Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Daniel Golle | 5473 | 80.70% | 2 | 50.00% |
DENG Qingfang | 1309 | 19.30% | 2 | 50.00% |
Total | 6782 | 4 |
// SPDX-License-Identifier: GPL-2.0+ #include <linux/bitfield.h> #include <linux/bitmap.h> #include <linux/mfd/syscon.h> #include <linux/module.h> #include <linux/nvmem-consumer.h> #include <linux/pinctrl/consumer.h> #include <linux/phy.h> #include <linux/regmap.h> #define MTK_GPHY_ID_MT7981 0x03a29461 #define MTK_GPHY_ID_MT7988 0x03a29481 #define MTK_EXT_PAGE_ACCESS 0x1f #define MTK_PHY_PAGE_STANDARD 0x0000 #define MTK_PHY_PAGE_EXTENDED_3 0x0003 #define MTK_PHY_LPI_REG_14 0x14 #define MTK_PHY_LPI_WAKE_TIMER_1000_MASK GENMASK(8, 0) #define MTK_PHY_LPI_REG_1c 0x1c #define MTK_PHY_SMI_DET_ON_THRESH_MASK GENMASK(13, 8) #define MTK_PHY_PAGE_EXTENDED_2A30 0x2a30 #define MTK_PHY_PAGE_EXTENDED_52B5 0x52b5 #define ANALOG_INTERNAL_OPERATION_MAX_US 20 #define TXRESERVE_MIN 0 #define TXRESERVE_MAX 7 #define MTK_PHY_ANARG_RG 0x10 #define MTK_PHY_TCLKOFFSET_MASK GENMASK(12, 8) /* Registers on MDIO_MMD_VEND1 */ #define MTK_PHY_TXVLD_DA_RG 0x12 #define MTK_PHY_DA_TX_I2MPB_A_GBE_MASK GENMASK(15, 10) #define MTK_PHY_DA_TX_I2MPB_A_TBT_MASK GENMASK(5, 0) #define MTK_PHY_TX_I2MPB_TEST_MODE_A2 0x16 #define MTK_PHY_DA_TX_I2MPB_A_HBT_MASK GENMASK(15, 10) #define MTK_PHY_DA_TX_I2MPB_A_TST_MASK GENMASK(5, 0) #define MTK_PHY_TX_I2MPB_TEST_MODE_B1 0x17 #define MTK_PHY_DA_TX_I2MPB_B_GBE_MASK GENMASK(13, 8) #define MTK_PHY_DA_TX_I2MPB_B_TBT_MASK GENMASK(5, 0) #define MTK_PHY_TX_I2MPB_TEST_MODE_B2 0x18 #define MTK_PHY_DA_TX_I2MPB_B_HBT_MASK GENMASK(13, 8) #define MTK_PHY_DA_TX_I2MPB_B_TST_MASK GENMASK(5, 0) #define MTK_PHY_TX_I2MPB_TEST_MODE_C1 0x19 #define MTK_PHY_DA_TX_I2MPB_C_GBE_MASK GENMASK(13, 8) #define MTK_PHY_DA_TX_I2MPB_C_TBT_MASK GENMASK(5, 0) #define MTK_PHY_TX_I2MPB_TEST_MODE_C2 0x20 #define MTK_PHY_DA_TX_I2MPB_C_HBT_MASK GENMASK(13, 8) #define MTK_PHY_DA_TX_I2MPB_C_TST_MASK GENMASK(5, 0) #define MTK_PHY_TX_I2MPB_TEST_MODE_D1 0x21 #define MTK_PHY_DA_TX_I2MPB_D_GBE_MASK GENMASK(13, 8) #define MTK_PHY_DA_TX_I2MPB_D_TBT_MASK GENMASK(5, 0) #define MTK_PHY_TX_I2MPB_TEST_MODE_D2 0x22 #define MTK_PHY_DA_TX_I2MPB_D_HBT_MASK GENMASK(13, 8) #define MTK_PHY_DA_TX_I2MPB_D_TST_MASK GENMASK(5, 0) #define MTK_PHY_RXADC_CTRL_RG7 0xc6 #define MTK_PHY_DA_AD_BUF_BIAS_LP_MASK GENMASK(9, 8) #define MTK_PHY_RXADC_CTRL_RG9 0xc8 #define MTK_PHY_DA_RX_PSBN_TBT_MASK GENMASK(14, 12) #define MTK_PHY_DA_RX_PSBN_HBT_MASK GENMASK(10, 8) #define MTK_PHY_DA_RX_PSBN_GBE_MASK GENMASK(6, 4) #define MTK_PHY_DA_RX_PSBN_LP_MASK GENMASK(2, 0) #define MTK_PHY_LDO_OUTPUT_V 0xd7 #define MTK_PHY_RG_ANA_CAL_RG0 0xdb #define MTK_PHY_RG_CAL_CKINV BIT(12) #define MTK_PHY_RG_ANA_CALEN BIT(8) #define MTK_PHY_RG_ZCALEN_A BIT(0) #define MTK_PHY_RG_ANA_CAL_RG1 0xdc #define MTK_PHY_RG_ZCALEN_B BIT(12) #define MTK_PHY_RG_ZCALEN_C BIT(8) #define MTK_PHY_RG_ZCALEN_D BIT(4) #define MTK_PHY_RG_TXVOS_CALEN BIT(0) #define MTK_PHY_RG_ANA_CAL_RG5 0xe0 #define MTK_PHY_RG_REXT_TRIM_MASK GENMASK(13, 8) #define MTK_PHY_RG_TX_FILTER 0xfe #define MTK_PHY_RG_LPI_PCS_DSP_CTRL_REG120 0x120 #define MTK_PHY_LPI_SIG_EN_LO_THRESH1000_MASK GENMASK(12, 8) #define MTK_PHY_LPI_SIG_EN_HI_THRESH1000_MASK GENMASK(4, 0) #define MTK_PHY_RG_LPI_PCS_DSP_CTRL_REG122 0x122 #define MTK_PHY_LPI_NORM_MSE_HI_THRESH1000_MASK GENMASK(7, 0) #define MTK_PHY_RG_TESTMUX_ADC_CTRL 0x144 #define MTK_PHY_RG_TXEN_DIG_MASK GENMASK(5, 5) #define MTK_PHY_RG_CR_TX_AMP_OFFSET_A_B 0x172 #define MTK_PHY_CR_TX_AMP_OFFSET_A_MASK GENMASK(13, 8) #define MTK_PHY_CR_TX_AMP_OFFSET_B_MASK GENMASK(6, 0) #define MTK_PHY_RG_CR_TX_AMP_OFFSET_C_D 0x173 #define MTK_PHY_CR_TX_AMP_OFFSET_C_MASK GENMASK(13, 8) #define MTK_PHY_CR_TX_AMP_OFFSET_D_MASK GENMASK(6, 0) #define MTK_PHY_RG_AD_CAL_COMP 0x17a #define MTK_PHY_AD_CAL_COMP_OUT_SHIFT (8) #define MTK_PHY_RG_AD_CAL_CLK 0x17b #define MTK_PHY_DA_CAL_CLK BIT(0) #define MTK_PHY_RG_AD_CALIN 0x17c #define MTK_PHY_DA_CALIN_FLAG BIT(0) #define MTK_PHY_RG_DASN_DAC_IN0_A 0x17d #define MTK_PHY_DASN_DAC_IN0_A_MASK GENMASK(9, 0) #define MTK_PHY_RG_DASN_DAC_IN0_B 0x17e #define MTK_PHY_DASN_DAC_IN0_B_MASK GENMASK(9, 0) #define MTK_PHY_RG_DASN_DAC_IN0_C 0x17f #define MTK_PHY_DASN_DAC_IN0_C_MASK GENMASK(9, 0) #define MTK_PHY_RG_DASN_DAC_IN0_D 0x180 #define MTK_PHY_DASN_DAC_IN0_D_MASK GENMASK(9, 0) #define MTK_PHY_RG_DASN_DAC_IN1_A 0x181 #define MTK_PHY_DASN_DAC_IN1_A_MASK GENMASK(9, 0) #define MTK_PHY_RG_DASN_DAC_IN1_B 0x182 #define MTK_PHY_DASN_DAC_IN1_B_MASK GENMASK(9, 0) #define MTK_PHY_RG_DASN_DAC_IN1_C 0x183 #define MTK_PHY_DASN_DAC_IN1_C_MASK GENMASK(9, 0) #define MTK_PHY_RG_DASN_DAC_IN1_D 0x184 #define MTK_PHY_DASN_DAC_IN1_D_MASK GENMASK(9, 0) #define MTK_PHY_RG_DEV1E_REG19b 0x19b #define MTK_PHY_BYPASS_DSP_LPI_READY BIT(8) #define MTK_PHY_RG_LP_IIR2_K1_L 0x22a #define MTK_PHY_RG_LP_IIR2_K1_U 0x22b #define MTK_PHY_RG_LP_IIR2_K2_L 0x22c #define MTK_PHY_RG_LP_IIR2_K2_U 0x22d #define MTK_PHY_RG_LP_IIR2_K3_L 0x22e #define MTK_PHY_RG_LP_IIR2_K3_U 0x22f #define MTK_PHY_RG_LP_IIR2_K4_L 0x230 #define MTK_PHY_RG_LP_IIR2_K4_U 0x231 #define MTK_PHY_RG_LP_IIR2_K5_L 0x232 #define MTK_PHY_RG_LP_IIR2_K5_U 0x233 #define MTK_PHY_RG_DEV1E_REG234 0x234 #define MTK_PHY_TR_OPEN_LOOP_EN_MASK GENMASK(0, 0) #define MTK_PHY_LPF_X_AVERAGE_MASK GENMASK(7, 4) #define MTK_PHY_TR_LP_IIR_EEE_EN BIT(12) #define MTK_PHY_RG_LPF_CNT_VAL 0x235 #define MTK_PHY_RG_DEV1E_REG238 0x238 #define MTK_PHY_LPI_SLV_SEND_TX_TIMER_MASK GENMASK(8, 0) #define MTK_PHY_LPI_SLV_SEND_TX_EN BIT(12) #define MTK_PHY_RG_DEV1E_REG239 0x239 #define MTK_PHY_LPI_SEND_LOC_TIMER_MASK GENMASK(8, 0) #define MTK_PHY_LPI_TXPCS_LOC_RCV BIT(12) #define MTK_PHY_RG_DEV1E_REG27C 0x27c #define MTK_PHY_VGASTATE_FFE_THR_ST1_MASK GENMASK(12, 8) #define MTK_PHY_RG_DEV1E_REG27D 0x27d #define MTK_PHY_VGASTATE_FFE_THR_ST2_MASK GENMASK(4, 0) #define MTK_PHY_RG_DEV1E_REG2C7 0x2c7 #define MTK_PHY_MAX_GAIN_MASK GENMASK(4, 0) #define MTK_PHY_MIN_GAIN_MASK GENMASK(12, 8) #define MTK_PHY_RG_DEV1E_REG2D1 0x2d1 #define MTK_PHY_VCO_SLICER_THRESH_BITS_HIGH_EEE_MASK GENMASK(7, 0) #define MTK_PHY_LPI_SKIP_SD_SLV_TR BIT(8) #define MTK_PHY_LPI_TR_READY BIT(9) #define MTK_PHY_LPI_VCO_EEE_STG0_EN BIT(10) #define MTK_PHY_RG_DEV1E_REG323 0x323 #define MTK_PHY_EEE_WAKE_MAS_INT_DC BIT(0) #define MTK_PHY_EEE_WAKE_SLV_INT_DC BIT(4) #define MTK_PHY_RG_DEV1E_REG324 0x324 #define MTK_PHY_SMI_DETCNT_MAX_MASK GENMASK(5, 0) #define MTK_PHY_SMI_DET_MAX_EN BIT(8) #define MTK_PHY_RG_DEV1E_REG326 0x326 #define MTK_PHY_LPI_MODE_SD_ON BIT(0) #define MTK_PHY_RESET_RANDUPD_CNT BIT(1) #define MTK_PHY_TREC_UPDATE_ENAB_CLR BIT(2) #define MTK_PHY_LPI_QUIT_WAIT_DFE_SIG_DET_OFF BIT(4) #define MTK_PHY_TR_READY_SKIP_AFE_WAKEUP BIT(5) #define MTK_PHY_LDO_PUMP_EN_PAIRAB 0x502 #define MTK_PHY_LDO_PUMP_EN_PAIRCD 0x503 #define MTK_PHY_DA_TX_R50_PAIR_A 0x53d #define MTK_PHY_DA_TX_R50_PAIR_B 0x53e #define MTK_PHY_DA_TX_R50_PAIR_C 0x53f #define MTK_PHY_DA_TX_R50_PAIR_D 0x540 /* Registers on MDIO_MMD_VEND2 */ #define MTK_PHY_LED0_ON_CTRL 0x24 #define MTK_PHY_LED1_ON_CTRL 0x26 #define MTK_PHY_LED_ON_MASK GENMASK(6, 0) #define MTK_PHY_LED_ON_LINK1000 BIT(0) #define MTK_PHY_LED_ON_LINK100 BIT(1) #define MTK_PHY_LED_ON_LINK10 BIT(2) #define MTK_PHY_LED_ON_LINKDOWN BIT(3) #define MTK_PHY_LED_ON_FDX BIT(4) /* Full duplex */ #define MTK_PHY_LED_ON_HDX BIT(5) /* Half duplex */ #define MTK_PHY_LED_ON_FORCE_ON BIT(6) #define MTK_PHY_LED_ON_POLARITY BIT(14) #define MTK_PHY_LED_ON_ENABLE BIT(15) #define MTK_PHY_LED0_BLINK_CTRL 0x25 #define MTK_PHY_LED1_BLINK_CTRL 0x27 #define MTK_PHY_LED_BLINK_1000TX BIT(0) #define MTK_PHY_LED_BLINK_1000RX BIT(1) #define MTK_PHY_LED_BLINK_100TX BIT(2) #define MTK_PHY_LED_BLINK_100RX BIT(3) #define MTK_PHY_LED_BLINK_10TX BIT(4) #define MTK_PHY_LED_BLINK_10RX BIT(5) #define MTK_PHY_LED_BLINK_COLLISION BIT(6) #define MTK_PHY_LED_BLINK_RX_CRC_ERR BIT(7) #define MTK_PHY_LED_BLINK_RX_IDLE_ERR BIT(8) #define MTK_PHY_LED_BLINK_FORCE_BLINK BIT(9) #define MTK_PHY_LED1_DEFAULT_POLARITIES BIT(1) #define MTK_PHY_RG_BG_RASEL 0x115 #define MTK_PHY_RG_BG_RASEL_MASK GENMASK(2, 0) /* 'boottrap' register reflecting the configuration of the 4 PHY LEDs */ #define RG_GPIO_MISC_TPBANK0 0x6f0 #define RG_GPIO_MISC_TPBANK0_BOOTMODE GENMASK(11, 8) /* These macro privides efuse parsing for internal phy. */ #define EFS_DA_TX_I2MPB_A(x) (((x) >> 0) & GENMASK(5, 0)) #define EFS_DA_TX_I2MPB_B(x) (((x) >> 6) & GENMASK(5, 0)) #define EFS_DA_TX_I2MPB_C(x) (((x) >> 12) & GENMASK(5, 0)) #define EFS_DA_TX_I2MPB_D(x) (((x) >> 18) & GENMASK(5, 0)) #define EFS_DA_TX_AMP_OFFSET_A(x) (((x) >> 24) & GENMASK(5, 0)) #define EFS_DA_TX_AMP_OFFSET_B(x) (((x) >> 0) & GENMASK(5, 0)) #define EFS_DA_TX_AMP_OFFSET_C(x) (((x) >> 6) & GENMASK(5, 0)) #define EFS_DA_TX_AMP_OFFSET_D(x) (((x) >> 12) & GENMASK(5, 0)) #define EFS_DA_TX_R50_A(x) (((x) >> 18) & GENMASK(5, 0)) #define EFS_DA_TX_R50_B(x) (((x) >> 24) & GENMASK(5, 0)) #define EFS_DA_TX_R50_C(x) (((x) >> 0) & GENMASK(5, 0)) #define EFS_DA_TX_R50_D(x) (((x) >> 6) & GENMASK(5, 0)) #define EFS_RG_BG_RASEL(x) (((x) >> 4) & GENMASK(2, 0)) #define EFS_RG_REXT_TRIM(x) (((x) >> 7) & GENMASK(5, 0)) enum { NO_PAIR, PAIR_A, PAIR_B, PAIR_C, PAIR_D, }; enum calibration_mode { EFUSE_K, SW_K }; enum CAL_ITEM { REXT, TX_OFFSET, TX_AMP, TX_R50, TX_VCM }; enum CAL_MODE { EFUSE_M, SW_M }; #define MTK_PHY_LED_STATE_FORCE_ON 0 #define MTK_PHY_LED_STATE_FORCE_BLINK 1 #define MTK_PHY_LED_STATE_NETDEV 2 struct mtk_socphy_priv { unsigned long led_state; }; struct mtk_socphy_shared { u32 boottrap; struct mtk_socphy_priv priv[4]; }; static int mtk_socphy_read_page(struct phy_device *phydev) { return __phy_read(phydev, MTK_EXT_PAGE_ACCESS); } static int mtk_socphy_write_page(struct phy_device *phydev, int page) { return __phy_write(phydev, MTK_EXT_PAGE_ACCESS, page); } /* One calibration cycle consists of: * 1.Set DA_CALIN_FLAG high to start calibration. Keep it high * until AD_CAL_COMP is ready to output calibration result. * 2.Wait until DA_CAL_CLK is available. * 3.Fetch AD_CAL_COMP_OUT. */ static int cal_cycle(struct phy_device *phydev, int devad, u32 regnum, u16 mask, u16 cal_val) { int reg_val; int ret; phy_modify_mmd(phydev, devad, regnum, mask, cal_val); phy_set_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_AD_CALIN, MTK_PHY_DA_CALIN_FLAG); ret = phy_read_mmd_poll_timeout(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_AD_CAL_CLK, reg_val, reg_val & MTK_PHY_DA_CAL_CLK, 500, ANALOG_INTERNAL_OPERATION_MAX_US, false); if (ret) { phydev_err(phydev, "Calibration cycle timeout\n"); return ret; } phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_AD_CALIN, MTK_PHY_DA_CALIN_FLAG); ret = phy_read_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_AD_CAL_COMP) >> MTK_PHY_AD_CAL_COMP_OUT_SHIFT; phydev_dbg(phydev, "cal_val: 0x%x, ret: %d\n", cal_val, ret); return ret; } static int rext_fill_result(struct phy_device *phydev, u16 *buf) { phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_ANA_CAL_RG5, MTK_PHY_RG_REXT_TRIM_MASK, buf[0] << 8); phy_modify_mmd(phydev, MDIO_MMD_VEND2, MTK_PHY_RG_BG_RASEL, MTK_PHY_RG_BG_RASEL_MASK, buf[1]); return 0; } static int rext_cal_efuse(struct phy_device *phydev, u32 *buf) { u16 rext_cal_val[2]; rext_cal_val[0] = EFS_RG_REXT_TRIM(buf[3]); rext_cal_val[1] = EFS_RG_BG_RASEL(buf[3]); rext_fill_result(phydev, rext_cal_val); return 0; } static int tx_offset_fill_result(struct phy_device *phydev, u16 *buf) { phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_CR_TX_AMP_OFFSET_A_B, MTK_PHY_CR_TX_AMP_OFFSET_A_MASK, buf[0] << 8); phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_CR_TX_AMP_OFFSET_A_B, MTK_PHY_CR_TX_AMP_OFFSET_B_MASK, buf[1]); phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_CR_TX_AMP_OFFSET_C_D, MTK_PHY_CR_TX_AMP_OFFSET_C_MASK, buf[2] << 8); phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_CR_TX_AMP_OFFSET_C_D, MTK_PHY_CR_TX_AMP_OFFSET_D_MASK, buf[3]); return 0; } static int tx_offset_cal_efuse(struct phy_device *phydev, u32 *buf) { u16 tx_offset_cal_val[4]; tx_offset_cal_val[0] = EFS_DA_TX_AMP_OFFSET_A(buf[0]); tx_offset_cal_val[1] = EFS_DA_TX_AMP_OFFSET_B(buf[1]); tx_offset_cal_val[2] = EFS_DA_TX_AMP_OFFSET_C(buf[1]); tx_offset_cal_val[3] = EFS_DA_TX_AMP_OFFSET_D(buf[1]); tx_offset_fill_result(phydev, tx_offset_cal_val); return 0; } static int tx_amp_fill_result(struct phy_device *phydev, u16 *buf) { int i; int bias[16] = {}; const int vals_9461[16] = { 7, 1, 4, 7, 7, 1, 4, 7, 7, 1, 4, 7, 7, 1, 4, 7 }; const int vals_9481[16] = { 10, 6, 6, 10, 10, 6, 6, 10, 10, 6, 6, 10, 10, 6, 6, 10 }; switch (phydev->drv->phy_id) { case MTK_GPHY_ID_MT7981: /* We add some calibration to efuse values * due to board level influence. * GBE: +7, TBT: +1, HBT: +4, TST: +7 */ memcpy(bias, (const void *)vals_9461, sizeof(bias)); break; case MTK_GPHY_ID_MT7988: memcpy(bias, (const void *)vals_9481, sizeof(bias)); break; } /* Prevent overflow */ for (i = 0; i < 12; i++) { if (buf[i >> 2] + bias[i] > 63) { buf[i >> 2] = 63; bias[i] = 0; } } phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TXVLD_DA_RG, MTK_PHY_DA_TX_I2MPB_A_GBE_MASK, (buf[0] + bias[0]) << 10); phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TXVLD_DA_RG, MTK_PHY_DA_TX_I2MPB_A_TBT_MASK, buf[0] + bias[1]); phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_A2, MTK_PHY_DA_TX_I2MPB_A_HBT_MASK, (buf[0] + bias[2]) << 10); phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_A2, MTK_PHY_DA_TX_I2MPB_A_TST_MASK, buf[0] + bias[3]); phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_B1, MTK_PHY_DA_TX_I2MPB_B_GBE_MASK, (buf[1] + bias[4]) << 8); phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_B1, MTK_PHY_DA_TX_I2MPB_B_TBT_MASK, buf[1] + bias[5]); phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_B2, MTK_PHY_DA_TX_I2MPB_B_HBT_MASK, (buf[1] + bias[6]) << 8); phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_B2, MTK_PHY_DA_TX_I2MPB_B_TST_MASK, buf[1] + bias[7]); phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_C1, MTK_PHY_DA_TX_I2MPB_C_GBE_MASK, (buf[2] + bias[8]) << 8); phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_C1, MTK_PHY_DA_TX_I2MPB_C_TBT_MASK, buf[2] + bias[9]); phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_C2, MTK_PHY_DA_TX_I2MPB_C_HBT_MASK, (buf[2] + bias[10]) << 8); phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_C2, MTK_PHY_DA_TX_I2MPB_C_TST_MASK, buf[2] + bias[11]); phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_D1, MTK_PHY_DA_TX_I2MPB_D_GBE_MASK, (buf[3] + bias[12]) << 8); phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_D1, MTK_PHY_DA_TX_I2MPB_D_TBT_MASK, buf[3] + bias[13]); phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_D2, MTK_PHY_DA_TX_I2MPB_D_HBT_MASK, (buf[3] + bias[14]) << 8); phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_D2, MTK_PHY_DA_TX_I2MPB_D_TST_MASK, buf[3] + bias[15]); return 0; } static int tx_amp_cal_efuse(struct phy_device *phydev, u32 *buf) { u16 tx_amp_cal_val[4]; tx_amp_cal_val[0] = EFS_DA_TX_I2MPB_A(buf[0]); tx_amp_cal_val[1] = EFS_DA_TX_I2MPB_B(buf[0]); tx_amp_cal_val[2] = EFS_DA_TX_I2MPB_C(buf[0]); tx_amp_cal_val[3] = EFS_DA_TX_I2MPB_D(buf[0]); tx_amp_fill_result(phydev, tx_amp_cal_val); return 0; } static int tx_r50_fill_result(struct phy_device *phydev, u16 tx_r50_cal_val, u8 txg_calen_x) { int bias = 0; u16 reg, val; if (phydev->drv->phy_id == MTK_GPHY_ID_MT7988) bias = -2; val = clamp_val(bias + tx_r50_cal_val, 0, 63); switch (txg_calen_x) { case PAIR_A: reg = MTK_PHY_DA_TX_R50_PAIR_A; break; case PAIR_B: reg = MTK_PHY_DA_TX_R50_PAIR_B; break; case PAIR_C: reg = MTK_PHY_DA_TX_R50_PAIR_C; break; case PAIR_D: reg = MTK_PHY_DA_TX_R50_PAIR_D; break; default: return -EINVAL; } phy_write_mmd(phydev, MDIO_MMD_VEND1, reg, val | val << 8); return 0; } static int tx_r50_cal_efuse(struct phy_device *phydev, u32 *buf, u8 txg_calen_x) { u16 tx_r50_cal_val; switch (txg_calen_x) { case PAIR_A: tx_r50_cal_val = EFS_DA_TX_R50_A(buf[1]); break; case PAIR_B: tx_r50_cal_val = EFS_DA_TX_R50_B(buf[1]); break; case PAIR_C: tx_r50_cal_val = EFS_DA_TX_R50_C(buf[2]); break; case PAIR_D: tx_r50_cal_val = EFS_DA_TX_R50_D(buf[2]); break; default: return -EINVAL; } tx_r50_fill_result(phydev, tx_r50_cal_val, txg_calen_x); return 0; } static int tx_vcm_cal_sw(struct phy_device *phydev, u8 rg_txreserve_x) { u8 lower_idx, upper_idx, txreserve_val; u8 lower_ret, upper_ret; int ret; phy_set_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_ANA_CAL_RG0, MTK_PHY_RG_ANA_CALEN); phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_ANA_CAL_RG0, MTK_PHY_RG_CAL_CKINV); phy_set_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_ANA_CAL_RG1, MTK_PHY_RG_TXVOS_CALEN); switch (rg_txreserve_x) { case PAIR_A: phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DASN_DAC_IN0_A, MTK_PHY_DASN_DAC_IN0_A_MASK); phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DASN_DAC_IN1_A, MTK_PHY_DASN_DAC_IN1_A_MASK); phy_set_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_ANA_CAL_RG0, MTK_PHY_RG_ZCALEN_A); break; case PAIR_B: phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DASN_DAC_IN0_B, MTK_PHY_DASN_DAC_IN0_B_MASK); phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DASN_DAC_IN1_B, MTK_PHY_DASN_DAC_IN1_B_MASK); phy_set_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_ANA_CAL_RG1, MTK_PHY_RG_ZCALEN_B); break; case PAIR_C: phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DASN_DAC_IN0_C, MTK_PHY_DASN_DAC_IN0_C_MASK); phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DASN_DAC_IN1_C, MTK_PHY_DASN_DAC_IN1_C_MASK); phy_set_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_ANA_CAL_RG1, MTK_PHY_RG_ZCALEN_C); break; case PAIR_D: phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DASN_DAC_IN0_D, MTK_PHY_DASN_DAC_IN0_D_MASK); phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DASN_DAC_IN1_D, MTK_PHY_DASN_DAC_IN1_D_MASK); phy_set_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_ANA_CAL_RG1, MTK_PHY_RG_ZCALEN_D); break; default: ret = -EINVAL; goto restore; } lower_idx = TXRESERVE_MIN; upper_idx = TXRESERVE_MAX; phydev_dbg(phydev, "Start TX-VCM SW cal.\n"); while ((upper_idx - lower_idx) > 1) { txreserve_val = DIV_ROUND_CLOSEST(lower_idx + upper_idx, 2); ret = cal_cycle(phydev, MDIO_MMD_VEND1, MTK_PHY_RXADC_CTRL_RG9, MTK_PHY_DA_RX_PSBN_TBT_MASK | MTK_PHY_DA_RX_PSBN_HBT_MASK | MTK_PHY_DA_RX_PSBN_GBE_MASK | MTK_PHY_DA_RX_PSBN_LP_MASK, txreserve_val << 12 | txreserve_val << 8 | txreserve_val << 4 | txreserve_val); if (ret == 1) { upper_idx = txreserve_val; upper_ret = ret; } else if (ret == 0) { lower_idx = txreserve_val; lower_ret = ret; } else { goto restore; } } if (lower_idx == TXRESERVE_MIN) { lower_ret = cal_cycle(phydev, MDIO_MMD_VEND1, MTK_PHY_RXADC_CTRL_RG9, MTK_PHY_DA_RX_PSBN_TBT_MASK | MTK_PHY_DA_RX_PSBN_HBT_MASK | MTK_PHY_DA_RX_PSBN_GBE_MASK | MTK_PHY_DA_RX_PSBN_LP_MASK, lower_idx << 12 | lower_idx << 8 | lower_idx << 4 | lower_idx); ret = lower_ret; } else if (upper_idx == TXRESERVE_MAX) { upper_ret = cal_cycle(phydev, MDIO_MMD_VEND1, MTK_PHY_RXADC_CTRL_RG9, MTK_PHY_DA_RX_PSBN_TBT_MASK | MTK_PHY_DA_RX_PSBN_HBT_MASK | MTK_PHY_DA_RX_PSBN_GBE_MASK | MTK_PHY_DA_RX_PSBN_LP_MASK, upper_idx << 12 | upper_idx << 8 | upper_idx << 4 | upper_idx); ret = upper_ret; } if (ret < 0) goto restore; /* We calibrate TX-VCM in different logic. Check upper index and then * lower index. If this calibration is valid, apply lower index's result. */ ret = upper_ret - lower_ret; if (ret == 1) { ret = 0; /* Make sure we use upper_idx in our calibration system */ cal_cycle(phydev, MDIO_MMD_VEND1, MTK_PHY_RXADC_CTRL_RG9, MTK_PHY_DA_RX_PSBN_TBT_MASK | MTK_PHY_DA_RX_PSBN_HBT_MASK | MTK_PHY_DA_RX_PSBN_GBE_MASK | MTK_PHY_DA_RX_PSBN_LP_MASK, upper_idx << 12 | upper_idx << 8 | upper_idx << 4 | upper_idx); phydev_dbg(phydev, "TX-VCM SW cal result: 0x%x\n", upper_idx); } else if (lower_idx == TXRESERVE_MIN && upper_ret == 1 && lower_ret == 1) { ret = 0; cal_cycle(phydev, MDIO_MMD_VEND1, MTK_PHY_RXADC_CTRL_RG9, MTK_PHY_DA_RX_PSBN_TBT_MASK | MTK_PHY_DA_RX_PSBN_HBT_MASK | MTK_PHY_DA_RX_PSBN_GBE_MASK | MTK_PHY_DA_RX_PSBN_LP_MASK, lower_idx << 12 | lower_idx << 8 | lower_idx << 4 | lower_idx); phydev_warn(phydev, "TX-VCM SW cal result at low margin 0x%x\n", lower_idx); } else if (upper_idx == TXRESERVE_MAX && upper_ret == 0 && lower_ret == 0) { ret = 0; phydev_warn(phydev, "TX-VCM SW cal result at high margin 0x%x\n", upper_idx); } else { ret = -EINVAL; } restore: phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_ANA_CAL_RG0, MTK_PHY_RG_ANA_CALEN); phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_ANA_CAL_RG1, MTK_PHY_RG_TXVOS_CALEN); phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_ANA_CAL_RG0, MTK_PHY_RG_ZCALEN_A); phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_ANA_CAL_RG1, MTK_PHY_RG_ZCALEN_B | MTK_PHY_RG_ZCALEN_C | MTK_PHY_RG_ZCALEN_D); return ret; } static void mt798x_phy_common_finetune(struct phy_device *phydev) { phy_select_page(phydev, MTK_PHY_PAGE_EXTENDED_52B5); /* EnabRandUpdTrig = 1 */ __phy_write(phydev, 0x11, 0x2f00); __phy_write(phydev, 0x12, 0xe); __phy_write(phydev, 0x10, 0x8fb0); /* NormMseLoThresh = 85 */ __phy_write(phydev, 0x11, 0x55a0); __phy_write(phydev, 0x12, 0x0); __phy_write(phydev, 0x10, 0x83aa); /* TrFreeze = 0 */ __phy_write(phydev, 0x11, 0x0); __phy_write(phydev, 0x12, 0x0); __phy_write(phydev, 0x10, 0x9686); /* SSTrKp1000Slv = 5 */ __phy_write(phydev, 0x11, 0xbaef); __phy_write(phydev, 0x12, 0x2e); __phy_write(phydev, 0x10, 0x968c); /* MrvlTrFix100Kp = 3, MrvlTrFix100Kf = 2, * MrvlTrFix1000Kp = 3, MrvlTrFix1000Kf = 2 */ __phy_write(phydev, 0x11, 0xd10a); __phy_write(phydev, 0x12, 0x34); __phy_write(phydev, 0x10, 0x8f82); /* VcoSlicerThreshBitsHigh */ __phy_write(phydev, 0x11, 0x5555); __phy_write(phydev, 0x12, 0x55); __phy_write(phydev, 0x10, 0x8ec0); phy_restore_page(phydev, MTK_PHY_PAGE_STANDARD, 0); /* TR_OPEN_LOOP_EN = 1, lpf_x_average = 9*/ phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG234, MTK_PHY_TR_OPEN_LOOP_EN_MASK | MTK_PHY_LPF_X_AVERAGE_MASK, BIT(0) | FIELD_PREP(MTK_PHY_LPF_X_AVERAGE_MASK, 0x9)); /* rg_tr_lpf_cnt_val = 512 */ phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LPF_CNT_VAL, 0x200); /* IIR2 related */ phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K1_L, 0x82); phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K1_U, 0x0); phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K2_L, 0x103); phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K2_U, 0x0); phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K3_L, 0x82); phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K3_U, 0x0); phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K4_L, 0xd177); phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K4_U, 0x3); phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K5_L, 0x2c82); phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K5_U, 0xe); /* FFE peaking */ phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG27C, MTK_PHY_VGASTATE_FFE_THR_ST1_MASK, 0x1b << 8); phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG27D, MTK_PHY_VGASTATE_FFE_THR_ST2_MASK, 0x1e); /* Disable LDO pump */ phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_LDO_PUMP_EN_PAIRAB, 0x0); phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_LDO_PUMP_EN_PAIRCD, 0x0); /* Adjust LDO output voltage */ phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_LDO_OUTPUT_V, 0x2222); } static void mt7981_phy_finetune(struct phy_device *phydev) { u16 val[8] = { 0x01ce, 0x01c1, 0x020f, 0x0202, 0x03d0, 0x03c0, 0x0013, 0x0005 }; int i, k; /* 100M eye finetune: * Keep middle level of TX MLT3 shapper as default. * Only change TX MLT3 overshoot level here. */ for (k = 0, i = 1; i < 12; i++) { if (i % 3 == 0) continue; phy_write_mmd(phydev, MDIO_MMD_VEND1, i, val[k++]); } phy_select_page(phydev, MTK_PHY_PAGE_EXTENDED_52B5); /* SlvDSPreadyTime = 24, MasDSPreadyTime = 24 */ __phy_write(phydev, 0x11, 0xc71); __phy_write(phydev, 0x12, 0xc); __phy_write(phydev, 0x10, 0x8fae); /* ResetSyncOffset = 6 */ __phy_write(phydev, 0x11, 0x600); __phy_write(phydev, 0x12, 0x0); __phy_write(phydev, 0x10, 0x8fc0); /* VgaDecRate = 1 */ __phy_write(phydev, 0x11, 0x4c2a); __phy_write(phydev, 0x12, 0x3e); __phy_write(phydev, 0x10, 0x8fa4); /* FfeUpdGainForce = 4 */ __phy_write(phydev, 0x11, 0x240); __phy_write(phydev, 0x12, 0x0); __phy_write(phydev, 0x10, 0x9680); phy_restore_page(phydev, MTK_PHY_PAGE_STANDARD, 0); } static void mt7988_phy_finetune(struct phy_device *phydev) { u16 val[12] = { 0x0187, 0x01cd, 0x01c8, 0x0182, 0x020d, 0x0206, 0x0384, 0x03d0, 0x03c6, 0x030a, 0x0011, 0x0005 }; int i; /* Set default MLT3 shaper first */ for (i = 0; i < 12; i++) phy_write_mmd(phydev, MDIO_MMD_VEND1, i, val[i]); /* TCT finetune */ phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_TX_FILTER, 0x5); /* Disable TX power saving */ phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RXADC_CTRL_RG7, MTK_PHY_DA_AD_BUF_BIAS_LP_MASK, 0x3 << 8); phy_select_page(phydev, MTK_PHY_PAGE_EXTENDED_52B5); /* SlvDSPreadyTime = 24, MasDSPreadyTime = 12 */ __phy_write(phydev, 0x11, 0x671); __phy_write(phydev, 0x12, 0xc); __phy_write(phydev, 0x10, 0x8fae); /* ResetSyncOffset = 5 */ __phy_write(phydev, 0x11, 0x500); __phy_write(phydev, 0x12, 0x0); __phy_write(phydev, 0x10, 0x8fc0); /* VgaDecRate is 1 at default on mt7988 */ phy_restore_page(phydev, MTK_PHY_PAGE_STANDARD, 0); phy_select_page(phydev, MTK_PHY_PAGE_EXTENDED_2A30); /* TxClkOffset = 2 */ __phy_modify(phydev, MTK_PHY_ANARG_RG, MTK_PHY_TCLKOFFSET_MASK, FIELD_PREP(MTK_PHY_TCLKOFFSET_MASK, 0x2)); phy_restore_page(phydev, MTK_PHY_PAGE_STANDARD, 0); } static void mt798x_phy_eee(struct phy_device *phydev) { phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LPI_PCS_DSP_CTRL_REG120, MTK_PHY_LPI_SIG_EN_LO_THRESH1000_MASK | MTK_PHY_LPI_SIG_EN_HI_THRESH1000_MASK, FIELD_PREP(MTK_PHY_LPI_SIG_EN_LO_THRESH1000_MASK, 0x0) | FIELD_PREP(MTK_PHY_LPI_SIG_EN_HI_THRESH1000_MASK, 0x14)); phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LPI_PCS_DSP_CTRL_REG122, MTK_PHY_LPI_NORM_MSE_HI_THRESH1000_MASK, FIELD_PREP(MTK_PHY_LPI_NORM_MSE_HI_THRESH1000_MASK, 0xff)); phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_TESTMUX_ADC_CTRL, MTK_PHY_RG_TXEN_DIG_MASK); phy_set_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG19b, MTK_PHY_BYPASS_DSP_LPI_READY); phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG234, MTK_PHY_TR_LP_IIR_EEE_EN); phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG238, MTK_PHY_LPI_SLV_SEND_TX_TIMER_MASK | MTK_PHY_LPI_SLV_SEND_TX_EN, FIELD_PREP(MTK_PHY_LPI_SLV_SEND_TX_TIMER_MASK, 0x120)); phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG239, MTK_PHY_LPI_SEND_LOC_TIMER_MASK | MTK_PHY_LPI_TXPCS_LOC_RCV, FIELD_PREP(MTK_PHY_LPI_SEND_LOC_TIMER_MASK, 0x117)); phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG2C7, MTK_PHY_MAX_GAIN_MASK | MTK_PHY_MIN_GAIN_MASK, FIELD_PREP(MTK_PHY_MAX_GAIN_MASK, 0x8) | FIELD_PREP(MTK_PHY_MIN_GAIN_MASK, 0x13)); phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG2D1, MTK_PHY_VCO_SLICER_THRESH_BITS_HIGH_EEE_MASK, FIELD_PREP(MTK_PHY_VCO_SLICER_THRESH_BITS_HIGH_EEE_MASK, 0x33) | MTK_PHY_LPI_SKIP_SD_SLV_TR | MTK_PHY_LPI_TR_READY | MTK_PHY_LPI_VCO_EEE_STG0_EN); phy_set_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG323, MTK_PHY_EEE_WAKE_MAS_INT_DC | MTK_PHY_EEE_WAKE_SLV_INT_DC); phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG324, MTK_PHY_SMI_DETCNT_MAX_MASK, FIELD_PREP(MTK_PHY_SMI_DETCNT_MAX_MASK, 0x3f) | MTK_PHY_SMI_DET_MAX_EN); phy_set_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG326, MTK_PHY_LPI_MODE_SD_ON | MTK_PHY_RESET_RANDUPD_CNT | MTK_PHY_TREC_UPDATE_ENAB_CLR | MTK_PHY_LPI_QUIT_WAIT_DFE_SIG_DET_OFF | MTK_PHY_TR_READY_SKIP_AFE_WAKEUP); phy_select_page(phydev, MTK_PHY_PAGE_EXTENDED_52B5); /* Regsigdet_sel_1000 = 0 */ __phy_write(phydev, 0x11, 0xb); __phy_write(phydev, 0x12, 0x0); __phy_write(phydev, 0x10, 0x9690); /* REG_EEE_st2TrKf1000 = 3 */ __phy_write(phydev, 0x11, 0x114f); __phy_write(phydev, 0x12, 0x2); __phy_write(phydev, 0x10, 0x969a); /* RegEEE_slv_wake_tr_timer_tar = 6, RegEEE_slv_remtx_timer_tar = 20 */ __phy_write(phydev, 0x11, 0x3028); __phy_write(phydev, 0x12, 0x0); __phy_write(phydev, 0x10, 0x969e); /* RegEEE_slv_wake_int_timer_tar = 8 */ __phy_write(phydev, 0x11, 0x5010); __phy_write(phydev, 0x12, 0x0); __phy_write(phydev, 0x10, 0x96a0); /* RegEEE_trfreeze_timer2 = 586 */ __phy_write(phydev, 0x11, 0x24a); __phy_write(phydev, 0x12, 0x0); __phy_write(phydev, 0x10, 0x96a8); /* RegEEE100Stg1_tar = 16 */ __phy_write(phydev, 0x11, 0x3210); __phy_write(phydev, 0x12, 0x0); __phy_write(phydev, 0x10, 0x96b8); /* REGEEE_wake_slv_tr_wait_dfesigdet_en = 1 */ __phy_write(phydev, 0x11, 0x1463); __phy_write(phydev, 0x12, 0x0); __phy_write(phydev, 0x10, 0x96ca); /* DfeTailEnableVgaThresh1000 = 27 */ __phy_write(phydev, 0x11, 0x36); __phy_write(phydev, 0x12, 0x0); __phy_write(phydev, 0x10, 0x8f80); phy_restore_page(phydev, MTK_PHY_PAGE_STANDARD, 0); phy_select_page(phydev, MTK_PHY_PAGE_EXTENDED_3); __phy_modify(phydev, MTK_PHY_LPI_REG_14, MTK_PHY_LPI_WAKE_TIMER_1000_MASK, FIELD_PREP(MTK_PHY_LPI_WAKE_TIMER_1000_MASK, 0x19c)); __phy_modify(phydev, MTK_PHY_LPI_REG_1c, MTK_PHY_SMI_DET_ON_THRESH_MASK, FIELD_PREP(MTK_PHY_SMI_DET_ON_THRESH_MASK, 0xc)); phy_restore_page(phydev, MTK_PHY_PAGE_STANDARD, 0); phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LPI_PCS_DSP_CTRL_REG122, MTK_PHY_LPI_NORM_MSE_HI_THRESH1000_MASK, FIELD_PREP(MTK_PHY_LPI_NORM_MSE_HI_THRESH1000_MASK, 0xff)); } static int cal_sw(struct phy_device *phydev, enum CAL_ITEM cal_item, u8 start_pair, u8 end_pair) { u8 pair_n; int ret; for (pair_n = start_pair; pair_n <= end_pair; pair_n++) { /* TX_OFFSET & TX_AMP have no SW calibration. */ switch (cal_item) { case TX_VCM: ret = tx_vcm_cal_sw(phydev, pair_n); break; default: return -EINVAL; } if (ret) return ret; } return 0; } static int cal_efuse(struct phy_device *phydev, enum CAL_ITEM cal_item, u8 start_pair, u8 end_pair, u32 *buf) { u8 pair_n; int ret; for (pair_n = start_pair; pair_n <= end_pair; pair_n++) { /* TX_VCM has no efuse calibration. */ switch (cal_item) { case REXT: ret = rext_cal_efuse(phydev, buf); break; case TX_OFFSET: ret = tx_offset_cal_efuse(phydev, buf); break; case TX_AMP: ret = tx_amp_cal_efuse(phydev, buf); break; case TX_R50: ret = tx_r50_cal_efuse(phydev, buf, pair_n); break; default: return -EINVAL; } if (ret) return ret; } return 0; } static int start_cal(struct phy_device *phydev, enum CAL_ITEM cal_item, enum CAL_MODE cal_mode, u8 start_pair, u8 end_pair, u32 *buf) { int ret; switch (cal_mode) { case EFUSE_M: ret = cal_efuse(phydev, cal_item, start_pair, end_pair, buf); break; case SW_M: ret = cal_sw(phydev, cal_item, start_pair, end_pair); break; default: return -EINVAL; } if (ret) { phydev_err(phydev, "cal %d failed\n", cal_item); return -EIO; } return 0; } static int mt798x_phy_calibration(struct phy_device *phydev) { int ret = 0; u32 *buf; size_t len; struct nvmem_cell *cell; cell = nvmem_cell_get(&phydev->mdio.dev, "phy-cal-data"); if (IS_ERR(cell)) { if (PTR_ERR(cell) == -EPROBE_DEFER) return PTR_ERR(cell); return 0; } buf = (u32 *)nvmem_cell_read(cell, &len); if (IS_ERR(buf)) return PTR_ERR(buf); nvmem_cell_put(cell); if (!buf[0] || !buf[1] || !buf[2] || !buf[3] || len < 4 * sizeof(u32)) { phydev_err(phydev, "invalid efuse data\n"); ret = -EINVAL; goto out; } ret = start_cal(phydev, REXT, EFUSE_M, NO_PAIR, NO_PAIR, buf); if (ret) goto out; ret = start_cal(phydev, TX_OFFSET, EFUSE_M, NO_PAIR, NO_PAIR, buf); if (ret) goto out; ret = start_cal(phydev, TX_AMP, EFUSE_M, NO_PAIR, NO_PAIR, buf); if (ret) goto out; ret = start_cal(phydev, TX_R50, EFUSE_M, PAIR_A, PAIR_D, buf); if (ret) goto out; ret = start_cal(phydev, TX_VCM, SW_M, PAIR_A, PAIR_A, buf); if (ret) goto out; out: kfree(buf); return ret; } static int mt798x_phy_config_init(struct phy_device *phydev) { switch (phydev->drv->phy_id) { case MTK_GPHY_ID_MT7981: mt7981_phy_finetune(phydev); break; case MTK_GPHY_ID_MT7988: mt7988_phy_finetune(phydev); break; } mt798x_phy_common_finetune(phydev); mt798x_phy_eee(phydev); return mt798x_phy_calibration(phydev); } static int mt798x_phy_hw_led_on_set(struct phy_device *phydev, u8 index, bool on) { unsigned int bit_on = MTK_PHY_LED_STATE_FORCE_ON + (index ? 16 : 0); struct mtk_socphy_priv *priv = phydev->priv; bool changed; if (on) changed = !test_and_set_bit(bit_on, &priv->led_state); else changed = !!test_and_clear_bit(bit_on, &priv->led_state); changed |= !!test_and_clear_bit(MTK_PHY_LED_STATE_NETDEV + (index ? 16 : 0), &priv->led_state); if (changed) return phy_modify_mmd(phydev, MDIO_MMD_VEND2, index ? MTK_PHY_LED1_ON_CTRL : MTK_PHY_LED0_ON_CTRL, MTK_PHY_LED_ON_MASK, on ? MTK_PHY_LED_ON_FORCE_ON : 0); else return 0; } static int mt798x_phy_hw_led_blink_set(struct phy_device *phydev, u8 index, bool blinking) { unsigned int bit_blink = MTK_PHY_LED_STATE_FORCE_BLINK + (index ? 16 : 0); struct mtk_socphy_priv *priv = phydev->priv; bool changed; if (blinking) changed = !test_and_set_bit(bit_blink, &priv->led_state); else changed = !!test_and_clear_bit(bit_blink, &priv->led_state); changed |= !!test_bit(MTK_PHY_LED_STATE_NETDEV + (index ? 16 : 0), &priv->led_state); if (changed) return phy_write_mmd(phydev, MDIO_MMD_VEND2, index ? MTK_PHY_LED1_BLINK_CTRL : MTK_PHY_LED0_BLINK_CTRL, blinking ? MTK_PHY_LED_BLINK_FORCE_BLINK : 0); else return 0; } static int mt798x_phy_led_blink_set(struct phy_device *phydev, u8 index, unsigned long *delay_on, unsigned long *delay_off) { bool blinking = false; int err = 0; if (index > 1) return -EINVAL; if (delay_on && delay_off && (*delay_on > 0) && (*delay_off > 0)) { blinking = true; *delay_on = 50; *delay_off = 50; } err = mt798x_phy_hw_led_blink_set(phydev, index, blinking); if (err) return err; return mt798x_phy_hw_led_on_set(phydev, index, false); } static int mt798x_phy_led_brightness_set(struct phy_device *phydev, u8 index, enum led_brightness value) { int err; err = mt798x_phy_hw_led_blink_set(phydev, index, false); if (err) return err; return mt798x_phy_hw_led_on_set(phydev, index, (value != LED_OFF)); } static const unsigned long supported_triggers = (BIT(TRIGGER_NETDEV_FULL_DUPLEX) | BIT(TRIGGER_NETDEV_HALF_DUPLEX) | BIT(TRIGGER_NETDEV_LINK) | BIT(TRIGGER_NETDEV_LINK_10) | BIT(TRIGGER_NETDEV_LINK_100) | BIT(TRIGGER_NETDEV_LINK_1000) | BIT(TRIGGER_NETDEV_RX) | BIT(TRIGGER_NETDEV_TX)); static int mt798x_phy_led_hw_is_supported(struct phy_device *phydev, u8 index, unsigned long rules) { if (index > 1) return -EINVAL; /* All combinations of the supported triggers are allowed */ if (rules & ~supported_triggers) return -EOPNOTSUPP; return 0; }; static int mt798x_phy_led_hw_control_get(struct phy_device *phydev, u8 index, unsigned long *rules) { unsigned int bit_blink = MTK_PHY_LED_STATE_FORCE_BLINK + (index ? 16 : 0); unsigned int bit_netdev = MTK_PHY_LED_STATE_NETDEV + (index ? 16 : 0); unsigned int bit_on = MTK_PHY_LED_STATE_FORCE_ON + (index ? 16 : 0); struct mtk_socphy_priv *priv = phydev->priv; int on, blink; if (index > 1) return -EINVAL; on = phy_read_mmd(phydev, MDIO_MMD_VEND2, index ? MTK_PHY_LED1_ON_CTRL : MTK_PHY_LED0_ON_CTRL); if (on < 0) return -EIO; blink = phy_read_mmd(phydev, MDIO_MMD_VEND2, index ? MTK_PHY_LED1_BLINK_CTRL : MTK_PHY_LED0_BLINK_CTRL); if (blink < 0) return -EIO; if ((on & (MTK_PHY_LED_ON_LINK1000 | MTK_PHY_LED_ON_LINK100 | MTK_PHY_LED_ON_LINK10)) || (blink & (MTK_PHY_LED_BLINK_1000RX | MTK_PHY_LED_BLINK_100RX | MTK_PHY_LED_BLINK_10RX | MTK_PHY_LED_BLINK_1000TX | MTK_PHY_LED_BLINK_100TX | MTK_PHY_LED_BLINK_10TX))) set_bit(bit_netdev, &priv->led_state); else clear_bit(bit_netdev, &priv->led_state); if (on & MTK_PHY_LED_ON_FORCE_ON) set_bit(bit_on, &priv->led_state); else clear_bit(bit_on, &priv->led_state); if (blink & MTK_PHY_LED_BLINK_FORCE_BLINK) set_bit(bit_blink, &priv->led_state); else clear_bit(bit_blink, &priv->led_state); if (!rules) return 0; if (on & (MTK_PHY_LED_ON_LINK1000 | MTK_PHY_LED_ON_LINK100 | MTK_PHY_LED_ON_LINK10)) *rules |= BIT(TRIGGER_NETDEV_LINK); if (on & MTK_PHY_LED_ON_LINK10) *rules |= BIT(TRIGGER_NETDEV_LINK_10); if (on & MTK_PHY_LED_ON_LINK100) *rules |= BIT(TRIGGER_NETDEV_LINK_100); if (on & MTK_PHY_LED_ON_LINK1000) *rules |= BIT(TRIGGER_NETDEV_LINK_1000); if (on & MTK_PHY_LED_ON_FDX) *rules |= BIT(TRIGGER_NETDEV_FULL_DUPLEX); if (on & MTK_PHY_LED_ON_HDX) *rules |= BIT(TRIGGER_NETDEV_HALF_DUPLEX); if (blink & (MTK_PHY_LED_BLINK_1000RX | MTK_PHY_LED_BLINK_100RX | MTK_PHY_LED_BLINK_10RX)) *rules |= BIT(TRIGGER_NETDEV_RX); if (blink & (MTK_PHY_LED_BLINK_1000TX | MTK_PHY_LED_BLINK_100TX | MTK_PHY_LED_BLINK_10TX)) *rules |= BIT(TRIGGER_NETDEV_TX); return 0; }; static int mt798x_phy_led_hw_control_set(struct phy_device *phydev, u8 index, unsigned long rules) { unsigned int bit_netdev = MTK_PHY_LED_STATE_NETDEV + (index ? 16 : 0); struct mtk_socphy_priv *priv = phydev->priv; u16 on = 0, blink = 0; int ret; if (index > 1) return -EINVAL; if (rules & BIT(TRIGGER_NETDEV_FULL_DUPLEX)) on |= MTK_PHY_LED_ON_FDX; if (rules & BIT(TRIGGER_NETDEV_HALF_DUPLEX)) on |= MTK_PHY_LED_ON_HDX; if (rules & (BIT(TRIGGER_NETDEV_LINK_10) | BIT(TRIGGER_NETDEV_LINK))) on |= MTK_PHY_LED_ON_LINK10; if (rules & (BIT(TRIGGER_NETDEV_LINK_100) | BIT(TRIGGER_NETDEV_LINK))) on |= MTK_PHY_LED_ON_LINK100; if (rules & (BIT(TRIGGER_NETDEV_LINK_1000) | BIT(TRIGGER_NETDEV_LINK))) on |= MTK_PHY_LED_ON_LINK1000; if (rules & BIT(TRIGGER_NETDEV_RX)) { blink |= MTK_PHY_LED_BLINK_10RX | MTK_PHY_LED_BLINK_100RX | MTK_PHY_LED_BLINK_1000RX; } if (rules & BIT(TRIGGER_NETDEV_TX)) { blink |= MTK_PHY_LED_BLINK_10TX | MTK_PHY_LED_BLINK_100TX | MTK_PHY_LED_BLINK_1000TX; } if (blink || on) set_bit(bit_netdev, &priv->led_state); else clear_bit(bit_netdev, &priv->led_state); ret = phy_modify_mmd(phydev, MDIO_MMD_VEND2, index ? MTK_PHY_LED1_ON_CTRL : MTK_PHY_LED0_ON_CTRL, MTK_PHY_LED_ON_FDX | MTK_PHY_LED_ON_HDX | MTK_PHY_LED_ON_LINK10 | MTK_PHY_LED_ON_LINK100 | MTK_PHY_LED_ON_LINK1000, on); if (ret) return ret; return phy_write_mmd(phydev, MDIO_MMD_VEND2, index ? MTK_PHY_LED1_BLINK_CTRL : MTK_PHY_LED0_BLINK_CTRL, blink); }; static bool mt7988_phy_led_get_polarity(struct phy_device *phydev, int led_num) { struct mtk_socphy_shared *priv = phydev->shared->priv; u32 polarities; if (led_num == 0) polarities = ~(priv->boottrap); else polarities = MTK_PHY_LED1_DEFAULT_POLARITIES; if (polarities & BIT(phydev->mdio.addr)) return true; return false; } static int mt7988_phy_fix_leds_polarities(struct phy_device *phydev) { struct pinctrl *pinctrl; int index; /* Setup LED polarity according to bootstrap use of LED pins */ for (index = 0; index < 2; ++index) phy_modify_mmd(phydev, MDIO_MMD_VEND2, index ? MTK_PHY_LED1_ON_CTRL : MTK_PHY_LED0_ON_CTRL, MTK_PHY_LED_ON_POLARITY, mt7988_phy_led_get_polarity(phydev, index) ? MTK_PHY_LED_ON_POLARITY : 0); /* Only now setup pinctrl to avoid bogus blinking */ pinctrl = devm_pinctrl_get_select(&phydev->mdio.dev, "gbe-led"); if (IS_ERR(pinctrl)) dev_err(&phydev->mdio.bus->dev, "Failed to setup PHY LED pinctrl\n"); return 0; } static int mt7988_phy_probe_shared(struct phy_device *phydev) { struct device_node *np = dev_of_node(&phydev->mdio.bus->dev); struct mtk_socphy_shared *shared = phydev->shared->priv; struct regmap *regmap; u32 reg; int ret; /* The LED0 of the 4 PHYs in MT7988 are wired to SoC pins LED_A, LED_B, * LED_C and LED_D respectively. At the same time those pins are used to * bootstrap configuration of the reference clock source (LED_A), * DRAM DDRx16b x2/x1 (LED_B) and boot device (LED_C, LED_D). * In practise this is done using a LED and a resistor pulling the pin * either to GND or to VIO. * The detected value at boot time is accessible at run-time using the * TPBANK0 register located in the gpio base of the pinctrl, in order * to read it here it needs to be referenced by a phandle called * 'mediatek,pio' in the MDIO bus hosting the PHY. * The 4 bits in TPBANK0 are kept as package shared data and are used to * set LED polarity for each of the LED0. */ regmap = syscon_regmap_lookup_by_phandle(np, "mediatek,pio"); if (IS_ERR(regmap)) return PTR_ERR(regmap); ret = regmap_read(regmap, RG_GPIO_MISC_TPBANK0, ®); if (ret) return ret; shared->boottrap = FIELD_GET(RG_GPIO_MISC_TPBANK0_BOOTMODE, reg); return 0; } static void mt798x_phy_leds_state_init(struct phy_device *phydev) { int i; for (i = 0; i < 2; ++i) mt798x_phy_led_hw_control_get(phydev, i, NULL); } static int mt7988_phy_probe(struct phy_device *phydev) { struct mtk_socphy_shared *shared; struct mtk_socphy_priv *priv; int err; if (phydev->mdio.addr > 3) return -EINVAL; err = devm_phy_package_join(&phydev->mdio.dev, phydev, 0, sizeof(struct mtk_socphy_shared)); if (err) return err; if (phy_package_probe_once(phydev)) { err = mt7988_phy_probe_shared(phydev); if (err) return err; } shared = phydev->shared->priv; priv = &shared->priv[phydev->mdio.addr]; phydev->priv = priv; mt798x_phy_leds_state_init(phydev); err = mt7988_phy_fix_leds_polarities(phydev); if (err) return err; return mt798x_phy_calibration(phydev); } static int mt7981_phy_probe(struct phy_device *phydev) { struct mtk_socphy_priv *priv; priv = devm_kzalloc(&phydev->mdio.dev, sizeof(struct mtk_socphy_priv), GFP_KERNEL); if (!priv) return -ENOMEM; phydev->priv = priv; mt798x_phy_leds_state_init(phydev); return mt798x_phy_calibration(phydev); } static struct phy_driver mtk_socphy_driver[] = { { PHY_ID_MATCH_EXACT(MTK_GPHY_ID_MT7981), .name = "MediaTek MT7981 PHY", .config_init = mt798x_phy_config_init, .config_intr = genphy_no_config_intr, .handle_interrupt = genphy_handle_interrupt_no_ack, .probe = mt7981_phy_probe, .suspend = genphy_suspend, .resume = genphy_resume, .read_page = mtk_socphy_read_page, .write_page = mtk_socphy_write_page, .led_blink_set = mt798x_phy_led_blink_set, .led_brightness_set = mt798x_phy_led_brightness_set, .led_hw_is_supported = mt798x_phy_led_hw_is_supported, .led_hw_control_set = mt798x_phy_led_hw_control_set, .led_hw_control_get = mt798x_phy_led_hw_control_get, }, { PHY_ID_MATCH_EXACT(MTK_GPHY_ID_MT7988), .name = "MediaTek MT7988 PHY", .config_init = mt798x_phy_config_init, .config_intr = genphy_no_config_intr, .handle_interrupt = genphy_handle_interrupt_no_ack, .probe = mt7988_phy_probe, .suspend = genphy_suspend, .resume = genphy_resume, .read_page = mtk_socphy_read_page, .write_page = mtk_socphy_write_page, .led_blink_set = mt798x_phy_led_blink_set, .led_brightness_set = mt798x_phy_led_brightness_set, .led_hw_is_supported = mt798x_phy_led_hw_is_supported, .led_hw_control_set = mt798x_phy_led_hw_control_set, .led_hw_control_get = mt798x_phy_led_hw_control_get, }, }; module_phy_driver(mtk_socphy_driver); static struct mdio_device_id __maybe_unused mtk_socphy_tbl[] = { { PHY_ID_MATCH_EXACT(MTK_GPHY_ID_MT7981) }, { PHY_ID_MATCH_EXACT(MTK_GPHY_ID_MT7988) }, { } }; MODULE_DESCRIPTION("MediaTek SoC Gigabit Ethernet PHY driver"); MODULE_AUTHOR("Daniel Golle <daniel@makrotopia.org>"); MODULE_AUTHOR("SkyLake Huang <SkyLake.Huang@mediatek.com>"); MODULE_LICENSE("GPL"); MODULE_DEVICE_TABLE(mdio, mtk_socphy_tbl);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1