x085e #define INTR_STATUS 0x085f #define INTC_FSYNC BIT(0) #define INTC_SOP BIT(1) #define NCO_FREQ_LSB 0x0873 #define NCO_FREQ_MSB 0x0874 #define NCO_TIME_0 0x0875 #define NCO_TIME_1 0x0876 #define NCO_TIME_2_CTRL 0x0877 #define FREQ_MDIO_SEL BIT(14) #define SYNC_OUT_0 0x0878 #define SYNC_OUT_1 0x0879 #define SYNC_OUT_2 0x087a #define SYNC_IN_DIVIDER 0x087b #define SYNOUT_TS_0 0x087c #define SYNOUT_TS_1 0x087d #define SYNOUT_TS_2 0x087e #define NSE_CTRL 0x087f #define NSE_GMODE_EN GENMASK(15, 14) #define NSE_CAPTURE_EN BIT(13) #define NSE_INIT BIT(12) #define NSE_CPU_FRAMESYNC BIT(5) #define NSE_SYNC1_FRAMESYNC BIT(3) #define NSE_FRAMESYNC_MASK GENMASK(5, 2) #define NSE_PEROUT_EN BIT(1) #define NSE_ONESHOT_EN BIT(0) #define NSE_SYNC_OUT_MASK GENMASK(1, 0) #define TS_READ_CTRL 0x0885 #define TS_READ_START BIT(0) #define TS_READ_END BIT(1) #define HB_REG_0 0x0886 #define HB_REG_1 0x0887 #define HB_REG_2 0x0888 #define HB_REG_3 0x08ec #define HB_REG_4 0x08ed #define HB_STAT_CTRL 0x088e #define HB_READ_START BIT(10) #define HB_READ_END BIT(11) #define HB_READ_MASK GENMASK(11, 10) #define TS_REG_0 0x0889 #define TS_REG_1 0x088a #define TS_REG_2 0x088b #define TS_REG_3 0x08c4 #define TS_INFO_0 0x088c #define TS_INFO_1 0x088d #define TIMECODE_CTRL 0x08c3 #define TX_TIMECODE_SEL GENMASK(7, 0) #define RX_TIMECODE_SEL GENMASK(15, 8) #define TIME_SYNC 0x0ff5 #define TIME_SYNC_EN BIT(0) struct bcm_ptp_private { struct phy_device *phydev; struct mii_timestamper mii_ts; struct ptp_clock *ptp_clock; struct ptp_clock_info ptp_info; struct ptp_pin_desc pin; struct mutex mutex; struct sk_buff_head tx_queue; int tx_type; bool hwts_rx; u16 nse_ctrl; bool pin_active; struct delayed_work pin_work; }; struct bcm_ptp_skb_cb { unsigned long timeout; u16 seq_id; u8 msgtype; bool discard; }; struct bcm_ptp_capture { ktime_t hwtstamp; u16 seq_id; u8 msgtype; bool tx_dir; }; #define BCM_SKB_CB(skb) ((struct bcm_ptp_skb_cb *)(skb)->cb) #define SKB_TS_TIMEOUT 10 /* jiffies */ #define BCM_MAX_PULSE_8NS ((1U << 9) - 1) #define BCM_MAX_PERIOD_8NS ((1U << 30) - 1) #define BRCM_PHY_MODEL(phydev) \ ((phydev)->drv->phy_id & (phydev)->drv->phy_id_mask) static struct bcm_ptp_private *mii2priv(struct mii_timestamper *mii_ts) { return container_of(mii_ts, struct bcm_ptp_private, mii_ts); } static struct bcm_ptp_private *ptp2priv(struct ptp_clock_info *info) { return container_of(info, struct bcm_ptp_private, ptp_info); } static void bcm_ptp_get_framesync_ts(struct phy_device *phydev, struct timespec64 *ts) { u16 hb[4]; bcm_phy_write_exp(phydev, HB_STAT_CTRL, HB_READ_START); hb[0] = bcm_phy_read_exp(phydev, HB_REG_0); hb[1] = bcm_phy_read_exp(phydev, HB_REG_1); hb[2] = bcm_phy_read_exp(phydev, HB_REG_2); hb[3] = bcm_phy_read_exp(phydev, HB_REG_3); bcm_phy_write_exp(phydev, HB_STAT_CTRL, HB_READ_END); bcm_phy_write_exp(phydev, HB_STAT_CTRL, 0); ts->tv_sec = (hb[3] << 16) | hb[2]; ts->tv_nsec = (hb[1] << 16) | hb[0]; } static u16 bcm_ptp_framesync_disable(struct phy_device *phydev, u16 orig_ctrl) { u16 ctrl = orig_ctrl & ~(NSE_FRAMESYNC_MASK | NSE_CAPTURE_EN); bcm_phy_write_exp(phydev, NSE_CTRL, ctrl); return ctrl; } static void bcm_ptp_framesync_restore(struct phy_device *phydev, u16 orig_ctrl) { if (orig_ctrl & NSE_FRAMESYNC_MASK) bcm_phy_write_exp(phydev, NSE_CTRL, orig_ctrl); } static void bcm_ptp_framesync(struct phy_device *phydev, u16 ctrl) { /* trigger framesync - must have 0->1 transition. */ bcm_phy_write_exp(phydev, NSE_CTRL, ctrl | NSE_CPU_FRAMESYNC); } static int bcm_ptp_framesync_ts(struct phy_device *phydev, struct ptp_system_timestamp *sts, struct timespec64 *ts, u16 orig_ctrl) { u16 ctrl, reg; int i; ctrl = bcm_ptp_framesync_disable(phydev, orig_ctrl); ptp_read_system_prets(sts); /* trigger framesync + capture */ bcm_ptp_framesync(phydev, ctrl | NSE_CAPTURE_EN); ptp_read_system_postts(sts); /* poll for FSYNC interrupt from TS capture */ for (i = 0; i < 10; i++) { reg = bcm_phy_read_exp(phydev, INTR_STATUS); if (reg & INTC_FSYNC) { bcm_ptp_get_framesync_ts(phydev, ts); break; } } bcm_ptp_framesync_restore(phydev, orig_ctrl); return reg & INTC_FSYNC ? 0 : -ETIMEDOUT; } static int bcm_ptp_gettimex(struct ptp_clock_info *info, struct timespec64 *ts, struct ptp_system_timestamp *sts) { struct bcm_ptp_private *priv = ptp2priv(info); int err; mutex_lock(&priv->mutex); err = bcm_ptp_framesync_ts(priv->phydev, sts, ts, priv->nse_ctrl); mutex_unlock(&priv->mutex); return err; } static int bcm_ptp_settime_locked(struct bcm_ptp_private *priv, const struct timespec64 *ts) { struct phy_device *phydev = priv->phydev; u16 ctrl; u64 ns; ctrl = bcm_ptp_framesync_disable(phydev, priv->nse_ctrl); /* set up time code */ bcm_phy_write_exp(phydev, TIME_CODE_0, ts->tv_nsec); bcm_phy_write_exp(phydev, TIME_CODE_1, ts->tv_nsec >> 16); bcm_phy_write_exp(phydev, TIME_CODE_2, ts->tv_sec); bcm_phy_write_exp(phydev, TIME_CODE_3, ts->tv_sec >> 16); bcm_phy_write_exp(phydev, TIME_CODE_4, ts->tv_sec >> 32); /* set NCO counter to match */ ns = timespec64_to_ns(ts); bcm_phy_write_exp(phydev, NCO_TIME_0, ns >> 4); bcm_phy_write_exp(phydev, NCO_TIME_1, ns >> 20); bcm_phy_write_exp(phydev, NCO_TIME_2_CTRL, (ns >> 36) & 0xfff); /* set up load on next frame sync (auto-clears due to NSE_INIT) */ bcm_phy_write_exp(phydev, SHADOW_LOAD, TIME_CODE_LOAD | NCO_TIME_LOAD); /* must have NSE_INIT in order to write time code */ bcm_ptp_framesync(phydev, ctrl | NSE_INIT); bcm_ptp_framesync_restore(phydev, priv->nse_ctrl); return 0; } static int bcm_ptp_settime(struct ptp_clock_info *info, const struct timespec64 *ts) { struct bcm_ptp_private *priv = ptp2priv(info); int err; mutex_lock(&priv->mutex); err = bcm_ptp_settime_locked(priv, ts); mutex_unlock(&priv->mutex); return err; } static int bcm_ptp_adjtime_locked(struct bcm_ptp_private *priv, s64 delta_ns) { struct timespec64 ts; int err; s64 ns; err = bcm_ptp_framesync_ts(priv->phydev, NULL, &ts, priv->nse_ctrl); if (!err) { ns = timespec64_to_ns(&ts) + delta_ns; ts = ns_to_timespec64(ns); err = bcm_ptp_settime_locked(priv, &ts); } return err; } static int bcm_ptp_adjtime(struct ptp_clock_info *info, s64 delta_ns) { struct bcm_ptp_private *priv = ptp2priv(info); int err; mutex_lock(&priv->mutex); err = bcm_ptp_adjtime_locked(priv, delta_ns); mutex_unlock(&priv->mutex); return err; } /* A 125Mhz clock should adjust 8ns per pulse. * The frequency adjustment base is 0x8000 0000, or 8*2^28. * * Frequency adjustment is * adj = scaled_ppm * 8*2^28 / (10^6 * 2^16) * which simplifies to: * adj = scaled_ppm * 2^9 / 5^6 */ static int bcm_ptp_adjfine(struct ptp_clock_info *info, long scaled_ppm) { struct bcm_ptp_private *priv = ptp2priv(info); int neg_adj = 0; u32 diff, freq; u16 ctrl; u64 adj; if (scaled_ppm < 0) { neg_adj = 1; scaled_ppm = -scaled_ppm; } adj = scaled_ppm << 9; diff = div_u64(adj, 15625); freq = (8 << 28) + (neg_adj ? -diff : diff); mutex_lock(&priv->mutex); ctrl = bcm_ptp_framesync_disable(priv->phydev, priv->nse_ctrl); bcm_phy_write_exp(priv->phydev, NCO_FREQ_LSB, freq); bcm_phy_write_exp(priv->phydev, NCO_FREQ_MSB, freq >> 16); bcm_phy_write_exp(priv->phydev, NCO_TIME_2_CTRL, FREQ_MDIO_SEL); /* load on next framesync */ bcm_phy_write_exp(priv->phydev, SHADOW_LOAD, FREQ_LOAD); bcm_ptp_framesync(priv->phydev, ctrl); /* clear load */ bcm_phy_write_exp(priv->phydev, SHADOW_LOAD, 0); bcm_ptp_framesync_restore(priv->phydev, priv->nse_ctrl); mutex_unlock(&priv->mutex); return 0; } static bool bcm_ptp_rxtstamp(struct mii_timestamper *mii_ts, struct sk_buff *skb, int type) { struct bcm_ptp_private *priv = mii2priv(mii_ts); struct skb_shared_hwtstamps *hwts; struct ptp_header *header; u32 sec, nsec; u8 *data; int off; if (!priv->hwts_rx) return false; header = ptp_parse_header(skb, type); if (!header) return false; data = (u8 *)(header + 1); sec = get_unaligned_be32(data); nsec = get_unaligned_be32(data + 4); hwts = skb_hwtstamps(skb); hwts->hwtstamp = ktime_set(sec, nsec); off = data - skb->data + 8; if (off < skb->len) { memmove(data, data + 8, skb->len - off); __pskb_trim(skb, skb->len - 8); } return false; } static bool bcm_ptp_get_tstamp(struct bcm_ptp_private *priv, struct bcm_ptp_capture *capts) { struct phy_device *phydev = priv->phydev; u16 ts[4], reg; u32 sec, nsec; mutex_lock(&priv->mutex); reg = bcm_phy_read_exp(phydev, INTR_STATUS); if ((reg & INTC_SOP) == 0) { mutex_unlock(&priv->mutex); return false; } bcm_phy_write_exp(phydev, TS_READ_CTRL, TS_READ_START); ts[0] = bcm_phy_read_exp(phydev, TS_REG_0); ts[1] = bcm_phy_read_exp(phydev, TS_REG_1); ts[2] = bcm_phy_read_exp(phydev, TS_REG_2); ts[3] = bcm_phy_read_exp(phydev, TS_REG_3); /* not in be32 format for some reason */ capts->seq_id = bcm_phy_read_exp(priv->phydev, TS_INFO_0); reg = bcm_phy_read_exp(phydev, TS_INFO_1); capts->msgtype = reg >> 12; capts->tx_dir = !!(reg & BIT(11)); bcm_phy_write_exp(phydev, TS_READ_CTRL, TS_READ_END); bcm_phy_write_exp(phydev, TS_READ_CTRL, 0); mutex_unlock(&priv->mutex); sec = (ts[3] << 16) | ts[2]; nsec = (ts[1] << 16) | ts[0]; capts->hwtstamp = ktime_set(sec, nsec); return true; } static void bcm_ptp_match_tstamp(struct bcm_ptp_private *priv, struct bcm_ptp_capture *capts) { struct skb_shared_hwtstamps hwts; struct sk_buff *skb, *ts_skb; unsigned long flags; bool first = false; ts_skb = NULL; spin_lock_irqsave(&priv->tx_queue.lock, flags); skb_queue_walk(&priv->tx_queue, skb) { if (BCM_SKB_CB(skb)->seq_id == capts->seq_id && BCM_SKB_CB(skb)->msgtype == capts->msgtype) { first = skb_queue_is_first(&priv->tx_queue, skb); __skb_unlink(skb, &priv->tx_queue); ts_skb = skb; break; } } spin_unlock_irqrestore(&priv->tx_queue.lock, flags); /* TX captures one-step packets, discard them if needed. */ if (ts_skb) { if (BCM_SKB_CB(ts_skb)->discard) { kfree_skb(ts_skb); } else { memset(&hwts, 0, sizeof(hwts)); hwts.hwtstamp = capts->hwtstamp; skb_complete_tx_timestamp(ts_skb, &hwts); } } /* not first match, try and expire entries */ if (!first) { while ((skb = skb_dequeue(&priv->tx_queue))) { if (!time_after(jiffies, BCM_SKB_CB(skb)->timeout)) { skb_queue_head(&priv->tx_queue, skb); break; } kfree_skb(skb); } } } static long bcm_ptp_do_aux_work(struct ptp_clock_info *info) { struct bcm_ptp_private *priv = ptp2priv(info); struct bcm_ptp_capture capts; bool reschedule = false; while (!skb_queue_empty_lockless(&priv->tx_queue)) { if (!bcm_ptp_get_tstamp(priv, &capts)) { reschedule = true; break; } bcm_ptp_match_tstamp(priv, &capts); } return reschedule ? 1 : -1; } static int bcm_ptp_cancel_func(struct bcm_ptp_private *priv) { if (!priv->pin_active) return 0; priv->pin_active = false; priv->nse_ctrl &= ~(NSE_SYNC_OUT_MASK | NSE_SYNC1_FRAMESYNC | NSE_CAPTURE_EN); bcm_phy_write_exp(priv->phydev, NSE_CTRL, priv->nse_ctrl); cancel_delayed_work_sync(&priv->pin_work); return 0; } static void bcm_ptp_perout_work(struct work_struct *pin_work) { struct bcm_ptp_private *priv = container_of(pin_work, struct bcm_ptp_private, pin_work.work); struct phy_device *phydev = priv->phydev; struct timespec64 ts; u64 ns, next; u16 ctrl; mutex_lock(&priv->mutex); /* no longer running */ if (!priv->pin_active) { mutex_unlock(&priv->mutex); return; } bcm_ptp_framesync_ts(phydev, NULL, &ts, priv->nse_ctrl); /* this is 1PPS only */ next = NSEC_PER_SEC - ts.tv_nsec; ts.tv_sec += next < NSEC_PER_MSEC ? 2 : 1; ts.tv_nsec = 0; ns = timespec64_to_ns(&ts); /* force 0->1 transition for ONESHOT */ ctrl = bcm_ptp_framesync_disable(phydev, priv->nse_ctrl & ~NSE_ONESHOT_EN); bcm_phy_write_exp(phydev, SYNOUT_TS_0, ns & 0xfff0); bcm_phy_write_exp(phydev, SYNOUT_TS_1, ns >> 16); bcm_phy_write_exp(phydev, SYNOUT_TS_2, ns >> 32); /* load values on next framesync */ bcm_phy_write_exp(phydev, SHADOW_LOAD, SYNC_OUT_LOAD); bcm_ptp_framesync(phydev, ctrl | NSE_ONESHOT_EN | NSE_INIT); priv->nse_ctrl |= NSE_ONESHOT_EN; bcm_ptp_framesync_restore(phydev, priv->nse_ctrl); mutex_unlock(&priv->mutex); next = next + NSEC_PER_MSEC; schedule_delayed_work(&priv->pin_work, nsecs_to_jiffies(next)); } static int bcm_ptp_perout_locked(struct bcm_ptp_private *priv, struct ptp_perout_request *req, int on) { struct phy_device *phydev = priv->phydev; u64 period, pulse; u16 val; if (!on) return bcm_ptp_cancel_func(priv); /* 1PPS */ if (req->period.sec != 1 || req->period.nsec != 0) return -EINVAL; period = BCM_MAX_PERIOD_8NS; /* write nonzero value */ if (req->flags & PTP_PEROUT_PHASE) return -EOPNOTSUPP; if (req->flags & PTP_PEROUT_DUTY_CYCLE) pulse = ktime_to_ns(ktime_set(req->on.sec, req->on.nsec)); else pulse = (u64)BCM_MAX_PULSE_8NS << 3; /* convert to 8ns units */ pulse >>= 3; if (!pulse || pulse > period || pulse > BCM_MAX_PULSE_8NS) return -EINVAL; bcm_phy_write_exp(phydev, SYNC_OUT_0, period); val = ((pulse & 0x3) << 14) | ((period >> 16) & 0x3fff); bcm_phy_write_exp(phydev, SYNC_OUT_1, val); val = ((pulse >> 2) & 0x7f) | (pulse << 7); bcm_phy_write_exp(phydev, SYNC_OUT_2, val); if (priv->pin_active) cancel_delayed_work_sync(&priv->pin_work); priv->pin_active = true; INIT_DELAYED_WORK(&priv->pin_work, bcm_ptp_perout_work); schedule_delayed_work(&priv->pin_work, 0); return 0; } static void bcm_ptp_extts_work(struct work_struct *pin_work) { struct bcm_ptp_private *priv = container_of(pin_work, struct bcm_ptp_private, pin_work.work); struct phy_device *phydev = priv->phydev; struct ptp_clock_event event; struct timespec64 ts; u16 reg; mutex_lock(&priv->mutex); /* no longer running */ if (!priv->pin_active) { mutex_unlock(&priv->mutex); return; } reg = bcm_phy_read_exp(phydev, INTR_STATUS); if ((reg & INTC_FSYNC) == 0) goto out; bcm_ptp_get_framesync_ts(phydev, &ts); event.index = 0; event.type = PTP_CLOCK_EXTTS; event.timestamp = timespec64_to_ns(&ts); ptp_clock_event(priv->ptp_clock, &event); out: mutex_unlock(&priv->mutex); schedule_delayed_work(&priv->pin_work, HZ / 4); } static int bcm_ptp_extts_locked(struct bcm_ptp_private *priv, int on) { struct phy_device *phydev = priv->phydev; if (!on) return bcm_ptp_cancel_func(priv); if (priv->pin_active) cancel_delayed_work_sync(&priv->pin_work); bcm_ptp_framesync_disable(phydev, priv->nse_ctrl); priv->nse_ctrl |= NSE_SYNC1_FRAMESYNC | NSE_CAPTURE_EN; bcm_ptp_framesync_restore(phydev, priv->nse_ctrl); priv->pin_active = true; INIT_DELAYED_WORK(&priv->pin_work, bcm_ptp_extts_work); schedule_delayed_work(&priv->pin_work, 0); return 0; } static int bcm_ptp_enable(struct ptp_clock_info *info, struct ptp_clock_request *rq, int on) { struct bcm_ptp_private *priv = ptp2priv(info); int err = -EBUSY; mutex_lock(&priv->mutex); switch (rq->type) { case PTP_CLK_REQ_PEROUT: if (priv->pin.func == PTP_PF_PEROUT) err = bcm_ptp_perout_locked(priv, &rq->perout, on); break; case PTP_CLK_REQ_EXTTS: if (priv->pin.func == PTP_PF_EXTTS) err = bcm_ptp_extts_locked(priv, on); break; default: err = -EOPNOTSUPP; break; } mutex_unlock(&priv->mutex); return err; } static int bcm_ptp_verify(struct ptp_clock_info *info, unsigned int pin, enum ptp_pin_function func, unsigned int chan) { switch (func) { case PTP_PF_NONE: case PTP_PF_EXTTS: case PTP_PF_PEROUT: break; default: return -EOPNOTSUPP; } return 0; } static const struct ptp_clock_info bcm_ptp_clock_info = { .owner = THIS_MODULE, .name = KBUILD_MODNAME, .max_adj = 100000000, .gettimex64 = bcm_ptp_gettimex, .settime64 = bcm_ptp_settime, .adjtime = bcm_ptp_adjtime, .adjfine = bcm_ptp_adjfine, .enable = bcm_ptp_enable, .verify = bcm_ptp_verify, .do_aux_work = bcm_ptp_do_aux_work, .n_pins = 1, .n_per_out = 1, .n_ext_ts = 1, }; static void bcm_ptp_txtstamp(struct mii_timestamper *mii_ts, struct sk_buff *skb, int type) { struct bcm_ptp_private *priv = mii2priv(mii_ts); struct ptp_header *hdr; bool discard = false; int msgtype; hdr = ptp_parse_header(skb, type); if (!hdr) goto out; msgtype = ptp_get_msgtype(hdr, type); switch (priv->tx_type) { case HWTSTAMP_TX_ONESTEP_P2P: if (msgtype == PTP_MSGTYPE_PDELAY_RESP) discard = true; fallthrough; case HWTSTAMP_TX_ONESTEP_SYNC: if (msgtype == PTP_MSGTYPE_SYNC) discard = true; fallthrough; case HWTSTAMP_TX_ON: BCM_SKB_CB(skb)->timeout = jiffies + SKB_TS_TIMEOUT; BCM_SKB_CB(skb)->seq_id = be16_to_cpu(hdr->sequence_id); BCM_SKB_CB(skb)->msgtype = msgtype; BCM_SKB_CB(skb)->discard = discard; skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; skb_queue_tail(&priv->tx_queue, skb); ptp_schedule_worker(priv->ptp_clock, 0); return; default: break; } out: kfree_skb(skb); } static int bcm_ptp_hwtstamp(struct mii_timestamper *mii_ts, struct ifreq *ifr) { struct bcm_ptp_private *priv = mii2priv(mii_ts); struct hwtstamp_config cfg; u16 mode, ctrl; if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg))) return -EFAULT; switch (cfg.rx_filter) { case HWTSTAMP_FILTER_NONE: priv->hwts_rx = false; break; case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: case HWTSTAMP_FILTER_PTP_V2_EVENT: case HWTSTAMP_FILTER_PTP_V2_SYNC: case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; priv->hwts_rx = true; break; default: return -ERANGE; } priv->tx_type = cfg.tx_type; ctrl = priv->hwts_rx ? SLICE_RX_EN : 0; ctrl |= priv->tx_type != HWTSTAMP_TX_OFF ? SLICE_TX_EN : 0; mode = TX_MODE_SEL(PORT, SYNC, REPLACE_TS) | TX_MODE_SEL(PORT, DELAY_REQ, REPLACE_TS) | TX_MODE_SEL(PORT, PDELAY_REQ, REPLACE_TS) | TX_MODE_SEL(PORT, PDELAY_RESP, REPLACE_TS); bcm_phy_write_exp(priv->phydev, TX_EVENT_MODE, mode); mode = RX_MODE_SEL(PORT, SYNC, INSERT_TS_64) | RX_MODE_SEL(PORT, DELAY_REQ, INSERT_TS_64) | RX_MODE_SEL(PORT, PDELAY_REQ, INSERT_TS_64) | RX_MODE_SEL(PORT, PDELAY_RESP, INSERT_TS_64); bcm_phy_write_exp(priv->phydev, RX_EVENT_MODE, mode); bcm_phy_write_exp(priv->phydev, SLICE_CTRL, ctrl); if (ctrl & SLICE_TX_EN) bcm_phy_write_exp(priv->phydev, TX_TS_CAPTURE, TX_TS_CAP_EN); else ptp_cancel_worker_sync(priv->ptp_clock); /* purge existing data */ skb_queue_purge(&priv->tx_queue); return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0; } static int bcm_ptp_ts_info(struct mii_timestamper *mii_ts, struct ethtool_ts_info *ts_info) { struct bcm_ptp_private *priv = mii2priv(mii_ts); ts_info->phc_index = ptp_clock_index(priv->ptp_clock); ts_info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE | SOF_TIMESTAMPING_RX_HARDWARE | SOF_TIMESTAMPING_RAW_HARDWARE; ts_info->tx_types = BIT(HWTSTAMP_TX_ON) | BIT(HWTSTAMP_TX_OFF) | BIT(HWTSTAMP_TX_ONESTEP_SYNC) | BIT(HWTSTAMP_TX_ONESTEP_P2P); ts_info->rx_filters = BIT(HWTSTAMP_FILTER_NONE) | BIT(HWTSTAMP_FILTER_PTP_V2_EVENT); return 0; } void bcm_ptp_stop(struct bcm_ptp_private *priv) { ptp_cancel_worker_sync(priv->ptp_clock); bcm_ptp_cancel_func(priv); } EXPORT_SYMBOL_GPL(bcm_ptp_stop); void bcm_ptp_config_init(struct phy_device *phydev) { /* init network sync engine */ bcm_phy_write_exp(phydev, NSE_CTRL, NSE_GMODE_EN | NSE_INIT); /* enable time sync (TX/RX SOP capture) */ bcm_phy_write_exp(phydev, TIME_SYNC, TIME_SYNC_EN); /* use sec.nsec heartbeat capture */ bcm_phy_write_exp(phydev, DPLL_SELECT, DPLL_HB_MODE2); /* use 64 bit timecode for TX */ bcm_phy_write_exp(phydev, TIMECODE_CTRL, TX_TIMECODE_SEL); /* always allow FREQ_LOAD on framesync */ bcm_phy_write_exp(phydev, SHADOW_CTRL, FREQ_LOAD); bcm_phy_write_exp(phydev, SYNC_IN_DIVIDER, 1); } EXPORT_SYMBOL_GPL(bcm_ptp_config_init); static void bcm_ptp_init(struct bcm_ptp_private *priv) { priv->nse_ctrl = NSE_GMODE_EN; mutex_init(&priv->mutex); skb_queue_head_init(&priv->tx_queue); priv->mii_ts.rxtstamp = bcm_ptp_rxtstamp; priv->mii_ts.txtstamp = bcm_ptp_txtstamp; priv->mii_ts.hwtstamp = bcm_ptp_hwtstamp; priv->mii_ts.ts_info = bcm_ptp_ts_info; priv->phydev->mii_ts = &priv->mii_ts; } struct bcm_ptp_private *bcm_ptp_probe(struct phy_device *phydev) { struct bcm_ptp_private *priv; struct ptp_clock *clock; switch (BRCM_PHY_MODEL(phydev)) { case PHY_ID_BCM54210E: break; default: return NULL; } priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL); if (!priv) return ERR_PTR(-ENOMEM); priv->ptp_info = bcm_ptp_clock_info; snprintf(priv->pin.name, sizeof(priv->pin.name), "SYNC_OUT"); priv->ptp_info.pin_config = &priv->pin; clock = ptp_clock_register(&priv->ptp_info, &phydev->mdio.dev); if (IS_ERR(clock)) return ERR_CAST(clock); priv->ptp_clock = clock; priv->phydev = phydev; bcm_ptp_init(priv); return priv; } EXPORT_SYMBOL_GPL(bcm_ptp_probe); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Broadcom PHY PTP driver");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1