Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Kalle Valo | 31610 | 63.50% | 3 | 2.03% |
Carl Huang | 3960 | 7.95% | 15 | 10.14% |
Aditya Kumar Singh | 2466 | 4.95% | 5 | 3.38% |
John Crispin | 1672 | 3.36% | 11 | 7.43% |
Karthikeyan Periyasamy | 1630 | 3.27% | 5 | 3.38% |
Wen Gong | 1398 | 2.81% | 16 | 10.81% |
Pradeep Kumar Chitrapu | 1064 | 2.14% | 10 | 6.76% |
Janusz Dziedzic | 913 | 1.83% | 7 | 4.73% |
Aloka Dixit | 884 | 1.78% | 7 | 4.73% |
Sriram R | 674 | 1.35% | 6 | 4.05% |
Baochen Qiang | 544 | 1.09% | 7 | 4.73% |
Maharaja Kennadyrajan | 527 | 1.06% | 2 | 1.35% |
Venkateswara Naralasetty | 488 | 0.98% | 3 | 2.03% |
Seevalamuthu Mariappan | 373 | 0.75% | 6 | 4.05% |
Rajkumar Manoharan | 360 | 0.72% | 1 | 0.68% |
Manikanta Pubbisetty | 264 | 0.53% | 5 | 3.38% |
Ritesh Singh | 253 | 0.51% | 3 | 2.03% |
P Praneesh | 232 | 0.47% | 4 | 2.70% |
Bhagavathi Perumal S | 115 | 0.23% | 1 | 0.68% |
Anilkumar Kolli | 105 | 0.21% | 4 | 2.70% |
Abinaya Kalaiselvan | 44 | 0.09% | 1 | 0.68% |
Cheng Wang | 34 | 0.07% | 1 | 0.68% |
Tamizh Chelvam Raja | 29 | 0.06% | 1 | 0.68% |
Johan Hovold | 28 | 0.06% | 3 | 2.03% |
Lavanya Suresh | 25 | 0.05% | 1 | 0.68% |
Govindaraj Saminathan | 14 | 0.03% | 1 | 0.68% |
Muna Sinada | 12 | 0.02% | 1 | 0.68% |
Jeff Johnson | 10 | 0.02% | 2 | 1.35% |
Sven Eckelmann | 10 | 0.02% | 1 | 0.68% |
Colin Ian King | 9 | 0.02% | 4 | 2.70% |
Karthikeyan Kathirvel | 6 | 0.01% | 1 | 0.68% |
Johannes Berg | 5 | 0.01% | 2 | 1.35% |
Vikas Patel | 5 | 0.01% | 1 | 0.68% |
Rameshkumar Sundaram | 4 | 0.01% | 1 | 0.68% |
Gustavo A. R. Silva | 4 | 0.01% | 1 | 0.68% |
Govind Singh | 3 | 0.01% | 1 | 0.68% |
Miles Hu | 2 | 0.00% | 1 | 0.68% |
Tom Rix | 2 | 0.00% | 1 | 0.68% |
Lorenzo Bianconi | 2 | 0.00% | 1 | 0.68% |
Christophe Jaillet | 1 | 0.00% | 1 | 0.68% |
Total | 49781 | 148 |
// SPDX-License-Identifier: BSD-3-Clause-Clear /* * Copyright (c) 2018-2019 The Linux Foundation. All rights reserved. * Copyright (c) 2021, 2023 Qualcomm Innovation Center, Inc. All rights reserved. */ #include <linux/skbuff.h> #include <linux/ctype.h> #include <net/mac80211.h> #include <net/cfg80211.h> #include <linux/completion.h> #include <linux/if_ether.h> #include <linux/types.h> #include <linux/pci.h> #include <linux/uuid.h> #include <linux/time.h> #include <linux/of.h> #include "core.h" #include "debug.h" #include "mac.h" #include "hw.h" #include "peer.h" #include "testmode.h" struct wmi_tlv_policy { size_t min_len; }; struct wmi_tlv_svc_ready_parse { bool wmi_svc_bitmap_done; }; struct wmi_tlv_dma_ring_caps_parse { struct wmi_dma_ring_capabilities *dma_ring_caps; u32 n_dma_ring_caps; }; struct wmi_tlv_svc_rdy_ext_parse { struct ath11k_service_ext_param param; struct wmi_soc_mac_phy_hw_mode_caps *hw_caps; struct wmi_hw_mode_capabilities *hw_mode_caps; u32 n_hw_mode_caps; u32 tot_phy_id; struct wmi_hw_mode_capabilities pref_hw_mode_caps; struct wmi_mac_phy_capabilities *mac_phy_caps; u32 n_mac_phy_caps; struct wmi_soc_hal_reg_capabilities *soc_hal_reg_caps; struct wmi_hal_reg_capabilities_ext *ext_hal_reg_caps; u32 n_ext_hal_reg_caps; struct wmi_tlv_dma_ring_caps_parse dma_caps_parse; bool hw_mode_done; bool mac_phy_done; bool ext_hal_reg_done; bool mac_phy_chainmask_combo_done; bool mac_phy_chainmask_cap_done; bool oem_dma_ring_cap_done; bool dma_ring_cap_done; }; struct wmi_tlv_svc_rdy_ext2_parse { struct wmi_tlv_dma_ring_caps_parse dma_caps_parse; bool dma_ring_cap_done; }; struct wmi_tlv_rdy_parse { u32 num_extra_mac_addr; }; struct wmi_tlv_dma_buf_release_parse { struct ath11k_wmi_dma_buf_release_fixed_param fixed; struct wmi_dma_buf_release_entry *buf_entry; struct wmi_dma_buf_release_meta_data *meta_data; u32 num_buf_entry; u32 num_meta; bool buf_entry_done; bool meta_data_done; }; struct wmi_tlv_fw_stats_parse { const struct wmi_stats_event *ev; const struct wmi_per_chain_rssi_stats *rssi; struct ath11k_fw_stats *stats; int rssi_num; bool chain_rssi_done; }; struct wmi_tlv_mgmt_rx_parse { const struct wmi_mgmt_rx_hdr *fixed; const u8 *frame_buf; bool frame_buf_done; }; static const struct wmi_tlv_policy wmi_tlv_policies[] = { [WMI_TAG_ARRAY_BYTE] = { .min_len = 0 }, [WMI_TAG_ARRAY_UINT32] = { .min_len = 0 }, [WMI_TAG_SERVICE_READY_EVENT] = { .min_len = sizeof(struct wmi_service_ready_event) }, [WMI_TAG_SERVICE_READY_EXT_EVENT] = { .min_len = sizeof(struct wmi_service_ready_ext_event) }, [WMI_TAG_SOC_MAC_PHY_HW_MODE_CAPS] = { .min_len = sizeof(struct wmi_soc_mac_phy_hw_mode_caps) }, [WMI_TAG_SOC_HAL_REG_CAPABILITIES] = { .min_len = sizeof(struct wmi_soc_hal_reg_capabilities) }, [WMI_TAG_VDEV_START_RESPONSE_EVENT] = { .min_len = sizeof(struct wmi_vdev_start_resp_event) }, [WMI_TAG_PEER_DELETE_RESP_EVENT] = { .min_len = sizeof(struct wmi_peer_delete_resp_event) }, [WMI_TAG_OFFLOAD_BCN_TX_STATUS_EVENT] = { .min_len = sizeof(struct wmi_bcn_tx_status_event) }, [WMI_TAG_VDEV_STOPPED_EVENT] = { .min_len = sizeof(struct wmi_vdev_stopped_event) }, [WMI_TAG_REG_CHAN_LIST_CC_EVENT] = { .min_len = sizeof(struct wmi_reg_chan_list_cc_event) }, [WMI_TAG_REG_CHAN_LIST_CC_EXT_EVENT] = { .min_len = sizeof(struct wmi_reg_chan_list_cc_ext_event) }, [WMI_TAG_MGMT_RX_HDR] = { .min_len = sizeof(struct wmi_mgmt_rx_hdr) }, [WMI_TAG_MGMT_TX_COMPL_EVENT] = { .min_len = sizeof(struct wmi_mgmt_tx_compl_event) }, [WMI_TAG_SCAN_EVENT] = { .min_len = sizeof(struct wmi_scan_event) }, [WMI_TAG_PEER_STA_KICKOUT_EVENT] = { .min_len = sizeof(struct wmi_peer_sta_kickout_event) }, [WMI_TAG_ROAM_EVENT] = { .min_len = sizeof(struct wmi_roam_event) }, [WMI_TAG_CHAN_INFO_EVENT] = { .min_len = sizeof(struct wmi_chan_info_event) }, [WMI_TAG_PDEV_BSS_CHAN_INFO_EVENT] = { .min_len = sizeof(struct wmi_pdev_bss_chan_info_event) }, [WMI_TAG_VDEV_INSTALL_KEY_COMPLETE_EVENT] = { .min_len = sizeof(struct wmi_vdev_install_key_compl_event) }, [WMI_TAG_READY_EVENT] = { .min_len = sizeof(struct wmi_ready_event_min) }, [WMI_TAG_SERVICE_AVAILABLE_EVENT] = {.min_len = sizeof(struct wmi_service_available_event) }, [WMI_TAG_PEER_ASSOC_CONF_EVENT] = { .min_len = sizeof(struct wmi_peer_assoc_conf_event) }, [WMI_TAG_STATS_EVENT] = { .min_len = sizeof(struct wmi_stats_event) }, [WMI_TAG_PDEV_CTL_FAILSAFE_CHECK_EVENT] = { .min_len = sizeof(struct wmi_pdev_ctl_failsafe_chk_event) }, [WMI_TAG_HOST_SWFDA_EVENT] = { .min_len = sizeof(struct wmi_fils_discovery_event) }, [WMI_TAG_OFFLOAD_PRB_RSP_TX_STATUS_EVENT] = { .min_len = sizeof(struct wmi_probe_resp_tx_status_event) }, [WMI_TAG_VDEV_DELETE_RESP_EVENT] = { .min_len = sizeof(struct wmi_vdev_delete_resp_event) }, [WMI_TAG_OBSS_COLOR_COLLISION_EVT] = { .min_len = sizeof(struct wmi_obss_color_collision_event) }, [WMI_TAG_11D_NEW_COUNTRY_EVENT] = { .min_len = sizeof(struct wmi_11d_new_cc_ev) }, [WMI_TAG_PER_CHAIN_RSSI_STATS] = { .min_len = sizeof(struct wmi_per_chain_rssi_stats) }, [WMI_TAG_TWT_ADD_DIALOG_COMPLETE_EVENT] = { .min_len = sizeof(struct wmi_twt_add_dialog_event) }, }; #define PRIMAP(_hw_mode_) \ [_hw_mode_] = _hw_mode_##_PRI static const int ath11k_hw_mode_pri_map[] = { PRIMAP(WMI_HOST_HW_MODE_SINGLE), PRIMAP(WMI_HOST_HW_MODE_DBS), PRIMAP(WMI_HOST_HW_MODE_SBS_PASSIVE), PRIMAP(WMI_HOST_HW_MODE_SBS), PRIMAP(WMI_HOST_HW_MODE_DBS_SBS), PRIMAP(WMI_HOST_HW_MODE_DBS_OR_SBS), /* keep last */ PRIMAP(WMI_HOST_HW_MODE_MAX), }; static int ath11k_wmi_tlv_iter(struct ath11k_base *ab, const void *ptr, size_t len, int (*iter)(struct ath11k_base *ab, u16 tag, u16 len, const void *ptr, void *data), void *data) { const void *begin = ptr; const struct wmi_tlv *tlv; u16 tlv_tag, tlv_len; int ret; while (len > 0) { if (len < sizeof(*tlv)) { ath11k_err(ab, "wmi tlv parse failure at byte %zd (%zu bytes left, %zu expected)\n", ptr - begin, len, sizeof(*tlv)); return -EINVAL; } tlv = ptr; tlv_tag = FIELD_GET(WMI_TLV_TAG, tlv->header); tlv_len = FIELD_GET(WMI_TLV_LEN, tlv->header); ptr += sizeof(*tlv); len -= sizeof(*tlv); if (tlv_len > len) { ath11k_err(ab, "wmi tlv parse failure of tag %u at byte %zd (%zu bytes left, %u expected)\n", tlv_tag, ptr - begin, len, tlv_len); return -EINVAL; } if (tlv_tag < ARRAY_SIZE(wmi_tlv_policies) && wmi_tlv_policies[tlv_tag].min_len && wmi_tlv_policies[tlv_tag].min_len > tlv_len) { ath11k_err(ab, "wmi tlv parse failure of tag %u at byte %zd (%u bytes is less than min length %zu)\n", tlv_tag, ptr - begin, tlv_len, wmi_tlv_policies[tlv_tag].min_len); return -EINVAL; } ret = iter(ab, tlv_tag, tlv_len, ptr, data); if (ret) return ret; ptr += tlv_len; len -= tlv_len; } return 0; } static int ath11k_wmi_tlv_iter_parse(struct ath11k_base *ab, u16 tag, u16 len, const void *ptr, void *data) { const void **tb = data; if (tag < WMI_TAG_MAX) tb[tag] = ptr; return 0; } static int ath11k_wmi_tlv_parse(struct ath11k_base *ar, const void **tb, const void *ptr, size_t len) { return ath11k_wmi_tlv_iter(ar, ptr, len, ath11k_wmi_tlv_iter_parse, (void *)tb); } const void **ath11k_wmi_tlv_parse_alloc(struct ath11k_base *ab, const void *ptr, size_t len, gfp_t gfp) { const void **tb; int ret; tb = kcalloc(WMI_TAG_MAX, sizeof(*tb), gfp); if (!tb) return ERR_PTR(-ENOMEM); ret = ath11k_wmi_tlv_parse(ab, tb, ptr, len); if (ret) { kfree(tb); return ERR_PTR(ret); } return tb; } static int ath11k_wmi_cmd_send_nowait(struct ath11k_pdev_wmi *wmi, struct sk_buff *skb, u32 cmd_id) { struct ath11k_skb_cb *skb_cb = ATH11K_SKB_CB(skb); struct ath11k_base *ab = wmi->wmi_ab->ab; struct wmi_cmd_hdr *cmd_hdr; int ret; u32 cmd = 0; if (skb_push(skb, sizeof(struct wmi_cmd_hdr)) == NULL) return -ENOMEM; cmd |= FIELD_PREP(WMI_CMD_HDR_CMD_ID, cmd_id); cmd_hdr = (struct wmi_cmd_hdr *)skb->data; cmd_hdr->cmd_id = cmd; trace_ath11k_wmi_cmd(ab, cmd_id, skb->data, skb->len); memset(skb_cb, 0, sizeof(*skb_cb)); ret = ath11k_htc_send(&ab->htc, wmi->eid, skb); if (ret) goto err_pull; return 0; err_pull: skb_pull(skb, sizeof(struct wmi_cmd_hdr)); return ret; } int ath11k_wmi_cmd_send(struct ath11k_pdev_wmi *wmi, struct sk_buff *skb, u32 cmd_id) { struct ath11k_wmi_base *wmi_ab = wmi->wmi_ab; int ret = -EOPNOTSUPP; struct ath11k_base *ab = wmi_ab->ab; might_sleep(); if (ab->hw_params.credit_flow) { wait_event_timeout(wmi_ab->tx_credits_wq, ({ ret = ath11k_wmi_cmd_send_nowait(wmi, skb, cmd_id); if (ret && test_bit(ATH11K_FLAG_CRASH_FLUSH, &wmi_ab->ab->dev_flags)) ret = -ESHUTDOWN; (ret != -EAGAIN); }), WMI_SEND_TIMEOUT_HZ); } else { wait_event_timeout(wmi->tx_ce_desc_wq, ({ ret = ath11k_wmi_cmd_send_nowait(wmi, skb, cmd_id); if (ret && test_bit(ATH11K_FLAG_CRASH_FLUSH, &wmi_ab->ab->dev_flags)) ret = -ESHUTDOWN; (ret != -ENOBUFS); }), WMI_SEND_TIMEOUT_HZ); } if (ret == -EAGAIN) ath11k_warn(wmi_ab->ab, "wmi command %d timeout\n", cmd_id); if (ret == -ENOBUFS) ath11k_warn(wmi_ab->ab, "ce desc not available for wmi command %d\n", cmd_id); return ret; } static int ath11k_pull_svc_ready_ext(struct ath11k_pdev_wmi *wmi_handle, const void *ptr, struct ath11k_service_ext_param *param) { const struct wmi_service_ready_ext_event *ev = ptr; if (!ev) return -EINVAL; /* Move this to host based bitmap */ param->default_conc_scan_config_bits = ev->default_conc_scan_config_bits; param->default_fw_config_bits = ev->default_fw_config_bits; param->he_cap_info = ev->he_cap_info; param->mpdu_density = ev->mpdu_density; param->max_bssid_rx_filters = ev->max_bssid_rx_filters; memcpy(¶m->ppet, &ev->ppet, sizeof(param->ppet)); return 0; } static int ath11k_pull_mac_phy_cap_svc_ready_ext(struct ath11k_pdev_wmi *wmi_handle, struct wmi_soc_mac_phy_hw_mode_caps *hw_caps, struct wmi_hw_mode_capabilities *wmi_hw_mode_caps, struct wmi_soc_hal_reg_capabilities *hal_reg_caps, struct wmi_mac_phy_capabilities *wmi_mac_phy_caps, u8 hw_mode_id, u8 phy_id, struct ath11k_pdev *pdev) { struct wmi_mac_phy_capabilities *mac_phy_caps; struct ath11k_base *ab = wmi_handle->wmi_ab->ab; struct ath11k_band_cap *cap_band; struct ath11k_pdev_cap *pdev_cap = &pdev->cap; u32 phy_map; u32 hw_idx, phy_idx = 0; if (!hw_caps || !wmi_hw_mode_caps || !hal_reg_caps) return -EINVAL; for (hw_idx = 0; hw_idx < hw_caps->num_hw_modes; hw_idx++) { if (hw_mode_id == wmi_hw_mode_caps[hw_idx].hw_mode_id) break; phy_map = wmi_hw_mode_caps[hw_idx].phy_id_map; while (phy_map) { phy_map >>= 1; phy_idx++; } } if (hw_idx == hw_caps->num_hw_modes) return -EINVAL; phy_idx += phy_id; if (phy_id >= hal_reg_caps->num_phy) return -EINVAL; mac_phy_caps = wmi_mac_phy_caps + phy_idx; pdev->pdev_id = mac_phy_caps->pdev_id; pdev_cap->supported_bands |= mac_phy_caps->supported_bands; pdev_cap->ampdu_density = mac_phy_caps->ampdu_density; ab->target_pdev_ids[ab->target_pdev_count].supported_bands = mac_phy_caps->supported_bands; ab->target_pdev_ids[ab->target_pdev_count].pdev_id = mac_phy_caps->pdev_id; ab->target_pdev_count++; if (!(mac_phy_caps->supported_bands & WMI_HOST_WLAN_2G_CAP) && !(mac_phy_caps->supported_bands & WMI_HOST_WLAN_5G_CAP)) return -EINVAL; /* Take non-zero tx/rx chainmask. If tx/rx chainmask differs from * band to band for a single radio, need to see how this should be * handled. */ if (mac_phy_caps->supported_bands & WMI_HOST_WLAN_2G_CAP) { pdev_cap->tx_chain_mask = mac_phy_caps->tx_chain_mask_2g; pdev_cap->rx_chain_mask = mac_phy_caps->rx_chain_mask_2g; } if (mac_phy_caps->supported_bands & WMI_HOST_WLAN_5G_CAP) { pdev_cap->vht_cap = mac_phy_caps->vht_cap_info_5g; pdev_cap->vht_mcs = mac_phy_caps->vht_supp_mcs_5g; pdev_cap->he_mcs = mac_phy_caps->he_supp_mcs_5g; pdev_cap->tx_chain_mask = mac_phy_caps->tx_chain_mask_5g; pdev_cap->rx_chain_mask = mac_phy_caps->rx_chain_mask_5g; pdev_cap->nss_ratio_enabled = WMI_NSS_RATIO_ENABLE_DISABLE_GET(mac_phy_caps->nss_ratio); pdev_cap->nss_ratio_info = WMI_NSS_RATIO_INFO_GET(mac_phy_caps->nss_ratio); } /* tx/rx chainmask reported from fw depends on the actual hw chains used, * For example, for 4x4 capable macphys, first 4 chains can be used for first * mac and the remaining 4 chains can be used for the second mac or vice-versa. * In this case, tx/rx chainmask 0xf will be advertised for first mac and 0xf0 * will be advertised for second mac or vice-versa. Compute the shift value * for tx/rx chainmask which will be used to advertise supported ht/vht rates to * mac80211. */ pdev_cap->tx_chain_mask_shift = find_first_bit((unsigned long *)&pdev_cap->tx_chain_mask, 32); pdev_cap->rx_chain_mask_shift = find_first_bit((unsigned long *)&pdev_cap->rx_chain_mask, 32); if (mac_phy_caps->supported_bands & WMI_HOST_WLAN_2G_CAP) { cap_band = &pdev_cap->band[NL80211_BAND_2GHZ]; cap_band->phy_id = mac_phy_caps->phy_id; cap_band->max_bw_supported = mac_phy_caps->max_bw_supported_2g; cap_band->ht_cap_info = mac_phy_caps->ht_cap_info_2g; cap_band->he_cap_info[0] = mac_phy_caps->he_cap_info_2g; cap_band->he_cap_info[1] = mac_phy_caps->he_cap_info_2g_ext; cap_band->he_mcs = mac_phy_caps->he_supp_mcs_2g; memcpy(cap_band->he_cap_phy_info, &mac_phy_caps->he_cap_phy_info_2g, sizeof(u32) * PSOC_HOST_MAX_PHY_SIZE); memcpy(&cap_band->he_ppet, &mac_phy_caps->he_ppet2g, sizeof(struct ath11k_ppe_threshold)); } if (mac_phy_caps->supported_bands & WMI_HOST_WLAN_5G_CAP) { cap_band = &pdev_cap->band[NL80211_BAND_5GHZ]; cap_band->phy_id = mac_phy_caps->phy_id; cap_band->max_bw_supported = mac_phy_caps->max_bw_supported_5g; cap_band->ht_cap_info = mac_phy_caps->ht_cap_info_5g; cap_band->he_cap_info[0] = mac_phy_caps->he_cap_info_5g; cap_band->he_cap_info[1] = mac_phy_caps->he_cap_info_5g_ext; cap_band->he_mcs = mac_phy_caps->he_supp_mcs_5g; memcpy(cap_band->he_cap_phy_info, &mac_phy_caps->he_cap_phy_info_5g, sizeof(u32) * PSOC_HOST_MAX_PHY_SIZE); memcpy(&cap_band->he_ppet, &mac_phy_caps->he_ppet5g, sizeof(struct ath11k_ppe_threshold)); cap_band = &pdev_cap->band[NL80211_BAND_6GHZ]; cap_band->max_bw_supported = mac_phy_caps->max_bw_supported_5g; cap_band->ht_cap_info = mac_phy_caps->ht_cap_info_5g; cap_band->he_cap_info[0] = mac_phy_caps->he_cap_info_5g; cap_band->he_cap_info[1] = mac_phy_caps->he_cap_info_5g_ext; cap_band->he_mcs = mac_phy_caps->he_supp_mcs_5g; memcpy(cap_band->he_cap_phy_info, &mac_phy_caps->he_cap_phy_info_5g, sizeof(u32) * PSOC_HOST_MAX_PHY_SIZE); memcpy(&cap_band->he_ppet, &mac_phy_caps->he_ppet5g, sizeof(struct ath11k_ppe_threshold)); } return 0; } static int ath11k_pull_reg_cap_svc_rdy_ext(struct ath11k_pdev_wmi *wmi_handle, struct wmi_soc_hal_reg_capabilities *reg_caps, struct wmi_hal_reg_capabilities_ext *wmi_ext_reg_cap, u8 phy_idx, struct ath11k_hal_reg_capabilities_ext *param) { struct wmi_hal_reg_capabilities_ext *ext_reg_cap; if (!reg_caps || !wmi_ext_reg_cap) return -EINVAL; if (phy_idx >= reg_caps->num_phy) return -EINVAL; ext_reg_cap = &wmi_ext_reg_cap[phy_idx]; param->phy_id = ext_reg_cap->phy_id; param->eeprom_reg_domain = ext_reg_cap->eeprom_reg_domain; param->eeprom_reg_domain_ext = ext_reg_cap->eeprom_reg_domain_ext; param->regcap1 = ext_reg_cap->regcap1; param->regcap2 = ext_reg_cap->regcap2; /* check if param->wireless_mode is needed */ param->low_2ghz_chan = ext_reg_cap->low_2ghz_chan; param->high_2ghz_chan = ext_reg_cap->high_2ghz_chan; param->low_5ghz_chan = ext_reg_cap->low_5ghz_chan; param->high_5ghz_chan = ext_reg_cap->high_5ghz_chan; return 0; } static int ath11k_pull_service_ready_tlv(struct ath11k_base *ab, const void *evt_buf, struct ath11k_targ_cap *cap) { const struct wmi_service_ready_event *ev = evt_buf; if (!ev) { ath11k_err(ab, "%s: failed by NULL param\n", __func__); return -EINVAL; } cap->phy_capability = ev->phy_capability; cap->max_frag_entry = ev->max_frag_entry; cap->num_rf_chains = ev->num_rf_chains; cap->ht_cap_info = ev->ht_cap_info; cap->vht_cap_info = ev->vht_cap_info; cap->vht_supp_mcs = ev->vht_supp_mcs; cap->hw_min_tx_power = ev->hw_min_tx_power; cap->hw_max_tx_power = ev->hw_max_tx_power; cap->sys_cap_info = ev->sys_cap_info; cap->min_pkt_size_enable = ev->min_pkt_size_enable; cap->max_bcn_ie_size = ev->max_bcn_ie_size; cap->max_num_scan_channels = ev->max_num_scan_channels; cap->max_supported_macs = ev->max_supported_macs; cap->wmi_fw_sub_feat_caps = ev->wmi_fw_sub_feat_caps; cap->txrx_chainmask = ev->txrx_chainmask; cap->default_dbs_hw_mode_index = ev->default_dbs_hw_mode_index; cap->num_msdu_desc = ev->num_msdu_desc; return 0; } /* Save the wmi_service_bitmap into a linear bitmap. The wmi_services in * wmi_service ready event are advertised in b0-b3 (LSB 4-bits) of each * 4-byte word. */ static void ath11k_wmi_service_bitmap_copy(struct ath11k_pdev_wmi *wmi, const u32 *wmi_svc_bm) { int i, j; for (i = 0, j = 0; i < WMI_SERVICE_BM_SIZE && j < WMI_MAX_SERVICE; i++) { do { if (wmi_svc_bm[i] & BIT(j % WMI_SERVICE_BITS_IN_SIZE32)) set_bit(j, wmi->wmi_ab->svc_map); } while (++j % WMI_SERVICE_BITS_IN_SIZE32); } } static int ath11k_wmi_tlv_svc_rdy_parse(struct ath11k_base *ab, u16 tag, u16 len, const void *ptr, void *data) { struct wmi_tlv_svc_ready_parse *svc_ready = data; struct ath11k_pdev_wmi *wmi_handle = &ab->wmi_ab.wmi[0]; u16 expect_len; switch (tag) { case WMI_TAG_SERVICE_READY_EVENT: if (ath11k_pull_service_ready_tlv(ab, ptr, &ab->target_caps)) return -EINVAL; break; case WMI_TAG_ARRAY_UINT32: if (!svc_ready->wmi_svc_bitmap_done) { expect_len = WMI_SERVICE_BM_SIZE * sizeof(u32); if (len < expect_len) { ath11k_warn(ab, "invalid len %d for the tag 0x%x\n", len, tag); return -EINVAL; } ath11k_wmi_service_bitmap_copy(wmi_handle, ptr); svc_ready->wmi_svc_bitmap_done = true; } break; default: break; } return 0; } static int ath11k_service_ready_event(struct ath11k_base *ab, struct sk_buff *skb) { struct wmi_tlv_svc_ready_parse svc_ready = { }; int ret; ret = ath11k_wmi_tlv_iter(ab, skb->data, skb->len, ath11k_wmi_tlv_svc_rdy_parse, &svc_ready); if (ret) { ath11k_warn(ab, "failed to parse tlv %d\n", ret); return ret; } ath11k_dbg(ab, ATH11K_DBG_WMI, "event service ready"); return 0; } struct sk_buff *ath11k_wmi_alloc_skb(struct ath11k_wmi_base *wmi_ab, u32 len) { struct sk_buff *skb; struct ath11k_base *ab = wmi_ab->ab; u32 round_len = roundup(len, 4); skb = ath11k_htc_alloc_skb(ab, WMI_SKB_HEADROOM + round_len); if (!skb) return NULL; skb_reserve(skb, WMI_SKB_HEADROOM); if (!IS_ALIGNED((unsigned long)skb->data, 4)) ath11k_warn(ab, "unaligned WMI skb data\n"); skb_put(skb, round_len); memset(skb->data, 0, round_len); return skb; } static u32 ath11k_wmi_mgmt_get_freq(struct ath11k *ar, struct ieee80211_tx_info *info) { struct ath11k_base *ab = ar->ab; u32 freq = 0; if (ab->hw_params.support_off_channel_tx && ar->scan.is_roc && (info->flags & IEEE80211_TX_CTL_TX_OFFCHAN)) freq = ar->scan.roc_freq; return freq; } int ath11k_wmi_mgmt_send(struct ath11k *ar, u32 vdev_id, u32 buf_id, struct sk_buff *frame) { struct ath11k_pdev_wmi *wmi = ar->wmi; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(frame); struct wmi_mgmt_send_cmd *cmd; struct wmi_tlv *frame_tlv; struct sk_buff *skb; u32 buf_len; int ret, len; buf_len = frame->len < WMI_MGMT_SEND_DOWNLD_LEN ? frame->len : WMI_MGMT_SEND_DOWNLD_LEN; len = sizeof(*cmd) + sizeof(*frame_tlv) + roundup(buf_len, 4); skb = ath11k_wmi_alloc_skb(wmi->wmi_ab, len); if (!skb) return -ENOMEM; cmd = (struct wmi_mgmt_send_cmd *)skb->data; cmd->tlv_header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_MGMT_TX_SEND_CMD) | FIELD_PREP(WMI_TLV_LEN, sizeof(*cmd) - TLV_HDR_SIZE); cmd->vdev_id = vdev_id; cmd->desc_id = buf_id; cmd->chanfreq = ath11k_wmi_mgmt_get_freq(ar, info); cmd->paddr_lo = lower_32_bits(ATH11K_SKB_CB(frame)->paddr); cmd->paddr_hi = upper_32_bits(ATH11K_SKB_CB(frame)->paddr); cmd->frame_len = frame->len; cmd->buf_len = buf_len; cmd->tx_params_valid = 0; frame_tlv = (struct wmi_tlv *)(skb->data + sizeof(*cmd)); frame_tlv->header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_ARRAY_BYTE) | FIELD_PREP(WMI_TLV_LEN, buf_len); memcpy(frame_tlv->value, frame->data, buf_len); ath11k_ce_byte_swap(frame_tlv->value, buf_len); ret = ath11k_wmi_cmd_send(wmi, skb, WMI_MGMT_TX_SEND_CMDID); if (ret) { ath11k_warn(ar->ab, "failed to submit WMI_MGMT_TX_SEND_CMDID cmd\n"); dev_kfree_skb(skb); } ath11k_dbg(ar->ab, ATH11K_DBG_WMI, "cmd mgmt tx send"); return ret; } int ath11k_wmi_vdev_create(struct ath11k *ar, u8 *macaddr, struct vdev_create_params *param) { struct ath11k_pdev_wmi *wmi = ar->wmi; struct wmi_vdev_create_cmd *cmd; struct sk_buff *skb; struct wmi_vdev_txrx_streams *txrx_streams; struct wmi_tlv *tlv; int ret, len; void *ptr; /* It can be optimized my sending tx/rx chain configuration * only for supported bands instead of always sending it for * both the bands. */ len = sizeof(*cmd) + TLV_HDR_SIZE + (WMI_NUM_SUPPORTED_BAND_MAX * sizeof(*txrx_streams)); skb = ath11k_wmi_alloc_skb(wmi->wmi_ab, len); if (!skb) return -ENOMEM; cmd = (struct wmi_vdev_create_cmd *)skb->data; cmd->tlv_header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_VDEV_CREATE_CMD) | FIELD_PREP(WMI_TLV_LEN, sizeof(*cmd) - TLV_HDR_SIZE); cmd->vdev_id = param->if_id; cmd->vdev_type = param->type; cmd->vdev_subtype = param->subtype; cmd->num_cfg_txrx_streams = WMI_NUM_SUPPORTED_BAND_MAX; cmd->pdev_id = param->pdev_id; cmd->mbssid_flags = param->mbssid_flags; cmd->mbssid_tx_vdev_id = param->mbssid_tx_vdev_id; ether_addr_copy(cmd->vdev_macaddr.addr, macaddr); ptr = skb->data + sizeof(*cmd); len = WMI_NUM_SUPPORTED_BAND_MAX * sizeof(*txrx_streams); tlv = ptr; tlv->header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_ARRAY_STRUCT) | FIELD_PREP(WMI_TLV_LEN, len); ptr += TLV_HDR_SIZE; txrx_streams = ptr; len = sizeof(*txrx_streams); txrx_streams->tlv_header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_VDEV_TXRX_STREAMS) | FIELD_PREP(WMI_TLV_LEN, len - TLV_HDR_SIZE); txrx_streams->band = WMI_TPC_CHAINMASK_CONFIG_BAND_2G; txrx_streams->supported_tx_streams = param->chains[NL80211_BAND_2GHZ].tx; txrx_streams->supported_rx_streams = param->chains[NL80211_BAND_2GHZ].rx; txrx_streams++; txrx_streams->tlv_header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_VDEV_TXRX_STREAMS) | FIELD_PREP(WMI_TLV_LEN, len - TLV_HDR_SIZE); txrx_streams->band = WMI_TPC_CHAINMASK_CONFIG_BAND_5G; txrx_streams->supported_tx_streams = param->chains[NL80211_BAND_5GHZ].tx; txrx_streams->supported_rx_streams = param->chains[NL80211_BAND_5GHZ].rx; ret = ath11k_wmi_cmd_send(wmi, skb, WMI_VDEV_CREATE_CMDID); if (ret) { ath11k_warn(ar->ab, "failed to submit WMI_VDEV_CREATE_CMDID\n"); dev_kfree_skb(skb); } ath11k_dbg(ar->ab, ATH11K_DBG_WMI, "cmd vdev create id %d type %d subtype %d macaddr %pM pdevid %d\n", param->if_id, param->type, param->subtype, macaddr, param->pdev_id); return ret; } int ath11k_wmi_vdev_delete(struct ath11k *ar, u8 vdev_id) { struct ath11k_pdev_wmi *wmi = ar->wmi; struct wmi_vdev_delete_cmd *cmd; struct sk_buff *skb; int ret; skb = ath11k_wmi_alloc_skb(wmi->wmi_ab, sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_vdev_delete_cmd *)skb->data; cmd->tlv_header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_VDEV_DELETE_CMD) | FIELD_PREP(WMI_TLV_LEN, sizeof(*cmd) - TLV_HDR_SIZE); cmd->vdev_id = vdev_id; ret = ath11k_wmi_cmd_send(wmi, skb, WMI_VDEV_DELETE_CMDID); if (ret) { ath11k_warn(ar->ab, "failed to submit WMI_VDEV_DELETE_CMDID\n"); dev_kfree_skb(skb); } ath11k_dbg(ar->ab, ATH11K_DBG_WMI, "cmd vdev delete id %d\n", vdev_id); return ret; } int ath11k_wmi_vdev_stop(struct ath11k *ar, u8 vdev_id) { struct ath11k_pdev_wmi *wmi = ar->wmi; struct wmi_vdev_stop_cmd *cmd; struct sk_buff *skb; int ret; skb = ath11k_wmi_alloc_skb(wmi->wmi_ab, sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_vdev_stop_cmd *)skb->data; cmd->tlv_header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_VDEV_STOP_CMD) | FIELD_PREP(WMI_TLV_LEN, sizeof(*cmd) - TLV_HDR_SIZE); cmd->vdev_id = vdev_id; ret = ath11k_wmi_cmd_send(wmi, skb, WMI_VDEV_STOP_CMDID); if (ret) { ath11k_warn(ar->ab, "failed to submit WMI_VDEV_STOP cmd\n"); dev_kfree_skb(skb); } ath11k_dbg(ar->ab, ATH11K_DBG_WMI, "cmd vdev stop id 0x%x\n", vdev_id); return ret; } int ath11k_wmi_vdev_down(struct ath11k *ar, u8 vdev_id) { struct ath11k_pdev_wmi *wmi = ar->wmi; struct wmi_vdev_down_cmd *cmd; struct sk_buff *skb; int ret; skb = ath11k_wmi_alloc_skb(wmi->wmi_ab, sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_vdev_down_cmd *)skb->data; cmd->tlv_header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_VDEV_DOWN_CMD) | FIELD_PREP(WMI_TLV_LEN, sizeof(*cmd) - TLV_HDR_SIZE); cmd->vdev_id = vdev_id; ret = ath11k_wmi_cmd_send(wmi, skb, WMI_VDEV_DOWN_CMDID); if (ret) { ath11k_warn(ar->ab, "failed to submit WMI_VDEV_DOWN cmd\n"); dev_kfree_skb(skb); } ath11k_dbg(ar->ab, ATH11K_DBG_WMI, "cmd vdev down id 0x%x\n", vdev_id); return ret; } static void ath11k_wmi_put_wmi_channel(struct wmi_channel *chan, struct wmi_vdev_start_req_arg *arg) { u32 center_freq1 = arg->channel.band_center_freq1; memset(chan, 0, sizeof(*chan)); chan->mhz = arg->channel.freq; chan->band_center_freq1 = arg->channel.band_center_freq1; if (arg->channel.mode == MODE_11AX_HE160) { if (arg->channel.freq > arg->channel.band_center_freq1) chan->band_center_freq1 = center_freq1 + 40; else chan->band_center_freq1 = center_freq1 - 40; chan->band_center_freq2 = arg->channel.band_center_freq1; } else if ((arg->channel.mode == MODE_11AC_VHT80_80) || (arg->channel.mode == MODE_11AX_HE80_80)) { chan->band_center_freq2 = arg->channel.band_center_freq2; } else { chan->band_center_freq2 = 0; } chan->info |= FIELD_PREP(WMI_CHAN_INFO_MODE, arg->channel.mode); if (arg->channel.passive) chan->info |= WMI_CHAN_INFO_PASSIVE; if (arg->channel.allow_ibss) chan->info |= WMI_CHAN_INFO_ADHOC_ALLOWED; if (arg->channel.allow_ht) chan->info |= WMI_CHAN_INFO_ALLOW_HT; if (arg->channel.allow_vht) chan->info |= WMI_CHAN_INFO_ALLOW_VHT; if (arg->channel.allow_he) chan->info |= WMI_CHAN_INFO_ALLOW_HE; if (arg->channel.ht40plus) chan->info |= WMI_CHAN_INFO_HT40_PLUS; if (arg->channel.chan_radar) chan->info |= WMI_CHAN_INFO_DFS; if (arg->channel.freq2_radar) chan->info |= WMI_CHAN_INFO_DFS_FREQ2; chan->reg_info_1 = FIELD_PREP(WMI_CHAN_REG_INFO1_MAX_PWR, arg->channel.max_power) | FIELD_PREP(WMI_CHAN_REG_INFO1_MAX_REG_PWR, arg->channel.max_reg_power); chan->reg_info_2 = FIELD_PREP(WMI_CHAN_REG_INFO2_ANT_MAX, arg->channel.max_antenna_gain) | FIELD_PREP(WMI_CHAN_REG_INFO2_MAX_TX_PWR, arg->channel.max_power); } int ath11k_wmi_vdev_start(struct ath11k *ar, struct wmi_vdev_start_req_arg *arg, bool restart) { struct ath11k_pdev_wmi *wmi = ar->wmi; struct wmi_vdev_start_request_cmd *cmd; struct sk_buff *skb; struct wmi_channel *chan; struct wmi_tlv *tlv; void *ptr; int ret, len; if (WARN_ON(arg->ssid_len > sizeof(cmd->ssid.ssid))) return -EINVAL; len = sizeof(*cmd) + sizeof(*chan) + TLV_HDR_SIZE; skb = ath11k_wmi_alloc_skb(wmi->wmi_ab, len); if (!skb) return -ENOMEM; cmd = (struct wmi_vdev_start_request_cmd *)skb->data; cmd->tlv_header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_VDEV_START_REQUEST_CMD) | FIELD_PREP(WMI_TLV_LEN, sizeof(*cmd) - TLV_HDR_SIZE); cmd->vdev_id = arg->vdev_id; cmd->beacon_interval = arg->bcn_intval; cmd->bcn_tx_rate = arg->bcn_tx_rate; cmd->dtim_period = arg->dtim_period; cmd->num_noa_descriptors = arg->num_noa_descriptors; cmd->preferred_rx_streams = arg->pref_rx_streams; cmd->preferred_tx_streams = arg->pref_tx_streams; cmd->cac_duration_ms = arg->cac_duration_ms; cmd->regdomain = arg->regdomain; cmd->he_ops = arg->he_ops; cmd->mbssid_flags = arg->mbssid_flags; cmd->mbssid_tx_vdev_id = arg->mbssid_tx_vdev_id; if (!restart) { if (arg->ssid) { cmd->ssid.ssid_len = arg->ssid_len; memcpy(cmd->ssid.ssid, arg->ssid, arg->ssid_len); } if (arg->hidden_ssid) cmd->flags |= WMI_VDEV_START_HIDDEN_SSID; if (arg->pmf_enabled) cmd->flags |= WMI_VDEV_START_PMF_ENABLED; } cmd->flags |= WMI_VDEV_START_LDPC_RX_ENABLED; if (test_bit(ATH11K_FLAG_HW_CRYPTO_DISABLED, &ar->ab->dev_flags)) cmd->flags |= WMI_VDEV_START_HW_ENCRYPTION_DISABLED; ptr = skb->data + sizeof(*cmd); chan = ptr; ath11k_wmi_put_wmi_channel(chan, arg); chan->tlv_header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_CHANNEL) | FIELD_PREP(WMI_TLV_LEN, sizeof(*chan) - TLV_HDR_SIZE); ptr += sizeof(*chan); tlv = ptr; tlv->header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_ARRAY_STRUCT) | FIELD_PREP(WMI_TLV_LEN, 0); /* Note: This is a nested TLV containing: * [wmi_tlv][wmi_p2p_noa_descriptor][wmi_tlv].. */ ptr += sizeof(*tlv); if (restart) ret = ath11k_wmi_cmd_send(wmi, skb, WMI_VDEV_RESTART_REQUEST_CMDID); else ret = ath11k_wmi_cmd_send(wmi, skb, WMI_VDEV_START_REQUEST_CMDID); if (ret) { ath11k_warn(ar->ab, "failed to submit vdev_%s cmd\n", restart ? "restart" : "start"); dev_kfree_skb(skb); } ath11k_dbg(ar->ab, ATH11K_DBG_WMI, "cmd vdev %s id 0x%x freq 0x%x mode 0x%x\n", restart ? "restart" : "start", arg->vdev_id, arg->channel.freq, arg->channel.mode); return ret; } int ath11k_wmi_vdev_up(struct ath11k *ar, u32 vdev_id, u32 aid, const u8 *bssid, u8 *tx_bssid, u32 nontx_profile_idx, u32 nontx_profile_cnt) { struct ath11k_pdev_wmi *wmi = ar->wmi; struct wmi_vdev_up_cmd *cmd; struct ieee80211_bss_conf *bss_conf; struct ath11k_vif *arvif; struct sk_buff *skb; int ret; arvif = ath11k_mac_get_arvif(ar, vdev_id); skb = ath11k_wmi_alloc_skb(wmi->wmi_ab, sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_vdev_up_cmd *)skb->data; cmd->tlv_header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_VDEV_UP_CMD) | FIELD_PREP(WMI_TLV_LEN, sizeof(*cmd) - TLV_HDR_SIZE); cmd->vdev_id = vdev_id; cmd->vdev_assoc_id = aid; ether_addr_copy(cmd->vdev_bssid.addr, bssid); cmd->nontx_profile_idx = nontx_profile_idx; cmd->nontx_profile_cnt = nontx_profile_cnt; if (tx_bssid) ether_addr_copy(cmd->tx_vdev_bssid.addr, tx_bssid); if (arvif && arvif->vif->type == NL80211_IFTYPE_STATION) { bss_conf = &arvif->vif->bss_conf; if (bss_conf->nontransmitted) { ether_addr_copy(cmd->tx_vdev_bssid.addr, bss_conf->transmitter_bssid); cmd->nontx_profile_idx = bss_conf->bssid_index; cmd->nontx_profile_cnt = bss_conf->bssid_indicator; } } ret = ath11k_wmi_cmd_send(wmi, skb, WMI_VDEV_UP_CMDID); if (ret) { ath11k_warn(ar->ab, "failed to submit WMI_VDEV_UP cmd\n"); dev_kfree_skb(skb); } ath11k_dbg(ar->ab, ATH11K_DBG_WMI, "cmd vdev up id 0x%x assoc id %d bssid %pM\n", vdev_id, aid, bssid); return ret; } int ath11k_wmi_send_peer_create_cmd(struct ath11k *ar, struct peer_create_params *param) { struct ath11k_pdev_wmi *wmi = ar->wmi; struct wmi_peer_create_cmd *cmd; struct sk_buff *skb; int ret; skb = ath11k_wmi_alloc_skb(wmi->wmi_ab, sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_peer_create_cmd *)skb->data; cmd->tlv_header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_PEER_CREATE_CMD) | FIELD_PREP(WMI_TLV_LEN, sizeof(*cmd) - TLV_HDR_SIZE); ether_addr_copy(cmd->peer_macaddr.addr, param->peer_addr); cmd->peer_type = param->peer_type; cmd->vdev_id = param->vdev_id; ret = ath11k_wmi_cmd_send(wmi, skb, WMI_PEER_CREATE_CMDID); if (ret) { ath11k_warn(ar->ab, "failed to submit WMI_PEER_CREATE cmd\n"); dev_kfree_skb(skb); } ath11k_dbg(ar->ab, ATH11K_DBG_WMI, "cmd peer create vdev_id %d peer_addr %pM\n", param->vdev_id, param->peer_addr); return ret; } int ath11k_wmi_send_peer_delete_cmd(struct ath11k *ar, const u8 *peer_addr, u8 vdev_id) { struct ath11k_pdev_wmi *wmi = ar->wmi; struct wmi_peer_delete_cmd *cmd; struct sk_buff *skb; int ret; skb = ath11k_wmi_alloc_skb(wmi->wmi_ab, sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_peer_delete_cmd *)skb->data; cmd->tlv_header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_PEER_DELETE_CMD) | FIELD_PREP(WMI_TLV_LEN, sizeof(*cmd) - TLV_HDR_SIZE); ether_addr_copy(cmd->peer_macaddr.addr, peer_addr); cmd->vdev_id = vdev_id; ret = ath11k_wmi_cmd_send(wmi, skb, WMI_PEER_DELETE_CMDID); if (ret) { ath11k_warn(ar->ab, "failed to send WMI_PEER_DELETE cmd\n"); dev_kfree_skb(skb); } ath11k_dbg(ar->ab, ATH11K_DBG_WMI, "cmd peer delete vdev_id %d peer_addr %pM\n", vdev_id, peer_addr); return ret; } int ath11k_wmi_send_pdev_set_regdomain(struct ath11k *ar, struct pdev_set_regdomain_params *param) { struct ath11k_pdev_wmi *wmi = ar->wmi; struct wmi_pdev_set_regdomain_cmd *cmd; struct sk_buff *skb; int ret; skb = ath11k_wmi_alloc_skb(wmi->wmi_ab, sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_pdev_set_regdomain_cmd *)skb->data; cmd->tlv_header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_PDEV_SET_REGDOMAIN_CMD) | FIELD_PREP(WMI_TLV_LEN, sizeof(*cmd) - TLV_HDR_SIZE); cmd->reg_domain = param->current_rd_in_use; cmd->reg_domain_2g = param->current_rd_2g; cmd->reg_domain_5g = param->current_rd_5g; cmd->conformance_test_limit_2g = param->ctl_2g; cmd->conformance_test_limit_5g = param->ctl_5g; cmd->dfs_domain = param->dfs_domain; cmd->pdev_id = param->pdev_id; ret = ath11k_wmi_cmd_send(wmi, skb, WMI_PDEV_SET_REGDOMAIN_CMDID); if (ret) { ath11k_warn(ar->ab, "failed to send WMI_PDEV_SET_REGDOMAIN cmd\n"); dev_kfree_skb(skb); } ath11k_dbg(ar->ab, ATH11K_DBG_WMI, "cmd pdev regd rd %d rd2g %d rd5g %d domain %d pdev id %d\n", param->current_rd_in_use, param->current_rd_2g, param->current_rd_5g, param->dfs_domain, param->pdev_id); return ret; } int ath11k_wmi_set_peer_param(struct ath11k *ar, const u8 *peer_addr, u32 vdev_id, u32 param_id, u32 param_val) { struct ath11k_pdev_wmi *wmi = ar->wmi; struct wmi_peer_set_param_cmd *cmd; struct sk_buff *skb; int ret; skb = ath11k_wmi_alloc_skb(wmi->wmi_ab, sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_peer_set_param_cmd *)skb->data; cmd->tlv_header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_PEER_SET_PARAM_CMD) | FIELD_PREP(WMI_TLV_LEN, sizeof(*cmd) - TLV_HDR_SIZE); ether_addr_copy(cmd->peer_macaddr.addr, peer_addr); cmd->vdev_id = vdev_id; cmd->param_id = param_id; cmd->param_value = param_val; ret = ath11k_wmi_cmd_send(wmi, skb, WMI_PEER_SET_PARAM_CMDID); if (ret) { ath11k_warn(ar->ab, "failed to send WMI_PEER_SET_PARAM cmd\n"); dev_kfree_skb(skb); } ath11k_dbg(ar->ab, ATH11K_DBG_WMI, "cmd peer set param vdev %d peer 0x%pM set param %d value %d\n", vdev_id, peer_addr, param_id, param_val); return ret; } int ath11k_wmi_send_peer_flush_tids_cmd(struct ath11k *ar, u8 peer_addr[ETH_ALEN], struct peer_flush_params *param) { struct ath11k_pdev_wmi *wmi = ar->wmi; struct wmi_peer_flush_tids_cmd *cmd; struct sk_buff *skb; int ret; skb = ath11k_wmi_alloc_skb(wmi->wmi_ab, sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_peer_flush_tids_cmd *)skb->data; cmd->tlv_header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_PEER_FLUSH_TIDS_CMD) | FIELD_PREP(WMI_TLV_LEN, sizeof(*cmd) - TLV_HDR_SIZE); ether_addr_copy(cmd->peer_macaddr.addr, peer_addr); cmd->peer_tid_bitmap = param->peer_tid_bitmap; cmd->vdev_id = param->vdev_id; ret = ath11k_wmi_cmd_send(wmi, skb, WMI_PEER_FLUSH_TIDS_CMDID); if (ret) { ath11k_warn(ar->ab, "failed to send WMI_PEER_FLUSH_TIDS cmd\n"); dev_kfree_skb(skb); } ath11k_dbg(ar->ab, ATH11K_DBG_WMI, "cmd peer flush tids vdev_id %d peer_addr %pM tids %08x\n", param->vdev_id, peer_addr, param->peer_tid_bitmap); return ret; } int ath11k_wmi_peer_rx_reorder_queue_setup(struct ath11k *ar, int vdev_id, const u8 *addr, dma_addr_t paddr, u8 tid, u8 ba_window_size_valid, u32 ba_window_size) { struct wmi_peer_reorder_queue_setup_cmd *cmd; struct sk_buff *skb; int ret; skb = ath11k_wmi_alloc_skb(ar->wmi->wmi_ab, sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_peer_reorder_queue_setup_cmd *)skb->data; cmd->tlv_header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_REORDER_QUEUE_SETUP_CMD) | FIELD_PREP(WMI_TLV_LEN, sizeof(*cmd) - TLV_HDR_SIZE); ether_addr_copy(cmd->peer_macaddr.addr, addr); cmd->vdev_id = vdev_id; cmd->tid = tid; cmd->queue_ptr_lo = lower_32_bits(paddr); cmd->queue_ptr_hi = upper_32_bits(paddr); cmd->queue_no = tid; cmd->ba_window_size_valid = ba_window_size_valid; cmd->ba_window_size = ba_window_size; ret = ath11k_wmi_cmd_send(ar->wmi, skb, WMI_PEER_REORDER_QUEUE_SETUP_CMDID); if (ret) { ath11k_warn(ar->ab, "failed to send WMI_PEER_REORDER_QUEUE_SETUP\n"); dev_kfree_skb(skb); } ath11k_dbg(ar->ab, ATH11K_DBG_WMI, "cmd peer reorder queue setup addr %pM vdev_id %d tid %d\n", addr, vdev_id, tid); return ret; } int ath11k_wmi_rx_reord_queue_remove(struct ath11k *ar, struct rx_reorder_queue_remove_params *param) { struct ath11k_pdev_wmi *wmi = ar->wmi; struct wmi_peer_reorder_queue_remove_cmd *cmd; struct sk_buff *skb; int ret; skb = ath11k_wmi_alloc_skb(wmi->wmi_ab, sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_peer_reorder_queue_remove_cmd *)skb->data; cmd->tlv_header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_REORDER_QUEUE_REMOVE_CMD) | FIELD_PREP(WMI_TLV_LEN, sizeof(*cmd) - TLV_HDR_SIZE); ether_addr_copy(cmd->peer_macaddr.addr, param->peer_macaddr); cmd->vdev_id = param->vdev_id; cmd->tid_mask = param->peer_tid_bitmap; ret = ath11k_wmi_cmd_send(wmi, skb, WMI_PEER_REORDER_QUEUE_REMOVE_CMDID); if (ret) { ath11k_warn(ar->ab, "failed to send WMI_PEER_REORDER_QUEUE_REMOVE_CMDID"); dev_kfree_skb(skb); } ath11k_dbg(ar->ab, ATH11K_DBG_WMI, "cmd peer reorder queue remove peer_macaddr %pM vdev_id %d tid_map %d", param->peer_macaddr, param->vdev_id, param->peer_tid_bitmap); return ret; } int ath11k_wmi_pdev_set_param(struct ath11k *ar, u32 param_id, u32 param_value, u8 pdev_id) { struct ath11k_pdev_wmi *wmi = ar->wmi; struct wmi_pdev_set_param_cmd *cmd; struct sk_buff *skb; int ret; skb = ath11k_wmi_alloc_skb(wmi->wmi_ab, sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_pdev_set_param_cmd *)skb->data; cmd->tlv_header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_PDEV_SET_PARAM_CMD) | FIELD_PREP(WMI_TLV_LEN, sizeof(*cmd) - TLV_HDR_SIZE); cmd->pdev_id = pdev_id; cmd->param_id = param_id; cmd->param_value = param_value; ret = ath11k_wmi_cmd_send(wmi, skb, WMI_PDEV_SET_PARAM_CMDID); if (ret) { ath11k_warn(ar->ab, "failed to send WMI_PDEV_SET_PARAM cmd\n"); dev_kfree_skb(skb); } ath11k_dbg(ar->ab, ATH11K_DBG_WMI, "cmd pdev set param %d pdev id %d value %d\n", param_id, pdev_id, param_value); return ret; } int ath11k_wmi_pdev_set_ps_mode(struct ath11k *ar, int vdev_id, enum wmi_sta_ps_mode psmode) { struct ath11k_pdev_wmi *wmi = ar->wmi; struct wmi_pdev_set_ps_mode_cmd *cmd; struct sk_buff *skb; int ret; skb = ath11k_wmi_alloc_skb(wmi->wmi_ab, sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_pdev_set_ps_mode_cmd *)skb->data; cmd->tlv_header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_STA_POWERSAVE_MODE_CMD) | FIELD_PREP(WMI_TLV_LEN, sizeof(*cmd) - TLV_HDR_SIZE); cmd->vdev_id = vdev_id; cmd->sta_ps_mode = psmode; ret = ath11k_wmi_cmd_send(wmi, skb, WMI_STA_POWERSAVE_MODE_CMDID); if (ret) { ath11k_warn(ar->ab, "failed to send WMI_PDEV_SET_PARAM cmd\n"); dev_kfree_skb(skb); } ath11k_dbg(ar->ab, ATH11K_DBG_WMI, "cmd sta powersave mode psmode %d vdev id %d\n", psmode, vdev_id); return ret; } int ath11k_wmi_pdev_suspend(struct ath11k *ar, u32 suspend_opt, u32 pdev_id) { struct ath11k_pdev_wmi *wmi = ar->wmi; struct wmi_pdev_suspend_cmd *cmd; struct sk_buff *skb; int ret; skb = ath11k_wmi_alloc_skb(wmi->wmi_ab, sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_pdev_suspend_cmd *)skb->data; cmd->tlv_header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_PDEV_SUSPEND_CMD) | FIELD_PREP(WMI_TLV_LEN, sizeof(*cmd) - TLV_HDR_SIZE); cmd->suspend_opt = suspend_opt; cmd->pdev_id = pdev_id; ret = ath11k_wmi_cmd_send(wmi, skb, WMI_PDEV_SUSPEND_CMDID); if (ret) { ath11k_warn(ar->ab, "failed to send WMI_PDEV_SUSPEND cmd\n"); dev_kfree_skb(skb); } ath11k_dbg(ar->ab, ATH11K_DBG_WMI, "cmd pdev suspend pdev_id %d\n", pdev_id); return ret; } int ath11k_wmi_pdev_resume(struct ath11k *ar, u32 pdev_id) { struct ath11k_pdev_wmi *wmi = ar->wmi; struct wmi_pdev_resume_cmd *cmd; struct sk_buff *skb; int ret; skb = ath11k_wmi_alloc_skb(wmi->wmi_ab, sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_pdev_resume_cmd *)skb->data; cmd->tlv_header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_PDEV_RESUME_CMD) | FIELD_PREP(WMI_TLV_LEN, sizeof(*cmd) - TLV_HDR_SIZE); cmd->pdev_id = pdev_id; ret = ath11k_wmi_cmd_send(wmi, skb, WMI_PDEV_RESUME_CMDID); if (ret) { ath11k_warn(ar->ab, "failed to send WMI_PDEV_RESUME cmd\n"); dev_kfree_skb(skb); } ath11k_dbg(ar->ab, ATH11K_DBG_WMI, "cmd pdev resume pdev id %d\n", pdev_id); return ret; } /* TODO FW Support for the cmd is not available yet. * Can be tested once the command and corresponding * event is implemented in FW */ int ath11k_wmi_pdev_bss_chan_info_request(struct ath11k *ar, enum wmi_bss_chan_info_req_type type) { struct ath11k_pdev_wmi *wmi = ar->wmi; struct wmi_pdev_bss_chan_info_req_cmd *cmd; struct sk_buff *skb; int ret; skb = ath11k_wmi_alloc_skb(wmi->wmi_ab, sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_pdev_bss_chan_info_req_cmd *)skb->data; cmd->tlv_header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_PDEV_BSS_CHAN_INFO_REQUEST) | FIELD_PREP(WMI_TLV_LEN, sizeof(*cmd) - TLV_HDR_SIZE); cmd->req_type = type; cmd->pdev_id = ar->pdev->pdev_id; ret = ath11k_wmi_cmd_send(wmi, skb, WMI_PDEV_BSS_CHAN_INFO_REQUEST_CMDID); if (ret) { ath11k_warn(ar->ab, "failed to send WMI_PDEV_BSS_CHAN_INFO_REQUEST cmd\n"); dev_kfree_skb(skb); } ath11k_dbg(ar->ab, ATH11K_DBG_WMI, "cmd pdev bss chan info request type %d\n", type); return ret; } int ath11k_wmi_send_set_ap_ps_param_cmd(struct ath11k *ar, u8 *peer_addr, struct ap_ps_params *param) { struct ath11k_pdev_wmi *wmi = ar->wmi; struct wmi_ap_ps_peer_cmd *cmd; struct sk_buff *skb; int ret; skb = ath11k_wmi_alloc_skb(wmi->wmi_ab, sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_ap_ps_peer_cmd *)skb->data; cmd->tlv_header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_AP_PS_PEER_CMD) | FIELD_PREP(WMI_TLV_LEN, sizeof(*cmd) - TLV_HDR_SIZE); cmd->vdev_id = param->vdev_id; ether_addr_copy(cmd->peer_macaddr.addr, peer_addr); cmd->param = param->param; cmd->value = param->value; ret = ath11k_wmi_cmd_send(wmi, skb, WMI_AP_PS_PEER_PARAM_CMDID); if (ret) { ath11k_warn(ar->ab, "failed to send WMI_AP_PS_PEER_PARAM_CMDID\n"); dev_kfree_skb(skb); } ath11k_dbg(ar->ab, ATH11K_DBG_WMI, "cmd ap ps peer param vdev id %d peer %pM param %d value %d\n", param->vdev_id, peer_addr, param->param, param->value); return ret; } int ath11k_wmi_set_sta_ps_param(struct ath11k *ar, u32 vdev_id, u32 param, u32 param_value) { struct ath11k_pdev_wmi *wmi = ar->wmi; struct wmi_sta_powersave_param_cmd *cmd; struct sk_buff *skb; int ret; skb = ath11k_wmi_alloc_skb(wmi->wmi_ab, sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_sta_powersave_param_cmd *)skb->data; cmd->tlv_header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_STA_POWERSAVE_PARAM_CMD) | FIELD_PREP(WMI_TLV_LEN, sizeof(*cmd) - TLV_HDR_SIZE); cmd->vdev_id = vdev_id; cmd->param = param; cmd->value = param_value; ret = ath11k_wmi_cmd_send(wmi, skb, WMI_STA_POWERSAVE_PARAM_CMDID); if (ret) { ath11k_warn(ar->ab, "failed to send WMI_STA_POWERSAVE_PARAM_CMDID"); dev_kfree_skb(skb); } ath11k_dbg(ar->ab, ATH11K_DBG_WMI, "cmd set powersave param vdev_id %d param %d value %d\n", vdev_id, param, param_value); return ret; } int ath11k_wmi_force_fw_hang_cmd(struct ath11k *ar, u32 type, u32 delay_time_ms) { struct ath11k_pdev_wmi *wmi = ar->wmi; struct wmi_force_fw_hang_cmd *cmd; struct sk_buff *skb; int ret, len; len = sizeof(*cmd); skb = ath11k_wmi_alloc_skb(wmi->wmi_ab, len); if (!skb) return -ENOMEM; cmd = (struct wmi_force_fw_hang_cmd *)skb->data; cmd->tlv_header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_FORCE_FW_HANG_CMD) | FIELD_PREP(WMI_TLV_LEN, len - TLV_HDR_SIZE); cmd->type = type; cmd->delay_time_ms = delay_time_ms; ret = ath11k_wmi_cmd_send(wmi, skb, WMI_FORCE_FW_HANG_CMDID); if (ret) { ath11k_warn(ar->ab, "Failed to send WMI_FORCE_FW_HANG_CMDID"); dev_kfree_skb(skb); } ath11k_dbg(ar->ab, ATH11K_DBG_WMI, "cmd force fw hang"); return ret; } int ath11k_wmi_vdev_set_param_cmd(struct ath11k *ar, u32 vdev_id, u32 param_id, u32 param_value) { struct ath11k_pdev_wmi *wmi = ar->wmi; struct wmi_vdev_set_param_cmd *cmd; struct sk_buff *skb; int ret; skb = ath11k_wmi_alloc_skb(wmi->wmi_ab, sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_vdev_set_param_cmd *)skb->data; cmd->tlv_header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_VDEV_SET_PARAM_CMD) | FIELD_PREP(WMI_TLV_LEN, sizeof(*cmd) - TLV_HDR_SIZE); cmd->vdev_id = vdev_id; cmd->param_id = param_id; cmd->param_value = param_value; ret = ath11k_wmi_cmd_send(wmi, skb, WMI_VDEV_SET_PARAM_CMDID); if (ret) { ath11k_warn(ar->ab, "failed to send WMI_VDEV_SET_PARAM_CMDID\n"); dev_kfree_skb(skb); } ath11k_dbg(ar->ab, ATH11K_DBG_WMI, "cmd vdev set param vdev 0x%x param %d value %d\n", vdev_id, param_id, param_value); return ret; } int ath11k_wmi_send_stats_request_cmd(struct ath11k *ar, struct stats_request_params *param) { struct ath11k_pdev_wmi *wmi = ar->wmi; struct wmi_request_stats_cmd *cmd; struct sk_buff *skb; int ret; skb = ath11k_wmi_alloc_skb(wmi->wmi_ab, sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_request_stats_cmd *)skb->data; cmd->tlv_header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_REQUEST_STATS_CMD) | FIELD_PREP(WMI_TLV_LEN, sizeof(*cmd) - TLV_HDR_SIZE); cmd->stats_id = param->stats_id; cmd->vdev_id = param->vdev_id; cmd->pdev_id = param->pdev_id; ret = ath11k_wmi_cmd_send(wmi, skb, WMI_REQUEST_STATS_CMDID); if (ret) { ath11k_warn(ar->ab, "failed to send WMI_REQUEST_STATS cmd\n"); dev_kfree_skb(skb); } ath11k_dbg(ar->ab, ATH11K_DBG_WMI, "cmd request stats 0x%x vdev id %d pdev id %d\n", param->stats_id, param->vdev_id, param->pdev_id); return ret; } int ath11k_wmi_send_pdev_temperature_cmd(struct ath11k *ar) { struct ath11k_pdev_wmi *wmi = ar->wmi; struct wmi_get_pdev_temperature_cmd *cmd; struct sk_buff *skb; int ret; skb = ath11k_wmi_alloc_skb(wmi->wmi_ab, sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_get_pdev_temperature_cmd *)skb->data; cmd->tlv_header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_PDEV_GET_TEMPERATURE_CMD) | FIELD_PREP(WMI_TLV_LEN, sizeof(*cmd) - TLV_HDR_SIZE); cmd->pdev_id = ar->pdev->pdev_id; ret = ath11k_wmi_cmd_send(wmi, skb, WMI_PDEV_GET_TEMPERATURE_CMDID); if (ret) { ath11k_warn(ar->ab, "failed to send WMI_PDEV_GET_TEMPERATURE cmd\n"); dev_kfree_skb(skb); } ath11k_dbg(ar->ab, ATH11K_DBG_WMI, "cmd pdev get temperature for pdev_id %d\n", ar->pdev->pdev_id); return ret; } int ath11k_wmi_send_bcn_offload_control_cmd(struct ath11k *ar, u32 vdev_id, u32 bcn_ctrl_op) { struct ath11k_pdev_wmi *wmi = ar->wmi; struct wmi_bcn_offload_ctrl_cmd *cmd; struct sk_buff *skb; int ret; skb = ath11k_wmi_alloc_skb(wmi->wmi_ab, sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_bcn_offload_ctrl_cmd *)skb->data; cmd->tlv_header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_BCN_OFFLOAD_CTRL_CMD) | FIELD_PREP(WMI_TLV_LEN, sizeof(*cmd) - TLV_HDR_SIZE); cmd->vdev_id = vdev_id; cmd->bcn_ctrl_op = bcn_ctrl_op; ret = ath11k_wmi_cmd_send(wmi, skb, WMI_BCN_OFFLOAD_CTRL_CMDID); if (ret) { ath11k_warn(ar->ab, "failed to send WMI_BCN_OFFLOAD_CTRL_CMDID\n"); dev_kfree_skb(skb); } ath11k_dbg(ar->ab, ATH11K_DBG_WMI, "cmd bcn offload ctrl vdev id %d ctrl_op %d\n", vdev_id, bcn_ctrl_op); return ret; } int ath11k_wmi_bcn_tmpl(struct ath11k *ar, u32 vdev_id, struct ieee80211_mutable_offsets *offs, struct sk_buff *bcn, u32 ema_params) { struct ath11k_pdev_wmi *wmi = ar->wmi; struct wmi_bcn_tmpl_cmd *cmd; struct wmi_bcn_prb_info *bcn_prb_info; struct wmi_tlv *tlv; struct sk_buff *skb; void *ptr; int ret, len; size_t aligned_len = roundup(bcn->len, 4); struct ieee80211_vif *vif; struct ath11k_vif *arvif = ath11k_mac_get_arvif(ar, vdev_id); if (!arvif) { ath11k_warn(ar->ab, "failed to find arvif with vdev id %d\n", vdev_id); return -EINVAL; } vif = arvif->vif; len = sizeof(*cmd) + sizeof(*bcn_prb_info) + TLV_HDR_SIZE + aligned_len; skb = ath11k_wmi_alloc_skb(wmi->wmi_ab, len); if (!skb) return -ENOMEM; cmd = (struct wmi_bcn_tmpl_cmd *)skb->data; cmd->tlv_header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_BCN_TMPL_CMD) | FIELD_PREP(WMI_TLV_LEN, sizeof(*cmd) - TLV_HDR_SIZE); cmd->vdev_id = vdev_id; cmd->tim_ie_offset = offs->tim_offset; if (vif->bss_conf.csa_active) { cmd->csa_switch_count_offset = offs->cntdwn_counter_offs[0]; cmd->ext_csa_switch_count_offset = offs->cntdwn_counter_offs[1]; } cmd->buf_len = bcn->len; cmd->mbssid_ie_offset = offs->mbssid_off; cmd->ema_params = ema_params; ptr = skb->data + sizeof(*cmd); bcn_prb_info = ptr; len = sizeof(*bcn_prb_info); bcn_prb_info->tlv_header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_BCN_PRB_INFO) | FIELD_PREP(WMI_TLV_LEN, len - TLV_HDR_SIZE); bcn_prb_info->caps = 0; bcn_prb_info->erp = 0; ptr += sizeof(*bcn_prb_info); tlv = ptr; tlv->header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_ARRAY_BYTE) | FIELD_PREP(WMI_TLV_LEN, aligned_len); memcpy(tlv->value, bcn->data, bcn->len); ret = ath11k_wmi_cmd_send(wmi, skb, WMI_BCN_TMPL_CMDID); if (ret) { ath11k_warn(ar->ab, "failed to send WMI_BCN_TMPL_CMDID\n"); dev_kfree_skb(skb); } ath11k_dbg(ar->ab, ATH11K_DBG_WMI, "cmd bcn tmpl"); return ret; } int ath11k_wmi_vdev_install_key(struct ath11k *ar, struct wmi_vdev_install_key_arg *arg) { struct ath11k_pdev_wmi *wmi = ar->wmi; struct wmi_vdev_install_key_cmd *cmd; struct wmi_tlv *tlv; struct sk_buff *skb; int ret, len; int key_len_aligned = roundup(arg->key_len, sizeof(uint32_t)); len = sizeof(*cmd) + TLV_HDR_SIZE + key_len_aligned; skb = ath11k_wmi_alloc_skb(wmi->wmi_ab, len); if (!skb) return -ENOMEM; cmd = (struct wmi_vdev_install_key_cmd *)skb->data; cmd->tlv_header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_VDEV_INSTALL_KEY_CMD) | FIELD_PREP(WMI_TLV_LEN, sizeof(*cmd) - TLV_HDR_SIZE); cmd->vdev_id = arg->vdev_id; ether_addr_copy(cmd->peer_macaddr.addr, arg->macaddr); cmd->key_idx = arg->key_idx; cmd->key_flags = arg->key_flags; cmd->key_cipher = arg->key_cipher; cmd->key_len = arg->key_len; cmd->key_txmic_len = arg->key_txmic_len; cmd->key_rxmic_len = arg->key_rxmic_len; if (arg->key_rsc_counter) memcpy(&cmd->key_rsc_counter, &arg->key_rsc_counter, sizeof(struct wmi_key_seq_counter)); tlv = (struct wmi_tlv *)(skb->data + sizeof(*cmd)); tlv->header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_ARRAY_BYTE) | FIELD_PREP(WMI_TLV_LEN, key_len_aligned); if (arg->key_data) memcpy(tlv->value, (u8 *)arg->key_data, key_len_aligned); ret = ath11k_wmi_cmd_send(wmi, skb, WMI_VDEV_INSTALL_KEY_CMDID); if (ret) { ath11k_warn(ar->ab, "failed to send WMI_VDEV_INSTALL_KEY cmd\n"); dev_kfree_skb(skb); } ath11k_dbg(ar->ab, ATH11K_DBG_WMI, "cmd vdev install key idx %d cipher %d len %d\n", arg->key_idx, arg->key_cipher, arg->key_len); return ret; } static inline void ath11k_wmi_copy_peer_flags(struct wmi_peer_assoc_complete_cmd *cmd, struct peer_assoc_params *param, bool hw_crypto_disabled) { cmd->peer_flags = 0; if (param->is_wme_set) { if (param->qos_flag) cmd->peer_flags |= WMI_PEER_QOS; if (param->apsd_flag) cmd->peer_flags |= WMI_PEER_APSD; if (param->ht_flag) cmd->peer_flags |= WMI_PEER_HT; if (param->bw_40) cmd->peer_flags |= WMI_PEER_40MHZ; if (param->bw_80) cmd->peer_flags |= WMI_PEER_80MHZ; if (param->bw_160) cmd->peer_flags |= WMI_PEER_160MHZ; /* Typically if STBC is enabled for VHT it should be enabled * for HT as well **/ if (param->stbc_flag) cmd->peer_flags |= WMI_PEER_STBC; /* Typically if LDPC is enabled for VHT it should be enabled * for HT as well **/ if (param->ldpc_flag) cmd->peer_flags |= WMI_PEER_LDPC; if (param->static_mimops_flag) cmd->peer_flags |= WMI_PEER_STATIC_MIMOPS; if (param->dynamic_mimops_flag) cmd->peer_flags |= WMI_PEER_DYN_MIMOPS; if (param->spatial_mux_flag) cmd->peer_flags |= WMI_PEER_SPATIAL_MUX; if (param->vht_flag) cmd->peer_flags |= WMI_PEER_VHT; if (param->he_flag) cmd->peer_flags |= WMI_PEER_HE; if (param->twt_requester) cmd->peer_flags |= WMI_PEER_TWT_REQ; if (param->twt_responder) cmd->peer_flags |= WMI_PEER_TWT_RESP; } /* Suppress authorization for all AUTH modes that need 4-way handshake * (during re-association). * Authorization will be done for these modes on key installation. */ if (param->auth_flag) cmd->peer_flags |= WMI_PEER_AUTH; if (param->need_ptk_4_way) { cmd->peer_flags |= WMI_PEER_NEED_PTK_4_WAY; if (!hw_crypto_disabled && param->is_assoc) cmd->peer_flags &= ~WMI_PEER_AUTH; } if (param->need_gtk_2_way) cmd->peer_flags |= WMI_PEER_NEED_GTK_2_WAY; /* safe mode bypass the 4-way handshake */ if (param->safe_mode_enabled) cmd->peer_flags &= ~(WMI_PEER_NEED_PTK_4_WAY | WMI_PEER_NEED_GTK_2_WAY); if (param->is_pmf_enabled) cmd->peer_flags |= WMI_PEER_PMF; /* Disable AMSDU for station transmit, if user configures it */ /* Disable AMSDU for AP transmit to 11n Stations, if user configures * it * if (param->amsdu_disable) Add after FW support **/ /* Target asserts if node is marked HT and all MCS is set to 0. * Mark the node as non-HT if all the mcs rates are disabled through * iwpriv **/ if (param->peer_ht_rates.num_rates == 0) cmd->peer_flags &= ~WMI_PEER_HT; } int ath11k_wmi_send_peer_assoc_cmd(struct ath11k *ar, struct peer_assoc_params *param) { struct ath11k_pdev_wmi *wmi = ar->wmi; struct wmi_peer_assoc_complete_cmd *cmd; struct wmi_vht_rate_set *mcs; struct wmi_he_rate_set *he_mcs; struct sk_buff *skb; struct wmi_tlv *tlv; void *ptr; u32 peer_legacy_rates_align; u32 peer_ht_rates_align; int i, ret, len; peer_legacy_rates_align = roundup(param->peer_legacy_rates.num_rates, sizeof(u32)); peer_ht_rates_align = roundup(param->peer_ht_rates.num_rates, sizeof(u32)); len = sizeof(*cmd) + TLV_HDR_SIZE + (peer_legacy_rates_align * sizeof(u8)) + TLV_HDR_SIZE + (peer_ht_rates_align * sizeof(u8)) + sizeof(*mcs) + TLV_HDR_SIZE + (sizeof(*he_mcs) * param->peer_he_mcs_count); skb = ath11k_wmi_alloc_skb(wmi->wmi_ab, len); if (!skb) return -ENOMEM; ptr = skb->data; cmd = ptr; cmd->tlv_header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_PEER_ASSOC_COMPLETE_CMD) | FIELD_PREP(WMI_TLV_LEN, sizeof(*cmd) - TLV_HDR_SIZE); cmd->vdev_id = param->vdev_id; cmd->peer_new_assoc = param->peer_new_assoc; cmd->peer_associd = param->peer_associd; ath11k_wmi_copy_peer_flags(cmd, param, test_bit(ATH11K_FLAG_HW_CRYPTO_DISABLED, &ar->ab->dev_flags)); ether_addr_copy(cmd->peer_macaddr.addr, param->peer_mac); cmd->peer_rate_caps = param->peer_rate_caps; cmd->peer_caps = param->peer_caps; cmd->peer_listen_intval = param->peer_listen_intval; cmd->peer_ht_caps = param->peer_ht_caps; cmd->peer_max_mpdu = param->peer_max_mpdu; cmd->peer_mpdu_density = param->peer_mpdu_density; cmd->peer_vht_caps = param->peer_vht_caps; cmd->peer_phymode = param->peer_phymode; /* Update 11ax capabilities */ cmd->peer_he_cap_info = param->peer_he_cap_macinfo[0]; cmd->peer_he_cap_info_ext = param->peer_he_cap_macinfo[1]; cmd->peer_he_cap_info_internal = param->peer_he_cap_macinfo_internal; cmd->peer_he_caps_6ghz = param->peer_he_caps_6ghz; cmd->peer_he_ops = param->peer_he_ops; memcpy(&cmd->peer_he_cap_phy, ¶m->peer_he_cap_phyinfo, sizeof(param->peer_he_cap_phyinfo)); memcpy(&cmd->peer_ppet, ¶m->peer_ppet, sizeof(param->peer_ppet)); /* Update peer legacy rate information */ ptr += sizeof(*cmd); tlv = ptr; tlv->header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_ARRAY_BYTE) | FIELD_PREP(WMI_TLV_LEN, peer_legacy_rates_align); ptr += TLV_HDR_SIZE; cmd->num_peer_legacy_rates = param->peer_legacy_rates.num_rates; memcpy(ptr, param->peer_legacy_rates.rates, param->peer_legacy_rates.num_rates); /* Update peer HT rate information */ ptr += peer_legacy_rates_align; tlv = ptr; tlv->header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_ARRAY_BYTE) | FIELD_PREP(WMI_TLV_LEN, peer_ht_rates_align); ptr += TLV_HDR_SIZE; cmd->num_peer_ht_rates = param->peer_ht_rates.num_rates; memcpy(ptr, param->peer_ht_rates.rates, param->peer_ht_rates.num_rates); /* VHT Rates */ ptr += peer_ht_rates_align; mcs = ptr; mcs->tlv_header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_VHT_RATE_SET) | FIELD_PREP(WMI_TLV_LEN, sizeof(*mcs) - TLV_HDR_SIZE); cmd->peer_nss = param->peer_nss; /* Update bandwidth-NSS mapping */ cmd->peer_bw_rxnss_override = 0; cmd->peer_bw_rxnss_override |= param->peer_bw_rxnss_override; if (param->vht_capable) { mcs->rx_max_rate = param->rx_max_rate; mcs->rx_mcs_set = param->rx_mcs_set; mcs->tx_max_rate = param->tx_max_rate; mcs->tx_mcs_set = param->tx_mcs_set; } /* HE Rates */ cmd->peer_he_mcs = param->peer_he_mcs_count; cmd->min_data_rate = param->min_data_rate; ptr += sizeof(*mcs); len = param->peer_he_mcs_count * sizeof(*he_mcs); tlv = ptr; tlv->header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_ARRAY_STRUCT) | FIELD_PREP(WMI_TLV_LEN, len); ptr += TLV_HDR_SIZE; /* Loop through the HE rate set */ for (i = 0; i < param->peer_he_mcs_count; i++) { he_mcs = ptr; he_mcs->tlv_header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_HE_RATE_SET) | FIELD_PREP(WMI_TLV_LEN, sizeof(*he_mcs) - TLV_HDR_SIZE); he_mcs->rx_mcs_set = param->peer_he_tx_mcs_set[i]; he_mcs->tx_mcs_set = param->peer_he_rx_mcs_set[i]; ptr += sizeof(*he_mcs); } ret = ath11k_wmi_cmd_send(wmi, skb, WMI_PEER_ASSOC_CMDID); if (ret) { ath11k_warn(ar->ab, "failed to send WMI_PEER_ASSOC_CMDID\n"); dev_kfree_skb(skb); } ath11k_dbg(ar->ab, ATH11K_DBG_WMI, "cmd peer assoc vdev id %d assoc id %d peer mac %pM peer_flags %x rate_caps %x peer_caps %x listen_intval %d ht_caps %x max_mpdu %d nss %d phymode %d peer_mpdu_density %d vht_caps %x he cap_info %x he ops %x he cap_info_ext %x he phy %x %x %x peer_bw_rxnss_override %x\n", cmd->vdev_id, cmd->peer_associd, param->peer_mac, cmd->peer_flags, cmd->peer_rate_caps, cmd->peer_caps, cmd->peer_listen_intval, cmd->peer_ht_caps, cmd->peer_max_mpdu, cmd->peer_nss, cmd->peer_phymode, cmd->peer_mpdu_density, cmd->peer_vht_caps, cmd->peer_he_cap_info, cmd->peer_he_ops, cmd->peer_he_cap_info_ext, cmd->peer_he_cap_phy[0], cmd->peer_he_cap_phy[1], cmd->peer_he_cap_phy[2], cmd->peer_bw_rxnss_override); return ret; } void ath11k_wmi_start_scan_init(struct ath11k *ar, struct scan_req_params *arg) { /* setup commonly used values */ arg->scan_req_id = 1; if (ar->state_11d == ATH11K_11D_PREPARING) arg->scan_priority = WMI_SCAN_PRIORITY_MEDIUM; else arg->scan_priority = WMI_SCAN_PRIORITY_LOW; arg->dwell_time_active = 50; arg->dwell_time_active_2g = 0; arg->dwell_time_passive = 150; arg->dwell_time_active_6g = 40; arg->dwell_time_passive_6g = 30; arg->min_rest_time = 50; arg->max_rest_time = 500; arg->repeat_probe_time = 0; arg->probe_spacing_time = 0; arg->idle_time = 0; arg->max_scan_time = 20000; arg->probe_delay = 5; arg->notify_scan_events = WMI_SCAN_EVENT_STARTED | WMI_SCAN_EVENT_COMPLETED | WMI_SCAN_EVENT_BSS_CHANNEL | WMI_SCAN_EVENT_FOREIGN_CHAN | WMI_SCAN_EVENT_DEQUEUED; arg->scan_flags |= WMI_SCAN_CHAN_STAT_EVENT; if (test_bit(WMI_TLV_SERVICE_PASSIVE_SCAN_START_TIME_ENHANCE, ar->ab->wmi_ab.svc_map)) arg->scan_ctrl_flags_ext |= WMI_SCAN_FLAG_EXT_PASSIVE_SCAN_START_TIME_ENHANCE; arg->num_bssid = 1; /* fill bssid_list[0] with 0xff, otherwise bssid and RA will be * ZEROs in probe request */ eth_broadcast_addr(arg->bssid_list[0].addr); } static inline void ath11k_wmi_copy_scan_event_cntrl_flags(struct wmi_start_scan_cmd *cmd, struct scan_req_params *param) { /* Scan events subscription */ if (param->scan_ev_started) cmd->notify_scan_events |= WMI_SCAN_EVENT_STARTED; if (param->scan_ev_completed) cmd->notify_scan_events |= WMI_SCAN_EVENT_COMPLETED; if (param->scan_ev_bss_chan) cmd->notify_scan_events |= WMI_SCAN_EVENT_BSS_CHANNEL; if (param->scan_ev_foreign_chan) cmd->notify_scan_events |= WMI_SCAN_EVENT_FOREIGN_CHAN; if (param->scan_ev_dequeued) cmd->notify_scan_events |= WMI_SCAN_EVENT_DEQUEUED; if (param->scan_ev_preempted) cmd->notify_scan_events |= WMI_SCAN_EVENT_PREEMPTED; if (param->scan_ev_start_failed) cmd->notify_scan_events |= WMI_SCAN_EVENT_START_FAILED; if (param->scan_ev_restarted) cmd->notify_scan_events |= WMI_SCAN_EVENT_RESTARTED; if (param->scan_ev_foreign_chn_exit) cmd->notify_scan_events |= WMI_SCAN_EVENT_FOREIGN_CHAN_EXIT; if (param->scan_ev_suspended) cmd->notify_scan_events |= WMI_SCAN_EVENT_SUSPENDED; if (param->scan_ev_resumed) cmd->notify_scan_events |= WMI_SCAN_EVENT_RESUMED; /** Set scan control flags */ cmd->scan_ctrl_flags = 0; if (param->scan_f_passive) cmd->scan_ctrl_flags |= WMI_SCAN_FLAG_PASSIVE; if (param->scan_f_strict_passive_pch) cmd->scan_ctrl_flags |= WMI_SCAN_FLAG_STRICT_PASSIVE_ON_PCHN; if (param->scan_f_promisc_mode) cmd->scan_ctrl_flags |= WMI_SCAN_FILTER_PROMISCUOS; if (param->scan_f_capture_phy_err) cmd->scan_ctrl_flags |= WMI_SCAN_CAPTURE_PHY_ERROR; if (param->scan_f_half_rate) cmd->scan_ctrl_flags |= WMI_SCAN_FLAG_HALF_RATE_SUPPORT; if (param->scan_f_quarter_rate) cmd->scan_ctrl_flags |= WMI_SCAN_FLAG_QUARTER_RATE_SUPPORT; if (param->scan_f_cck_rates) cmd->scan_ctrl_flags |= WMI_SCAN_ADD_CCK_RATES; if (param->scan_f_ofdm_rates) cmd->scan_ctrl_flags |= WMI_SCAN_ADD_OFDM_RATES; if (param->scan_f_chan_stat_evnt) cmd->scan_ctrl_flags |= WMI_SCAN_CHAN_STAT_EVENT; if (param->scan_f_filter_prb_req) cmd->scan_ctrl_flags |= WMI_SCAN_FILTER_PROBE_REQ; if (param->scan_f_bcast_probe) cmd->scan_ctrl_flags |= WMI_SCAN_ADD_BCAST_PROBE_REQ; if (param->scan_f_offchan_mgmt_tx) cmd->scan_ctrl_flags |= WMI_SCAN_OFFCHAN_MGMT_TX; if (param->scan_f_offchan_data_tx) cmd->scan_ctrl_flags |= WMI_SCAN_OFFCHAN_DATA_TX; if (param->scan_f_force_active_dfs_chn) cmd->scan_ctrl_flags |= WMI_SCAN_FLAG_FORCE_ACTIVE_ON_DFS; if (param->scan_f_add_tpc_ie_in_probe) cmd->scan_ctrl_flags |= WMI_SCAN_ADD_TPC_IE_IN_PROBE_REQ; if (param->scan_f_add_ds_ie_in_probe) cmd->scan_ctrl_flags |= WMI_SCAN_ADD_DS_IE_IN_PROBE_REQ; if (param->scan_f_add_spoofed_mac_in_probe) cmd->scan_ctrl_flags |= WMI_SCAN_ADD_SPOOF_MAC_IN_PROBE_REQ; if (param->scan_f_add_rand_seq_in_probe) cmd->scan_ctrl_flags |= WMI_SCAN_RANDOM_SEQ_NO_IN_PROBE_REQ; if (param->scan_f_en_ie_whitelist_in_probe) cmd->scan_ctrl_flags |= WMI_SCAN_ENABLE_IE_WHTELIST_IN_PROBE_REQ; /* for adaptive scan mode using 3 bits (21 - 23 bits) */ WMI_SCAN_SET_DWELL_MODE(cmd->scan_ctrl_flags, param->adaptive_dwell_time_mode); cmd->scan_ctrl_flags_ext = param->scan_ctrl_flags_ext; } int ath11k_wmi_send_scan_start_cmd(struct ath11k *ar, struct scan_req_params *params) { struct ath11k_pdev_wmi *wmi = ar->wmi; struct wmi_start_scan_cmd *cmd; struct wmi_ssid *ssid = NULL; struct wmi_mac_addr *bssid; struct sk_buff *skb; struct wmi_tlv *tlv; void *ptr; int i, ret, len; u32 *tmp_ptr; u16 extraie_len_with_pad = 0; struct hint_short_ssid *s_ssid = NULL; struct hint_bssid *hint_bssid = NULL; len = sizeof(*cmd); len += TLV_HDR_SIZE; if (params->num_chan) len += params->num_chan * sizeof(u32); len += TLV_HDR_SIZE; if (params->num_ssids) len += params->num_ssids * sizeof(*ssid); len += TLV_HDR_SIZE; if (params->num_bssid) len += sizeof(*bssid) * params->num_bssid; len += TLV_HDR_SIZE; if (params->extraie.len && params->extraie.len <= 0xFFFF) extraie_len_with_pad = roundup(params->extraie.len, sizeof(u32)); len += extraie_len_with_pad; if (params->num_hint_bssid) len += TLV_HDR_SIZE + params->num_hint_bssid * sizeof(struct hint_bssid); if (params->num_hint_s_ssid) len += TLV_HDR_SIZE + params->num_hint_s_ssid * sizeof(struct hint_short_ssid); skb = ath11k_wmi_alloc_skb(wmi->wmi_ab, len); if (!skb) return -ENOMEM; ptr = skb->data; cmd = ptr; cmd->tlv_header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_START_SCAN_CMD) | FIELD_PREP(WMI_TLV_LEN, sizeof(*cmd) - TLV_HDR_SIZE); cmd->scan_id = params->scan_id; cmd->scan_req_id = params->scan_req_id; cmd->vdev_id = params->vdev_id; cmd->scan_priority = params->scan_priority; cmd->notify_scan_events = params->notify_scan_events; ath11k_wmi_copy_scan_event_cntrl_flags(cmd, params); cmd->dwell_time_active = params->dwell_time_active; cmd->dwell_time_active_2g = params->dwell_time_active_2g; cmd->dwell_time_passive = params->dwell_time_passive; cmd->dwell_time_active_6g = params->dwell_time_active_6g; cmd->dwell_time_passive_6g = params->dwell_time_passive_6g; cmd->min_rest_time = params->min_rest_time; cmd->max_rest_time = params->max_rest_time; cmd->repeat_probe_time = params->repeat_probe_time; cmd->probe_spacing_time = params->probe_spacing_time; cmd->idle_time = params->idle_time; cmd->max_scan_time = params->max_scan_time; cmd->probe_delay = params->probe_delay; cmd->burst_duration = params->burst_duration; cmd->num_chan = params->num_chan; cmd->num_bssid = params->num_bssid; cmd->num_ssids = params->num_ssids; cmd->ie_len = params->extraie.len; cmd->n_probes = params->n_probes; ether_addr_copy(cmd->mac_addr.addr, params->mac_addr.addr); ether_addr_copy(cmd->mac_mask.addr, params->mac_mask.addr); ptr += sizeof(*cmd); len = params->num_chan * sizeof(u32); tlv = ptr; tlv->header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_ARRAY_UINT32) | FIELD_PREP(WMI_TLV_LEN, len); ptr += TLV_HDR_SIZE; tmp_ptr = ptr; for (i = 0; i < params->num_chan; ++i) tmp_ptr[i] = params->chan_list[i]; ptr += len; len = params->num_ssids * sizeof(*ssid); tlv = ptr; tlv->header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_ARRAY_FIXED_STRUCT) | FIELD_PREP(WMI_TLV_LEN, len); ptr += TLV_HDR_SIZE; if (params->num_ssids) { ssid = ptr; for (i = 0; i < params->num_ssids; ++i) { ssid->ssid_len = params->ssid[i].length; memcpy(ssid->ssid, params->ssid[i].ssid, params->ssid[i].length); ssid++; } } ptr += (params->num_ssids * sizeof(*ssid)); len = params->num_bssid * sizeof(*bssid); tlv = ptr; tlv->header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_ARRAY_FIXED_STRUCT) | FIELD_PREP(WMI_TLV_LEN, len); ptr += TLV_HDR_SIZE; bssid = ptr; if (params->num_bssid) { for (i = 0; i < params->num_bssid; ++i) { ether_addr_copy(bssid->addr, params->bssid_list[i].addr); bssid++; } } ptr += params->num_bssid * sizeof(*bssid); len = extraie_len_with_pad; tlv = ptr; tlv->header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_ARRAY_BYTE) | FIELD_PREP(WMI_TLV_LEN, len); ptr += TLV_HDR_SIZE; if (extraie_len_with_pad) memcpy(ptr, params->extraie.ptr, params->extraie.len); ptr += extraie_len_with_pad; if (params->num_hint_s_ssid) { len = params->num_hint_s_ssid * sizeof(struct hint_short_ssid); tlv = ptr; tlv->header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_ARRAY_FIXED_STRUCT) | FIELD_PREP(WMI_TLV_LEN, len); ptr += TLV_HDR_SIZE; s_ssid = ptr; for (i = 0; i < params->num_hint_s_ssid; ++i) { s_ssid->freq_flags = params->hint_s_ssid[i].freq_flags; s_ssid->short_ssid = params->hint_s_ssid[i].short_ssid; s_ssid++; } ptr += len; } if (params->num_hint_bssid) { len = params->num_hint_bssid * sizeof(struct hint_bssid); tlv = ptr; tlv->header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_ARRAY_FIXED_STRUCT) | FIELD_PREP(WMI_TLV_LEN, len); ptr += TLV_HDR_SIZE; hint_bssid = ptr; for (i = 0; i < params->num_hint_bssid; ++i) { hint_bssid->freq_flags = params->hint_bssid[i].freq_flags; ether_addr_copy(¶ms->hint_bssid[i].bssid.addr[0], &hint_bssid->bssid.addr[0]); hint_bssid++; } } ret = ath11k_wmi_cmd_send(wmi, skb, WMI_START_SCAN_CMDID); if (ret) { ath11k_warn(ar->ab, "failed to send WMI_START_SCAN_CMDID\n"); dev_kfree_skb(skb); } ath11k_dbg(ar->ab, ATH11K_DBG_WMI, "cmd start scan"); return ret; } int ath11k_wmi_send_scan_stop_cmd(struct ath11k *ar, struct scan_cancel_param *param) { struct ath11k_pdev_wmi *wmi = ar->wmi; struct wmi_stop_scan_cmd *cmd; struct sk_buff *skb; int ret; skb = ath11k_wmi_alloc_skb(wmi->wmi_ab, sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_stop_scan_cmd *)skb->data; cmd->tlv_header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_STOP_SCAN_CMD) | FIELD_PREP(WMI_TLV_LEN, sizeof(*cmd) - TLV_HDR_SIZE); cmd->vdev_id = param->vdev_id; cmd->requestor = param->requester; cmd->scan_id = param->scan_id; cmd->pdev_id = param->pdev_id; /* stop the scan with the corresponding scan_id */ if (param->req_type == WLAN_SCAN_CANCEL_PDEV_ALL) { /* Cancelling all scans */ cmd->req_type = WMI_SCAN_STOP_ALL; } else if (param->req_type == WLAN_SCAN_CANCEL_VDEV_ALL) { /* Cancelling VAP scans */ cmd->req_type = WMI_SCN_STOP_VAP_ALL; } else if (param->req_type == WLAN_SCAN_CANCEL_SINGLE) { /* Cancelling specific scan */ cmd->req_type = WMI_SCAN_STOP_ONE; } else { ath11k_warn(ar->ab, "invalid scan cancel param %d", param->req_type); dev_kfree_skb(skb); return -EINVAL; } ret = ath11k_wmi_cmd_send(wmi, skb, WMI_STOP_SCAN_CMDID); if (ret) { ath11k_warn(ar->ab, "failed to send WMI_STOP_SCAN_CMDID\n"); dev_kfree_skb(skb); } ath11k_dbg(ar->ab, ATH11K_DBG_WMI, "cmd stop scan"); return ret; } int ath11k_wmi_send_scan_chan_list_cmd(struct ath11k *ar, struct scan_chan_list_params *chan_list) { struct ath11k_pdev_wmi *wmi = ar->wmi; struct wmi_scan_chan_list_cmd *cmd; struct sk_buff *skb; struct wmi_channel *chan_info; struct channel_param *tchan_info; struct wmi_tlv *tlv; void *ptr; int i, ret, len; u16 num_send_chans, num_sends = 0, max_chan_limit = 0; u32 *reg1, *reg2; tchan_info = chan_list->ch_param; while (chan_list->nallchans) { len = sizeof(*cmd) + TLV_HDR_SIZE; max_chan_limit = (wmi->wmi_ab->max_msg_len[ar->pdev_idx] - len) / sizeof(*chan_info); if (chan_list->nallchans > max_chan_limit) num_send_chans = max_chan_limit; else num_send_chans = chan_list->nallchans; chan_list->nallchans -= num_send_chans; len += sizeof(*chan_info) * num_send_chans; skb = ath11k_wmi_alloc_skb(wmi->wmi_ab, len); if (!skb) return -ENOMEM; cmd = (struct wmi_scan_chan_list_cmd *)skb->data; cmd->tlv_header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_SCAN_CHAN_LIST_CMD) | FIELD_PREP(WMI_TLV_LEN, sizeof(*cmd) - TLV_HDR_SIZE); cmd->pdev_id = chan_list->pdev_id; cmd->num_scan_chans = num_send_chans; if (num_sends) cmd->flags |= WMI_APPEND_TO_EXISTING_CHAN_LIST_FLAG; ath11k_dbg(ar->ab, ATH11K_DBG_WMI, "no.of chan = %d len = %d pdev_id = %d num_sends = %d\n", num_send_chans, len, cmd->pdev_id, num_sends); ptr = skb->data + sizeof(*cmd); len = sizeof(*chan_info) * num_send_chans; tlv = ptr; tlv->header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_ARRAY_STRUCT) | FIELD_PREP(WMI_TLV_LEN, len - TLV_HDR_SIZE); ptr += TLV_HDR_SIZE; for (i = 0; i < num_send_chans; ++i) { chan_info = ptr; memset(chan_info, 0, sizeof(*chan_info)); len = sizeof(*chan_info); chan_info->tlv_header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_CHANNEL) | FIELD_PREP(WMI_TLV_LEN, len - TLV_HDR_SIZE); reg1 = &chan_info->reg_info_1; reg2 = &chan_info->reg_info_2; chan_info->mhz = tchan_info->mhz; chan_info->band_center_freq1 = tchan_info->cfreq1; chan_info->band_center_freq2 = tchan_info->cfreq2; if (tchan_info->is_chan_passive) chan_info->info |= WMI_CHAN_INFO_PASSIVE; if (tchan_info->allow_he) chan_info->info |= WMI_CHAN_INFO_ALLOW_HE; else if (tchan_info->allow_vht) chan_info->info |= WMI_CHAN_INFO_ALLOW_VHT; else if (tchan_info->allow_ht) chan_info->info |= WMI_CHAN_INFO_ALLOW_HT; if (tchan_info->half_rate) chan_info->info |= WMI_CHAN_INFO_HALF_RATE; if (tchan_info->quarter_rate) chan_info->info |= WMI_CHAN_INFO_QUARTER_RATE; if (tchan_info->psc_channel) chan_info->info |= WMI_CHAN_INFO_PSC; if (tchan_info->dfs_set) chan_info->info |= WMI_CHAN_INFO_DFS; chan_info->info |= FIELD_PREP(WMI_CHAN_INFO_MODE, tchan_info->phy_mode); *reg1 |= FIELD_PREP(WMI_CHAN_REG_INFO1_MIN_PWR, tchan_info->minpower); *reg1 |= FIELD_PREP(WMI_CHAN_REG_INFO1_MAX_PWR, tchan_info->maxpower); *reg1 |= FIELD_PREP(WMI_CHAN_REG_INFO1_MAX_REG_PWR, tchan_info->maxregpower); *reg1 |= FIELD_PREP(WMI_CHAN_REG_INFO1_REG_CLS, tchan_info->reg_class_id); *reg2 |= FIELD_PREP(WMI_CHAN_REG_INFO2_ANT_MAX, tchan_info->antennamax); *reg2 |= FIELD_PREP(WMI_CHAN_REG_INFO2_MAX_TX_PWR, tchan_info->maxregpower); ath11k_dbg(ar->ab, ATH11K_DBG_WMI, "chan scan list chan[%d] = %u, chan_info->info %8x\n", i, chan_info->mhz, chan_info->info); ptr += sizeof(*chan_info); tchan_info++; } ret = ath11k_wmi_cmd_send(wmi, skb, WMI_SCAN_CHAN_LIST_CMDID); if (ret) { ath11k_warn(ar->ab, "failed to send WMI_SCAN_CHAN_LIST cmd\n"); dev_kfree_skb(skb); return ret; } ath11k_dbg(ar->ab, ATH11K_DBG_WMI, "cmd scan chan list channels %d", num_send_chans); num_sends++; } return 0; } int ath11k_wmi_send_wmm_update_cmd_tlv(struct ath11k *ar, u32 vdev_id, struct wmi_wmm_params_all_arg *param) { struct ath11k_pdev_wmi *wmi = ar->wmi; struct wmi_vdev_set_wmm_params_cmd *cmd; struct wmi_wmm_params *wmm_param; struct wmi_wmm_params_arg *wmi_wmm_arg; struct sk_buff *skb; int ret, ac; skb = ath11k_wmi_alloc_skb(wmi->wmi_ab, sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_vdev_set_wmm_params_cmd *)skb->data; cmd->tlv_header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_VDEV_SET_WMM_PARAMS_CMD) | FIELD_PREP(WMI_TLV_LEN, sizeof(*cmd) - TLV_HDR_SIZE); cmd->vdev_id = vdev_id; cmd->wmm_param_type = 0; for (ac = 0; ac < WME_NUM_AC; ac++) { switch (ac) { case WME_AC_BE: wmi_wmm_arg = ¶m->ac_be; break; case WME_AC_BK: wmi_wmm_arg = ¶m->ac_bk; break; case WME_AC_VI: wmi_wmm_arg = ¶m->ac_vi; break; case WME_AC_VO: wmi_wmm_arg = ¶m->ac_vo; break; } wmm_param = (struct wmi_wmm_params *)&cmd->wmm_params[ac]; wmm_param->tlv_header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_VDEV_SET_WMM_PARAMS_CMD) | FIELD_PREP(WMI_TLV_LEN, sizeof(*wmm_param) - TLV_HDR_SIZE); wmm_param->aifs = wmi_wmm_arg->aifs; wmm_param->cwmin = wmi_wmm_arg->cwmin; wmm_param->cwmax = wmi_wmm_arg->cwmax; wmm_param->txoplimit = wmi_wmm_arg->txop; wmm_param->acm = wmi_wmm_arg->acm; wmm_param->no_ack = wmi_wmm_arg->no_ack; ath11k_dbg(ar->ab, ATH11K_DBG_WMI, "wmm set ac %d aifs %d cwmin %d cwmax %d txop %d acm %d no_ack %d\n", ac, wmm_param->aifs, wmm_param->cwmin, wmm_param->cwmax, wmm_param->txoplimit, wmm_param->acm, wmm_param->no_ack); } ret = ath11k_wmi_cmd_send(wmi, skb, WMI_VDEV_SET_WMM_PARAMS_CMDID); if (ret) { ath11k_warn(ar->ab, "failed to send WMI_VDEV_SET_WMM_PARAMS_CMDID"); dev_kfree_skb(skb); } ath11k_dbg(ar->ab, ATH11K_DBG_WMI, "cmd vdev set wmm params"); return ret; } int ath11k_wmi_send_dfs_phyerr_offload_enable_cmd(struct ath11k *ar, u32 pdev_id) { struct ath11k_pdev_wmi *wmi = ar->wmi; struct wmi_dfs_phyerr_offload_cmd *cmd; struct sk_buff *skb; int ret; skb = ath11k_wmi_alloc_skb(wmi->wmi_ab, sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_dfs_phyerr_offload_cmd *)skb->data; cmd->tlv_header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_PDEV_DFS_PHYERR_OFFLOAD_ENABLE_CMD) | FIELD_PREP(WMI_TLV_LEN, sizeof(*cmd) - TLV_HDR_SIZE); cmd->pdev_id = pdev_id; ret = ath11k_wmi_cmd_send(wmi, skb, WMI_PDEV_DFS_PHYERR_OFFLOAD_ENABLE_CMDID); if (ret) { ath11k_warn(ar->ab, "failed to send WMI_PDEV_DFS_PHYERR_OFFLOAD_ENABLE cmd\n"); dev_kfree_skb(skb); } ath11k_dbg(ar->ab, ATH11K_DBG_WMI, "cmd pdev dfs phyerr offload enable pdev id %d\n", pdev_id); return ret; } int ath11k_wmi_delba_send(struct ath11k *ar, u32 vdev_id, const u8 *mac, u32 tid, u32 initiator, u32 reason) { struct ath11k_pdev_wmi *wmi = ar->wmi; struct wmi_delba_send_cmd *cmd; struct sk_buff *skb; int ret; skb = ath11k_wmi_alloc_skb(wmi->wmi_ab, sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_delba_send_cmd *)skb->data; cmd->tlv_header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_DELBA_SEND_CMD) | FIELD_PREP(WMI_TLV_LEN, sizeof(*cmd) - TLV_HDR_SIZE); cmd->vdev_id = vdev_id; ether_addr_copy(cmd->peer_macaddr.addr, mac); cmd->tid = tid; cmd->initiator = initiator; cmd->reasoncode = reason; ret = ath11k_wmi_cmd_send(wmi, skb, WMI_DELBA_SEND_CMDID); if (ret) { ath11k_warn(ar->ab, "failed to send WMI_DELBA_SEND_CMDID cmd\n"); dev_kfree_skb(skb); } ath11k_dbg(ar->ab, ATH11K_DBG_WMI, "cmd delba send vdev_id 0x%X mac_addr %pM tid %u initiator %u reason %u\n", vdev_id, mac, tid, initiator, reason); return ret; } int ath11k_wmi_addba_set_resp(struct ath11k *ar, u32 vdev_id, const u8 *mac, u32 tid, u32 status) { struct ath11k_pdev_wmi *wmi = ar->wmi; struct wmi_addba_setresponse_cmd *cmd; struct sk_buff *skb; int ret; skb = ath11k_wmi_alloc_skb(wmi->wmi_ab, sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_addba_setresponse_cmd *)skb->data; cmd->tlv_header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_ADDBA_SETRESPONSE_CMD) | FIELD_PREP(WMI_TLV_LEN, sizeof(*cmd) - TLV_HDR_SIZE); cmd->vdev_id = vdev_id; ether_addr_copy(cmd->peer_macaddr.addr, mac); cmd->tid = tid; cmd->statuscode = status; ret = ath11k_wmi_cmd_send(wmi, skb, WMI_ADDBA_SET_RESP_CMDID); if (ret) { ath11k_warn(ar->ab, "failed to send WMI_ADDBA_SET_RESP_CMDID cmd\n"); dev_kfree_skb(skb); } ath11k_dbg(ar->ab, ATH11K_DBG_WMI, "cmd addba set resp vdev_id 0x%X mac_addr %pM tid %u status %u\n", vdev_id, mac, tid, status); return ret; } int ath11k_wmi_addba_send(struct ath11k *ar, u32 vdev_id, const u8 *mac, u32 tid, u32 buf_size) { struct ath11k_pdev_wmi *wmi = ar->wmi; struct wmi_addba_send_cmd *cmd; struct sk_buff *skb; int ret; skb = ath11k_wmi_alloc_skb(wmi->wmi_ab, sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_addba_send_cmd *)skb->data; cmd->tlv_header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_ADDBA_SEND_CMD) | FIELD_PREP(WMI_TLV_LEN, sizeof(*cmd) - TLV_HDR_SIZE); cmd->vdev_id = vdev_id; ether_addr_copy(cmd->peer_macaddr.addr, mac); cmd->tid = tid; cmd->buffersize = buf_size; ret = ath11k_wmi_cmd_send(wmi, skb, WMI_ADDBA_SEND_CMDID); if (ret) { ath11k_warn(ar->ab, "failed to send WMI_ADDBA_SEND_CMDID cmd\n"); dev_kfree_skb(skb); } ath11k_dbg(ar->ab, ATH11K_DBG_WMI, "cmd addba send vdev_id 0x%X mac_addr %pM tid %u bufsize %u\n", vdev_id, mac, tid, buf_size); return ret; } int ath11k_wmi_addba_clear_resp(struct ath11k *ar, u32 vdev_id, const u8 *mac) { struct ath11k_pdev_wmi *wmi = ar->wmi; struct wmi_addba_clear_resp_cmd *cmd; struct sk_buff *skb; int ret; skb = ath11k_wmi_alloc_skb(wmi->wmi_ab, sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_addba_clear_resp_cmd *)skb->data; cmd->tlv_header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_ADDBA_CLEAR_RESP_CMD) | FIELD_PREP(WMI_TLV_LEN, sizeof(*cmd) - TLV_HDR_SIZE); cmd->vdev_id = vdev_id; ether_addr_copy(cmd->peer_macaddr.addr, mac); ret = ath11k_wmi_cmd_send(wmi, skb, WMI_ADDBA_CLEAR_RESP_CMDID); if (ret) { ath11k_warn(ar->ab, "failed to send WMI_ADDBA_CLEAR_RESP_CMDID cmd\n"); dev_kfree_skb(skb); } ath11k_dbg(ar->ab, ATH11K_DBG_WMI, "cmd addba clear resp vdev_id 0x%X mac_addr %pM\n", vdev_id, mac); return ret; } int ath11k_wmi_pdev_peer_pktlog_filter(struct ath11k *ar, u8 *addr, u8 enable) { struct ath11k_pdev_wmi *wmi = ar->wmi; struct wmi_pdev_pktlog_filter_cmd *cmd; struct wmi_pdev_pktlog_filter_info *info; struct sk_buff *skb; struct wmi_tlv *tlv; void *ptr; int ret, len; len = sizeof(*cmd) + sizeof(*info) + TLV_HDR_SIZE; skb = ath11k_wmi_alloc_skb(wmi->wmi_ab, len); if (!skb) return -ENOMEM; cmd = (struct wmi_pdev_pktlog_filter_cmd *)skb->data; cmd->tlv_header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_PDEV_PEER_PKTLOG_FILTER_CMD) | FIELD_PREP(WMI_TLV_LEN, sizeof(*cmd) - TLV_HDR_SIZE); cmd->pdev_id = DP_HW2SW_MACID(ar->pdev->pdev_id); cmd->num_mac = 1; cmd->enable = enable; ptr = skb->data + sizeof(*cmd); tlv = ptr; tlv->header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_ARRAY_STRUCT) | FIELD_PREP(WMI_TLV_LEN, sizeof(*info)); ptr += TLV_HDR_SIZE; info = ptr; ether_addr_copy(info->peer_macaddr.addr, addr); info->tlv_header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_PDEV_PEER_PKTLOG_FILTER_INFO) | FIELD_PREP(WMI_TLV_LEN, sizeof(*info) - TLV_HDR_SIZE); ret = ath11k_wmi_cmd_send(wmi, skb, WMI_PDEV_PKTLOG_FILTER_CMDID); if (ret) { ath11k_warn(ar->ab, "failed to send WMI_PDEV_PKTLOG_ENABLE_CMDID\n"); dev_kfree_skb(skb); } ath11k_dbg(ar->ab, ATH11K_DBG_WMI, "cmd pdev pktlog filter"); return ret; } int ath11k_wmi_send_init_country_cmd(struct ath11k *ar, struct wmi_init_country_params init_cc_params) { struct ath11k_pdev_wmi *wmi = ar->wmi; struct wmi_init_country_cmd *cmd; struct sk_buff *skb; int ret; skb = ath11k_wmi_alloc_skb(wmi->wmi_ab, sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_init_country_cmd *)skb->data; cmd->tlv_header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_SET_INIT_COUNTRY_CMD) | FIELD_PREP(WMI_TLV_LEN, sizeof(*cmd) - TLV_HDR_SIZE); cmd->pdev_id = ar->pdev->pdev_id; switch (init_cc_params.flags) { case ALPHA_IS_SET: cmd->init_cc_type = WMI_COUNTRY_INFO_TYPE_ALPHA; memcpy((u8 *)&cmd->cc_info.alpha2, init_cc_params.cc_info.alpha2, 3); break; case CC_IS_SET: cmd->init_cc_type = WMI_COUNTRY_INFO_TYPE_COUNTRY_CODE; cmd->cc_info.country_code = init_cc_params.cc_info.country_code; break; case REGDMN_IS_SET: cmd->init_cc_type = WMI_COUNTRY_INFO_TYPE_REGDOMAIN; cmd->cc_info.regdom_id = init_cc_params.cc_info.regdom_id; break; default: ath11k_warn(ar->ab, "unknown cc params flags: 0x%x", init_cc_params.flags); ret = -EINVAL; goto err; } ret = ath11k_wmi_cmd_send(wmi, skb, WMI_SET_INIT_COUNTRY_CMDID); if (ret) { ath11k_warn(ar->ab, "failed to send WMI_SET_INIT_COUNTRY CMD :%d\n", ret); goto err; } ath11k_dbg(ar->ab, ATH11K_DBG_WMI, "cmd set init country"); return 0; err: dev_kfree_skb(skb); return ret; } int ath11k_wmi_send_set_current_country_cmd(struct ath11k *ar, struct wmi_set_current_country_params *param) { struct ath11k_pdev_wmi *wmi = ar->wmi; struct wmi_set_current_country_cmd *cmd; struct sk_buff *skb; int ret; skb = ath11k_wmi_alloc_skb(wmi->wmi_ab, sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_set_current_country_cmd *)skb->data; cmd->tlv_header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_SET_CURRENT_COUNTRY_CMD) | FIELD_PREP(WMI_TLV_LEN, sizeof(*cmd) - TLV_HDR_SIZE); cmd->pdev_id = ar->pdev->pdev_id; memcpy(&cmd->new_alpha2, ¶m->alpha2, 3); ret = ath11k_wmi_cmd_send(wmi, skb, WMI_SET_CURRENT_COUNTRY_CMDID); if (ret) { ath11k_warn(ar->ab, "failed to send WMI_SET_CURRENT_COUNTRY_CMDID: %d\n", ret); dev_kfree_skb(skb); } ath11k_dbg(ar->ab, ATH11K_DBG_WMI, "cmd set current country pdev id %d alpha2 %c%c\n", ar->pdev->pdev_id, param->alpha2[0], param->alpha2[1]); return ret; } int ath11k_wmi_send_thermal_mitigation_param_cmd(struct ath11k *ar, struct thermal_mitigation_params *param) { struct ath11k_pdev_wmi *wmi = ar->wmi; struct wmi_therm_throt_config_request_cmd *cmd; struct wmi_therm_throt_level_config_info *lvl_conf; struct wmi_tlv *tlv; struct sk_buff *skb; int i, ret, len; len = sizeof(*cmd) + TLV_HDR_SIZE + THERMAL_LEVELS * sizeof(struct wmi_therm_throt_level_config_info); skb = ath11k_wmi_alloc_skb(wmi->wmi_ab, len); if (!skb) return -ENOMEM; cmd = (struct wmi_therm_throt_config_request_cmd *)skb->data; cmd->tlv_header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_THERM_THROT_CONFIG_REQUEST) | FIELD_PREP(WMI_TLV_LEN, sizeof(*cmd) - TLV_HDR_SIZE); cmd->pdev_id = ar->pdev->pdev_id; cmd->enable = param->enable; cmd->dc = param->dc; cmd->dc_per_event = param->dc_per_event; cmd->therm_throt_levels = THERMAL_LEVELS; tlv = (struct wmi_tlv *)(skb->data + sizeof(*cmd)); tlv->header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_ARRAY_STRUCT) | FIELD_PREP(WMI_TLV_LEN, (THERMAL_LEVELS * sizeof(struct wmi_therm_throt_level_config_info))); lvl_conf = (struct wmi_therm_throt_level_config_info *)(skb->data + sizeof(*cmd) + TLV_HDR_SIZE); for (i = 0; i < THERMAL_LEVELS; i++) { lvl_conf->tlv_header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_THERM_THROT_LEVEL_CONFIG_INFO) | FIELD_PREP(WMI_TLV_LEN, sizeof(*lvl_conf) - TLV_HDR_SIZE); lvl_conf->temp_lwm = param->levelconf[i].tmplwm; lvl_conf->temp_hwm = param->levelconf[i].tmphwm; lvl_conf->dc_off_percent = param->levelconf[i].dcoffpercent; lvl_conf->prio = param->levelconf[i].priority; lvl_conf++; } ret = ath11k_wmi_cmd_send(wmi, skb, WMI_THERM_THROT_SET_CONF_CMDID); if (ret) { ath11k_warn(ar->ab, "failed to send THERM_THROT_SET_CONF cmd\n"); dev_kfree_skb(skb); } ath11k_dbg(ar->ab, ATH11K_DBG_WMI, "cmd therm throt set conf pdev_id %d enable %d dc %d dc_per_event %x levels %d\n", ar->pdev->pdev_id, param->enable, param->dc, param->dc_per_event, THERMAL_LEVELS); return ret; } int ath11k_wmi_send_11d_scan_start_cmd(struct ath11k *ar, struct wmi_11d_scan_start_params *param) { struct ath11k_pdev_wmi *wmi = ar->wmi; struct wmi_11d_scan_start_cmd *cmd; struct sk_buff *skb; int ret; skb = ath11k_wmi_alloc_skb(wmi->wmi_ab, sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_11d_scan_start_cmd *)skb->data; cmd->tlv_header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_11D_SCAN_START_CMD) | FIELD_PREP(WMI_TLV_LEN, sizeof(*cmd) - TLV_HDR_SIZE); cmd->vdev_id = param->vdev_id; cmd->scan_period_msec = param->scan_period_msec; cmd->start_interval_msec = param->start_interval_msec; ret = ath11k_wmi_cmd_send(wmi, skb, WMI_11D_SCAN_START_CMDID); if (ret) { ath11k_warn(ar->ab, "failed to send WMI_11D_SCAN_START_CMDID: %d\n", ret); dev_kfree_skb(skb); } ath11k_dbg(ar->ab, ATH11K_DBG_WMI, "cmd 11d scan start vdev id %d period %d ms internal %d ms\n", cmd->vdev_id, cmd->scan_period_msec, cmd->start_interval_msec); return ret; } int ath11k_wmi_send_11d_scan_stop_cmd(struct ath11k *ar, u32 vdev_id) { struct ath11k_pdev_wmi *wmi = ar->wmi; struct wmi_11d_scan_stop_cmd *cmd; struct sk_buff *skb; int ret; skb = ath11k_wmi_alloc_skb(wmi->wmi_ab, sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_11d_scan_stop_cmd *)skb->data; cmd->tlv_header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_11D_SCAN_STOP_CMD) | FIELD_PREP(WMI_TLV_LEN, sizeof(*cmd) - TLV_HDR_SIZE); cmd->vdev_id = vdev_id; ret = ath11k_wmi_cmd_send(wmi, skb, WMI_11D_SCAN_STOP_CMDID); if (ret) { ath11k_warn(ar->ab, "failed to send WMI_11D_SCAN_STOP_CMDID: %d\n", ret); dev_kfree_skb(skb); } ath11k_dbg(ar->ab, ATH11K_DBG_WMI, "cmd 11d scan stop vdev id %d\n", cmd->vdev_id); return ret; } int ath11k_wmi_pdev_pktlog_enable(struct ath11k *ar, u32 pktlog_filter) { struct ath11k_pdev_wmi *wmi = ar->wmi; struct wmi_pktlog_enable_cmd *cmd; struct sk_buff *skb; int ret; skb = ath11k_wmi_alloc_skb(wmi->wmi_ab, sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_pktlog_enable_cmd *)skb->data; cmd->tlv_header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_PDEV_PKTLOG_ENABLE_CMD) | FIELD_PREP(WMI_TLV_LEN, sizeof(*cmd) - TLV_HDR_SIZE); cmd->pdev_id = DP_HW2SW_MACID(ar->pdev->pdev_id); cmd->evlist = pktlog_filter; cmd->enable = ATH11K_WMI_PKTLOG_ENABLE_FORCE; ret = ath11k_wmi_cmd_send(wmi, skb, WMI_PDEV_PKTLOG_ENABLE_CMDID); if (ret) { ath11k_warn(ar->ab, "failed to send WMI_PDEV_PKTLOG_ENABLE_CMDID\n"); dev_kfree_skb(skb); } ath11k_dbg(ar->ab, ATH11K_DBG_WMI, "cmd pdev pktlog enable"); return ret; } int ath11k_wmi_pdev_pktlog_disable(struct ath11k *ar) { struct ath11k_pdev_wmi *wmi = ar->wmi; struct wmi_pktlog_disable_cmd *cmd; struct sk_buff *skb; int ret; skb = ath11k_wmi_alloc_skb(wmi->wmi_ab, sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_pktlog_disable_cmd *)skb->data; cmd->tlv_header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_PDEV_PKTLOG_DISABLE_CMD) | FIELD_PREP(WMI_TLV_LEN, sizeof(*cmd) - TLV_HDR_SIZE); cmd->pdev_id = DP_HW2SW_MACID(ar->pdev->pdev_id); ret = ath11k_wmi_cmd_send(wmi, skb, WMI_PDEV_PKTLOG_DISABLE_CMDID); if (ret) { ath11k_warn(ar->ab, "failed to send WMI_PDEV_PKTLOG_ENABLE_CMDID\n"); dev_kfree_skb(skb); } ath11k_dbg(ar->ab, ATH11K_DBG_WMI, "cmd pdev pktlog disable"); return ret; } void ath11k_wmi_fill_default_twt_params(struct wmi_twt_enable_params *twt_params) { twt_params->sta_cong_timer_ms = ATH11K_TWT_DEF_STA_CONG_TIMER_MS; twt_params->default_slot_size = ATH11K_TWT_DEF_DEFAULT_SLOT_SIZE; twt_params->congestion_thresh_setup = ATH11K_TWT_DEF_CONGESTION_THRESH_SETUP; twt_params->congestion_thresh_teardown = ATH11K_TWT_DEF_CONGESTION_THRESH_TEARDOWN; twt_params->congestion_thresh_critical = ATH11K_TWT_DEF_CONGESTION_THRESH_CRITICAL; twt_params->interference_thresh_teardown = ATH11K_TWT_DEF_INTERFERENCE_THRESH_TEARDOWN; twt_params->interference_thresh_setup = ATH11K_TWT_DEF_INTERFERENCE_THRESH_SETUP; twt_params->min_no_sta_setup = ATH11K_TWT_DEF_MIN_NO_STA_SETUP; twt_params->min_no_sta_teardown = ATH11K_TWT_DEF_MIN_NO_STA_TEARDOWN; twt_params->no_of_bcast_mcast_slots = ATH11K_TWT_DEF_NO_OF_BCAST_MCAST_SLOTS; twt_params->min_no_twt_slots = ATH11K_TWT_DEF_MIN_NO_TWT_SLOTS; twt_params->max_no_sta_twt = ATH11K_TWT_DEF_MAX_NO_STA_TWT; twt_params->mode_check_interval = ATH11K_TWT_DEF_MODE_CHECK_INTERVAL; twt_params->add_sta_slot_interval = ATH11K_TWT_DEF_ADD_STA_SLOT_INTERVAL; twt_params->remove_sta_slot_interval = ATH11K_TWT_DEF_REMOVE_STA_SLOT_INTERVAL; /* TODO add MBSSID support */ twt_params->mbss_support = 0; } int ath11k_wmi_send_twt_enable_cmd(struct ath11k *ar, u32 pdev_id, struct wmi_twt_enable_params *params) { struct ath11k_pdev_wmi *wmi = ar->wmi; struct ath11k_base *ab = wmi->wmi_ab->ab; struct wmi_twt_enable_params_cmd *cmd; struct sk_buff *skb; int ret, len; len = sizeof(*cmd); skb = ath11k_wmi_alloc_skb(wmi->wmi_ab, len); if (!skb) return -ENOMEM; cmd = (struct wmi_twt_enable_params_cmd *)skb->data; cmd->tlv_header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_TWT_ENABLE_CMD) | FIELD_PREP(WMI_TLV_LEN, len - TLV_HDR_SIZE); cmd->pdev_id = pdev_id; cmd->sta_cong_timer_ms = params->sta_cong_timer_ms; cmd->default_slot_size = params->default_slot_size; cmd->congestion_thresh_setup = params->congestion_thresh_setup; cmd->congestion_thresh_teardown = params->congestion_thresh_teardown; cmd->congestion_thresh_critical = params->congestion_thresh_critical; cmd->interference_thresh_teardown = params->interference_thresh_teardown; cmd->interference_thresh_setup = params->interference_thresh_setup; cmd->min_no_sta_setup = params->min_no_sta_setup; cmd->min_no_sta_teardown = params->min_no_sta_teardown; cmd->no_of_bcast_mcast_slots = params->no_of_bcast_mcast_slots; cmd->min_no_twt_slots = params->min_no_twt_slots; cmd->max_no_sta_twt = params->max_no_sta_twt; cmd->mode_check_interval = params->mode_check_interval; cmd->add_sta_slot_interval = params->add_sta_slot_interval; cmd->remove_sta_slot_interval = params->remove_sta_slot_interval; cmd->mbss_support = params->mbss_support; ret = ath11k_wmi_cmd_send(wmi, skb, WMI_TWT_ENABLE_CMDID); if (ret) { ath11k_warn(ab, "Failed to send WMI_TWT_ENABLE_CMDID"); dev_kfree_skb(skb); return ret; } ar->twt_enabled = 1; ath11k_dbg(ab, ATH11K_DBG_WMI, "cmd twt enable"); return 0; } int ath11k_wmi_send_twt_disable_cmd(struct ath11k *ar, u32 pdev_id) { struct ath11k_pdev_wmi *wmi = ar->wmi; struct ath11k_base *ab = wmi->wmi_ab->ab; struct wmi_twt_disable_params_cmd *cmd; struct sk_buff *skb; int ret, len; len = sizeof(*cmd); skb = ath11k_wmi_alloc_skb(wmi->wmi_ab, len); if (!skb) return -ENOMEM; cmd = (struct wmi_twt_disable_params_cmd *)skb->data; cmd->tlv_header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_TWT_DISABLE_CMD) | FIELD_PREP(WMI_TLV_LEN, len - TLV_HDR_SIZE); cmd->pdev_id = pdev_id; ret = ath11k_wmi_cmd_send(wmi, skb, WMI_TWT_DISABLE_CMDID); if (ret) { ath11k_warn(ab, "Failed to send WMI_TWT_DISABLE_CMDID"); dev_kfree_skb(skb); return ret; } ath11k_dbg(ab, ATH11K_DBG_WMI, "cmd twt disable"); ar->twt_enabled = 0; return 0; } int ath11k_wmi_send_twt_add_dialog_cmd(struct ath11k *ar, struct wmi_twt_add_dialog_params *params) { struct ath11k_pdev_wmi *wmi = ar->wmi; struct ath11k_base *ab = wmi->wmi_ab->ab; struct wmi_twt_add_dialog_params_cmd *cmd; struct sk_buff *skb; int ret, len; len = sizeof(*cmd); skb = ath11k_wmi_alloc_skb(wmi->wmi_ab, len); if (!skb) return -ENOMEM; cmd = (struct wmi_twt_add_dialog_params_cmd *)skb->data; cmd->tlv_header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_TWT_ADD_DIALOG_CMD) | FIELD_PREP(WMI_TLV_LEN, len - TLV_HDR_SIZE); cmd->vdev_id = params->vdev_id; ether_addr_copy(cmd->peer_macaddr.addr, params->peer_macaddr); cmd->dialog_id = params->dialog_id; cmd->wake_intvl_us = params->wake_intvl_us; cmd->wake_intvl_mantis = params->wake_intvl_mantis; cmd->wake_dura_us = params->wake_dura_us; cmd->sp_offset_us = params->sp_offset_us; cmd->flags = params->twt_cmd; if (params->flag_bcast) cmd->flags |= WMI_TWT_ADD_DIALOG_FLAG_BCAST; if (params->flag_trigger) cmd->flags |= WMI_TWT_ADD_DIALOG_FLAG_TRIGGER; if (params->flag_flow_type) cmd->flags |= WMI_TWT_ADD_DIALOG_FLAG_FLOW_TYPE; if (params->flag_protection) cmd->flags |= WMI_TWT_ADD_DIALOG_FLAG_PROTECTION; ret = ath11k_wmi_cmd_send(wmi, skb, WMI_TWT_ADD_DIALOG_CMDID); if (ret) { ath11k_warn(ab, "failed to send wmi command to add twt dialog: %d", ret); dev_kfree_skb(skb); return ret; } ath11k_dbg(ar->ab, ATH11K_DBG_WMI, "cmd twt add dialog vdev %u dialog id %u wake interval %u mantissa %u wake duration %u service period offset %u flags 0x%x\n", cmd->vdev_id, cmd->dialog_id, cmd->wake_intvl_us, cmd->wake_intvl_mantis, cmd->wake_dura_us, cmd->sp_offset_us, cmd->flags); return 0; } int ath11k_wmi_send_twt_del_dialog_cmd(struct ath11k *ar, struct wmi_twt_del_dialog_params *params) { struct ath11k_pdev_wmi *wmi = ar->wmi; struct ath11k_base *ab = wmi->wmi_ab->ab; struct wmi_twt_del_dialog_params_cmd *cmd; struct sk_buff *skb; int ret, len; len = sizeof(*cmd); skb = ath11k_wmi_alloc_skb(wmi->wmi_ab, len); if (!skb) return -ENOMEM; cmd = (struct wmi_twt_del_dialog_params_cmd *)skb->data; cmd->tlv_header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_TWT_DEL_DIALOG_CMD) | FIELD_PREP(WMI_TLV_LEN, len - TLV_HDR_SIZE); cmd->vdev_id = params->vdev_id; ether_addr_copy(cmd->peer_macaddr.addr, params->peer_macaddr); cmd->dialog_id = params->dialog_id; ret = ath11k_wmi_cmd_send(wmi, skb, WMI_TWT_DEL_DIALOG_CMDID); if (ret) { ath11k_warn(ab, "failed to send wmi command to delete twt dialog: %d", ret); dev_kfree_skb(skb); return ret; } ath11k_dbg(ar->ab, ATH11K_DBG_WMI, "cmd twt del dialog vdev %u dialog id %u\n", cmd->vdev_id, cmd->dialog_id); return 0; } int ath11k_wmi_send_twt_pause_dialog_cmd(struct ath11k *ar, struct wmi_twt_pause_dialog_params *params) { struct ath11k_pdev_wmi *wmi = ar->wmi; struct ath11k_base *ab = wmi->wmi_ab->ab; struct wmi_twt_pause_dialog_params_cmd *cmd; struct sk_buff *skb; int ret, len; len = sizeof(*cmd); skb = ath11k_wmi_alloc_skb(wmi->wmi_ab, len); if (!skb) return -ENOMEM; cmd = (struct wmi_twt_pause_dialog_params_cmd *)skb->data; cmd->tlv_header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_TWT_PAUSE_DIALOG_CMD) | FIELD_PREP(WMI_TLV_LEN, len - TLV_HDR_SIZE); cmd->vdev_id = params->vdev_id; ether_addr_copy(cmd->peer_macaddr.addr, params->peer_macaddr); cmd->dialog_id = params->dialog_id; ret = ath11k_wmi_cmd_send(wmi, skb, WMI_TWT_PAUSE_DIALOG_CMDID); if (ret) { ath11k_warn(ab, "failed to send wmi command to pause twt dialog: %d", ret); dev_kfree_skb(skb); return ret; } ath11k_dbg(ar->ab, ATH11K_DBG_WMI, "cmd twt pause dialog vdev %u dialog id %u\n", cmd->vdev_id, cmd->dialog_id); return 0; } int ath11k_wmi_send_twt_resume_dialog_cmd(struct ath11k *ar, struct wmi_twt_resume_dialog_params *params) { struct ath11k_pdev_wmi *wmi = ar->wmi; struct ath11k_base *ab = wmi->wmi_ab->ab; struct wmi_twt_resume_dialog_params_cmd *cmd; struct sk_buff *skb; int ret, len; len = sizeof(*cmd); skb = ath11k_wmi_alloc_skb(wmi->wmi_ab, len); if (!skb) return -ENOMEM; cmd = (struct wmi_twt_resume_dialog_params_cmd *)skb->data; cmd->tlv_header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_TWT_RESUME_DIALOG_CMD) | FIELD_PREP(WMI_TLV_LEN, len - TLV_HDR_SIZE); cmd->vdev_id = params->vdev_id; ether_addr_copy(cmd->peer_macaddr.addr, params->peer_macaddr); cmd->dialog_id = params->dialog_id; cmd->sp_offset_us = params->sp_offset_us; cmd->next_twt_size = params->next_twt_size; ret = ath11k_wmi_cmd_send(wmi, skb, WMI_TWT_RESUME_DIALOG_CMDID); if (ret) { ath11k_warn(ab, "failed to send wmi command to resume twt dialog: %d", ret); dev_kfree_skb(skb); return ret; } ath11k_dbg(ar->ab, ATH11K_DBG_WMI, "cmd twt resume dialog vdev %u dialog id %u service period offset %u next twt subfield size %u\n", cmd->vdev_id, cmd->dialog_id, cmd->sp_offset_us, cmd->next_twt_size); return 0; } int ath11k_wmi_send_obss_spr_cmd(struct ath11k *ar, u32 vdev_id, struct ieee80211_he_obss_pd *he_obss_pd) { struct ath11k_pdev_wmi *wmi = ar->wmi; struct ath11k_base *ab = wmi->wmi_ab->ab; struct wmi_obss_spatial_reuse_params_cmd *cmd; struct sk_buff *skb; int ret, len; len = sizeof(*cmd); skb = ath11k_wmi_alloc_skb(wmi->wmi_ab, len); if (!skb) return -ENOMEM; cmd = (struct wmi_obss_spatial_reuse_params_cmd *)skb->data; cmd->tlv_header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_OBSS_SPATIAL_REUSE_SET_CMD) | FIELD_PREP(WMI_TLV_LEN, len - TLV_HDR_SIZE); cmd->vdev_id = vdev_id; cmd->enable = he_obss_pd->enable; cmd->obss_min = he_obss_pd->min_offset; cmd->obss_max = he_obss_pd->max_offset; ret = ath11k_wmi_cmd_send(wmi, skb, WMI_PDEV_OBSS_PD_SPATIAL_REUSE_CMDID); if (ret) { ath11k_warn(ab, "Failed to send WMI_PDEV_OBSS_PD_SPATIAL_REUSE_CMDID"); dev_kfree_skb(skb); return ret; } ath11k_dbg(ab, ATH11K_DBG_WMI, "cmd pdev obss pd spatial reuse"); return 0; } int ath11k_wmi_pdev_set_srg_bss_color_bitmap(struct ath11k *ar, u32 *bitmap) { struct ath11k_pdev_wmi *wmi = ar->wmi; struct ath11k_base *ab = wmi->wmi_ab->ab; struct wmi_pdev_obss_pd_bitmap_cmd *cmd; struct sk_buff *skb; int ret, len; len = sizeof(*cmd); skb = ath11k_wmi_alloc_skb(wmi->wmi_ab, len); if (!skb) return -ENOMEM; cmd = (struct wmi_pdev_obss_pd_bitmap_cmd *)skb->data; cmd->tlv_header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_PDEV_SRG_BSS_COLOR_BITMAP_CMD) | FIELD_PREP(WMI_TLV_LEN, len - TLV_HDR_SIZE); cmd->pdev_id = ar->pdev->pdev_id; memcpy(cmd->bitmap, bitmap, sizeof(cmd->bitmap)); ret = ath11k_wmi_cmd_send(wmi, skb, WMI_PDEV_SET_SRG_BSS_COLOR_BITMAP_CMDID); if (ret) { ath11k_warn(ab, "failed to send WMI_PDEV_SET_SRG_BSS_COLOR_BITMAP_CMDID"); dev_kfree_skb(skb); return ret; } ath11k_dbg(ar->ab, ATH11K_DBG_WMI, "cmd pdev set srg bss color bitmap pdev_id %d bss color bitmap %08x %08x\n", cmd->pdev_id, cmd->bitmap[0], cmd->bitmap[1]); return 0; } int ath11k_wmi_pdev_set_srg_patial_bssid_bitmap(struct ath11k *ar, u32 *bitmap) { struct ath11k_pdev_wmi *wmi = ar->wmi; struct ath11k_base *ab = wmi->wmi_ab->ab; struct wmi_pdev_obss_pd_bitmap_cmd *cmd; struct sk_buff *skb; int ret, len; len = sizeof(*cmd); skb = ath11k_wmi_alloc_skb(wmi->wmi_ab, len); if (!skb) return -ENOMEM; cmd = (struct wmi_pdev_obss_pd_bitmap_cmd *)skb->data; cmd->tlv_header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_PDEV_SRG_PARTIAL_BSSID_BITMAP_CMD) | FIELD_PREP(WMI_TLV_LEN, len - TLV_HDR_SIZE); cmd->pdev_id = ar->pdev->pdev_id; memcpy(cmd->bitmap, bitmap, sizeof(cmd->bitmap)); ret = ath11k_wmi_cmd_send(wmi, skb, WMI_PDEV_SET_SRG_PARTIAL_BSSID_BITMAP_CMDID); if (ret) { ath11k_warn(ab, "failed to send WMI_PDEV_SET_SRG_PARTIAL_BSSID_BITMAP_CMDID"); dev_kfree_skb(skb); return ret; } ath11k_dbg(ar->ab, ATH11K_DBG_WMI, "cmd pdev set srg partial bssid bitmap pdev_id %d partial bssid bitmap %08x %08x\n", cmd->pdev_id, cmd->bitmap[0], cmd->bitmap[1]); return 0; } int ath11k_wmi_pdev_srg_obss_color_enable_bitmap(struct ath11k *ar, u32 *bitmap) { struct ath11k_pdev_wmi *wmi = ar->wmi; struct ath11k_base *ab = wmi->wmi_ab->ab; struct wmi_pdev_obss_pd_bitmap_cmd *cmd; struct sk_buff *skb; int ret, len; len = sizeof(*cmd); skb = ath11k_wmi_alloc_skb(wmi->wmi_ab, len); if (!skb) return -ENOMEM; cmd = (struct wmi_pdev_obss_pd_bitmap_cmd *)skb->data; cmd->tlv_header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_PDEV_SRG_OBSS_COLOR_ENABLE_BITMAP_CMD) | FIELD_PREP(WMI_TLV_LEN, len - TLV_HDR_SIZE); cmd->pdev_id = ar->pdev->pdev_id; memcpy(cmd->bitmap, bitmap, sizeof(cmd->bitmap)); ret = ath11k_wmi_cmd_send(wmi, skb, WMI_PDEV_SET_SRG_OBSS_COLOR_ENABLE_BITMAP_CMDID); if (ret) { ath11k_warn(ab, "failed to send WMI_PDEV_SET_SRG_OBSS_COLOR_ENABLE_BITMAP_CMDID"); dev_kfree_skb(skb); return ret; } ath11k_dbg(ar->ab, ATH11K_DBG_WMI, "cmd pdev set srg obsscolor enable pdev_id %d bss color enable bitmap %08x %08x\n", cmd->pdev_id, cmd->bitmap[0], cmd->bitmap[1]); return 0; } int ath11k_wmi_pdev_srg_obss_bssid_enable_bitmap(struct ath11k *ar, u32 *bitmap) { struct ath11k_pdev_wmi *wmi = ar->wmi; struct ath11k_base *ab = wmi->wmi_ab->ab; struct wmi_pdev_obss_pd_bitmap_cmd *cmd; struct sk_buff *skb; int ret, len; len = sizeof(*cmd); skb = ath11k_wmi_alloc_skb(wmi->wmi_ab, len); if (!skb) return -ENOMEM; cmd = (struct wmi_pdev_obss_pd_bitmap_cmd *)skb->data; cmd->tlv_header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_PDEV_SRG_OBSS_BSSID_ENABLE_BITMAP_CMD) | FIELD_PREP(WMI_TLV_LEN, len - TLV_HDR_SIZE); cmd->pdev_id = ar->pdev->pdev_id; memcpy(cmd->bitmap, bitmap, sizeof(cmd->bitmap)); ret = ath11k_wmi_cmd_send(wmi, skb, WMI_PDEV_SET_SRG_OBSS_BSSID_ENABLE_BITMAP_CMDID); if (ret) { ath11k_warn(ab, "failed to send WMI_PDEV_SET_SRG_OBSS_BSSID_ENABLE_BITMAP_CMDID"); dev_kfree_skb(skb); return ret; } ath11k_dbg(ar->ab, ATH11K_DBG_WMI, "cmd pdev set srg obss bssid enable bitmap pdev_id %d bssid enable bitmap %08x %08x\n", cmd->pdev_id, cmd->bitmap[0], cmd->bitmap[1]); return 0; } int ath11k_wmi_pdev_non_srg_obss_color_enable_bitmap(struct ath11k *ar, u32 *bitmap) { struct ath11k_pdev_wmi *wmi = ar->wmi; struct ath11k_base *ab = wmi->wmi_ab->ab; struct wmi_pdev_obss_pd_bitmap_cmd *cmd; struct sk_buff *skb; int ret, len; len = sizeof(*cmd); skb = ath11k_wmi_alloc_skb(wmi->wmi_ab, len); if (!skb) return -ENOMEM; cmd = (struct wmi_pdev_obss_pd_bitmap_cmd *)skb->data; cmd->tlv_header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_PDEV_NON_SRG_OBSS_COLOR_ENABLE_BITMAP_CMD) | FIELD_PREP(WMI_TLV_LEN, len - TLV_HDR_SIZE); cmd->pdev_id = ar->pdev->pdev_id; memcpy(cmd->bitmap, bitmap, sizeof(cmd->bitmap)); ret = ath11k_wmi_cmd_send(wmi, skb, WMI_PDEV_SET_NON_SRG_OBSS_COLOR_ENABLE_BITMAP_CMDID); if (ret) { ath11k_warn(ab, "failed to send WMI_PDEV_SET_NON_SRG_OBSS_COLOR_ENABLE_BITMAP_CMDID"); dev_kfree_skb(skb); return ret; } ath11k_dbg(ar->ab, ATH11K_DBG_WMI, "cmd pdev set non srg obss color enable bitmap pdev_id %d bss color enable bitmap %08x %08x\n", cmd->pdev_id, cmd->bitmap[0], cmd->bitmap[1]); return 0; } int ath11k_wmi_pdev_non_srg_obss_bssid_enable_bitmap(struct ath11k *ar, u32 *bitmap) { struct ath11k_pdev_wmi *wmi = ar->wmi; struct ath11k_base *ab = wmi->wmi_ab->ab; struct wmi_pdev_obss_pd_bitmap_cmd *cmd; struct sk_buff *skb; int ret, len; len = sizeof(*cmd); skb = ath11k_wmi_alloc_skb(wmi->wmi_ab, len); if (!skb) return -ENOMEM; cmd = (struct wmi_pdev_obss_pd_bitmap_cmd *)skb->data; cmd->tlv_header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_PDEV_NON_SRG_OBSS_BSSID_ENABLE_BITMAP_CMD) | FIELD_PREP(WMI_TLV_LEN, len - TLV_HDR_SIZE); cmd->pdev_id = ar->pdev->pdev_id; memcpy(cmd->bitmap, bitmap, sizeof(cmd->bitmap)); ret = ath11k_wmi_cmd_send(wmi, skb, WMI_PDEV_SET_NON_SRG_OBSS_BSSID_ENABLE_BITMAP_CMDID); if (ret) { ath11k_warn(ab, "failed to send WMI_PDEV_SET_NON_SRG_OBSS_BSSID_ENABLE_BITMAP_CMDID"); dev_kfree_skb(skb); return ret; } ath11k_dbg(ar->ab, ATH11K_DBG_WMI, "cmd pdev set non srg obss bssid enable bitmap pdev_id %d bssid enable bitmap %08x %08x\n", cmd->pdev_id, cmd->bitmap[0], cmd->bitmap[1]); return 0; } int ath11k_wmi_send_obss_color_collision_cfg_cmd(struct ath11k *ar, u32 vdev_id, u8 bss_color, u32 period, bool enable) { struct ath11k_pdev_wmi *wmi = ar->wmi; struct ath11k_base *ab = wmi->wmi_ab->ab; struct wmi_obss_color_collision_cfg_params_cmd *cmd; struct sk_buff *skb; int ret, len; len = sizeof(*cmd); skb = ath11k_wmi_alloc_skb(wmi->wmi_ab, len); if (!skb) return -ENOMEM; cmd = (struct wmi_obss_color_collision_cfg_params_cmd *)skb->data; cmd->tlv_header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_OBSS_COLOR_COLLISION_DET_CONFIG) | FIELD_PREP(WMI_TLV_LEN, len - TLV_HDR_SIZE); cmd->vdev_id = vdev_id; cmd->evt_type = enable ? ATH11K_OBSS_COLOR_COLLISION_DETECTION : ATH11K_OBSS_COLOR_COLLISION_DETECTION_DISABLE; cmd->current_bss_color = bss_color; cmd->detection_period_ms = period; cmd->scan_period_ms = ATH11K_BSS_COLOR_COLLISION_SCAN_PERIOD_MS; cmd->free_slot_expiry_time_ms = 0; cmd->flags = 0; ret = ath11k_wmi_cmd_send(wmi, skb, WMI_OBSS_COLOR_COLLISION_DET_CONFIG_CMDID); if (ret) { ath11k_warn(ab, "Failed to send WMI_OBSS_COLOR_COLLISION_DET_CONFIG_CMDID"); dev_kfree_skb(skb); return ret; } ath11k_dbg(ar->ab, ATH11K_DBG_WMI, "cmd obss color collision det config id %d type %d bss_color %d detect_period %d scan_period %d\n", cmd->vdev_id, cmd->evt_type, cmd->current_bss_color, cmd->detection_period_ms, cmd->scan_period_ms); return 0; } int ath11k_wmi_send_bss_color_change_enable_cmd(struct ath11k *ar, u32 vdev_id, bool enable) { struct ath11k_pdev_wmi *wmi = ar->wmi; struct ath11k_base *ab = wmi->wmi_ab->ab; struct wmi_bss_color_change_enable_params_cmd *cmd; struct sk_buff *skb; int ret, len; len = sizeof(*cmd); skb = ath11k_wmi_alloc_skb(wmi->wmi_ab, len); if (!skb) return -ENOMEM; cmd = (struct wmi_bss_color_change_enable_params_cmd *)skb->data; cmd->tlv_header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_BSS_COLOR_CHANGE_ENABLE) | FIELD_PREP(WMI_TLV_LEN, len - TLV_HDR_SIZE); cmd->vdev_id = vdev_id; cmd->enable = enable ? 1 : 0; ret = ath11k_wmi_cmd_send(wmi, skb, WMI_BSS_COLOR_CHANGE_ENABLE_CMDID); if (ret) { ath11k_warn(ab, "Failed to send WMI_BSS_COLOR_CHANGE_ENABLE_CMDID"); dev_kfree_skb(skb); return ret; } ath11k_dbg(ar->ab, ATH11K_DBG_WMI, "cmd bss color change enable id %d enable %d\n", cmd->vdev_id, cmd->enable); return 0; } int ath11k_wmi_fils_discovery_tmpl(struct ath11k *ar, u32 vdev_id, struct sk_buff *tmpl) { struct wmi_tlv *tlv; struct sk_buff *skb; void *ptr; int ret, len; size_t aligned_len; struct wmi_fils_discovery_tmpl_cmd *cmd; aligned_len = roundup(tmpl->len, 4); len = sizeof(*cmd) + TLV_HDR_SIZE + aligned_len; ath11k_dbg(ar->ab, ATH11K_DBG_WMI, "vdev %i set FILS discovery template\n", vdev_id); skb = ath11k_wmi_alloc_skb(ar->wmi->wmi_ab, len); if (!skb) return -ENOMEM; cmd = (struct wmi_fils_discovery_tmpl_cmd *)skb->data; cmd->tlv_header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_FILS_DISCOVERY_TMPL_CMD) | FIELD_PREP(WMI_TLV_LEN, sizeof(*cmd) - TLV_HDR_SIZE); cmd->vdev_id = vdev_id; cmd->buf_len = tmpl->len; ptr = skb->data + sizeof(*cmd); tlv = ptr; tlv->header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_ARRAY_BYTE) | FIELD_PREP(WMI_TLV_LEN, aligned_len); memcpy(tlv->value, tmpl->data, tmpl->len); ret = ath11k_wmi_cmd_send(ar->wmi, skb, WMI_FILS_DISCOVERY_TMPL_CMDID); if (ret) { ath11k_warn(ar->ab, "WMI vdev %i failed to send FILS discovery template command\n", vdev_id); dev_kfree_skb(skb); return ret; } ath11k_dbg(ar->ab, ATH11K_DBG_WMI, "cmd fils discovery tmpl"); return 0; } int ath11k_wmi_probe_resp_tmpl(struct ath11k *ar, u32 vdev_id, struct sk_buff *tmpl) { struct wmi_probe_tmpl_cmd *cmd; struct wmi_bcn_prb_info *probe_info; struct wmi_tlv *tlv; struct sk_buff *skb; void *ptr; int ret, len; size_t aligned_len = roundup(tmpl->len, 4); ath11k_dbg(ar->ab, ATH11K_DBG_WMI, "vdev %i set probe response template\n", vdev_id); len = sizeof(*cmd) + sizeof(*probe_info) + TLV_HDR_SIZE + aligned_len; skb = ath11k_wmi_alloc_skb(ar->wmi->wmi_ab, len); if (!skb) return -ENOMEM; cmd = (struct wmi_probe_tmpl_cmd *)skb->data; cmd->tlv_header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_PRB_TMPL_CMD) | FIELD_PREP(WMI_TLV_LEN, sizeof(*cmd) - TLV_HDR_SIZE); cmd->vdev_id = vdev_id; cmd->buf_len = tmpl->len; ptr = skb->data + sizeof(*cmd); probe_info = ptr; len = sizeof(*probe_info); probe_info->tlv_header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_BCN_PRB_INFO) | FIELD_PREP(WMI_TLV_LEN, len - TLV_HDR_SIZE); probe_info->caps = 0; probe_info->erp = 0; ptr += sizeof(*probe_info); tlv = ptr; tlv->header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_ARRAY_BYTE) | FIELD_PREP(WMI_TLV_LEN, aligned_len); memcpy(tlv->value, tmpl->data, tmpl->len); ret = ath11k_wmi_cmd_send(ar->wmi, skb, WMI_PRB_TMPL_CMDID); if (ret) { ath11k_warn(ar->ab, "WMI vdev %i failed to send probe response template command\n", vdev_id); dev_kfree_skb(skb); return ret; } ath11k_dbg(ar->ab, ATH11K_DBG_WMI, "cmd "); return 0; } int ath11k_wmi_fils_discovery(struct ath11k *ar, u32 vdev_id, u32 interval, bool unsol_bcast_probe_resp_enabled) { struct sk_buff *skb; int ret, len; struct wmi_fils_discovery_cmd *cmd; ath11k_dbg(ar->ab, ATH11K_DBG_WMI, "vdev %i set %s interval to %u TU\n", vdev_id, unsol_bcast_probe_resp_enabled ? "unsolicited broadcast probe response" : "FILS discovery", interval); len = sizeof(*cmd); skb = ath11k_wmi_alloc_skb(ar->wmi->wmi_ab, len); if (!skb) return -ENOMEM; cmd = (struct wmi_fils_discovery_cmd *)skb->data; cmd->tlv_header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_ENABLE_FILS_CMD) | FIELD_PREP(WMI_TLV_LEN, len - TLV_HDR_SIZE); cmd->vdev_id = vdev_id; cmd->interval = interval; cmd->config = unsol_bcast_probe_resp_enabled; ret = ath11k_wmi_cmd_send(ar->wmi, skb, WMI_ENABLE_FILS_CMDID); if (ret) { ath11k_warn(ar->ab, "WMI vdev %i failed to send FILS discovery enable/disable command\n", vdev_id); dev_kfree_skb(skb); return ret; } ath11k_dbg(ar->ab, ATH11K_DBG_WMI, "cmd enable fils"); return 0; } static void ath11k_wmi_obss_color_collision_event(struct ath11k_base *ab, struct sk_buff *skb) { const void **tb; const struct wmi_obss_color_collision_event *ev; struct ath11k_vif *arvif; int ret; tb = ath11k_wmi_tlv_parse_alloc(ab, skb->data, skb->len, GFP_ATOMIC); if (IS_ERR(tb)) { ret = PTR_ERR(tb); ath11k_warn(ab, "failed to parse tlv: %d\n", ret); return; } ath11k_dbg(ab, ATH11K_DBG_WMI, "event obss color collision"); rcu_read_lock(); ev = tb[WMI_TAG_OBSS_COLOR_COLLISION_EVT]; if (!ev) { ath11k_warn(ab, "failed to fetch obss color collision ev"); goto exit; } arvif = ath11k_mac_get_arvif_by_vdev_id(ab, ev->vdev_id); if (!arvif) { ath11k_warn(ab, "failed to find arvif with vedv id %d in obss_color_collision_event\n", ev->vdev_id); goto exit; } switch (ev->evt_type) { case WMI_BSS_COLOR_COLLISION_DETECTION: ieee80211_obss_color_collision_notify(arvif->vif, ev->obss_color_bitmap, GFP_KERNEL); ath11k_dbg(ab, ATH11K_DBG_WMI, "OBSS color collision detected vdev:%d, event:%d, bitmap:%08llx\n", ev->vdev_id, ev->evt_type, ev->obss_color_bitmap); break; case WMI_BSS_COLOR_COLLISION_DISABLE: case WMI_BSS_COLOR_FREE_SLOT_TIMER_EXPIRY: case WMI_BSS_COLOR_FREE_SLOT_AVAILABLE: break; default: ath11k_warn(ab, "received unknown obss color collision detection event\n"); } exit: kfree(tb); rcu_read_unlock(); } static void ath11k_fill_band_to_mac_param(struct ath11k_base *soc, struct wmi_host_pdev_band_to_mac *band_to_mac) { u8 i; struct ath11k_hal_reg_capabilities_ext *hal_reg_cap; struct ath11k_pdev *pdev; for (i = 0; i < soc->num_radios; i++) { pdev = &soc->pdevs[i]; hal_reg_cap = &soc->hal_reg_cap[i]; band_to_mac[i].pdev_id = pdev->pdev_id; switch (pdev->cap.supported_bands) { case WMI_HOST_WLAN_2G_5G_CAP: band_to_mac[i].start_freq = hal_reg_cap->low_2ghz_chan; band_to_mac[i].end_freq = hal_reg_cap->high_5ghz_chan; break; case WMI_HOST_WLAN_2G_CAP: band_to_mac[i].start_freq = hal_reg_cap->low_2ghz_chan; band_to_mac[i].end_freq = hal_reg_cap->high_2ghz_chan; break; case WMI_HOST_WLAN_5G_CAP: band_to_mac[i].start_freq = hal_reg_cap->low_5ghz_chan; band_to_mac[i].end_freq = hal_reg_cap->high_5ghz_chan; break; default: break; } } } static void ath11k_wmi_copy_resource_config(struct wmi_resource_config *wmi_cfg, struct target_resource_config *tg_cfg) { wmi_cfg->num_vdevs = tg_cfg->num_vdevs; wmi_cfg->num_peers = tg_cfg->num_peers; wmi_cfg->num_offload_peers = tg_cfg->num_offload_peers; wmi_cfg->num_offload_reorder_buffs = tg_cfg->num_offload_reorder_buffs; wmi_cfg->num_peer_keys = tg_cfg->num_peer_keys; wmi_cfg->num_tids = tg_cfg->num_tids; wmi_cfg->ast_skid_limit = tg_cfg->ast_skid_limit; wmi_cfg->tx_chain_mask = tg_cfg->tx_chain_mask; wmi_cfg->rx_chain_mask = tg_cfg->rx_chain_mask; wmi_cfg->rx_timeout_pri[0] = tg_cfg->rx_timeout_pri[0]; wmi_cfg->rx_timeout_pri[1] = tg_cfg->rx_timeout_pri[1]; wmi_cfg->rx_timeout_pri[2] = tg_cfg->rx_timeout_pri[2]; wmi_cfg->rx_timeout_pri[3] = tg_cfg->rx_timeout_pri[3]; wmi_cfg->rx_decap_mode = tg_cfg->rx_decap_mode; wmi_cfg->scan_max_pending_req = tg_cfg->scan_max_pending_req; wmi_cfg->bmiss_offload_max_vdev = tg_cfg->bmiss_offload_max_vdev; wmi_cfg->roam_offload_max_vdev = tg_cfg->roam_offload_max_vdev; wmi_cfg->roam_offload_max_ap_profiles = tg_cfg->roam_offload_max_ap_profiles; wmi_cfg->num_mcast_groups = tg_cfg->num_mcast_groups; wmi_cfg->num_mcast_table_elems = tg_cfg->num_mcast_table_elems; wmi_cfg->mcast2ucast_mode = tg_cfg->mcast2ucast_mode; wmi_cfg->tx_dbg_log_size = tg_cfg->tx_dbg_log_size; wmi_cfg->num_wds_entries = tg_cfg->num_wds_entries; wmi_cfg->dma_burst_size = tg_cfg->dma_burst_size; wmi_cfg->mac_aggr_delim = tg_cfg->mac_aggr_delim; wmi_cfg->rx_skip_defrag_timeout_dup_detection_check = tg_cfg->rx_skip_defrag_timeout_dup_detection_check; wmi_cfg->vow_config = tg_cfg->vow_config; wmi_cfg->gtk_offload_max_vdev = tg_cfg->gtk_offload_max_vdev; wmi_cfg->num_msdu_desc = tg_cfg->num_msdu_desc; wmi_cfg->max_frag_entries = tg_cfg->max_frag_entries; wmi_cfg->num_tdls_vdevs = tg_cfg->num_tdls_vdevs; wmi_cfg->num_tdls_conn_table_entries = tg_cfg->num_tdls_conn_table_entries; wmi_cfg->beacon_tx_offload_max_vdev = tg_cfg->beacon_tx_offload_max_vdev; wmi_cfg->num_multicast_filter_entries = tg_cfg->num_multicast_filter_entries; wmi_cfg->num_wow_filters = tg_cfg->num_wow_filters; wmi_cfg->num_keep_alive_pattern = tg_cfg->num_keep_alive_pattern; wmi_cfg->keep_alive_pattern_size = tg_cfg->keep_alive_pattern_size; wmi_cfg->max_tdls_concurrent_sleep_sta = tg_cfg->max_tdls_concurrent_sleep_sta; wmi_cfg->max_tdls_concurrent_buffer_sta = tg_cfg->max_tdls_concurrent_buffer_sta; wmi_cfg->wmi_send_separate = tg_cfg->wmi_send_separate; wmi_cfg->num_ocb_vdevs = tg_cfg->num_ocb_vdevs; wmi_cfg->num_ocb_channels = tg_cfg->num_ocb_channels; wmi_cfg->num_ocb_schedules = tg_cfg->num_ocb_schedules; wmi_cfg->bpf_instruction_size = tg_cfg->bpf_instruction_size; wmi_cfg->max_bssid_rx_filters = tg_cfg->max_bssid_rx_filters; wmi_cfg->use_pdev_id = tg_cfg->use_pdev_id; wmi_cfg->flag1 = tg_cfg->flag1; wmi_cfg->peer_map_unmap_v2_support = tg_cfg->peer_map_unmap_v2_support; wmi_cfg->sched_params = tg_cfg->sched_params; wmi_cfg->twt_ap_pdev_count = tg_cfg->twt_ap_pdev_count; wmi_cfg->twt_ap_sta_count = tg_cfg->twt_ap_sta_count; wmi_cfg->host_service_flags &= ~(1 << WMI_CFG_HOST_SERVICE_FLAG_REG_CC_EXT); wmi_cfg->host_service_flags |= (tg_cfg->is_reg_cc_ext_event_supported << WMI_CFG_HOST_SERVICE_FLAG_REG_CC_EXT); wmi_cfg->flags2 = WMI_RSRC_CFG_FLAG2_CALC_NEXT_DTIM_COUNT_SET; wmi_cfg->ema_max_vap_cnt = tg_cfg->ema_max_vap_cnt; wmi_cfg->ema_max_profile_period = tg_cfg->ema_max_profile_period; } static int ath11k_init_cmd_send(struct ath11k_pdev_wmi *wmi, struct wmi_init_cmd_param *param) { struct ath11k_base *ab = wmi->wmi_ab->ab; struct sk_buff *skb; struct wmi_init_cmd *cmd; struct wmi_resource_config *cfg; struct wmi_pdev_set_hw_mode_cmd_param *hw_mode; struct wmi_pdev_band_to_mac *band_to_mac; struct wlan_host_mem_chunk *host_mem_chunks; struct wmi_tlv *tlv; size_t ret, len; void *ptr; u32 hw_mode_len = 0; u16 idx; if (param->hw_mode_id != WMI_HOST_HW_MODE_MAX) hw_mode_len = sizeof(*hw_mode) + TLV_HDR_SIZE + (param->num_band_to_mac * sizeof(*band_to_mac)); len = sizeof(*cmd) + TLV_HDR_SIZE + sizeof(*cfg) + hw_mode_len + (param->num_mem_chunks ? (sizeof(*host_mem_chunks) * WMI_MAX_MEM_REQS) : 0); skb = ath11k_wmi_alloc_skb(wmi->wmi_ab, len); if (!skb) return -ENOMEM; cmd = (struct wmi_init_cmd *)skb->data; cmd->tlv_header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_INIT_CMD) | FIELD_PREP(WMI_TLV_LEN, sizeof(*cmd) - TLV_HDR_SIZE); ptr = skb->data + sizeof(*cmd); cfg = ptr; ath11k_wmi_copy_resource_config(cfg, param->res_cfg); cfg->tlv_header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_RESOURCE_CONFIG) | FIELD_PREP(WMI_TLV_LEN, sizeof(*cfg) - TLV_HDR_SIZE); ptr += sizeof(*cfg); host_mem_chunks = ptr + TLV_HDR_SIZE; len = sizeof(struct wlan_host_mem_chunk); for (idx = 0; idx < param->num_mem_chunks; ++idx) { host_mem_chunks[idx].tlv_header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_WLAN_HOST_MEMORY_CHUNK) | FIELD_PREP(WMI_TLV_LEN, len); host_mem_chunks[idx].ptr = param->mem_chunks[idx].paddr; host_mem_chunks[idx].size = param->mem_chunks[idx].len; host_mem_chunks[idx].req_id = param->mem_chunks[idx].req_id; ath11k_dbg(ab, ATH11K_DBG_WMI, "host mem chunk req_id %d paddr 0x%llx len %d\n", param->mem_chunks[idx].req_id, (u64)param->mem_chunks[idx].paddr, param->mem_chunks[idx].len); } cmd->num_host_mem_chunks = param->num_mem_chunks; len = sizeof(struct wlan_host_mem_chunk) * param->num_mem_chunks; /* num_mem_chunks is zero */ tlv = ptr; tlv->header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_ARRAY_STRUCT) | FIELD_PREP(WMI_TLV_LEN, len); ptr += TLV_HDR_SIZE + len; if (param->hw_mode_id != WMI_HOST_HW_MODE_MAX) { hw_mode = ptr; hw_mode->tlv_header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_PDEV_SET_HW_MODE_CMD) | FIELD_PREP(WMI_TLV_LEN, sizeof(*hw_mode) - TLV_HDR_SIZE); hw_mode->hw_mode_index = param->hw_mode_id; hw_mode->num_band_to_mac = param->num_band_to_mac; ptr += sizeof(*hw_mode); len = param->num_band_to_mac * sizeof(*band_to_mac); tlv = ptr; tlv->header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_ARRAY_STRUCT) | FIELD_PREP(WMI_TLV_LEN, len); ptr += TLV_HDR_SIZE; len = sizeof(*band_to_mac); for (idx = 0; idx < param->num_band_to_mac; idx++) { band_to_mac = ptr; band_to_mac->tlv_header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_PDEV_BAND_TO_MAC) | FIELD_PREP(WMI_TLV_LEN, len - TLV_HDR_SIZE); band_to_mac->pdev_id = param->band_to_mac[idx].pdev_id; band_to_mac->start_freq = param->band_to_mac[idx].start_freq; band_to_mac->end_freq = param->band_to_mac[idx].end_freq; ptr += sizeof(*band_to_mac); } } ret = ath11k_wmi_cmd_send(wmi, skb, WMI_INIT_CMDID); if (ret) { ath11k_warn(ab, "failed to send WMI_INIT_CMDID\n"); dev_kfree_skb(skb); return ret; } ath11k_dbg(ab, ATH11K_DBG_WMI, "cmd wmi init"); return 0; } int ath11k_wmi_pdev_lro_cfg(struct ath11k *ar, int pdev_id) { struct ath11k_wmi_pdev_lro_config_cmd *cmd; struct sk_buff *skb; int ret; skb = ath11k_wmi_alloc_skb(ar->wmi->wmi_ab, sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct ath11k_wmi_pdev_lro_config_cmd *)skb->data; cmd->tlv_header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_LRO_INFO_CMD) | FIELD_PREP(WMI_TLV_LEN, sizeof(*cmd) - TLV_HDR_SIZE); get_random_bytes(cmd->th_4, sizeof(uint32_t) * ATH11K_IPV4_TH_SEED_SIZE); get_random_bytes(cmd->th_6, sizeof(uint32_t) * ATH11K_IPV6_TH_SEED_SIZE); cmd->pdev_id = pdev_id; ret = ath11k_wmi_cmd_send(ar->wmi, skb, WMI_LRO_CONFIG_CMDID); if (ret) { ath11k_warn(ar->ab, "failed to send lro cfg req wmi cmd\n"); goto err; } ath11k_dbg(ar->ab, ATH11K_DBG_WMI, "cmd lro config pdev_id 0x%x\n", pdev_id); return 0; err: dev_kfree_skb(skb); return ret; } int ath11k_wmi_wait_for_service_ready(struct ath11k_base *ab) { unsigned long time_left; time_left = wait_for_completion_timeout(&ab->wmi_ab.service_ready, WMI_SERVICE_READY_TIMEOUT_HZ); if (!time_left) return -ETIMEDOUT; return 0; } int ath11k_wmi_wait_for_unified_ready(struct ath11k_base *ab) { unsigned long time_left; time_left = wait_for_completion_timeout(&ab->wmi_ab.unified_ready, WMI_SERVICE_READY_TIMEOUT_HZ); if (!time_left) return -ETIMEDOUT; return 0; } int ath11k_wmi_set_hw_mode(struct ath11k_base *ab, enum wmi_host_hw_mode_config_type mode) { struct wmi_pdev_set_hw_mode_cmd_param *cmd; struct sk_buff *skb; struct ath11k_wmi_base *wmi_ab = &ab->wmi_ab; int len; int ret; len = sizeof(*cmd); skb = ath11k_wmi_alloc_skb(wmi_ab, len); if (!skb) return -ENOMEM; cmd = (struct wmi_pdev_set_hw_mode_cmd_param *)skb->data; cmd->tlv_header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_PDEV_SET_HW_MODE_CMD) | FIELD_PREP(WMI_TLV_LEN, sizeof(*cmd) - TLV_HDR_SIZE); cmd->pdev_id = WMI_PDEV_ID_SOC; cmd->hw_mode_index = mode; ret = ath11k_wmi_cmd_send(&wmi_ab->wmi[0], skb, WMI_PDEV_SET_HW_MODE_CMDID); if (ret) { ath11k_warn(ab, "failed to send WMI_PDEV_SET_HW_MODE_CMDID\n"); dev_kfree_skb(skb); return ret; } ath11k_dbg(ab, ATH11K_DBG_WMI, "cmd pdev set hw mode %d", cmd->hw_mode_index); return 0; } int ath11k_wmi_cmd_init(struct ath11k_base *ab) { struct ath11k_wmi_base *wmi_ab = &ab->wmi_ab; struct wmi_init_cmd_param init_param; struct target_resource_config config; memset(&init_param, 0, sizeof(init_param)); memset(&config, 0, sizeof(config)); ab->hw_params.hw_ops->wmi_init_config(ab, &config); if (test_bit(WMI_TLV_SERVICE_REG_CC_EXT_EVENT_SUPPORT, ab->wmi_ab.svc_map)) config.is_reg_cc_ext_event_supported = 1; memcpy(&wmi_ab->wlan_resource_config, &config, sizeof(config)); init_param.res_cfg = &wmi_ab->wlan_resource_config; init_param.num_mem_chunks = wmi_ab->num_mem_chunks; init_param.hw_mode_id = wmi_ab->preferred_hw_mode; init_param.mem_chunks = wmi_ab->mem_chunks; if (ab->hw_params.single_pdev_only) init_param.hw_mode_id = WMI_HOST_HW_MODE_MAX; init_param.num_band_to_mac = ab->num_radios; ath11k_fill_band_to_mac_param(ab, init_param.band_to_mac); return ath11k_init_cmd_send(&wmi_ab->wmi[0], &init_param); } int ath11k_wmi_vdev_spectral_conf(struct ath11k *ar, struct ath11k_wmi_vdev_spectral_conf_param *param) { struct ath11k_wmi_vdev_spectral_conf_cmd *cmd; struct sk_buff *skb; int ret; skb = ath11k_wmi_alloc_skb(ar->wmi->wmi_ab, sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct ath11k_wmi_vdev_spectral_conf_cmd *)skb->data; cmd->tlv_header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_VDEV_SPECTRAL_CONFIGURE_CMD) | FIELD_PREP(WMI_TLV_LEN, sizeof(*cmd) - TLV_HDR_SIZE); memcpy(&cmd->param, param, sizeof(*param)); ret = ath11k_wmi_cmd_send(ar->wmi, skb, WMI_VDEV_SPECTRAL_SCAN_CONFIGURE_CMDID); if (ret) { ath11k_warn(ar->ab, "failed to send spectral scan config wmi cmd\n"); goto err; } ath11k_dbg(ar->ab, ATH11K_DBG_WMI, "cmd vdev spectral scan configure vdev_id 0x%x\n", param->vdev_id); return 0; err: dev_kfree_skb(skb); return ret; } int ath11k_wmi_vdev_spectral_enable(struct ath11k *ar, u32 vdev_id, u32 trigger, u32 enable) { struct ath11k_wmi_vdev_spectral_enable_cmd *cmd; struct sk_buff *skb; int ret; skb = ath11k_wmi_alloc_skb(ar->wmi->wmi_ab, sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct ath11k_wmi_vdev_spectral_enable_cmd *)skb->data; cmd->tlv_header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_VDEV_SPECTRAL_ENABLE_CMD) | FIELD_PREP(WMI_TLV_LEN, sizeof(*cmd) - TLV_HDR_SIZE); cmd->vdev_id = vdev_id; cmd->trigger_cmd = trigger; cmd->enable_cmd = enable; ret = ath11k_wmi_cmd_send(ar->wmi, skb, WMI_VDEV_SPECTRAL_SCAN_ENABLE_CMDID); if (ret) { ath11k_warn(ar->ab, "failed to send spectral enable wmi cmd\n"); goto err; } ath11k_dbg(ar->ab, ATH11K_DBG_WMI, "cmd vdev spectral scan enable vdev id 0x%x\n", vdev_id); return 0; err: dev_kfree_skb(skb); return ret; } int ath11k_wmi_pdev_dma_ring_cfg(struct ath11k *ar, struct ath11k_wmi_pdev_dma_ring_cfg_req_cmd *param) { struct ath11k_wmi_pdev_dma_ring_cfg_req_cmd *cmd; struct sk_buff *skb; int ret; skb = ath11k_wmi_alloc_skb(ar->wmi->wmi_ab, sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct ath11k_wmi_pdev_dma_ring_cfg_req_cmd *)skb->data; cmd->tlv_header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_DMA_RING_CFG_REQ) | FIELD_PREP(WMI_TLV_LEN, sizeof(*cmd) - TLV_HDR_SIZE); cmd->pdev_id = param->pdev_id; cmd->module_id = param->module_id; cmd->base_paddr_lo = param->base_paddr_lo; cmd->base_paddr_hi = param->base_paddr_hi; cmd->head_idx_paddr_lo = param->head_idx_paddr_lo; cmd->head_idx_paddr_hi = param->head_idx_paddr_hi; cmd->tail_idx_paddr_lo = param->tail_idx_paddr_lo; cmd->tail_idx_paddr_hi = param->tail_idx_paddr_hi; cmd->num_elems = param->num_elems; cmd->buf_size = param->buf_size; cmd->num_resp_per_event = param->num_resp_per_event; cmd->event_timeout_ms = param->event_timeout_ms; ret = ath11k_wmi_cmd_send(ar->wmi, skb, WMI_PDEV_DMA_RING_CFG_REQ_CMDID); if (ret) { ath11k_warn(ar->ab, "failed to send dma ring cfg req wmi cmd\n"); goto err; } ath11k_dbg(ar->ab, ATH11K_DBG_WMI, "cmd pdev dma ring cfg req pdev_id 0x%x\n", param->pdev_id); return 0; err: dev_kfree_skb(skb); return ret; } static int ath11k_wmi_tlv_dma_buf_entry_parse(struct ath11k_base *soc, u16 tag, u16 len, const void *ptr, void *data) { struct wmi_tlv_dma_buf_release_parse *parse = data; if (tag != WMI_TAG_DMA_BUF_RELEASE_ENTRY) return -EPROTO; if (parse->num_buf_entry >= parse->fixed.num_buf_release_entry) return -ENOBUFS; parse->num_buf_entry++; return 0; } static int ath11k_wmi_tlv_dma_buf_meta_parse(struct ath11k_base *soc, u16 tag, u16 len, const void *ptr, void *data) { struct wmi_tlv_dma_buf_release_parse *parse = data; if (tag != WMI_TAG_DMA_BUF_RELEASE_SPECTRAL_META_DATA) return -EPROTO; if (parse->num_meta >= parse->fixed.num_meta_data_entry) return -ENOBUFS; parse->num_meta++; return 0; } static int ath11k_wmi_tlv_dma_buf_parse(struct ath11k_base *ab, u16 tag, u16 len, const void *ptr, void *data) { struct wmi_tlv_dma_buf_release_parse *parse = data; int ret; switch (tag) { case WMI_TAG_DMA_BUF_RELEASE: memcpy(&parse->fixed, ptr, sizeof(struct ath11k_wmi_dma_buf_release_fixed_param)); parse->fixed.pdev_id = DP_HW2SW_MACID(parse->fixed.pdev_id); break; case WMI_TAG_ARRAY_STRUCT: if (!parse->buf_entry_done) { parse->num_buf_entry = 0; parse->buf_entry = (struct wmi_dma_buf_release_entry *)ptr; ret = ath11k_wmi_tlv_iter(ab, ptr, len, ath11k_wmi_tlv_dma_buf_entry_parse, parse); if (ret) { ath11k_warn(ab, "failed to parse dma buf entry tlv %d\n", ret); return ret; } parse->buf_entry_done = true; } else if (!parse->meta_data_done) { parse->num_meta = 0; parse->meta_data = (struct wmi_dma_buf_release_meta_data *)ptr; ret = ath11k_wmi_tlv_iter(ab, ptr, len, ath11k_wmi_tlv_dma_buf_meta_parse, parse); if (ret) { ath11k_warn(ab, "failed to parse dma buf meta tlv %d\n", ret); return ret; } parse->meta_data_done = true; } break; default: break; } return 0; } static void ath11k_wmi_pdev_dma_ring_buf_release_event(struct ath11k_base *ab, struct sk_buff *skb) { struct wmi_tlv_dma_buf_release_parse parse = { }; struct ath11k_dbring_buf_release_event param; int ret; ret = ath11k_wmi_tlv_iter(ab, skb->data, skb->len, ath11k_wmi_tlv_dma_buf_parse, &parse); if (ret) { ath11k_warn(ab, "failed to parse dma buf release tlv %d\n", ret); return; } ath11k_dbg(ab, ATH11K_DBG_WMI, "event pdev dma ring buf release"); param.fixed = parse.fixed; param.buf_entry = parse.buf_entry; param.num_buf_entry = parse.num_buf_entry; param.meta_data = parse.meta_data; param.num_meta = parse.num_meta; ret = ath11k_dbring_buffer_release_event(ab, ¶m); if (ret) { ath11k_warn(ab, "failed to handle dma buf release event %d\n", ret); return; } } static int ath11k_wmi_tlv_hw_mode_caps_parse(struct ath11k_base *soc, u16 tag, u16 len, const void *ptr, void *data) { struct wmi_tlv_svc_rdy_ext_parse *svc_rdy_ext = data; struct wmi_hw_mode_capabilities *hw_mode_cap; u32 phy_map = 0; if (tag != WMI_TAG_HW_MODE_CAPABILITIES) return -EPROTO; if (svc_rdy_ext->n_hw_mode_caps >= svc_rdy_ext->param.num_hw_modes) return -ENOBUFS; hw_mode_cap = container_of(ptr, struct wmi_hw_mode_capabilities, hw_mode_id); svc_rdy_ext->n_hw_mode_caps++; phy_map = hw_mode_cap->phy_id_map; while (phy_map) { svc_rdy_ext->tot_phy_id++; phy_map = phy_map >> 1; } return 0; } static int ath11k_wmi_tlv_hw_mode_caps(struct ath11k_base *soc, u16 len, const void *ptr, void *data) { struct wmi_tlv_svc_rdy_ext_parse *svc_rdy_ext = data; struct wmi_hw_mode_capabilities *hw_mode_caps; enum wmi_host_hw_mode_config_type mode, pref; u32 i; int ret; svc_rdy_ext->n_hw_mode_caps = 0; svc_rdy_ext->hw_mode_caps = (struct wmi_hw_mode_capabilities *)ptr; ret = ath11k_wmi_tlv_iter(soc, ptr, len, ath11k_wmi_tlv_hw_mode_caps_parse, svc_rdy_ext); if (ret) { ath11k_warn(soc, "failed to parse tlv %d\n", ret); return ret; } i = 0; while (i < svc_rdy_ext->n_hw_mode_caps) { hw_mode_caps = &svc_rdy_ext->hw_mode_caps[i]; mode = hw_mode_caps->hw_mode_id; pref = soc->wmi_ab.preferred_hw_mode; if (ath11k_hw_mode_pri_map[mode] < ath11k_hw_mode_pri_map[pref]) { svc_rdy_ext->pref_hw_mode_caps = *hw_mode_caps; soc->wmi_ab.preferred_hw_mode = mode; } i++; } ath11k_dbg(soc, ATH11K_DBG_WMI, "preferred_hw_mode:%d\n", soc->wmi_ab.preferred_hw_mode); if (soc->wmi_ab.preferred_hw_mode == WMI_HOST_HW_MODE_MAX) return -EINVAL; return 0; } static int ath11k_wmi_tlv_mac_phy_caps_parse(struct ath11k_base *soc, u16 tag, u16 len, const void *ptr, void *data) { struct wmi_tlv_svc_rdy_ext_parse *svc_rdy_ext = data; if (tag != WMI_TAG_MAC_PHY_CAPABILITIES) return -EPROTO; if (svc_rdy_ext->n_mac_phy_caps >= svc_rdy_ext->tot_phy_id) return -ENOBUFS; len = min_t(u16, len, sizeof(struct wmi_mac_phy_capabilities)); if (!svc_rdy_ext->n_mac_phy_caps) { svc_rdy_ext->mac_phy_caps = kcalloc(svc_rdy_ext->tot_phy_id, len, GFP_ATOMIC); if (!svc_rdy_ext->mac_phy_caps) return -ENOMEM; } memcpy(svc_rdy_ext->mac_phy_caps + svc_rdy_ext->n_mac_phy_caps, ptr, len); svc_rdy_ext->n_mac_phy_caps++; return 0; } static int ath11k_wmi_tlv_ext_hal_reg_caps_parse(struct ath11k_base *soc, u16 tag, u16 len, const void *ptr, void *data) { struct wmi_tlv_svc_rdy_ext_parse *svc_rdy_ext = data; if (tag != WMI_TAG_HAL_REG_CAPABILITIES_EXT) return -EPROTO; if (svc_rdy_ext->n_ext_hal_reg_caps >= svc_rdy_ext->param.num_phy) return -ENOBUFS; svc_rdy_ext->n_ext_hal_reg_caps++; return 0; } static int ath11k_wmi_tlv_ext_hal_reg_caps(struct ath11k_base *soc, u16 len, const void *ptr, void *data) { struct ath11k_pdev_wmi *wmi_handle = &soc->wmi_ab.wmi[0]; struct wmi_tlv_svc_rdy_ext_parse *svc_rdy_ext = data; struct ath11k_hal_reg_capabilities_ext reg_cap; int ret; u32 i; svc_rdy_ext->n_ext_hal_reg_caps = 0; svc_rdy_ext->ext_hal_reg_caps = (struct wmi_hal_reg_capabilities_ext *)ptr; ret = ath11k_wmi_tlv_iter(soc, ptr, len, ath11k_wmi_tlv_ext_hal_reg_caps_parse, svc_rdy_ext); if (ret) { ath11k_warn(soc, "failed to parse tlv %d\n", ret); return ret; } for (i = 0; i < svc_rdy_ext->param.num_phy; i++) { ret = ath11k_pull_reg_cap_svc_rdy_ext(wmi_handle, svc_rdy_ext->soc_hal_reg_caps, svc_rdy_ext->ext_hal_reg_caps, i, ®_cap); if (ret) { ath11k_warn(soc, "failed to extract reg cap %d\n", i); return ret; } memcpy(&soc->hal_reg_cap[reg_cap.phy_id], ®_cap, sizeof(reg_cap)); } return 0; } static int ath11k_wmi_tlv_ext_soc_hal_reg_caps_parse(struct ath11k_base *soc, u16 len, const void *ptr, void *data) { struct ath11k_pdev_wmi *wmi_handle = &soc->wmi_ab.wmi[0]; struct wmi_tlv_svc_rdy_ext_parse *svc_rdy_ext = data; u8 hw_mode_id = svc_rdy_ext->pref_hw_mode_caps.hw_mode_id; u32 phy_id_map; int pdev_index = 0; int ret; svc_rdy_ext->soc_hal_reg_caps = (struct wmi_soc_hal_reg_capabilities *)ptr; svc_rdy_ext->param.num_phy = svc_rdy_ext->soc_hal_reg_caps->num_phy; soc->num_radios = 0; soc->target_pdev_count = 0; phy_id_map = svc_rdy_ext->pref_hw_mode_caps.phy_id_map; while (phy_id_map && soc->num_radios < MAX_RADIOS) { ret = ath11k_pull_mac_phy_cap_svc_ready_ext(wmi_handle, svc_rdy_ext->hw_caps, svc_rdy_ext->hw_mode_caps, svc_rdy_ext->soc_hal_reg_caps, svc_rdy_ext->mac_phy_caps, hw_mode_id, soc->num_radios, &soc->pdevs[pdev_index]); if (ret) { ath11k_warn(soc, "failed to extract mac caps, idx :%d\n", soc->num_radios); return ret; } soc->num_radios++; /* For QCA6390, save mac_phy capability in the same pdev */ if (soc->hw_params.single_pdev_only) pdev_index = 0; else pdev_index = soc->num_radios; /* TODO: mac_phy_cap prints */ phy_id_map >>= 1; } /* For QCA6390, set num_radios to 1 because host manages * both 2G and 5G radio in one pdev. * Set pdev_id = 0 and 0 means soc level. */ if (soc->hw_params.single_pdev_only) { soc->num_radios = 1; soc->pdevs[0].pdev_id = 0; } return 0; } static int ath11k_wmi_tlv_dma_ring_caps_parse(struct ath11k_base *soc, u16 tag, u16 len, const void *ptr, void *data) { struct wmi_tlv_dma_ring_caps_parse *parse = data; if (tag != WMI_TAG_DMA_RING_CAPABILITIES) return -EPROTO; parse->n_dma_ring_caps++; return 0; } static int ath11k_wmi_alloc_dbring_caps(struct ath11k_base *ab, u32 num_cap) { size_t sz; void *ptr; sz = num_cap * sizeof(struct ath11k_dbring_cap); ptr = kzalloc(sz, GFP_ATOMIC); if (!ptr) return -ENOMEM; ab->db_caps = ptr; ab->num_db_cap = num_cap; return 0; } static void ath11k_wmi_free_dbring_caps(struct ath11k_base *ab) { kfree(ab->db_caps); ab->db_caps = NULL; } static int ath11k_wmi_tlv_dma_ring_caps(struct ath11k_base *ab, u16 len, const void *ptr, void *data) { struct wmi_tlv_dma_ring_caps_parse *dma_caps_parse = data; struct wmi_dma_ring_capabilities *dma_caps; struct ath11k_dbring_cap *dir_buff_caps; int ret; u32 i; dma_caps_parse->n_dma_ring_caps = 0; dma_caps = (struct wmi_dma_ring_capabilities *)ptr; ret = ath11k_wmi_tlv_iter(ab, ptr, len, ath11k_wmi_tlv_dma_ring_caps_parse, dma_caps_parse); if (ret) { ath11k_warn(ab, "failed to parse dma ring caps tlv %d\n", ret); return ret; } if (!dma_caps_parse->n_dma_ring_caps) return 0; if (ab->num_db_cap) { ath11k_warn(ab, "Already processed, so ignoring dma ring caps\n"); return 0; } ret = ath11k_wmi_alloc_dbring_caps(ab, dma_caps_parse->n_dma_ring_caps); if (ret) return ret; dir_buff_caps = ab->db_caps; for (i = 0; i < dma_caps_parse->n_dma_ring_caps; i++) { if (dma_caps[i].module_id >= WMI_DIRECT_BUF_MAX) { ath11k_warn(ab, "Invalid module id %d\n", dma_caps[i].module_id); ret = -EINVAL; goto free_dir_buff; } dir_buff_caps[i].id = dma_caps[i].module_id; dir_buff_caps[i].pdev_id = DP_HW2SW_MACID(dma_caps[i].pdev_id); dir_buff_caps[i].min_elem = dma_caps[i].min_elem; dir_buff_caps[i].min_buf_sz = dma_caps[i].min_buf_sz; dir_buff_caps[i].min_buf_align = dma_caps[i].min_buf_align; } return 0; free_dir_buff: ath11k_wmi_free_dbring_caps(ab); return ret; } static int ath11k_wmi_tlv_svc_rdy_ext_parse(struct ath11k_base *ab, u16 tag, u16 len, const void *ptr, void *data) { struct ath11k_pdev_wmi *wmi_handle = &ab->wmi_ab.wmi[0]; struct wmi_tlv_svc_rdy_ext_parse *svc_rdy_ext = data; int ret; switch (tag) { case WMI_TAG_SERVICE_READY_EXT_EVENT: ret = ath11k_pull_svc_ready_ext(wmi_handle, ptr, &svc_rdy_ext->param); if (ret) { ath11k_warn(ab, "unable to extract ext params\n"); return ret; } break; case WMI_TAG_SOC_MAC_PHY_HW_MODE_CAPS: svc_rdy_ext->hw_caps = (struct wmi_soc_mac_phy_hw_mode_caps *)ptr; svc_rdy_ext->param.num_hw_modes = svc_rdy_ext->hw_caps->num_hw_modes; break; case WMI_TAG_SOC_HAL_REG_CAPABILITIES: ret = ath11k_wmi_tlv_ext_soc_hal_reg_caps_parse(ab, len, ptr, svc_rdy_ext); if (ret) return ret; break; case WMI_TAG_ARRAY_STRUCT: if (!svc_rdy_ext->hw_mode_done) { ret = ath11k_wmi_tlv_hw_mode_caps(ab, len, ptr, svc_rdy_ext); if (ret) return ret; svc_rdy_ext->hw_mode_done = true; } else if (!svc_rdy_ext->mac_phy_done) { svc_rdy_ext->n_mac_phy_caps = 0; ret = ath11k_wmi_tlv_iter(ab, ptr, len, ath11k_wmi_tlv_mac_phy_caps_parse, svc_rdy_ext); if (ret) { ath11k_warn(ab, "failed to parse tlv %d\n", ret); return ret; } svc_rdy_ext->mac_phy_done = true; } else if (!svc_rdy_ext->ext_hal_reg_done) { ret = ath11k_wmi_tlv_ext_hal_reg_caps(ab, len, ptr, svc_rdy_ext); if (ret) return ret; svc_rdy_ext->ext_hal_reg_done = true; } else if (!svc_rdy_ext->mac_phy_chainmask_combo_done) { svc_rdy_ext->mac_phy_chainmask_combo_done = true; } else if (!svc_rdy_ext->mac_phy_chainmask_cap_done) { svc_rdy_ext->mac_phy_chainmask_cap_done = true; } else if (!svc_rdy_ext->oem_dma_ring_cap_done) { svc_rdy_ext->oem_dma_ring_cap_done = true; } else if (!svc_rdy_ext->dma_ring_cap_done) { ret = ath11k_wmi_tlv_dma_ring_caps(ab, len, ptr, &svc_rdy_ext->dma_caps_parse); if (ret) return ret; svc_rdy_ext->dma_ring_cap_done = true; } break; default: break; } return 0; } static int ath11k_service_ready_ext_event(struct ath11k_base *ab, struct sk_buff *skb) { struct wmi_tlv_svc_rdy_ext_parse svc_rdy_ext = { }; int ret; ret = ath11k_wmi_tlv_iter(ab, skb->data, skb->len, ath11k_wmi_tlv_svc_rdy_ext_parse, &svc_rdy_ext); if (ret) { ath11k_warn(ab, "failed to parse tlv %d\n", ret); goto err; } ath11k_dbg(ab, ATH11K_DBG_WMI, "event service ready ext"); if (!test_bit(WMI_TLV_SERVICE_EXT2_MSG, ab->wmi_ab.svc_map)) complete(&ab->wmi_ab.service_ready); kfree(svc_rdy_ext.mac_phy_caps); return 0; err: ath11k_wmi_free_dbring_caps(ab); return ret; } static int ath11k_wmi_tlv_svc_rdy_ext2_parse(struct ath11k_base *ab, u16 tag, u16 len, const void *ptr, void *data) { struct wmi_tlv_svc_rdy_ext2_parse *parse = data; int ret; switch (tag) { case WMI_TAG_ARRAY_STRUCT: if (!parse->dma_ring_cap_done) { ret = ath11k_wmi_tlv_dma_ring_caps(ab, len, ptr, &parse->dma_caps_parse); if (ret) return ret; parse->dma_ring_cap_done = true; } break; default: break; } return 0; } static int ath11k_service_ready_ext2_event(struct ath11k_base *ab, struct sk_buff *skb) { struct wmi_tlv_svc_rdy_ext2_parse svc_rdy_ext2 = { }; int ret; ret = ath11k_wmi_tlv_iter(ab, skb->data, skb->len, ath11k_wmi_tlv_svc_rdy_ext2_parse, &svc_rdy_ext2); if (ret) { ath11k_warn(ab, "failed to parse ext2 event tlv %d\n", ret); goto err; } ath11k_dbg(ab, ATH11K_DBG_WMI, "event service ready ext2"); complete(&ab->wmi_ab.service_ready); return 0; err: ath11k_wmi_free_dbring_caps(ab); return ret; } static int ath11k_pull_vdev_start_resp_tlv(struct ath11k_base *ab, struct sk_buff *skb, struct wmi_vdev_start_resp_event *vdev_rsp) { const void **tb; const struct wmi_vdev_start_resp_event *ev; int ret; tb = ath11k_wmi_tlv_parse_alloc(ab, skb->data, skb->len, GFP_ATOMIC); if (IS_ERR(tb)) { ret = PTR_ERR(tb); ath11k_warn(ab, "failed to parse tlv: %d\n", ret); return ret; } ev = tb[WMI_TAG_VDEV_START_RESPONSE_EVENT]; if (!ev) { ath11k_warn(ab, "failed to fetch vdev start resp ev"); kfree(tb); return -EPROTO; } memset(vdev_rsp, 0, sizeof(*vdev_rsp)); vdev_rsp->vdev_id = ev->vdev_id; vdev_rsp->requestor_id = ev->requestor_id; vdev_rsp->resp_type = ev->resp_type; vdev_rsp->status = ev->status; vdev_rsp->chain_mask = ev->chain_mask; vdev_rsp->smps_mode = ev->smps_mode; vdev_rsp->mac_id = ev->mac_id; vdev_rsp->cfgd_tx_streams = ev->cfgd_tx_streams; vdev_rsp->cfgd_rx_streams = ev->cfgd_rx_streams; kfree(tb); return 0; } static void ath11k_print_reg_rule(struct ath11k_base *ab, const char *band, u32 num_reg_rules, struct cur_reg_rule *reg_rule_ptr) { struct cur_reg_rule *reg_rule = reg_rule_ptr; u32 count; ath11k_dbg(ab, ATH11K_DBG_WMI, "number of reg rules in %s band: %d\n", band, num_reg_rules); for (count = 0; count < num_reg_rules; count++) { ath11k_dbg(ab, ATH11K_DBG_WMI, "reg rule %d: (%d - %d @ %d) (%d, %d) (FLAGS %d)\n", count + 1, reg_rule->start_freq, reg_rule->end_freq, reg_rule->max_bw, reg_rule->ant_gain, reg_rule->reg_power, reg_rule->flags); reg_rule++; } } static struct cur_reg_rule *create_reg_rules_from_wmi(u32 num_reg_rules, struct wmi_regulatory_rule_struct *wmi_reg_rule) { struct cur_reg_rule *reg_rule_ptr; u32 count; reg_rule_ptr = kcalloc(num_reg_rules, sizeof(*reg_rule_ptr), GFP_ATOMIC); if (!reg_rule_ptr) return NULL; for (count = 0; count < num_reg_rules; count++) { reg_rule_ptr[count].start_freq = FIELD_GET(REG_RULE_START_FREQ, wmi_reg_rule[count].freq_info); reg_rule_ptr[count].end_freq = FIELD_GET(REG_RULE_END_FREQ, wmi_reg_rule[count].freq_info); reg_rule_ptr[count].max_bw = FIELD_GET(REG_RULE_MAX_BW, wmi_reg_rule[count].bw_pwr_info); reg_rule_ptr[count].reg_power = FIELD_GET(REG_RULE_REG_PWR, wmi_reg_rule[count].bw_pwr_info); reg_rule_ptr[count].ant_gain = FIELD_GET(REG_RULE_ANT_GAIN, wmi_reg_rule[count].bw_pwr_info); reg_rule_ptr[count].flags = FIELD_GET(REG_RULE_FLAGS, wmi_reg_rule[count].flag_info); } return reg_rule_ptr; } static int ath11k_pull_reg_chan_list_update_ev(struct ath11k_base *ab, struct sk_buff *skb, struct cur_regulatory_info *reg_info) { const void **tb; const struct wmi_reg_chan_list_cc_event *chan_list_event_hdr; struct wmi_regulatory_rule_struct *wmi_reg_rule; u32 num_2ghz_reg_rules, num_5ghz_reg_rules; int ret; ath11k_dbg(ab, ATH11K_DBG_WMI, "processing regulatory channel list\n"); tb = ath11k_wmi_tlv_parse_alloc(ab, skb->data, skb->len, GFP_ATOMIC); if (IS_ERR(tb)) { ret = PTR_ERR(tb); ath11k_warn(ab, "failed to parse tlv: %d\n", ret); return ret; } chan_list_event_hdr = tb[WMI_TAG_REG_CHAN_LIST_CC_EVENT]; if (!chan_list_event_hdr) { ath11k_warn(ab, "failed to fetch reg chan list update ev\n"); kfree(tb); return -EPROTO; } reg_info->num_2ghz_reg_rules = chan_list_event_hdr->num_2ghz_reg_rules; reg_info->num_5ghz_reg_rules = chan_list_event_hdr->num_5ghz_reg_rules; if (!(reg_info->num_2ghz_reg_rules + reg_info->num_5ghz_reg_rules)) { ath11k_warn(ab, "No regulatory rules available in the event info\n"); kfree(tb); return -EINVAL; } memcpy(reg_info->alpha2, &chan_list_event_hdr->alpha2, REG_ALPHA2_LEN); reg_info->dfs_region = chan_list_event_hdr->dfs_region; reg_info->phybitmap = chan_list_event_hdr->phybitmap; reg_info->num_phy = chan_list_event_hdr->num_phy; reg_info->phy_id = chan_list_event_hdr->phy_id; reg_info->ctry_code = chan_list_event_hdr->country_id; reg_info->reg_dmn_pair = chan_list_event_hdr->domain_code; ath11k_dbg(ab, ATH11K_DBG_WMI, "status_code %s", ath11k_cc_status_to_str(reg_info->status_code)); reg_info->status_code = ath11k_wmi_cc_setting_code_to_reg(chan_list_event_hdr->status_code); reg_info->is_ext_reg_event = false; reg_info->min_bw_2ghz = chan_list_event_hdr->min_bw_2ghz; reg_info->max_bw_2ghz = chan_list_event_hdr->max_bw_2ghz; reg_info->min_bw_5ghz = chan_list_event_hdr->min_bw_5ghz; reg_info->max_bw_5ghz = chan_list_event_hdr->max_bw_5ghz; num_2ghz_reg_rules = reg_info->num_2ghz_reg_rules; num_5ghz_reg_rules = reg_info->num_5ghz_reg_rules; ath11k_dbg(ab, ATH11K_DBG_WMI, "cc %s dsf %d BW: min_2ghz %d max_2ghz %d min_5ghz %d max_5ghz %d", reg_info->alpha2, reg_info->dfs_region, reg_info->min_bw_2ghz, reg_info->max_bw_2ghz, reg_info->min_bw_5ghz, reg_info->max_bw_5ghz); ath11k_dbg(ab, ATH11K_DBG_WMI, "num_2ghz_reg_rules %d num_5ghz_reg_rules %d", num_2ghz_reg_rules, num_5ghz_reg_rules); wmi_reg_rule = (struct wmi_regulatory_rule_struct *)((u8 *)chan_list_event_hdr + sizeof(*chan_list_event_hdr) + sizeof(struct wmi_tlv)); if (num_2ghz_reg_rules) { reg_info->reg_rules_2ghz_ptr = create_reg_rules_from_wmi(num_2ghz_reg_rules, wmi_reg_rule); if (!reg_info->reg_rules_2ghz_ptr) { kfree(tb); ath11k_warn(ab, "Unable to Allocate memory for 2 GHz rules\n"); return -ENOMEM; } ath11k_print_reg_rule(ab, "2 GHz", num_2ghz_reg_rules, reg_info->reg_rules_2ghz_ptr); } if (num_5ghz_reg_rules) { wmi_reg_rule += num_2ghz_reg_rules; reg_info->reg_rules_5ghz_ptr = create_reg_rules_from_wmi(num_5ghz_reg_rules, wmi_reg_rule); if (!reg_info->reg_rules_5ghz_ptr) { kfree(tb); ath11k_warn(ab, "Unable to Allocate memory for 5 GHz rules\n"); return -ENOMEM; } ath11k_print_reg_rule(ab, "5 GHz", num_5ghz_reg_rules, reg_info->reg_rules_5ghz_ptr); } ath11k_dbg(ab, ATH11K_DBG_WMI, "processed regulatory channel list\n"); kfree(tb); return 0; } static struct cur_reg_rule *create_ext_reg_rules_from_wmi(u32 num_reg_rules, struct wmi_regulatory_ext_rule *wmi_reg_rule) { struct cur_reg_rule *reg_rule_ptr; u32 count; reg_rule_ptr = kcalloc(num_reg_rules, sizeof(*reg_rule_ptr), GFP_ATOMIC); if (!reg_rule_ptr) return NULL; for (count = 0; count < num_reg_rules; count++) { reg_rule_ptr[count].start_freq = u32_get_bits(wmi_reg_rule[count].freq_info, REG_RULE_START_FREQ); reg_rule_ptr[count].end_freq = u32_get_bits(wmi_reg_rule[count].freq_info, REG_RULE_END_FREQ); reg_rule_ptr[count].max_bw = u32_get_bits(wmi_reg_rule[count].bw_pwr_info, REG_RULE_MAX_BW); reg_rule_ptr[count].reg_power = u32_get_bits(wmi_reg_rule[count].bw_pwr_info, REG_RULE_REG_PWR); reg_rule_ptr[count].ant_gain = u32_get_bits(wmi_reg_rule[count].bw_pwr_info, REG_RULE_ANT_GAIN); reg_rule_ptr[count].flags = u32_get_bits(wmi_reg_rule[count].flag_info, REG_RULE_FLAGS); reg_rule_ptr[count].psd_flag = u32_get_bits(wmi_reg_rule[count].psd_power_info, REG_RULE_PSD_INFO); reg_rule_ptr[count].psd_eirp = u32_get_bits(wmi_reg_rule[count].psd_power_info, REG_RULE_PSD_EIRP); } return reg_rule_ptr; } static u8 ath11k_invalid_5ghz_reg_ext_rules_from_wmi(u32 num_reg_rules, const struct wmi_regulatory_ext_rule *rule) { u8 num_invalid_5ghz_rules = 0; u32 count, start_freq; for (count = 0; count < num_reg_rules; count++) { start_freq = u32_get_bits(rule[count].freq_info, REG_RULE_START_FREQ); if (start_freq >= ATH11K_MIN_6G_FREQ) num_invalid_5ghz_rules++; } return num_invalid_5ghz_rules; } static int ath11k_pull_reg_chan_list_ext_update_ev(struct ath11k_base *ab, struct sk_buff *skb, struct cur_regulatory_info *reg_info) { const void **tb; const struct wmi_reg_chan_list_cc_ext_event *ev; struct wmi_regulatory_ext_rule *ext_wmi_reg_rule; u32 num_2ghz_reg_rules, num_5ghz_reg_rules; u32 num_6ghz_reg_rules_ap[WMI_REG_CURRENT_MAX_AP_TYPE]; u32 num_6ghz_client[WMI_REG_CURRENT_MAX_AP_TYPE][WMI_REG_MAX_CLIENT_TYPE]; u32 total_reg_rules = 0; int ret, i, j, num_invalid_5ghz_ext_rules = 0; ath11k_dbg(ab, ATH11K_DBG_WMI, "processing regulatory ext channel list\n"); tb = ath11k_wmi_tlv_parse_alloc(ab, skb->data, skb->len, GFP_ATOMIC); if (IS_ERR(tb)) { ret = PTR_ERR(tb); ath11k_warn(ab, "failed to parse tlv: %d\n", ret); return ret; } ev = tb[WMI_TAG_REG_CHAN_LIST_CC_EXT_EVENT]; if (!ev) { ath11k_warn(ab, "failed to fetch reg chan list ext update ev\n"); kfree(tb); return -EPROTO; } reg_info->num_2ghz_reg_rules = ev->num_2ghz_reg_rules; reg_info->num_5ghz_reg_rules = ev->num_5ghz_reg_rules; reg_info->num_6ghz_rules_ap[WMI_REG_INDOOR_AP] = ev->num_6ghz_reg_rules_ap_lpi; reg_info->num_6ghz_rules_ap[WMI_REG_STANDARD_POWER_AP] = ev->num_6ghz_reg_rules_ap_sp; reg_info->num_6ghz_rules_ap[WMI_REG_VERY_LOW_POWER_AP] = ev->num_6ghz_reg_rules_ap_vlp; for (i = 0; i < WMI_REG_MAX_CLIENT_TYPE; i++) { reg_info->num_6ghz_rules_client[WMI_REG_INDOOR_AP][i] = ev->num_6ghz_reg_rules_client_lpi[i]; reg_info->num_6ghz_rules_client[WMI_REG_STANDARD_POWER_AP][i] = ev->num_6ghz_reg_rules_client_sp[i]; reg_info->num_6ghz_rules_client[WMI_REG_VERY_LOW_POWER_AP][i] = ev->num_6ghz_reg_rules_client_vlp[i]; } num_2ghz_reg_rules = reg_info->num_2ghz_reg_rules; num_5ghz_reg_rules = reg_info->num_5ghz_reg_rules; total_reg_rules += num_2ghz_reg_rules; total_reg_rules += num_5ghz_reg_rules; if ((num_2ghz_reg_rules > MAX_REG_RULES) || (num_5ghz_reg_rules > MAX_REG_RULES)) { ath11k_warn(ab, "Num reg rules for 2.4 GHz/5 GHz exceeds max limit (num_2ghz_reg_rules: %d num_5ghz_reg_rules: %d max_rules: %d)\n", num_2ghz_reg_rules, num_5ghz_reg_rules, MAX_REG_RULES); kfree(tb); return -EINVAL; } for (i = 0; i < WMI_REG_CURRENT_MAX_AP_TYPE; i++) { num_6ghz_reg_rules_ap[i] = reg_info->num_6ghz_rules_ap[i]; if (num_6ghz_reg_rules_ap[i] > MAX_6GHZ_REG_RULES) { ath11k_warn(ab, "Num 6 GHz reg rules for AP mode(%d) exceeds max limit (num_6ghz_reg_rules_ap: %d, max_rules: %d)\n", i, num_6ghz_reg_rules_ap[i], MAX_6GHZ_REG_RULES); kfree(tb); return -EINVAL; } total_reg_rules += num_6ghz_reg_rules_ap[i]; } for (i = 0; i < WMI_REG_MAX_CLIENT_TYPE; i++) { num_6ghz_client[WMI_REG_INDOOR_AP][i] = reg_info->num_6ghz_rules_client[WMI_REG_INDOOR_AP][i]; total_reg_rules += num_6ghz_client[WMI_REG_INDOOR_AP][i]; num_6ghz_client[WMI_REG_STANDARD_POWER_AP][i] = reg_info->num_6ghz_rules_client[WMI_REG_STANDARD_POWER_AP][i]; total_reg_rules += num_6ghz_client[WMI_REG_STANDARD_POWER_AP][i]; num_6ghz_client[WMI_REG_VERY_LOW_POWER_AP][i] = reg_info->num_6ghz_rules_client[WMI_REG_VERY_LOW_POWER_AP][i]; total_reg_rules += num_6ghz_client[WMI_REG_VERY_LOW_POWER_AP][i]; if ((num_6ghz_client[WMI_REG_INDOOR_AP][i] > MAX_6GHZ_REG_RULES) || (num_6ghz_client[WMI_REG_STANDARD_POWER_AP][i] > MAX_6GHZ_REG_RULES) || (num_6ghz_client[WMI_REG_VERY_LOW_POWER_AP][i] > MAX_6GHZ_REG_RULES)) { ath11k_warn(ab, "Num 6 GHz client reg rules exceeds max limit, for client(type: %d)\n", i); kfree(tb); return -EINVAL; } } if (!total_reg_rules) { ath11k_warn(ab, "No reg rules available\n"); kfree(tb); return -EINVAL; } memcpy(reg_info->alpha2, &ev->alpha2, REG_ALPHA2_LEN); reg_info->dfs_region = ev->dfs_region; reg_info->phybitmap = ev->phybitmap; reg_info->num_phy = ev->num_phy; reg_info->phy_id = ev->phy_id; reg_info->ctry_code = ev->country_id; reg_info->reg_dmn_pair = ev->domain_code; ath11k_dbg(ab, ATH11K_DBG_WMI, "status_code %s", ath11k_cc_status_to_str(reg_info->status_code)); reg_info->status_code = ath11k_wmi_cc_setting_code_to_reg(ev->status_code); reg_info->is_ext_reg_event = true; reg_info->min_bw_2ghz = ev->min_bw_2ghz; reg_info->max_bw_2ghz = ev->max_bw_2ghz; reg_info->min_bw_5ghz = ev->min_bw_5ghz; reg_info->max_bw_5ghz = ev->max_bw_5ghz; reg_info->min_bw_6ghz_ap[WMI_REG_INDOOR_AP] = ev->min_bw_6ghz_ap_lpi; reg_info->max_bw_6ghz_ap[WMI_REG_INDOOR_AP] = ev->max_bw_6ghz_ap_lpi; reg_info->min_bw_6ghz_ap[WMI_REG_STANDARD_POWER_AP] = ev->min_bw_6ghz_ap_sp; reg_info->max_bw_6ghz_ap[WMI_REG_STANDARD_POWER_AP] = ev->max_bw_6ghz_ap_sp; reg_info->min_bw_6ghz_ap[WMI_REG_VERY_LOW_POWER_AP] = ev->min_bw_6ghz_ap_vlp; reg_info->max_bw_6ghz_ap[WMI_REG_VERY_LOW_POWER_AP] = ev->max_bw_6ghz_ap_vlp; ath11k_dbg(ab, ATH11K_DBG_WMI, "6 GHz AP BW: LPI (%d - %d), SP (%d - %d), VLP (%d - %d)\n", reg_info->min_bw_6ghz_ap[WMI_REG_INDOOR_AP], reg_info->max_bw_6ghz_ap[WMI_REG_INDOOR_AP], reg_info->min_bw_6ghz_ap[WMI_REG_STANDARD_POWER_AP], reg_info->max_bw_6ghz_ap[WMI_REG_STANDARD_POWER_AP], reg_info->min_bw_6ghz_ap[WMI_REG_VERY_LOW_POWER_AP], reg_info->max_bw_6ghz_ap[WMI_REG_VERY_LOW_POWER_AP]); for (i = 0; i < WMI_REG_MAX_CLIENT_TYPE; i++) { reg_info->min_bw_6ghz_client[WMI_REG_INDOOR_AP][i] = ev->min_bw_6ghz_client_lpi[i]; reg_info->max_bw_6ghz_client[WMI_REG_INDOOR_AP][i] = ev->max_bw_6ghz_client_lpi[i]; reg_info->min_bw_6ghz_client[WMI_REG_STANDARD_POWER_AP][i] = ev->min_bw_6ghz_client_sp[i]; reg_info->max_bw_6ghz_client[WMI_REG_STANDARD_POWER_AP][i] = ev->max_bw_6ghz_client_sp[i]; reg_info->min_bw_6ghz_client[WMI_REG_VERY_LOW_POWER_AP][i] = ev->min_bw_6ghz_client_vlp[i]; reg_info->max_bw_6ghz_client[WMI_REG_VERY_LOW_POWER_AP][i] = ev->max_bw_6ghz_client_vlp[i]; ath11k_dbg(ab, ATH11K_DBG_WMI, "6 GHz %s BW: LPI (%d - %d), SP (%d - %d), VLP (%d - %d)\n", ath11k_6ghz_client_type_to_str(i), reg_info->min_bw_6ghz_client[WMI_REG_INDOOR_AP][i], reg_info->max_bw_6ghz_client[WMI_REG_INDOOR_AP][i], reg_info->min_bw_6ghz_client[WMI_REG_STANDARD_POWER_AP][i], reg_info->max_bw_6ghz_client[WMI_REG_STANDARD_POWER_AP][i], reg_info->min_bw_6ghz_client[WMI_REG_VERY_LOW_POWER_AP][i], reg_info->max_bw_6ghz_client[WMI_REG_VERY_LOW_POWER_AP][i]); } ath11k_dbg(ab, ATH11K_DBG_WMI, "cc_ext %s dfs %d BW: min_2ghz %d max_2ghz %d min_5ghz %d max_5ghz %d phy_bitmap 0x%x", reg_info->alpha2, reg_info->dfs_region, reg_info->min_bw_2ghz, reg_info->max_bw_2ghz, reg_info->min_bw_5ghz, reg_info->max_bw_5ghz, reg_info->phybitmap); ath11k_dbg(ab, ATH11K_DBG_WMI, "num_2ghz_reg_rules %d num_5ghz_reg_rules %d", num_2ghz_reg_rules, num_5ghz_reg_rules); ath11k_dbg(ab, ATH11K_DBG_WMI, "num_6ghz_reg_rules_ap_lpi: %d num_6ghz_reg_rules_ap_sp: %d num_6ghz_reg_rules_ap_vlp: %d", num_6ghz_reg_rules_ap[WMI_REG_INDOOR_AP], num_6ghz_reg_rules_ap[WMI_REG_STANDARD_POWER_AP], num_6ghz_reg_rules_ap[WMI_REG_VERY_LOW_POWER_AP]); j = WMI_REG_DEFAULT_CLIENT; ath11k_dbg(ab, ATH11K_DBG_WMI, "6 GHz Regular client: num_6ghz_reg_rules_lpi: %d num_6ghz_reg_rules_sp: %d num_6ghz_reg_rules_vlp: %d", num_6ghz_client[WMI_REG_INDOOR_AP][j], num_6ghz_client[WMI_REG_STANDARD_POWER_AP][j], num_6ghz_client[WMI_REG_VERY_LOW_POWER_AP][j]); j = WMI_REG_SUBORDINATE_CLIENT; ath11k_dbg(ab, ATH11K_DBG_WMI, "6 GHz Subordinate client: num_6ghz_reg_rules_lpi: %d num_6ghz_reg_rules_sp: %d num_6ghz_reg_rules_vlp: %d", num_6ghz_client[WMI_REG_INDOOR_AP][j], num_6ghz_client[WMI_REG_STANDARD_POWER_AP][j], num_6ghz_client[WMI_REG_VERY_LOW_POWER_AP][j]); ext_wmi_reg_rule = (struct wmi_regulatory_ext_rule *)((u8 *)ev + sizeof(*ev) + sizeof(struct wmi_tlv)); if (num_2ghz_reg_rules) { reg_info->reg_rules_2ghz_ptr = create_ext_reg_rules_from_wmi(num_2ghz_reg_rules, ext_wmi_reg_rule); if (!reg_info->reg_rules_2ghz_ptr) { kfree(tb); ath11k_warn(ab, "Unable to Allocate memory for 2 GHz rules\n"); return -ENOMEM; } ath11k_print_reg_rule(ab, "2 GHz", num_2ghz_reg_rules, reg_info->reg_rules_2ghz_ptr); } ext_wmi_reg_rule += num_2ghz_reg_rules; /* Firmware might include 6 GHz reg rule in 5 GHz rule list * for few countries along with separate 6 GHz rule. * Having same 6 GHz reg rule in 5 GHz and 6 GHz rules list * causes intersect check to be true, and same rules will be * shown multiple times in iw cmd. * Hence, avoid parsing 6 GHz rule from 5 GHz reg rule list */ num_invalid_5ghz_ext_rules = ath11k_invalid_5ghz_reg_ext_rules_from_wmi(num_5ghz_reg_rules, ext_wmi_reg_rule); if (num_invalid_5ghz_ext_rules) { ath11k_dbg(ab, ATH11K_DBG_WMI, "CC: %s 5 GHz reg rules number %d from fw, %d number of invalid 5 GHz rules", reg_info->alpha2, reg_info->num_5ghz_reg_rules, num_invalid_5ghz_ext_rules); num_5ghz_reg_rules = num_5ghz_reg_rules - num_invalid_5ghz_ext_rules; reg_info->num_5ghz_reg_rules = num_5ghz_reg_rules; } if (num_5ghz_reg_rules) { reg_info->reg_rules_5ghz_ptr = create_ext_reg_rules_from_wmi(num_5ghz_reg_rules, ext_wmi_reg_rule); if (!reg_info->reg_rules_5ghz_ptr) { kfree(tb); ath11k_warn(ab, "Unable to Allocate memory for 5 GHz rules\n"); return -ENOMEM; } ath11k_print_reg_rule(ab, "5 GHz", num_5ghz_reg_rules, reg_info->reg_rules_5ghz_ptr); } /* We have adjusted the number of 5 GHz reg rules above. But still those * many rules needs to be adjusted in ext_wmi_reg_rule. * * NOTE: num_invalid_5ghz_ext_rules will be 0 for rest other cases. */ ext_wmi_reg_rule += (num_5ghz_reg_rules + num_invalid_5ghz_ext_rules); for (i = 0; i < WMI_REG_CURRENT_MAX_AP_TYPE; i++) { reg_info->reg_rules_6ghz_ap_ptr[i] = create_ext_reg_rules_from_wmi(num_6ghz_reg_rules_ap[i], ext_wmi_reg_rule); if (!reg_info->reg_rules_6ghz_ap_ptr[i]) { kfree(tb); ath11k_warn(ab, "Unable to Allocate memory for 6 GHz AP rules\n"); return -ENOMEM; } ath11k_print_reg_rule(ab, ath11k_6ghz_ap_type_to_str(i), num_6ghz_reg_rules_ap[i], reg_info->reg_rules_6ghz_ap_ptr[i]); ext_wmi_reg_rule += num_6ghz_reg_rules_ap[i]; } for (j = 0; j < WMI_REG_CURRENT_MAX_AP_TYPE; j++) { ath11k_dbg(ab, ATH11K_DBG_WMI, "6 GHz AP type %s", ath11k_6ghz_ap_type_to_str(j)); for (i = 0; i < WMI_REG_MAX_CLIENT_TYPE; i++) { reg_info->reg_rules_6ghz_client_ptr[j][i] = create_ext_reg_rules_from_wmi(num_6ghz_client[j][i], ext_wmi_reg_rule); if (!reg_info->reg_rules_6ghz_client_ptr[j][i]) { kfree(tb); ath11k_warn(ab, "Unable to Allocate memory for 6 GHz client rules\n"); return -ENOMEM; } ath11k_print_reg_rule(ab, ath11k_6ghz_client_type_to_str(i), num_6ghz_client[j][i], reg_info->reg_rules_6ghz_client_ptr[j][i]); ext_wmi_reg_rule += num_6ghz_client[j][i]; } } reg_info->client_type = ev->client_type; reg_info->rnr_tpe_usable = ev->rnr_tpe_usable; reg_info->unspecified_ap_usable = ev->unspecified_ap_usable; reg_info->domain_code_6ghz_ap[WMI_REG_INDOOR_AP] = ev->domain_code_6ghz_ap_lpi; reg_info->domain_code_6ghz_ap[WMI_REG_STANDARD_POWER_AP] = ev->domain_code_6ghz_ap_sp; reg_info->domain_code_6ghz_ap[WMI_REG_VERY_LOW_POWER_AP] = ev->domain_code_6ghz_ap_vlp; ath11k_dbg(ab, ATH11K_DBG_WMI, "6 GHz reg info client type %s rnr_tpe_usable %d unspecified_ap_usable %d AP sub domain: lpi %s, sp %s, vlp %s\n", ath11k_6ghz_client_type_to_str(reg_info->client_type), reg_info->rnr_tpe_usable, reg_info->unspecified_ap_usable, ath11k_sub_reg_6ghz_to_str(ev->domain_code_6ghz_ap_lpi), ath11k_sub_reg_6ghz_to_str(ev->domain_code_6ghz_ap_sp), ath11k_sub_reg_6ghz_to_str(ev->domain_code_6ghz_ap_vlp)); for (i = 0; i < WMI_REG_MAX_CLIENT_TYPE; i++) { reg_info->domain_code_6ghz_client[WMI_REG_INDOOR_AP][i] = ev->domain_code_6ghz_client_lpi[i]; reg_info->domain_code_6ghz_client[WMI_REG_STANDARD_POWER_AP][i] = ev->domain_code_6ghz_client_sp[i]; reg_info->domain_code_6ghz_client[WMI_REG_VERY_LOW_POWER_AP][i] = ev->domain_code_6ghz_client_vlp[i]; ath11k_dbg(ab, ATH11K_DBG_WMI, "6 GHz client type %s client sub domain: lpi %s, sp %s, vlp %s\n", ath11k_6ghz_client_type_to_str(i), ath11k_sub_reg_6ghz_to_str(ev->domain_code_6ghz_client_lpi[i]), ath11k_sub_reg_6ghz_to_str(ev->domain_code_6ghz_client_sp[i]), ath11k_sub_reg_6ghz_to_str(ev->domain_code_6ghz_client_vlp[i]) ); } reg_info->domain_code_6ghz_super_id = ev->domain_code_6ghz_super_id; ath11k_dbg(ab, ATH11K_DBG_WMI, "6 GHz client_type %s 6 GHz super domain %s", ath11k_6ghz_client_type_to_str(reg_info->client_type), ath11k_super_reg_6ghz_to_str(reg_info->domain_code_6ghz_super_id)); ath11k_dbg(ab, ATH11K_DBG_WMI, "processed regulatory ext channel list\n"); kfree(tb); return 0; } static int ath11k_pull_peer_del_resp_ev(struct ath11k_base *ab, struct sk_buff *skb, struct wmi_peer_delete_resp_event *peer_del_resp) { const void **tb; const struct wmi_peer_delete_resp_event *ev; int ret; tb = ath11k_wmi_tlv_parse_alloc(ab, skb->data, skb->len, GFP_ATOMIC); if (IS_ERR(tb)) { ret = PTR_ERR(tb); ath11k_warn(ab, "failed to parse tlv: %d\n", ret); return ret; } ev = tb[WMI_TAG_PEER_DELETE_RESP_EVENT]; if (!ev) { ath11k_warn(ab, "failed to fetch peer delete resp ev"); kfree(tb); return -EPROTO; } memset(peer_del_resp, 0, sizeof(*peer_del_resp)); peer_del_resp->vdev_id = ev->vdev_id; ether_addr_copy(peer_del_resp->peer_macaddr.addr, ev->peer_macaddr.addr); kfree(tb); return 0; } static int ath11k_pull_vdev_del_resp_ev(struct ath11k_base *ab, struct sk_buff *skb, u32 *vdev_id) { const void **tb; const struct wmi_vdev_delete_resp_event *ev; int ret; tb = ath11k_wmi_tlv_parse_alloc(ab, skb->data, skb->len, GFP_ATOMIC); if (IS_ERR(tb)) { ret = PTR_ERR(tb); ath11k_warn(ab, "failed to parse tlv: %d\n", ret); return ret; } ev = tb[WMI_TAG_VDEV_DELETE_RESP_EVENT]; if (!ev) { ath11k_warn(ab, "failed to fetch vdev delete resp ev"); kfree(tb); return -EPROTO; } *vdev_id = ev->vdev_id; kfree(tb); return 0; } static int ath11k_pull_bcn_tx_status_ev(struct ath11k_base *ab, void *evt_buf, u32 len, u32 *vdev_id, u32 *tx_status) { const void **tb; const struct wmi_bcn_tx_status_event *ev; int ret; tb = ath11k_wmi_tlv_parse_alloc(ab, evt_buf, len, GFP_ATOMIC); if (IS_ERR(tb)) { ret = PTR_ERR(tb); ath11k_warn(ab, "failed to parse tlv: %d\n", ret); return ret; } ev = tb[WMI_TAG_OFFLOAD_BCN_TX_STATUS_EVENT]; if (!ev) { ath11k_warn(ab, "failed to fetch bcn tx status ev"); kfree(tb); return -EPROTO; } *vdev_id = ev->vdev_id; *tx_status = ev->tx_status; kfree(tb); return 0; } static int ath11k_pull_vdev_stopped_param_tlv(struct ath11k_base *ab, struct sk_buff *skb, u32 *vdev_id) { const void **tb; const struct wmi_vdev_stopped_event *ev; int ret; tb = ath11k_wmi_tlv_parse_alloc(ab, skb->data, skb->len, GFP_ATOMIC); if (IS_ERR(tb)) { ret = PTR_ERR(tb); ath11k_warn(ab, "failed to parse tlv: %d\n", ret); return ret; } ev = tb[WMI_TAG_VDEV_STOPPED_EVENT]; if (!ev) { ath11k_warn(ab, "failed to fetch vdev stop ev"); kfree(tb); return -EPROTO; } *vdev_id = ev->vdev_id; kfree(tb); return 0; } static int ath11k_wmi_tlv_mgmt_rx_parse(struct ath11k_base *ab, u16 tag, u16 len, const void *ptr, void *data) { struct wmi_tlv_mgmt_rx_parse *parse = data; switch (tag) { case WMI_TAG_MGMT_RX_HDR: parse->fixed = ptr; break; case WMI_TAG_ARRAY_BYTE: if (!parse->frame_buf_done) { parse->frame_buf = ptr; parse->frame_buf_done = true; } break; } return 0; } static int ath11k_pull_mgmt_rx_params_tlv(struct ath11k_base *ab, struct sk_buff *skb, struct mgmt_rx_event_params *hdr) { struct wmi_tlv_mgmt_rx_parse parse = { }; const struct wmi_mgmt_rx_hdr *ev; const u8 *frame; int ret; ret = ath11k_wmi_tlv_iter(ab, skb->data, skb->len, ath11k_wmi_tlv_mgmt_rx_parse, &parse); if (ret) { ath11k_warn(ab, "failed to parse mgmt rx tlv %d\n", ret); return ret; } ev = parse.fixed; frame = parse.frame_buf; if (!ev || !frame) { ath11k_warn(ab, "failed to fetch mgmt rx hdr"); return -EPROTO; } hdr->pdev_id = ev->pdev_id; hdr->chan_freq = ev->chan_freq; hdr->channel = ev->channel; hdr->snr = ev->snr; hdr->rate = ev->rate; hdr->phy_mode = ev->phy_mode; hdr->buf_len = ev->buf_len; hdr->status = ev->status; hdr->flags = ev->flags; hdr->rssi = ev->rssi; hdr->tsf_delta = ev->tsf_delta; memcpy(hdr->rssi_ctl, ev->rssi_ctl, sizeof(hdr->rssi_ctl)); if (skb->len < (frame - skb->data) + hdr->buf_len) { ath11k_warn(ab, "invalid length in mgmt rx hdr ev"); return -EPROTO; } /* shift the sk_buff to point to `frame` */ skb_trim(skb, 0); skb_put(skb, frame - skb->data); skb_pull(skb, frame - skb->data); skb_put(skb, hdr->buf_len); ath11k_ce_byte_swap(skb->data, hdr->buf_len); return 0; } static int wmi_process_mgmt_tx_comp(struct ath11k *ar, struct wmi_mgmt_tx_compl_event *tx_compl_param) { struct sk_buff *msdu; struct ieee80211_tx_info *info; struct ath11k_skb_cb *skb_cb; int num_mgmt; spin_lock_bh(&ar->txmgmt_idr_lock); msdu = idr_find(&ar->txmgmt_idr, tx_compl_param->desc_id); if (!msdu) { ath11k_warn(ar->ab, "received mgmt tx compl for invalid msdu_id: %d\n", tx_compl_param->desc_id); spin_unlock_bh(&ar->txmgmt_idr_lock); return -ENOENT; } idr_remove(&ar->txmgmt_idr, tx_compl_param->desc_id); spin_unlock_bh(&ar->txmgmt_idr_lock); skb_cb = ATH11K_SKB_CB(msdu); dma_unmap_single(ar->ab->dev, skb_cb->paddr, msdu->len, DMA_TO_DEVICE); info = IEEE80211_SKB_CB(msdu); if ((!(info->flags & IEEE80211_TX_CTL_NO_ACK)) && !tx_compl_param->status) { info->flags |= IEEE80211_TX_STAT_ACK; if (test_bit(WMI_TLV_SERVICE_TX_DATA_MGMT_ACK_RSSI, ar->ab->wmi_ab.svc_map)) info->status.ack_signal = tx_compl_param->ack_rssi; } ieee80211_tx_status_irqsafe(ar->hw, msdu); num_mgmt = atomic_dec_if_positive(&ar->num_pending_mgmt_tx); /* WARN when we received this event without doing any mgmt tx */ if (num_mgmt < 0) WARN_ON_ONCE(1); ath11k_dbg(ar->ab, ATH11K_DBG_WMI, "mgmt tx comp pending %d desc id %d\n", num_mgmt, tx_compl_param->desc_id); if (!num_mgmt) wake_up(&ar->txmgmt_empty_waitq); return 0; } static int ath11k_pull_mgmt_tx_compl_param_tlv(struct ath11k_base *ab, struct sk_buff *skb, struct wmi_mgmt_tx_compl_event *param) { const void **tb; const struct wmi_mgmt_tx_compl_event *ev; int ret; tb = ath11k_wmi_tlv_parse_alloc(ab, skb->data, skb->len, GFP_ATOMIC); if (IS_ERR(tb)) { ret = PTR_ERR(tb); ath11k_warn(ab, "failed to parse tlv: %d\n", ret); return ret; } ev = tb[WMI_TAG_MGMT_TX_COMPL_EVENT]; if (!ev) { ath11k_warn(ab, "failed to fetch mgmt tx compl ev"); kfree(tb); return -EPROTO; } param->pdev_id = ev->pdev_id; param->desc_id = ev->desc_id; param->status = ev->status; param->ack_rssi = ev->ack_rssi; kfree(tb); return 0; } static void ath11k_wmi_event_scan_started(struct ath11k *ar) { lockdep_assert_held(&ar->data_lock); switch (ar->scan.state) { case ATH11K_SCAN_IDLE: case ATH11K_SCAN_RUNNING: case ATH11K_SCAN_ABORTING: ath11k_warn(ar->ab, "received scan started event in an invalid scan state: %s (%d)\n", ath11k_scan_state_str(ar->scan.state), ar->scan.state); break; case ATH11K_SCAN_STARTING: ar->scan.state = ATH11K_SCAN_RUNNING; if (ar->scan.is_roc) ieee80211_ready_on_channel(ar->hw); complete(&ar->scan.started); break; } } static void ath11k_wmi_event_scan_start_failed(struct ath11k *ar) { lockdep_assert_held(&ar->data_lock); switch (ar->scan.state) { case ATH11K_SCAN_IDLE: case ATH11K_SCAN_RUNNING: case ATH11K_SCAN_ABORTING: ath11k_warn(ar->ab, "received scan start failed event in an invalid scan state: %s (%d)\n", ath11k_scan_state_str(ar->scan.state), ar->scan.state); break; case ATH11K_SCAN_STARTING: complete(&ar->scan.started); __ath11k_mac_scan_finish(ar); break; } } static void ath11k_wmi_event_scan_completed(struct ath11k *ar) { lockdep_assert_held(&ar->data_lock); switch (ar->scan.state) { case ATH11K_SCAN_IDLE: case ATH11K_SCAN_STARTING: /* One suspected reason scan can be completed while starting is * if firmware fails to deliver all scan events to the host, * e.g. when transport pipe is full. This has been observed * with spectral scan phyerr events starving wmi transport * pipe. In such case the "scan completed" event should be (and * is) ignored by the host as it may be just firmware's scan * state machine recovering. */ ath11k_warn(ar->ab, "received scan completed event in an invalid scan state: %s (%d)\n", ath11k_scan_state_str(ar->scan.state), ar->scan.state); break; case ATH11K_SCAN_RUNNING: case ATH11K_SCAN_ABORTING: __ath11k_mac_scan_finish(ar); break; } } static void ath11k_wmi_event_scan_bss_chan(struct ath11k *ar) { lockdep_assert_held(&ar->data_lock); switch (ar->scan.state) { case ATH11K_SCAN_IDLE: case ATH11K_SCAN_STARTING: ath11k_warn(ar->ab, "received scan bss chan event in an invalid scan state: %s (%d)\n", ath11k_scan_state_str(ar->scan.state), ar->scan.state); break; case ATH11K_SCAN_RUNNING: case ATH11K_SCAN_ABORTING: ar->scan_channel = NULL; break; } } static void ath11k_wmi_event_scan_foreign_chan(struct ath11k *ar, u32 freq) { lockdep_assert_held(&ar->data_lock); switch (ar->scan.state) { case ATH11K_SCAN_IDLE: case ATH11K_SCAN_STARTING: ath11k_warn(ar->ab, "received scan foreign chan event in an invalid scan state: %s (%d)\n", ath11k_scan_state_str(ar->scan.state), ar->scan.state); break; case ATH11K_SCAN_RUNNING: case ATH11K_SCAN_ABORTING: ar->scan_channel = ieee80211_get_channel(ar->hw->wiphy, freq); if (ar->scan.is_roc && ar->scan.roc_freq == freq) complete(&ar->scan.on_channel); break; } } static const char * ath11k_wmi_event_scan_type_str(enum wmi_scan_event_type type, enum wmi_scan_completion_reason reason) { switch (type) { case WMI_SCAN_EVENT_STARTED: return "started"; case WMI_SCAN_EVENT_COMPLETED: switch (reason) { case WMI_SCAN_REASON_COMPLETED: return "completed"; case WMI_SCAN_REASON_CANCELLED: return "completed [cancelled]"; case WMI_SCAN_REASON_PREEMPTED: return "completed [preempted]"; case WMI_SCAN_REASON_TIMEDOUT: return "completed [timedout]"; case WMI_SCAN_REASON_INTERNAL_FAILURE: return "completed [internal err]"; case WMI_SCAN_REASON_MAX: break; } return "completed [unknown]"; case WMI_SCAN_EVENT_BSS_CHANNEL: return "bss channel"; case WMI_SCAN_EVENT_FOREIGN_CHAN: return "foreign channel"; case WMI_SCAN_EVENT_DEQUEUED: return "dequeued"; case WMI_SCAN_EVENT_PREEMPTED: return "preempted"; case WMI_SCAN_EVENT_START_FAILED: return "start failed"; case WMI_SCAN_EVENT_RESTARTED: return "restarted"; case WMI_SCAN_EVENT_FOREIGN_CHAN_EXIT: return "foreign channel exit"; default: return "unknown"; } } static int ath11k_pull_scan_ev(struct ath11k_base *ab, struct sk_buff *skb, struct wmi_scan_event *scan_evt_param) { const void **tb; const struct wmi_scan_event *ev; int ret; tb = ath11k_wmi_tlv_parse_alloc(ab, skb->data, skb->len, GFP_ATOMIC); if (IS_ERR(tb)) { ret = PTR_ERR(tb); ath11k_warn(ab, "failed to parse tlv: %d\n", ret); return ret; } ev = tb[WMI_TAG_SCAN_EVENT]; if (!ev) { ath11k_warn(ab, "failed to fetch scan ev"); kfree(tb); return -EPROTO; } scan_evt_param->event_type = ev->event_type; scan_evt_param->reason = ev->reason; scan_evt_param->channel_freq = ev->channel_freq; scan_evt_param->scan_req_id = ev->scan_req_id; scan_evt_param->scan_id = ev->scan_id; scan_evt_param->vdev_id = ev->vdev_id; scan_evt_param->tsf_timestamp = ev->tsf_timestamp; kfree(tb); return 0; } static int ath11k_pull_peer_sta_kickout_ev(struct ath11k_base *ab, struct sk_buff *skb, struct wmi_peer_sta_kickout_arg *arg) { const void **tb; const struct wmi_peer_sta_kickout_event *ev; int ret; tb = ath11k_wmi_tlv_parse_alloc(ab, skb->data, skb->len, GFP_ATOMIC); if (IS_ERR(tb)) { ret = PTR_ERR(tb); ath11k_warn(ab, "failed to parse tlv: %d\n", ret); return ret; } ev = tb[WMI_TAG_PEER_STA_KICKOUT_EVENT]; if (!ev) { ath11k_warn(ab, "failed to fetch peer sta kickout ev"); kfree(tb); return -EPROTO; } arg->mac_addr = ev->peer_macaddr.addr; kfree(tb); return 0; } static int ath11k_pull_roam_ev(struct ath11k_base *ab, struct sk_buff *skb, struct wmi_roam_event *roam_ev) { const void **tb; const struct wmi_roam_event *ev; int ret; tb = ath11k_wmi_tlv_parse_alloc(ab, skb->data, skb->len, GFP_ATOMIC); if (IS_ERR(tb)) { ret = PTR_ERR(tb); ath11k_warn(ab, "failed to parse tlv: %d\n", ret); return ret; } ev = tb[WMI_TAG_ROAM_EVENT]; if (!ev) { ath11k_warn(ab, "failed to fetch roam ev"); kfree(tb); return -EPROTO; } roam_ev->vdev_id = ev->vdev_id; roam_ev->reason = ev->reason; roam_ev->rssi = ev->rssi; kfree(tb); return 0; } static int freq_to_idx(struct ath11k *ar, int freq) { struct ieee80211_supported_band *sband; int band, ch, idx = 0; for (band = NL80211_BAND_2GHZ; band < NUM_NL80211_BANDS; band++) { sband = ar->hw->wiphy->bands[band]; if (!sband) continue; for (ch = 0; ch < sband->n_channels; ch++, idx++) if (sband->channels[ch].center_freq == freq) goto exit; } exit: return idx; } static int ath11k_pull_chan_info_ev(struct ath11k_base *ab, u8 *evt_buf, u32 len, struct wmi_chan_info_event *ch_info_ev) { const void **tb; const struct wmi_chan_info_event *ev; int ret; tb = ath11k_wmi_tlv_parse_alloc(ab, evt_buf, len, GFP_ATOMIC); if (IS_ERR(tb)) { ret = PTR_ERR(tb); ath11k_warn(ab, "failed to parse tlv: %d\n", ret); return ret; } ev = tb[WMI_TAG_CHAN_INFO_EVENT]; if (!ev) { ath11k_warn(ab, "failed to fetch chan info ev"); kfree(tb); return -EPROTO; } ch_info_ev->err_code = ev->err_code; ch_info_ev->freq = ev->freq; ch_info_ev->cmd_flags = ev->cmd_flags; ch_info_ev->noise_floor = ev->noise_floor; ch_info_ev->rx_clear_count = ev->rx_clear_count; ch_info_ev->cycle_count = ev->cycle_count; ch_info_ev->chan_tx_pwr_range = ev->chan_tx_pwr_range; ch_info_ev->chan_tx_pwr_tp = ev->chan_tx_pwr_tp; ch_info_ev->rx_frame_count = ev->rx_frame_count; ch_info_ev->tx_frame_cnt = ev->tx_frame_cnt; ch_info_ev->mac_clk_mhz = ev->mac_clk_mhz; ch_info_ev->vdev_id = ev->vdev_id; kfree(tb); return 0; } static int ath11k_pull_pdev_bss_chan_info_ev(struct ath11k_base *ab, struct sk_buff *skb, struct wmi_pdev_bss_chan_info_event *bss_ch_info_ev) { const void **tb; const struct wmi_pdev_bss_chan_info_event *ev; int ret; tb = ath11k_wmi_tlv_parse_alloc(ab, skb->data, skb->len, GFP_ATOMIC); if (IS_ERR(tb)) { ret = PTR_ERR(tb); ath11k_warn(ab, "failed to parse tlv: %d\n", ret); return ret; } ev = tb[WMI_TAG_PDEV_BSS_CHAN_INFO_EVENT]; if (!ev) { ath11k_warn(ab, "failed to fetch pdev bss chan info ev"); kfree(tb); return -EPROTO; } bss_ch_info_ev->pdev_id = ev->pdev_id; bss_ch_info_ev->freq = ev->freq; bss_ch_info_ev->noise_floor = ev->noise_floor; bss_ch_info_ev->rx_clear_count_low = ev->rx_clear_count_low; bss_ch_info_ev->rx_clear_count_high = ev->rx_clear_count_high; bss_ch_info_ev->cycle_count_low = ev->cycle_count_low; bss_ch_info_ev->cycle_count_high = ev->cycle_count_high; bss_ch_info_ev->tx_cycle_count_low = ev->tx_cycle_count_low; bss_ch_info_ev->tx_cycle_count_high = ev->tx_cycle_count_high; bss_ch_info_ev->rx_cycle_count_low = ev->rx_cycle_count_low; bss_ch_info_ev->rx_cycle_count_high = ev->rx_cycle_count_high; bss_ch_info_ev->rx_bss_cycle_count_low = ev->rx_bss_cycle_count_low; bss_ch_info_ev->rx_bss_cycle_count_high = ev->rx_bss_cycle_count_high; kfree(tb); return 0; } static int ath11k_pull_vdev_install_key_compl_ev(struct ath11k_base *ab, struct sk_buff *skb, struct wmi_vdev_install_key_complete_arg *arg) { const void **tb; const struct wmi_vdev_install_key_compl_event *ev; int ret; tb = ath11k_wmi_tlv_parse_alloc(ab, skb->data, skb->len, GFP_ATOMIC); if (IS_ERR(tb)) { ret = PTR_ERR(tb); ath11k_warn(ab, "failed to parse tlv: %d\n", ret); return ret; } ev = tb[WMI_TAG_VDEV_INSTALL_KEY_COMPLETE_EVENT]; if (!ev) { ath11k_warn(ab, "failed to fetch vdev install key compl ev"); kfree(tb); return -EPROTO; } arg->vdev_id = ev->vdev_id; arg->macaddr = ev->peer_macaddr.addr; arg->key_idx = ev->key_idx; arg->key_flags = ev->key_flags; arg->status = ev->status; kfree(tb); return 0; } static int ath11k_pull_peer_assoc_conf_ev(struct ath11k_base *ab, struct sk_buff *skb, struct wmi_peer_assoc_conf_arg *peer_assoc_conf) { const void **tb; const struct wmi_peer_assoc_conf_event *ev; int ret; tb = ath11k_wmi_tlv_parse_alloc(ab, skb->data, skb->len, GFP_ATOMIC); if (IS_ERR(tb)) { ret = PTR_ERR(tb); ath11k_warn(ab, "failed to parse tlv: %d\n", ret); return ret; } ev = tb[WMI_TAG_PEER_ASSOC_CONF_EVENT]; if (!ev) { ath11k_warn(ab, "failed to fetch peer assoc conf ev"); kfree(tb); return -EPROTO; } peer_assoc_conf->vdev_id = ev->vdev_id; peer_assoc_conf->macaddr = ev->peer_macaddr.addr; kfree(tb); return 0; } static void ath11k_wmi_pull_pdev_stats_base(const struct wmi_pdev_stats_base *src, struct ath11k_fw_stats_pdev *dst) { dst->ch_noise_floor = src->chan_nf; dst->tx_frame_count = src->tx_frame_count; dst->rx_frame_count = src->rx_frame_count; dst->rx_clear_count = src->rx_clear_count; dst->cycle_count = src->cycle_count; dst->phy_err_count = src->phy_err_count; dst->chan_tx_power = src->chan_tx_pwr; } static void ath11k_wmi_pull_pdev_stats_tx(const struct wmi_pdev_stats_tx *src, struct ath11k_fw_stats_pdev *dst) { dst->comp_queued = src->comp_queued; dst->comp_delivered = src->comp_delivered; dst->msdu_enqued = src->msdu_enqued; dst->mpdu_enqued = src->mpdu_enqued; dst->wmm_drop = src->wmm_drop; dst->local_enqued = src->local_enqued; dst->local_freed = src->local_freed; dst->hw_queued = src->hw_queued; dst->hw_reaped = src->hw_reaped; dst->underrun = src->underrun; dst->hw_paused = src->hw_paused; dst->tx_abort = src->tx_abort; dst->mpdus_requeued = src->mpdus_requeued; dst->tx_ko = src->tx_ko; dst->tx_xretry = src->tx_xretry; dst->data_rc = src->data_rc; dst->self_triggers = src->self_triggers; dst->sw_retry_failure = src->sw_retry_failure; dst->illgl_rate_phy_err = src->illgl_rate_phy_err; dst->pdev_cont_xretry = src->pdev_cont_xretry; dst->pdev_tx_timeout = src->pdev_tx_timeout; dst->pdev_resets = src->pdev_resets; dst->stateless_tid_alloc_failure = src->stateless_tid_alloc_failure; dst->phy_underrun = src->phy_underrun; dst->txop_ovf = src->txop_ovf; dst->seq_posted = src->seq_posted; dst->seq_failed_queueing = src->seq_failed_queueing; dst->seq_completed = src->seq_completed; dst->seq_restarted = src->seq_restarted; dst->mu_seq_posted = src->mu_seq_posted; dst->mpdus_sw_flush = src->mpdus_sw_flush; dst->mpdus_hw_filter = src->mpdus_hw_filter; dst->mpdus_truncated = src->mpdus_truncated; dst->mpdus_ack_failed = src->mpdus_ack_failed; dst->mpdus_expired = src->mpdus_expired; } static void ath11k_wmi_pull_pdev_stats_rx(const struct wmi_pdev_stats_rx *src, struct ath11k_fw_stats_pdev *dst) { dst->mid_ppdu_route_change = src->mid_ppdu_route_change; dst->status_rcvd = src->status_rcvd; dst->r0_frags = src->r0_frags; dst->r1_frags = src->r1_frags; dst->r2_frags = src->r2_frags; dst->r3_frags = src->r3_frags; dst->htt_msdus = src->htt_msdus; dst->htt_mpdus = src->htt_mpdus; dst->loc_msdus = src->loc_msdus; dst->loc_mpdus = src->loc_mpdus; dst->oversize_amsdu = src->oversize_amsdu; dst->phy_errs = src->phy_errs; dst->phy_err_drop = src->phy_err_drop; dst->mpdu_errs = src->mpdu_errs; dst->rx_ovfl_errs = src->rx_ovfl_errs; } static void ath11k_wmi_pull_vdev_stats(const struct wmi_vdev_stats *src, struct ath11k_fw_stats_vdev *dst) { int i; dst->vdev_id = src->vdev_id; dst->beacon_snr = src->beacon_snr; dst->data_snr = src->data_snr; dst->num_rx_frames = src->num_rx_frames; dst->num_rts_fail = src->num_rts_fail; dst->num_rts_success = src->num_rts_success; dst->num_rx_err = src->num_rx_err; dst->num_rx_discard = src->num_rx_discard; dst->num_tx_not_acked = src->num_tx_not_acked; for (i = 0; i < ARRAY_SIZE(src->num_tx_frames); i++) dst->num_tx_frames[i] = src->num_tx_frames[i]; for (i = 0; i < ARRAY_SIZE(src->num_tx_frames_retries); i++) dst->num_tx_frames_retries[i] = src->num_tx_frames_retries[i]; for (i = 0; i < ARRAY_SIZE(src->num_tx_frames_failures); i++) dst->num_tx_frames_failures[i] = src->num_tx_frames_failures[i]; for (i = 0; i < ARRAY_SIZE(src->tx_rate_history); i++) dst->tx_rate_history[i] = src->tx_rate_history[i]; for (i = 0; i < ARRAY_SIZE(src->beacon_rssi_history); i++) dst->beacon_rssi_history[i] = src->beacon_rssi_history[i]; } static void ath11k_wmi_pull_bcn_stats(const struct wmi_bcn_stats *src, struct ath11k_fw_stats_bcn *dst) { dst->vdev_id = src->vdev_id; dst->tx_bcn_succ_cnt = src->tx_bcn_succ_cnt; dst->tx_bcn_outage_cnt = src->tx_bcn_outage_cnt; } static int ath11k_wmi_tlv_rssi_chain_parse(struct ath11k_base *ab, u16 tag, u16 len, const void *ptr, void *data) { struct wmi_tlv_fw_stats_parse *parse = data; const struct wmi_stats_event *ev = parse->ev; struct ath11k_fw_stats *stats = parse->stats; struct ath11k *ar; struct ath11k_vif *arvif; struct ieee80211_sta *sta; struct ath11k_sta *arsta; const struct wmi_rssi_stats *stats_rssi = (const struct wmi_rssi_stats *)ptr; int j, ret = 0; if (tag != WMI_TAG_RSSI_STATS) return -EPROTO; rcu_read_lock(); ar = ath11k_mac_get_ar_by_pdev_id(ab, ev->pdev_id); stats->stats_id = WMI_REQUEST_RSSI_PER_CHAIN_STAT; ath11k_dbg(ab, ATH11K_DBG_WMI, "stats vdev id %d mac %pM\n", stats_rssi->vdev_id, stats_rssi->peer_macaddr.addr); arvif = ath11k_mac_get_arvif(ar, stats_rssi->vdev_id); if (!arvif) { ath11k_warn(ab, "not found vif for vdev id %d\n", stats_rssi->vdev_id); ret = -EPROTO; goto exit; } ath11k_dbg(ab, ATH11K_DBG_WMI, "stats bssid %pM vif %p\n", arvif->bssid, arvif->vif); sta = ieee80211_find_sta_by_ifaddr(ar->hw, arvif->bssid, NULL); if (!sta) { ath11k_dbg(ab, ATH11K_DBG_WMI, "not found station of bssid %pM for rssi chain\n", arvif->bssid); goto exit; } arsta = ath11k_sta_to_arsta(sta); BUILD_BUG_ON(ARRAY_SIZE(arsta->chain_signal) > ARRAY_SIZE(stats_rssi->rssi_avg_beacon)); for (j = 0; j < ARRAY_SIZE(arsta->chain_signal); j++) { arsta->chain_signal[j] = stats_rssi->rssi_avg_beacon[j]; ath11k_dbg(ab, ATH11K_DBG_WMI, "stats beacon rssi[%d] %d data rssi[%d] %d\n", j, stats_rssi->rssi_avg_beacon[j], j, stats_rssi->rssi_avg_data[j]); } exit: rcu_read_unlock(); return ret; } static int ath11k_wmi_tlv_fw_stats_data_parse(struct ath11k_base *ab, struct wmi_tlv_fw_stats_parse *parse, const void *ptr, u16 len) { struct ath11k_fw_stats *stats = parse->stats; const struct wmi_stats_event *ev = parse->ev; struct ath11k *ar; struct ath11k_vif *arvif; struct ieee80211_sta *sta; struct ath11k_sta *arsta; int i, ret = 0; const void *data = ptr; if (!ev) { ath11k_warn(ab, "failed to fetch update stats ev"); return -EPROTO; } stats->stats_id = 0; rcu_read_lock(); ar = ath11k_mac_get_ar_by_pdev_id(ab, ev->pdev_id); for (i = 0; i < ev->num_pdev_stats; i++) { const struct wmi_pdev_stats *src; struct ath11k_fw_stats_pdev *dst; src = data; if (len < sizeof(*src)) { ret = -EPROTO; goto exit; } stats->stats_id = WMI_REQUEST_PDEV_STAT; data += sizeof(*src); len -= sizeof(*src); dst = kzalloc(sizeof(*dst), GFP_ATOMIC); if (!dst) continue; ath11k_wmi_pull_pdev_stats_base(&src->base, dst); ath11k_wmi_pull_pdev_stats_tx(&src->tx, dst); ath11k_wmi_pull_pdev_stats_rx(&src->rx, dst); list_add_tail(&dst->list, &stats->pdevs); } for (i = 0; i < ev->num_vdev_stats; i++) { const struct wmi_vdev_stats *src; struct ath11k_fw_stats_vdev *dst; src = data; if (len < sizeof(*src)) { ret = -EPROTO; goto exit; } stats->stats_id = WMI_REQUEST_VDEV_STAT; arvif = ath11k_mac_get_arvif(ar, src->vdev_id); if (arvif) { sta = ieee80211_find_sta_by_ifaddr(ar->hw, arvif->bssid, NULL); if (sta) { arsta = ath11k_sta_to_arsta(sta); arsta->rssi_beacon = src->beacon_snr; ath11k_dbg(ab, ATH11K_DBG_WMI, "stats vdev id %d snr %d\n", src->vdev_id, src->beacon_snr); } else { ath11k_dbg(ab, ATH11K_DBG_WMI, "not found station of bssid %pM for vdev stat\n", arvif->bssid); } } data += sizeof(*src); len -= sizeof(*src); dst = kzalloc(sizeof(*dst), GFP_ATOMIC); if (!dst) continue; ath11k_wmi_pull_vdev_stats(src, dst); list_add_tail(&dst->list, &stats->vdevs); } for (i = 0; i < ev->num_bcn_stats; i++) { const struct wmi_bcn_stats *src; struct ath11k_fw_stats_bcn *dst; src = data; if (len < sizeof(*src)) { ret = -EPROTO; goto exit; } stats->stats_id = WMI_REQUEST_BCN_STAT; data += sizeof(*src); len -= sizeof(*src); dst = kzalloc(sizeof(*dst), GFP_ATOMIC); if (!dst) continue; ath11k_wmi_pull_bcn_stats(src, dst); list_add_tail(&dst->list, &stats->bcn); } exit: rcu_read_unlock(); return ret; } static int ath11k_wmi_tlv_fw_stats_parse(struct ath11k_base *ab, u16 tag, u16 len, const void *ptr, void *data) { struct wmi_tlv_fw_stats_parse *parse = data; int ret = 0; switch (tag) { case WMI_TAG_STATS_EVENT: parse->ev = (struct wmi_stats_event *)ptr; parse->stats->pdev_id = parse->ev->pdev_id; break; case WMI_TAG_ARRAY_BYTE: ret = ath11k_wmi_tlv_fw_stats_data_parse(ab, parse, ptr, len); break; case WMI_TAG_PER_CHAIN_RSSI_STATS: parse->rssi = (struct wmi_per_chain_rssi_stats *)ptr; if (parse->ev->stats_id & WMI_REQUEST_RSSI_PER_CHAIN_STAT) parse->rssi_num = parse->rssi->num_per_chain_rssi_stats; ath11k_dbg(ab, ATH11K_DBG_WMI, "stats id 0x%x num chain %d\n", parse->ev->stats_id, parse->rssi_num); break; case WMI_TAG_ARRAY_STRUCT: if (parse->rssi_num && !parse->chain_rssi_done) { ret = ath11k_wmi_tlv_iter(ab, ptr, len, ath11k_wmi_tlv_rssi_chain_parse, parse); if (ret) { ath11k_warn(ab, "failed to parse rssi chain %d\n", ret); return ret; } parse->chain_rssi_done = true; } break; default: break; } return ret; } int ath11k_wmi_pull_fw_stats(struct ath11k_base *ab, struct sk_buff *skb, struct ath11k_fw_stats *stats) { struct wmi_tlv_fw_stats_parse parse = { }; stats->stats_id = 0; parse.stats = stats; return ath11k_wmi_tlv_iter(ab, skb->data, skb->len, ath11k_wmi_tlv_fw_stats_parse, &parse); } static void ath11k_wmi_fw_pdev_base_stats_fill(const struct ath11k_fw_stats_pdev *pdev, char *buf, u32 *length) { u32 len = *length; u32 buf_len = ATH11K_FW_STATS_BUF_SIZE; len += scnprintf(buf + len, buf_len - len, "\n"); len += scnprintf(buf + len, buf_len - len, "%30s\n", "ath11k PDEV stats"); len += scnprintf(buf + len, buf_len - len, "%30s\n\n", "================="); len += scnprintf(buf + len, buf_len - len, "%30s %10d\n", "Channel noise floor", pdev->ch_noise_floor); len += scnprintf(buf + len, buf_len - len, "%30s %10u\n", "Channel TX power", pdev->chan_tx_power); len += scnprintf(buf + len, buf_len - len, "%30s %10u\n", "TX frame count", pdev->tx_frame_count); len += scnprintf(buf + len, buf_len - len, "%30s %10u\n", "RX frame count", pdev->rx_frame_count); len += scnprintf(buf + len, buf_len - len, "%30s %10u\n", "RX clear count", pdev->rx_clear_count); len += scnprintf(buf + len, buf_len - len, "%30s %10u\n", "Cycle count", pdev->cycle_count); len += scnprintf(buf + len, buf_len - len, "%30s %10u\n", "PHY error count", pdev->phy_err_count); *length = len; } static void ath11k_wmi_fw_pdev_tx_stats_fill(const struct ath11k_fw_stats_pdev *pdev, char *buf, u32 *length) { u32 len = *length; u32 buf_len = ATH11K_FW_STATS_BUF_SIZE; len += scnprintf(buf + len, buf_len - len, "\n%30s\n", "ath11k PDEV TX stats"); len += scnprintf(buf + len, buf_len - len, "%30s\n\n", "===================="); len += scnprintf(buf + len, buf_len - len, "%30s %10d\n", "HTT cookies queued", pdev->comp_queued); len += scnprintf(buf + len, buf_len - len, "%30s %10d\n", "HTT cookies disp.", pdev->comp_delivered); len += scnprintf(buf + len, buf_len - len, "%30s %10d\n", "MSDU queued", pdev->msdu_enqued); len += scnprintf(buf + len, buf_len - len, "%30s %10d\n", "MPDU queued", pdev->mpdu_enqued); len += scnprintf(buf + len, buf_len - len, "%30s %10d\n", "MSDUs dropped", pdev->wmm_drop); len += scnprintf(buf + len, buf_len - len, "%30s %10d\n", "Local enqued", pdev->local_enqued); len += scnprintf(buf + len, buf_len - len, "%30s %10d\n", "Local freed", pdev->local_freed); len += scnprintf(buf + len, buf_len - len, "%30s %10d\n", "HW queued", pdev->hw_queued); len += scnprintf(buf + len, buf_len - len, "%30s %10d\n", "PPDUs reaped", pdev->hw_reaped); len += scnprintf(buf + len, buf_len - len, "%30s %10d\n", "Num underruns", pdev->underrun); len += scnprintf(buf + len, buf_len - len, "%30s %10d\n", "Num HW Paused", pdev->hw_paused); len += scnprintf(buf + len, buf_len - len, "%30s %10d\n", "PPDUs cleaned", pdev->tx_abort); len += scnprintf(buf + len, buf_len - len, "%30s %10d\n", "MPDUs requeued", pdev->mpdus_requeued); len += scnprintf(buf + len, buf_len - len, "%30s %10u\n", "PPDU OK", pdev->tx_ko); len += scnprintf(buf + len, buf_len - len, "%30s %10u\n", "Excessive retries", pdev->tx_xretry); len += scnprintf(buf + len, buf_len - len, "%30s %10u\n", "HW rate", pdev->data_rc); len += scnprintf(buf + len, buf_len - len, "%30s %10u\n", "Sched self triggers", pdev->self_triggers); len += scnprintf(buf + len, buf_len - len, "%30s %10u\n", "Dropped due to SW retries", pdev->sw_retry_failure); len += scnprintf(buf + len, buf_len - len, "%30s %10u\n", "Illegal rate phy errors", pdev->illgl_rate_phy_err); len += scnprintf(buf + len, buf_len - len, "%30s %10u\n", "PDEV continuous xretry", pdev->pdev_cont_xretry); len += scnprintf(buf + len, buf_len - len, "%30s %10u\n", "TX timeout", pdev->pdev_tx_timeout); len += scnprintf(buf + len, buf_len - len, "%30s %10u\n", "PDEV resets", pdev->pdev_resets); len += scnprintf(buf + len, buf_len - len, "%30s %10u\n", "Stateless TIDs alloc failures", pdev->stateless_tid_alloc_failure); len += scnprintf(buf + len, buf_len - len, "%30s %10u\n", "PHY underrun", pdev->phy_underrun); len += scnprintf(buf + len, buf_len - len, "%30s %10u\n", "MPDU is more than txop limit", pdev->txop_ovf); len += scnprintf(buf + len, buf_len - len, "%30s %10u\n", "Num sequences posted", pdev->seq_posted); len += scnprintf(buf + len, buf_len - len, "%30s %10u\n", "Num seq failed queueing ", pdev->seq_failed_queueing); len += scnprintf(buf + len, buf_len - len, "%30s %10u\n", "Num sequences completed ", pdev->seq_completed); len += scnprintf(buf + len, buf_len - len, "%30s %10u\n", "Num sequences restarted ", pdev->seq_restarted); len += scnprintf(buf + len, buf_len - len, "%30s %10u\n", "Num of MU sequences posted ", pdev->mu_seq_posted); len += scnprintf(buf + len, buf_len - len, "%30s %10u\n", "Num of MPDUS SW flushed ", pdev->mpdus_sw_flush); len += scnprintf(buf + len, buf_len - len, "%30s %10u\n", "Num of MPDUS HW filtered ", pdev->mpdus_hw_filter); len += scnprintf(buf + len, buf_len - len, "%30s %10u\n", "Num of MPDUS truncated ", pdev->mpdus_truncated); len += scnprintf(buf + len, buf_len - len, "%30s %10u\n", "Num of MPDUS ACK failed ", pdev->mpdus_ack_failed); len += scnprintf(buf + len, buf_len - len, "%30s %10u\n", "Num of MPDUS expired ", pdev->mpdus_expired); *length = len; } static void ath11k_wmi_fw_pdev_rx_stats_fill(const struct ath11k_fw_stats_pdev *pdev, char *buf, u32 *length) { u32 len = *length; u32 buf_len = ATH11K_FW_STATS_BUF_SIZE; len += scnprintf(buf + len, buf_len - len, "\n%30s\n", "ath11k PDEV RX stats"); len += scnprintf(buf + len, buf_len - len, "%30s\n\n", "===================="); len += scnprintf(buf + len, buf_len - len, "%30s %10d\n", "Mid PPDU route change", pdev->mid_ppdu_route_change); len += scnprintf(buf + len, buf_len - len, "%30s %10d\n", "Tot. number of statuses", pdev->status_rcvd); len += scnprintf(buf + len, buf_len - len, "%30s %10d\n", "Extra frags on rings 0", pdev->r0_frags); len += scnprintf(buf + len, buf_len - len, "%30s %10d\n", "Extra frags on rings 1", pdev->r1_frags); len += scnprintf(buf + len, buf_len - len, "%30s %10d\n", "Extra frags on rings 2", pdev->r2_frags); len += scnprintf(buf + len, buf_len - len, "%30s %10d\n", "Extra frags on rings 3", pdev->r3_frags); len += scnprintf(buf + len, buf_len - len, "%30s %10d\n", "MSDUs delivered to HTT", pdev->htt_msdus); len += scnprintf(buf + len, buf_len - len, "%30s %10d\n", "MPDUs delivered to HTT", pdev->htt_mpdus); len += scnprintf(buf + len, buf_len - len, "%30s %10d\n", "MSDUs delivered to stack", pdev->loc_msdus); len += scnprintf(buf + len, buf_len - len, "%30s %10d\n", "MPDUs delivered to stack", pdev->loc_mpdus); len += scnprintf(buf + len, buf_len - len, "%30s %10d\n", "Oversized AMSUs", pdev->oversize_amsdu); len += scnprintf(buf + len, buf_len - len, "%30s %10d\n", "PHY errors", pdev->phy_errs); len += scnprintf(buf + len, buf_len - len, "%30s %10d\n", "PHY errors drops", pdev->phy_err_drop); len += scnprintf(buf + len, buf_len - len, "%30s %10d\n", "MPDU errors (FCS, MIC, ENC)", pdev->mpdu_errs); len += scnprintf(buf + len, buf_len - len, "%30s %10d\n", "Overflow errors", pdev->rx_ovfl_errs); *length = len; } static void ath11k_wmi_fw_vdev_stats_fill(struct ath11k *ar, const struct ath11k_fw_stats_vdev *vdev, char *buf, u32 *length) { u32 len = *length; u32 buf_len = ATH11K_FW_STATS_BUF_SIZE; struct ath11k_vif *arvif = ath11k_mac_get_arvif(ar, vdev->vdev_id); u8 *vif_macaddr; int i; /* VDEV stats has all the active VDEVs of other PDEVs as well, * ignoring those not part of requested PDEV */ if (!arvif) return; vif_macaddr = arvif->vif->addr; len += scnprintf(buf + len, buf_len - len, "%30s %u\n", "VDEV ID", vdev->vdev_id); len += scnprintf(buf + len, buf_len - len, "%30s %pM\n", "VDEV MAC address", vif_macaddr); len += scnprintf(buf + len, buf_len - len, "%30s %u\n", "beacon snr", vdev->beacon_snr); len += scnprintf(buf + len, buf_len - len, "%30s %u\n", "data snr", vdev->data_snr); len += scnprintf(buf + len, buf_len - len, "%30s %u\n", "num rx frames", vdev->num_rx_frames); len += scnprintf(buf + len, buf_len - len, "%30s %u\n", "num rts fail", vdev->num_rts_fail); len += scnprintf(buf + len, buf_len - len, "%30s %u\n", "num rts success", vdev->num_rts_success); len += scnprintf(buf + len, buf_len - len, "%30s %u\n", "num rx err", vdev->num_rx_err); len += scnprintf(buf + len, buf_len - len, "%30s %u\n", "num rx discard", vdev->num_rx_discard); len += scnprintf(buf + len, buf_len - len, "%30s %u\n", "num tx not acked", vdev->num_tx_not_acked); for (i = 0 ; i < ARRAY_SIZE(vdev->num_tx_frames); i++) len += scnprintf(buf + len, buf_len - len, "%25s [%02d] %u\n", "num tx frames", i, vdev->num_tx_frames[i]); for (i = 0 ; i < ARRAY_SIZE(vdev->num_tx_frames_retries); i++) len += scnprintf(buf + len, buf_len - len, "%25s [%02d] %u\n", "num tx frames retries", i, vdev->num_tx_frames_retries[i]); for (i = 0 ; i < ARRAY_SIZE(vdev->num_tx_frames_failures); i++) len += scnprintf(buf + len, buf_len - len, "%25s [%02d] %u\n", "num tx frames failures", i, vdev->num_tx_frames_failures[i]); for (i = 0 ; i < ARRAY_SIZE(vdev->tx_rate_history); i++) len += scnprintf(buf + len, buf_len - len, "%25s [%02d] 0x%08x\n", "tx rate history", i, vdev->tx_rate_history[i]); for (i = 0 ; i < ARRAY_SIZE(vdev->beacon_rssi_history); i++) len += scnprintf(buf + len, buf_len - len, "%25s [%02d] %u\n", "beacon rssi history", i, vdev->beacon_rssi_history[i]); len += scnprintf(buf + len, buf_len - len, "\n"); *length = len; } static void ath11k_wmi_fw_bcn_stats_fill(struct ath11k *ar, const struct ath11k_fw_stats_bcn *bcn, char *buf, u32 *length) { u32 len = *length; u32 buf_len = ATH11K_FW_STATS_BUF_SIZE; struct ath11k_vif *arvif = ath11k_mac_get_arvif(ar, bcn->vdev_id); u8 *vdev_macaddr; if (!arvif) { ath11k_warn(ar->ab, "invalid vdev id %d in bcn stats", bcn->vdev_id); return; } vdev_macaddr = arvif->vif->addr; len += scnprintf(buf + len, buf_len - len, "%30s %u\n", "VDEV ID", bcn->vdev_id); len += scnprintf(buf + len, buf_len - len, "%30s %pM\n", "VDEV MAC address", vdev_macaddr); len += scnprintf(buf + len, buf_len - len, "%30s\n\n", "================"); len += scnprintf(buf + len, buf_len - len, "%30s %u\n", "Num of beacon tx success", bcn->tx_bcn_succ_cnt); len += scnprintf(buf + len, buf_len - len, "%30s %u\n", "Num of beacon tx failures", bcn->tx_bcn_outage_cnt); len += scnprintf(buf + len, buf_len - len, "\n"); *length = len; } void ath11k_wmi_fw_stats_fill(struct ath11k *ar, struct ath11k_fw_stats *fw_stats, u32 stats_id, char *buf) { u32 len = 0; u32 buf_len = ATH11K_FW_STATS_BUF_SIZE; const struct ath11k_fw_stats_pdev *pdev; const struct ath11k_fw_stats_vdev *vdev; const struct ath11k_fw_stats_bcn *bcn; size_t num_bcn; spin_lock_bh(&ar->data_lock); if (stats_id == WMI_REQUEST_PDEV_STAT) { pdev = list_first_entry_or_null(&fw_stats->pdevs, struct ath11k_fw_stats_pdev, list); if (!pdev) { ath11k_warn(ar->ab, "failed to get pdev stats\n"); goto unlock; } ath11k_wmi_fw_pdev_base_stats_fill(pdev, buf, &len); ath11k_wmi_fw_pdev_tx_stats_fill(pdev, buf, &len); ath11k_wmi_fw_pdev_rx_stats_fill(pdev, buf, &len); } if (stats_id == WMI_REQUEST_VDEV_STAT) { len += scnprintf(buf + len, buf_len - len, "\n"); len += scnprintf(buf + len, buf_len - len, "%30s\n", "ath11k VDEV stats"); len += scnprintf(buf + len, buf_len - len, "%30s\n\n", "================="); list_for_each_entry(vdev, &fw_stats->vdevs, list) ath11k_wmi_fw_vdev_stats_fill(ar, vdev, buf, &len); } if (stats_id == WMI_REQUEST_BCN_STAT) { num_bcn = list_count_nodes(&fw_stats->bcn); len += scnprintf(buf + len, buf_len - len, "\n"); len += scnprintf(buf + len, buf_len - len, "%30s (%zu)\n", "ath11k Beacon stats", num_bcn); len += scnprintf(buf + len, buf_len - len, "%30s\n\n", "==================="); list_for_each_entry(bcn, &fw_stats->bcn, list) ath11k_wmi_fw_bcn_stats_fill(ar, bcn, buf, &len); } unlock: spin_unlock_bh(&ar->data_lock); if (len >= buf_len) buf[len - 1] = 0; else buf[len] = 0; } static void ath11k_wmi_op_ep_tx_credits(struct ath11k_base *ab) { /* try to send pending beacons first. they take priority */ wake_up(&ab->wmi_ab.tx_credits_wq); } static int ath11k_reg_11d_new_cc_event(struct ath11k_base *ab, struct sk_buff *skb) { const struct wmi_11d_new_cc_ev *ev; struct ath11k *ar; struct ath11k_pdev *pdev; const void **tb; int ret, i; tb = ath11k_wmi_tlv_parse_alloc(ab, skb->data, skb->len, GFP_ATOMIC); if (IS_ERR(tb)) { ret = PTR_ERR(tb); ath11k_warn(ab, "failed to parse tlv: %d\n", ret); return ret; } ev = tb[WMI_TAG_11D_NEW_COUNTRY_EVENT]; if (!ev) { kfree(tb); ath11k_warn(ab, "failed to fetch 11d new cc ev"); return -EPROTO; } spin_lock_bh(&ab->base_lock); memcpy(&ab->new_alpha2, &ev->new_alpha2, 2); spin_unlock_bh(&ab->base_lock); ath11k_dbg(ab, ATH11K_DBG_WMI, "event 11d new cc %c%c\n", ab->new_alpha2[0], ab->new_alpha2[1]); kfree(tb); for (i = 0; i < ab->num_radios; i++) { pdev = &ab->pdevs[i]; ar = pdev->ar; ar->state_11d = ATH11K_11D_IDLE; complete(&ar->completed_11d_scan); } queue_work(ab->workqueue, &ab->update_11d_work); return 0; } static void ath11k_wmi_htc_tx_complete(struct ath11k_base *ab, struct sk_buff *skb) { struct ath11k_pdev_wmi *wmi = NULL; u32 i; u8 wmi_ep_count; u8 eid; eid = ATH11K_SKB_CB(skb)->eid; dev_kfree_skb(skb); if (eid >= ATH11K_HTC_EP_COUNT) return; wmi_ep_count = ab->htc.wmi_ep_count; if (wmi_ep_count > ab->hw_params.max_radios) return; for (i = 0; i < ab->htc.wmi_ep_count; i++) { if (ab->wmi_ab.wmi[i].eid == eid) { wmi = &ab->wmi_ab.wmi[i]; break; } } if (wmi) wake_up(&wmi->tx_ce_desc_wq); } static bool ath11k_reg_is_world_alpha(char *alpha) { if (alpha[0] == '0' && alpha[1] == '0') return true; if (alpha[0] == 'n' && alpha[1] == 'a') return true; return false; } static int ath11k_reg_chan_list_event(struct ath11k_base *ab, struct sk_buff *skb, enum wmi_reg_chan_list_cmd_type id) { struct cur_regulatory_info *reg_info = NULL; struct ieee80211_regdomain *regd = NULL; bool intersect = false; int ret = 0, pdev_idx, i, j; struct ath11k *ar; reg_info = kzalloc(sizeof(*reg_info), GFP_ATOMIC); if (!reg_info) { ret = -ENOMEM; goto fallback; } if (id == WMI_REG_CHAN_LIST_CC_ID) ret = ath11k_pull_reg_chan_list_update_ev(ab, skb, reg_info); else ret = ath11k_pull_reg_chan_list_ext_update_ev(ab, skb, reg_info); if (ret) { ath11k_warn(ab, "failed to extract regulatory info from received event\n"); goto fallback; } ath11k_dbg(ab, ATH11K_DBG_WMI, "event reg chan list id %d", id); if (reg_info->status_code != REG_SET_CC_STATUS_PASS) { /* In case of failure to set the requested ctry, * fw retains the current regd. We print a failure info * and return from here. */ ath11k_warn(ab, "Failed to set the requested Country regulatory setting\n"); goto mem_free; } pdev_idx = reg_info->phy_id; /* Avoid default reg rule updates sent during FW recovery if * it is already available */ spin_lock(&ab->base_lock); if (test_bit(ATH11K_FLAG_RECOVERY, &ab->dev_flags) && ab->default_regd[pdev_idx]) { spin_unlock(&ab->base_lock); goto mem_free; } spin_unlock(&ab->base_lock); if (pdev_idx >= ab->num_radios) { /* Process the event for phy0 only if single_pdev_only * is true. If pdev_idx is valid but not 0, discard the * event. Otherwise, it goes to fallback. */ if (ab->hw_params.single_pdev_only && pdev_idx < ab->hw_params.num_rxmda_per_pdev) goto mem_free; else goto fallback; } /* Avoid multiple overwrites to default regd, during core * stop-start after mac registration. */ if (ab->default_regd[pdev_idx] && !ab->new_regd[pdev_idx] && !memcmp((char *)ab->default_regd[pdev_idx]->alpha2, (char *)reg_info->alpha2, 2)) goto mem_free; /* Intersect new rules with default regd if a new country setting was * requested, i.e a default regd was already set during initialization * and the regd coming from this event has a valid country info. */ if (ab->default_regd[pdev_idx] && !ath11k_reg_is_world_alpha((char *) ab->default_regd[pdev_idx]->alpha2) && !ath11k_reg_is_world_alpha((char *)reg_info->alpha2)) intersect = true; regd = ath11k_reg_build_regd(ab, reg_info, intersect); if (!regd) { ath11k_warn(ab, "failed to build regd from reg_info\n"); goto fallback; } spin_lock(&ab->base_lock); if (ab->default_regd[pdev_idx]) { /* The initial rules from FW after WMI Init is to build * the default regd. From then on, any rules updated for * the pdev could be due to user reg changes. * Free previously built regd before assigning the newly * generated regd to ar. NULL pointer handling will be * taken care by kfree itself. */ ar = ab->pdevs[pdev_idx].ar; kfree(ab->new_regd[pdev_idx]); ab->new_regd[pdev_idx] = regd; queue_work(ab->workqueue, &ar->regd_update_work); } else { /* This regd would be applied during mac registration and is * held constant throughout for regd intersection purpose */ ab->default_regd[pdev_idx] = regd; } ab->dfs_region = reg_info->dfs_region; spin_unlock(&ab->base_lock); goto mem_free; fallback: /* Fallback to older reg (by sending previous country setting * again if fw has succeeded and we failed to process here. * The Regdomain should be uniform across driver and fw. Since the * FW has processed the command and sent a success status, we expect * this function to succeed as well. If it doesn't, CTRY needs to be * reverted at the fw and the old SCAN_CHAN_LIST cmd needs to be sent. */ /* TODO: This is rare, but still should also be handled */ WARN_ON(1); mem_free: if (reg_info) { kfree(reg_info->reg_rules_2ghz_ptr); kfree(reg_info->reg_rules_5ghz_ptr); if (reg_info->is_ext_reg_event) { for (i = 0; i < WMI_REG_CURRENT_MAX_AP_TYPE; i++) kfree(reg_info->reg_rules_6ghz_ap_ptr[i]); for (j = 0; j < WMI_REG_CURRENT_MAX_AP_TYPE; j++) for (i = 0; i < WMI_REG_MAX_CLIENT_TYPE; i++) kfree(reg_info->reg_rules_6ghz_client_ptr[j][i]); } kfree(reg_info); } return ret; } static int ath11k_wmi_tlv_rdy_parse(struct ath11k_base *ab, u16 tag, u16 len, const void *ptr, void *data) { struct wmi_tlv_rdy_parse *rdy_parse = data; struct wmi_ready_event fixed_param; struct wmi_mac_addr *addr_list; struct ath11k_pdev *pdev; u32 num_mac_addr; int i; switch (tag) { case WMI_TAG_READY_EVENT: memset(&fixed_param, 0, sizeof(fixed_param)); memcpy(&fixed_param, (struct wmi_ready_event *)ptr, min_t(u16, sizeof(fixed_param), len)); rdy_parse->num_extra_mac_addr = fixed_param.ready_event_min.num_extra_mac_addr; ether_addr_copy(ab->mac_addr, fixed_param.ready_event_min.mac_addr.addr); ab->pktlog_defs_checksum = fixed_param.pktlog_defs_checksum; break; case WMI_TAG_ARRAY_FIXED_STRUCT: addr_list = (struct wmi_mac_addr *)ptr; num_mac_addr = rdy_parse->num_extra_mac_addr; if (!(ab->num_radios > 1 && num_mac_addr >= ab->num_radios)) break; for (i = 0; i < ab->num_radios; i++) { pdev = &ab->pdevs[i]; ether_addr_copy(pdev->mac_addr, addr_list[i].addr); } ab->pdevs_macaddr_valid = true; break; default: break; } return 0; } static int ath11k_ready_event(struct ath11k_base *ab, struct sk_buff *skb) { struct wmi_tlv_rdy_parse rdy_parse = { }; int ret; ret = ath11k_wmi_tlv_iter(ab, skb->data, skb->len, ath11k_wmi_tlv_rdy_parse, &rdy_parse); if (ret) { ath11k_warn(ab, "failed to parse tlv %d\n", ret); return ret; } ath11k_dbg(ab, ATH11K_DBG_WMI, "event ready"); complete(&ab->wmi_ab.unified_ready); return 0; } static void ath11k_peer_delete_resp_event(struct ath11k_base *ab, struct sk_buff *skb) { struct wmi_peer_delete_resp_event peer_del_resp; struct ath11k *ar; if (ath11k_pull_peer_del_resp_ev(ab, skb, &peer_del_resp) != 0) { ath11k_warn(ab, "failed to extract peer delete resp"); return; } ath11k_dbg(ab, ATH11K_DBG_WMI, "event peer delete resp"); rcu_read_lock(); ar = ath11k_mac_get_ar_by_vdev_id(ab, peer_del_resp.vdev_id); if (!ar) { ath11k_warn(ab, "invalid vdev id in peer delete resp ev %d", peer_del_resp.vdev_id); rcu_read_unlock(); return; } complete(&ar->peer_delete_done); rcu_read_unlock(); ath11k_dbg(ab, ATH11K_DBG_WMI, "peer delete resp for vdev id %d addr %pM\n", peer_del_resp.vdev_id, peer_del_resp.peer_macaddr.addr); } static void ath11k_vdev_delete_resp_event(struct ath11k_base *ab, struct sk_buff *skb) { struct ath11k *ar; u32 vdev_id = 0; if (ath11k_pull_vdev_del_resp_ev(ab, skb, &vdev_id) != 0) { ath11k_warn(ab, "failed to extract vdev delete resp"); return; } rcu_read_lock(); ar = ath11k_mac_get_ar_by_vdev_id(ab, vdev_id); if (!ar) { ath11k_warn(ab, "invalid vdev id in vdev delete resp ev %d", vdev_id); rcu_read_unlock(); return; } complete(&ar->vdev_delete_done); rcu_read_unlock(); ath11k_dbg(ab, ATH11K_DBG_WMI, "event vdev delete resp for vdev id %d\n", vdev_id); } static inline const char *ath11k_wmi_vdev_resp_print(u32 vdev_resp_status) { switch (vdev_resp_status) { case WMI_VDEV_START_RESPONSE_INVALID_VDEVID: return "invalid vdev id"; case WMI_VDEV_START_RESPONSE_NOT_SUPPORTED: return "not supported"; case WMI_VDEV_START_RESPONSE_DFS_VIOLATION: return "dfs violation"; case WMI_VDEV_START_RESPONSE_INVALID_REGDOMAIN: return "invalid regdomain"; default: return "unknown"; } } static void ath11k_vdev_start_resp_event(struct ath11k_base *ab, struct sk_buff *skb) { struct wmi_vdev_start_resp_event vdev_start_resp; struct ath11k *ar; u32 status; if (ath11k_pull_vdev_start_resp_tlv(ab, skb, &vdev_start_resp) != 0) { ath11k_warn(ab, "failed to extract vdev start resp"); return; } ath11k_dbg(ab, ATH11K_DBG_WMI, "event start resp event"); rcu_read_lock(); ar = ath11k_mac_get_ar_by_vdev_id(ab, vdev_start_resp.vdev_id); if (!ar) { ath11k_warn(ab, "invalid vdev id in vdev start resp ev %d", vdev_start_resp.vdev_id); rcu_read_unlock(); return; } ar->last_wmi_vdev_start_status = 0; status = vdev_start_resp.status; if (WARN_ON_ONCE(status)) { ath11k_warn(ab, "vdev start resp error status %d (%s)\n", status, ath11k_wmi_vdev_resp_print(status)); ar->last_wmi_vdev_start_status = status; } complete(&ar->vdev_setup_done); rcu_read_unlock(); ath11k_dbg(ab, ATH11K_DBG_WMI, "vdev start resp for vdev id %d", vdev_start_resp.vdev_id); } static void ath11k_bcn_tx_status_event(struct ath11k_base *ab, struct sk_buff *skb) { struct ath11k_vif *arvif; u32 vdev_id, tx_status; if (ath11k_pull_bcn_tx_status_ev(ab, skb->data, skb->len, &vdev_id, &tx_status) != 0) { ath11k_warn(ab, "failed to extract bcn tx status"); return; } ath11k_dbg(ab, ATH11K_DBG_WMI, "event offload bcn tx status"); rcu_read_lock(); arvif = ath11k_mac_get_arvif_by_vdev_id(ab, vdev_id); if (!arvif) { ath11k_warn(ab, "invalid vdev id %d in bcn_tx_status", vdev_id); rcu_read_unlock(); return; } ath11k_mac_bcn_tx_event(arvif); rcu_read_unlock(); } static void ath11k_wmi_event_peer_sta_ps_state_chg(struct ath11k_base *ab, struct sk_buff *skb) { const struct wmi_peer_sta_ps_state_chg_event *ev; struct ieee80211_sta *sta; struct ath11k_peer *peer; struct ath11k *ar; struct ath11k_sta *arsta; const void **tb; enum ath11k_wmi_peer_ps_state peer_previous_ps_state; int ret; tb = ath11k_wmi_tlv_parse_alloc(ab, skb->data, skb->len, GFP_ATOMIC); if (IS_ERR(tb)) { ret = PTR_ERR(tb); ath11k_warn(ab, "failed to parse tlv: %d\n", ret); return; } ev = tb[WMI_TAG_PEER_STA_PS_STATECHANGE_EVENT]; if (!ev) { ath11k_warn(ab, "failed to fetch sta ps change ev"); kfree(tb); return; } ath11k_dbg(ab, ATH11K_DBG_WMI, "event peer sta ps change ev addr %pM state %u sup_bitmap %x ps_valid %u ts %u\n", ev->peer_macaddr.addr, ev->peer_ps_state, ev->ps_supported_bitmap, ev->peer_ps_valid, ev->peer_ps_timestamp); rcu_read_lock(); spin_lock_bh(&ab->base_lock); peer = ath11k_peer_find_by_addr(ab, ev->peer_macaddr.addr); if (!peer) { spin_unlock_bh(&ab->base_lock); ath11k_warn(ab, "peer not found %pM\n", ev->peer_macaddr.addr); goto exit; } ar = ath11k_mac_get_ar_by_vdev_id(ab, peer->vdev_id); if (!ar) { spin_unlock_bh(&ab->base_lock); ath11k_warn(ab, "invalid vdev id in peer sta ps state change ev %d", peer->vdev_id); goto exit; } sta = peer->sta; spin_unlock_bh(&ab->base_lock); if (!sta) { ath11k_warn(ab, "failed to find station entry %pM\n", ev->peer_macaddr.addr); goto exit; } arsta = ath11k_sta_to_arsta(sta); spin_lock_bh(&ar->data_lock); peer_previous_ps_state = arsta->peer_ps_state; arsta->peer_ps_state = ev->peer_ps_state; arsta->peer_current_ps_valid = !!ev->peer_ps_valid; if (test_bit(WMI_TLV_SERVICE_PEER_POWER_SAVE_DURATION_SUPPORT, ar->ab->wmi_ab.svc_map)) { if (!(ev->ps_supported_bitmap & WMI_PEER_PS_VALID) || !(ev->ps_supported_bitmap & WMI_PEER_PS_STATE_TIMESTAMP) || !ev->peer_ps_valid) goto out; if (arsta->peer_ps_state == WMI_PEER_PS_STATE_ON) { arsta->ps_start_time = ev->peer_ps_timestamp; arsta->ps_start_jiffies = jiffies; } else if (arsta->peer_ps_state == WMI_PEER_PS_STATE_OFF && peer_previous_ps_state == WMI_PEER_PS_STATE_ON) { arsta->ps_total_duration = arsta->ps_total_duration + (ev->peer_ps_timestamp - arsta->ps_start_time); } if (ar->ps_timekeeper_enable) trace_ath11k_ps_timekeeper(ar, ev->peer_macaddr.addr, ev->peer_ps_timestamp, arsta->peer_ps_state); } out: spin_unlock_bh(&ar->data_lock); exit: rcu_read_unlock(); kfree(tb); } static void ath11k_vdev_stopped_event(struct ath11k_base *ab, struct sk_buff *skb) { struct ath11k *ar; u32 vdev_id = 0; if (ath11k_pull_vdev_stopped_param_tlv(ab, skb, &vdev_id) != 0) { ath11k_warn(ab, "failed to extract vdev stopped event"); return; } ath11k_dbg(ab, ATH11K_DBG_WMI, "event vdev stopped"); rcu_read_lock(); ar = ath11k_mac_get_ar_by_vdev_id(ab, vdev_id); if (!ar) { ath11k_warn(ab, "invalid vdev id in vdev stopped ev %d", vdev_id); rcu_read_unlock(); return; } complete(&ar->vdev_setup_done); rcu_read_unlock(); ath11k_dbg(ab, ATH11K_DBG_WMI, "vdev stopped for vdev id %d", vdev_id); } static void ath11k_mgmt_rx_event(struct ath11k_base *ab, struct sk_buff *skb) { struct mgmt_rx_event_params rx_ev = {0}; struct ath11k *ar; struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); struct ieee80211_hdr *hdr; u16 fc; struct ieee80211_supported_band *sband; if (ath11k_pull_mgmt_rx_params_tlv(ab, skb, &rx_ev) != 0) { ath11k_warn(ab, "failed to extract mgmt rx event"); dev_kfree_skb(skb); return; } memset(status, 0, sizeof(*status)); ath11k_dbg(ab, ATH11K_DBG_MGMT, "event mgmt rx status %08x\n", rx_ev.status); rcu_read_lock(); ar = ath11k_mac_get_ar_by_pdev_id(ab, rx_ev.pdev_id); if (!ar) { ath11k_warn(ab, "invalid pdev_id %d in mgmt_rx_event\n", rx_ev.pdev_id); dev_kfree_skb(skb); goto exit; } if ((test_bit(ATH11K_CAC_RUNNING, &ar->dev_flags)) || (rx_ev.status & (WMI_RX_STATUS_ERR_DECRYPT | WMI_RX_STATUS_ERR_KEY_CACHE_MISS | WMI_RX_STATUS_ERR_CRC))) { dev_kfree_skb(skb); goto exit; } if (rx_ev.status & WMI_RX_STATUS_ERR_MIC) status->flag |= RX_FLAG_MMIC_ERROR; if (rx_ev.chan_freq >= ATH11K_MIN_6G_FREQ && rx_ev.chan_freq <= ATH11K_MAX_6G_FREQ) { status->band = NL80211_BAND_6GHZ; status->freq = rx_ev.chan_freq; } else if (rx_ev.channel >= 1 && rx_ev.channel <= 14) { status->band = NL80211_BAND_2GHZ; } else if (rx_ev.channel >= 36 && rx_ev.channel <= ATH11K_MAX_5G_CHAN) { status->band = NL80211_BAND_5GHZ; } else { /* Shouldn't happen unless list of advertised channels to * mac80211 has been changed. */ WARN_ON_ONCE(1); dev_kfree_skb(skb); goto exit; } if (rx_ev.phy_mode == MODE_11B && (status->band == NL80211_BAND_5GHZ || status->band == NL80211_BAND_6GHZ)) ath11k_dbg(ab, ATH11K_DBG_WMI, "mgmt rx 11b (CCK) on 5/6GHz, band = %d\n", status->band); sband = &ar->mac.sbands[status->band]; if (status->band != NL80211_BAND_6GHZ) status->freq = ieee80211_channel_to_frequency(rx_ev.channel, status->band); status->signal = rx_ev.snr + ATH11K_DEFAULT_NOISE_FLOOR; status->rate_idx = ath11k_mac_bitrate_to_idx(sband, rx_ev.rate / 100); hdr = (struct ieee80211_hdr *)skb->data; fc = le16_to_cpu(hdr->frame_control); /* Firmware is guaranteed to report all essential management frames via * WMI while it can deliver some extra via HTT. Since there can be * duplicates split the reporting wrt monitor/sniffing. */ status->flag |= RX_FLAG_SKIP_MONITOR; /* In case of PMF, FW delivers decrypted frames with Protected Bit set. * Don't clear that. Also, FW delivers broadcast management frames * (ex: group privacy action frames in mesh) as encrypted payload. */ if (ieee80211_has_protected(hdr->frame_control) && !is_multicast_ether_addr(ieee80211_get_DA(hdr))) { status->flag |= RX_FLAG_DECRYPTED; if (!ieee80211_is_robust_mgmt_frame(skb)) { status->flag |= RX_FLAG_IV_STRIPPED | RX_FLAG_MMIC_STRIPPED; hdr->frame_control = __cpu_to_le16(fc & ~IEEE80211_FCTL_PROTECTED); } } if (ieee80211_is_beacon(hdr->frame_control)) ath11k_mac_handle_beacon(ar, skb); ath11k_dbg(ab, ATH11K_DBG_MGMT, "event mgmt rx skb %p len %d ftype %02x stype %02x\n", skb, skb->len, fc & IEEE80211_FCTL_FTYPE, fc & IEEE80211_FCTL_STYPE); ath11k_dbg(ab, ATH11K_DBG_MGMT, "event mgmt rx freq %d band %d snr %d, rate_idx %d\n", status->freq, status->band, status->signal, status->rate_idx); ieee80211_rx_ni(ar->hw, skb); exit: rcu_read_unlock(); } static void ath11k_mgmt_tx_compl_event(struct ath11k_base *ab, struct sk_buff *skb) { struct wmi_mgmt_tx_compl_event tx_compl_param = {0}; struct ath11k *ar; if (ath11k_pull_mgmt_tx_compl_param_tlv(ab, skb, &tx_compl_param) != 0) { ath11k_warn(ab, "failed to extract mgmt tx compl event"); return; } rcu_read_lock(); ar = ath11k_mac_get_ar_by_pdev_id(ab, tx_compl_param.pdev_id); if (!ar) { ath11k_warn(ab, "invalid pdev id %d in mgmt_tx_compl_event\n", tx_compl_param.pdev_id); goto exit; } wmi_process_mgmt_tx_comp(ar, &tx_compl_param); ath11k_dbg(ab, ATH11K_DBG_MGMT, "event mgmt tx compl ev pdev_id %d, desc_id %d, status %d ack_rssi %d", tx_compl_param.pdev_id, tx_compl_param.desc_id, tx_compl_param.status, tx_compl_param.ack_rssi); exit: rcu_read_unlock(); } static struct ath11k *ath11k_get_ar_on_scan_state(struct ath11k_base *ab, u32 vdev_id, enum ath11k_scan_state state) { int i; struct ath11k_pdev *pdev; struct ath11k *ar; for (i = 0; i < ab->num_radios; i++) { pdev = rcu_dereference(ab->pdevs_active[i]); if (pdev && pdev->ar) { ar = pdev->ar; spin_lock_bh(&ar->data_lock); if (ar->scan.state == state && ar->scan.vdev_id == vdev_id) { spin_unlock_bh(&ar->data_lock); return ar; } spin_unlock_bh(&ar->data_lock); } } return NULL; } static void ath11k_scan_event(struct ath11k_base *ab, struct sk_buff *skb) { struct ath11k *ar; struct wmi_scan_event scan_ev = {0}; if (ath11k_pull_scan_ev(ab, skb, &scan_ev) != 0) { ath11k_warn(ab, "failed to extract scan event"); return; } rcu_read_lock(); /* In case the scan was cancelled, ex. during interface teardown, * the interface will not be found in active interfaces. * Rather, in such scenarios, iterate over the active pdev's to * search 'ar' if the corresponding 'ar' scan is ABORTING and the * aborting scan's vdev id matches this event info. */ if (scan_ev.event_type == WMI_SCAN_EVENT_COMPLETED && scan_ev.reason == WMI_SCAN_REASON_CANCELLED) { ar = ath11k_get_ar_on_scan_state(ab, scan_ev.vdev_id, ATH11K_SCAN_ABORTING); if (!ar) ar = ath11k_get_ar_on_scan_state(ab, scan_ev.vdev_id, ATH11K_SCAN_RUNNING); } else { ar = ath11k_mac_get_ar_by_vdev_id(ab, scan_ev.vdev_id); } if (!ar) { ath11k_warn(ab, "Received scan event for unknown vdev"); rcu_read_unlock(); return; } spin_lock_bh(&ar->data_lock); ath11k_dbg(ab, ATH11K_DBG_WMI, "event scan %s type %d reason %d freq %d req_id %d scan_id %d vdev_id %d state %s (%d)\n", ath11k_wmi_event_scan_type_str(scan_ev.event_type, scan_ev.reason), scan_ev.event_type, scan_ev.reason, scan_ev.channel_freq, scan_ev.scan_req_id, scan_ev.scan_id, scan_ev.vdev_id, ath11k_scan_state_str(ar->scan.state), ar->scan.state); switch (scan_ev.event_type) { case WMI_SCAN_EVENT_STARTED: ath11k_wmi_event_scan_started(ar); break; case WMI_SCAN_EVENT_COMPLETED: ath11k_wmi_event_scan_completed(ar); break; case WMI_SCAN_EVENT_BSS_CHANNEL: ath11k_wmi_event_scan_bss_chan(ar); break; case WMI_SCAN_EVENT_FOREIGN_CHAN: ath11k_wmi_event_scan_foreign_chan(ar, scan_ev.channel_freq); break; case WMI_SCAN_EVENT_START_FAILED: ath11k_warn(ab, "received scan start failure event\n"); ath11k_wmi_event_scan_start_failed(ar); break; case WMI_SCAN_EVENT_DEQUEUED: __ath11k_mac_scan_finish(ar); break; case WMI_SCAN_EVENT_PREEMPTED: case WMI_SCAN_EVENT_RESTARTED: case WMI_SCAN_EVENT_FOREIGN_CHAN_EXIT: default: break; } spin_unlock_bh(&ar->data_lock); rcu_read_unlock(); } static void ath11k_peer_sta_kickout_event(struct ath11k_base *ab, struct sk_buff *skb) { struct wmi_peer_sta_kickout_arg arg = {}; struct ieee80211_sta *sta; struct ath11k_peer *peer; struct ath11k *ar; u32 vdev_id; if (ath11k_pull_peer_sta_kickout_ev(ab, skb, &arg) != 0) { ath11k_warn(ab, "failed to extract peer sta kickout event"); return; } rcu_read_lock(); spin_lock_bh(&ab->base_lock); peer = ath11k_peer_find_by_addr(ab, arg.mac_addr); if (!peer) { ath11k_warn(ab, "peer not found %pM\n", arg.mac_addr); spin_unlock_bh(&ab->base_lock); goto exit; } vdev_id = peer->vdev_id; spin_unlock_bh(&ab->base_lock); ar = ath11k_mac_get_ar_by_vdev_id(ab, vdev_id); if (!ar) { ath11k_warn(ab, "invalid vdev id in peer sta kickout ev %d", peer->vdev_id); goto exit; } sta = ieee80211_find_sta_by_ifaddr(ar->hw, arg.mac_addr, NULL); if (!sta) { ath11k_warn(ab, "Spurious quick kickout for STA %pM\n", arg.mac_addr); goto exit; } ath11k_dbg(ab, ATH11K_DBG_WMI, "event peer sta kickout %pM", arg.mac_addr); ieee80211_report_low_ack(sta, 10); exit: rcu_read_unlock(); } static void ath11k_roam_event(struct ath11k_base *ab, struct sk_buff *skb) { struct wmi_roam_event roam_ev = {}; struct ath11k *ar; if (ath11k_pull_roam_ev(ab, skb, &roam_ev) != 0) { ath11k_warn(ab, "failed to extract roam event"); return; } ath11k_dbg(ab, ATH11K_DBG_WMI, "event roam vdev %u reason 0x%08x rssi %d\n", roam_ev.vdev_id, roam_ev.reason, roam_ev.rssi); rcu_read_lock(); ar = ath11k_mac_get_ar_by_vdev_id(ab, roam_ev.vdev_id); if (!ar) { ath11k_warn(ab, "invalid vdev id in roam ev %d", roam_ev.vdev_id); rcu_read_unlock(); return; } if (roam_ev.reason >= WMI_ROAM_REASON_MAX) ath11k_warn(ab, "ignoring unknown roam event reason %d on vdev %i\n", roam_ev.reason, roam_ev.vdev_id); switch (roam_ev.reason) { case WMI_ROAM_REASON_BEACON_MISS: ath11k_mac_handle_beacon_miss(ar, roam_ev.vdev_id); break; case WMI_ROAM_REASON_BETTER_AP: case WMI_ROAM_REASON_LOW_RSSI: case WMI_ROAM_REASON_SUITABLE_AP_FOUND: case WMI_ROAM_REASON_HO_FAILED: ath11k_warn(ab, "ignoring not implemented roam event reason %d on vdev %i\n", roam_ev.reason, roam_ev.vdev_id); break; } rcu_read_unlock(); } static void ath11k_chan_info_event(struct ath11k_base *ab, struct sk_buff *skb) { struct wmi_chan_info_event ch_info_ev = {0}; struct ath11k *ar; struct survey_info *survey; int idx; /* HW channel counters frequency value in hertz */ u32 cc_freq_hz = ab->cc_freq_hz; if (ath11k_pull_chan_info_ev(ab, skb->data, skb->len, &ch_info_ev) != 0) { ath11k_warn(ab, "failed to extract chan info event"); return; } ath11k_dbg(ab, ATH11K_DBG_WMI, "event chan info vdev_id %d err_code %d freq %d cmd_flags %d noise_floor %d rx_clear_count %d cycle_count %d mac_clk_mhz %d\n", ch_info_ev.vdev_id, ch_info_ev.err_code, ch_info_ev.freq, ch_info_ev.cmd_flags, ch_info_ev.noise_floor, ch_info_ev.rx_clear_count, ch_info_ev.cycle_count, ch_info_ev.mac_clk_mhz); if (ch_info_ev.cmd_flags == WMI_CHAN_INFO_END_RESP) { ath11k_dbg(ab, ATH11K_DBG_WMI, "chan info report completed\n"); return; } rcu_read_lock(); ar = ath11k_mac_get_ar_by_vdev_id(ab, ch_info_ev.vdev_id); if (!ar) { ath11k_warn(ab, "invalid vdev id in chan info ev %d", ch_info_ev.vdev_id); rcu_read_unlock(); return; } spin_lock_bh(&ar->data_lock); switch (ar->scan.state) { case ATH11K_SCAN_IDLE: case ATH11K_SCAN_STARTING: ath11k_warn(ab, "received chan info event without a scan request, ignoring\n"); goto exit; case ATH11K_SCAN_RUNNING: case ATH11K_SCAN_ABORTING: break; } idx = freq_to_idx(ar, ch_info_ev.freq); if (idx >= ARRAY_SIZE(ar->survey)) { ath11k_warn(ab, "chan info: invalid frequency %d (idx %d out of bounds)\n", ch_info_ev.freq, idx); goto exit; } /* If FW provides MAC clock frequency in Mhz, overriding the initialized * HW channel counters frequency value */ if (ch_info_ev.mac_clk_mhz) cc_freq_hz = (ch_info_ev.mac_clk_mhz * 1000); if (ch_info_ev.cmd_flags == WMI_CHAN_INFO_START_RESP) { survey = &ar->survey[idx]; memset(survey, 0, sizeof(*survey)); survey->noise = ch_info_ev.noise_floor; survey->filled = SURVEY_INFO_NOISE_DBM | SURVEY_INFO_TIME | SURVEY_INFO_TIME_BUSY; survey->time = div_u64(ch_info_ev.cycle_count, cc_freq_hz); survey->time_busy = div_u64(ch_info_ev.rx_clear_count, cc_freq_hz); } exit: spin_unlock_bh(&ar->data_lock); rcu_read_unlock(); } static void ath11k_pdev_bss_chan_info_event(struct ath11k_base *ab, struct sk_buff *skb) { struct wmi_pdev_bss_chan_info_event bss_ch_info_ev = {}; struct survey_info *survey; struct ath11k *ar; u32 cc_freq_hz = ab->cc_freq_hz; u64 busy, total, tx, rx, rx_bss; int idx; if (ath11k_pull_pdev_bss_chan_info_ev(ab, skb, &bss_ch_info_ev) != 0) { ath11k_warn(ab, "failed to extract pdev bss chan info event"); return; } busy = (u64)(bss_ch_info_ev.rx_clear_count_high) << 32 | bss_ch_info_ev.rx_clear_count_low; total = (u64)(bss_ch_info_ev.cycle_count_high) << 32 | bss_ch_info_ev.cycle_count_low; tx = (u64)(bss_ch_info_ev.tx_cycle_count_high) << 32 | bss_ch_info_ev.tx_cycle_count_low; rx = (u64)(bss_ch_info_ev.rx_cycle_count_high) << 32 | bss_ch_info_ev.rx_cycle_count_low; rx_bss = (u64)(bss_ch_info_ev.rx_bss_cycle_count_high) << 32 | bss_ch_info_ev.rx_bss_cycle_count_low; ath11k_dbg(ab, ATH11K_DBG_WMI, "event pdev bss chan info:\n pdev_id: %d freq: %d noise: %d cycle: busy %llu total %llu tx %llu rx %llu rx_bss %llu\n", bss_ch_info_ev.pdev_id, bss_ch_info_ev.freq, bss_ch_info_ev.noise_floor, busy, total, tx, rx, rx_bss); rcu_read_lock(); ar = ath11k_mac_get_ar_by_pdev_id(ab, bss_ch_info_ev.pdev_id); if (!ar) { ath11k_warn(ab, "invalid pdev id %d in bss_chan_info event\n", bss_ch_info_ev.pdev_id); rcu_read_unlock(); return; } spin_lock_bh(&ar->data_lock); idx = freq_to_idx(ar, bss_ch_info_ev.freq); if (idx >= ARRAY_SIZE(ar->survey)) { ath11k_warn(ab, "bss chan info: invalid frequency %d (idx %d out of bounds)\n", bss_ch_info_ev.freq, idx); goto exit; } survey = &ar->survey[idx]; survey->noise = bss_ch_info_ev.noise_floor; survey->time = div_u64(total, cc_freq_hz); survey->time_busy = div_u64(busy, cc_freq_hz); survey->time_rx = div_u64(rx_bss, cc_freq_hz); survey->time_tx = div_u64(tx, cc_freq_hz); survey->filled |= (SURVEY_INFO_NOISE_DBM | SURVEY_INFO_TIME | SURVEY_INFO_TIME_BUSY | SURVEY_INFO_TIME_RX | SURVEY_INFO_TIME_TX); exit: spin_unlock_bh(&ar->data_lock); complete(&ar->bss_survey_done); rcu_read_unlock(); } static void ath11k_vdev_install_key_compl_event(struct ath11k_base *ab, struct sk_buff *skb) { struct wmi_vdev_install_key_complete_arg install_key_compl = {0}; struct ath11k *ar; if (ath11k_pull_vdev_install_key_compl_ev(ab, skb, &install_key_compl) != 0) { ath11k_warn(ab, "failed to extract install key compl event"); return; } ath11k_dbg(ab, ATH11K_DBG_WMI, "event vdev install key ev idx %d flags %08x macaddr %pM status %d\n", install_key_compl.key_idx, install_key_compl.key_flags, install_key_compl.macaddr, install_key_compl.status); rcu_read_lock(); ar = ath11k_mac_get_ar_by_vdev_id(ab, install_key_compl.vdev_id); if (!ar) { ath11k_warn(ab, "invalid vdev id in install key compl ev %d", install_key_compl.vdev_id); rcu_read_unlock(); return; } ar->install_key_status = 0; if (install_key_compl.status != WMI_VDEV_INSTALL_KEY_COMPL_STATUS_SUCCESS) { ath11k_warn(ab, "install key failed for %pM status %d\n", install_key_compl.macaddr, install_key_compl.status); ar->install_key_status = install_key_compl.status; } complete(&ar->install_key_done); rcu_read_unlock(); } static int ath11k_wmi_tlv_services_parser(struct ath11k_base *ab, u16 tag, u16 len, const void *ptr, void *data) { const struct wmi_service_available_event *ev; u32 *wmi_ext2_service_bitmap; int i, j; switch (tag) { case WMI_TAG_SERVICE_AVAILABLE_EVENT: ev = (struct wmi_service_available_event *)ptr; for (i = 0, j = WMI_MAX_SERVICE; i < WMI_SERVICE_SEGMENT_BM_SIZE32 && j < WMI_MAX_EXT_SERVICE; i++) { do { if (ev->wmi_service_segment_bitmap[i] & BIT(j % WMI_AVAIL_SERVICE_BITS_IN_SIZE32)) set_bit(j, ab->wmi_ab.svc_map); } while (++j % WMI_AVAIL_SERVICE_BITS_IN_SIZE32); } ath11k_dbg(ab, ATH11K_DBG_WMI, "wmi_ext_service_bitmap 0:0x%04x, 1:0x%04x, 2:0x%04x, 3:0x%04x", ev->wmi_service_segment_bitmap[0], ev->wmi_service_segment_bitmap[1], ev->wmi_service_segment_bitmap[2], ev->wmi_service_segment_bitmap[3]); break; case WMI_TAG_ARRAY_UINT32: wmi_ext2_service_bitmap = (u32 *)ptr; for (i = 0, j = WMI_MAX_EXT_SERVICE; i < WMI_SERVICE_SEGMENT_BM_SIZE32 && j < WMI_MAX_EXT2_SERVICE; i++) { do { if (wmi_ext2_service_bitmap[i] & BIT(j % WMI_AVAIL_SERVICE_BITS_IN_SIZE32)) set_bit(j, ab->wmi_ab.svc_map); } while (++j % WMI_AVAIL_SERVICE_BITS_IN_SIZE32); } ath11k_dbg(ab, ATH11K_DBG_WMI, "wmi_ext2_service__bitmap 0:0x%04x, 1:0x%04x, 2:0x%04x, 3:0x%04x", wmi_ext2_service_bitmap[0], wmi_ext2_service_bitmap[1], wmi_ext2_service_bitmap[2], wmi_ext2_service_bitmap[3]); break; } return 0; } static void ath11k_service_available_event(struct ath11k_base *ab, struct sk_buff *skb) { int ret; ret = ath11k_wmi_tlv_iter(ab, skb->data, skb->len, ath11k_wmi_tlv_services_parser, NULL); if (ret) ath11k_warn(ab, "failed to parse services available tlv %d\n", ret); ath11k_dbg(ab, ATH11K_DBG_WMI, "event service available"); } static void ath11k_peer_assoc_conf_event(struct ath11k_base *ab, struct sk_buff *skb) { struct wmi_peer_assoc_conf_arg peer_assoc_conf = {0}; struct ath11k *ar; if (ath11k_pull_peer_assoc_conf_ev(ab, skb, &peer_assoc_conf) != 0) { ath11k_warn(ab, "failed to extract peer assoc conf event"); return; } ath11k_dbg(ab, ATH11K_DBG_WMI, "event peer assoc conf ev vdev id %d macaddr %pM\n", peer_assoc_conf.vdev_id, peer_assoc_conf.macaddr); rcu_read_lock(); ar = ath11k_mac_get_ar_by_vdev_id(ab, peer_assoc_conf.vdev_id); if (!ar) { ath11k_warn(ab, "invalid vdev id in peer assoc conf ev %d", peer_assoc_conf.vdev_id); rcu_read_unlock(); return; } complete(&ar->peer_assoc_done); rcu_read_unlock(); } static void ath11k_update_stats_event(struct ath11k_base *ab, struct sk_buff *skb) { struct ath11k_fw_stats stats = {}; struct ath11k *ar; int ret; INIT_LIST_HEAD(&stats.pdevs); INIT_LIST_HEAD(&stats.vdevs); INIT_LIST_HEAD(&stats.bcn); ret = ath11k_wmi_pull_fw_stats(ab, skb, &stats); if (ret) { ath11k_warn(ab, "failed to pull fw stats: %d\n", ret); goto free; } ath11k_dbg(ab, ATH11K_DBG_WMI, "event update stats"); rcu_read_lock(); ar = ath11k_mac_get_ar_by_pdev_id(ab, stats.pdev_id); if (!ar) { rcu_read_unlock(); ath11k_warn(ab, "failed to get ar for pdev_id %d: %d\n", stats.pdev_id, ret); goto free; } spin_lock_bh(&ar->data_lock); /* WMI_REQUEST_PDEV_STAT can be requested via .get_txpower mac ops or via * debugfs fw stats. Therefore, processing it separately. */ if (stats.stats_id == WMI_REQUEST_PDEV_STAT) { list_splice_tail_init(&stats.pdevs, &ar->fw_stats.pdevs); ar->fw_stats_done = true; goto complete; } /* WMI_REQUEST_VDEV_STAT, WMI_REQUEST_BCN_STAT and WMI_REQUEST_RSSI_PER_CHAIN_STAT * are currently requested only via debugfs fw stats. Hence, processing these * in debugfs context */ ath11k_debugfs_fw_stats_process(ar, &stats); complete: complete(&ar->fw_stats_complete); rcu_read_unlock(); spin_unlock_bh(&ar->data_lock); /* Since the stats's pdev, vdev and beacon list are spliced and reinitialised * at this point, no need to free the individual list. */ return; free: ath11k_fw_stats_free(&stats); } /* PDEV_CTL_FAILSAFE_CHECK_EVENT is received from FW when the frequency scanned * is not part of BDF CTL(Conformance test limits) table entries. */ static void ath11k_pdev_ctl_failsafe_check_event(struct ath11k_base *ab, struct sk_buff *skb) { const void **tb; const struct wmi_pdev_ctl_failsafe_chk_event *ev; int ret; tb = ath11k_wmi_tlv_parse_alloc(ab, skb->data, skb->len, GFP_ATOMIC); if (IS_ERR(tb)) { ret = PTR_ERR(tb); ath11k_warn(ab, "failed to parse tlv: %d\n", ret); return; } ev = tb[WMI_TAG_PDEV_CTL_FAILSAFE_CHECK_EVENT]; if (!ev) { ath11k_warn(ab, "failed to fetch pdev ctl failsafe check ev"); kfree(tb); return; } ath11k_dbg(ab, ATH11K_DBG_WMI, "event pdev ctl failsafe check status %d\n", ev->ctl_failsafe_status); /* If ctl_failsafe_status is set to 1 FW will max out the Transmit power * to 10 dBm else the CTL power entry in the BDF would be picked up. */ if (ev->ctl_failsafe_status != 0) ath11k_warn(ab, "pdev ctl failsafe failure status %d", ev->ctl_failsafe_status); kfree(tb); } static void ath11k_wmi_process_csa_switch_count_event(struct ath11k_base *ab, const struct wmi_pdev_csa_switch_ev *ev, const u32 *vdev_ids) { int i; struct ath11k_vif *arvif; /* Finish CSA once the switch count becomes NULL */ if (ev->current_switch_count) return; rcu_read_lock(); for (i = 0; i < ev->num_vdevs; i++) { arvif = ath11k_mac_get_arvif_by_vdev_id(ab, vdev_ids[i]); if (!arvif) { ath11k_warn(ab, "Recvd csa status for unknown vdev %d", vdev_ids[i]); continue; } if (arvif->is_up && arvif->vif->bss_conf.csa_active) ieee80211_csa_finish(arvif->vif); } rcu_read_unlock(); } static void ath11k_wmi_pdev_csa_switch_count_status_event(struct ath11k_base *ab, struct sk_buff *skb) { const void **tb; const struct wmi_pdev_csa_switch_ev *ev; const u32 *vdev_ids; int ret; tb = ath11k_wmi_tlv_parse_alloc(ab, skb->data, skb->len, GFP_ATOMIC); if (IS_ERR(tb)) { ret = PTR_ERR(tb); ath11k_warn(ab, "failed to parse tlv: %d\n", ret); return; } ev = tb[WMI_TAG_PDEV_CSA_SWITCH_COUNT_STATUS_EVENT]; vdev_ids = tb[WMI_TAG_ARRAY_UINT32]; if (!ev || !vdev_ids) { ath11k_warn(ab, "failed to fetch pdev csa switch count ev"); kfree(tb); return; } ath11k_dbg(ab, ATH11K_DBG_WMI, "event pdev csa switch count %d for pdev %d, num_vdevs %d", ev->current_switch_count, ev->pdev_id, ev->num_vdevs); ath11k_wmi_process_csa_switch_count_event(ab, ev, vdev_ids); kfree(tb); } static void ath11k_wmi_pdev_dfs_radar_detected_event(struct ath11k_base *ab, struct sk_buff *skb) { const void **tb; const struct wmi_pdev_radar_ev *ev; struct ath11k *ar; int ret; tb = ath11k_wmi_tlv_parse_alloc(ab, skb->data, skb->len, GFP_ATOMIC); if (IS_ERR(tb)) { ret = PTR_ERR(tb); ath11k_warn(ab, "failed to parse tlv: %d\n", ret); return; } ev = tb[WMI_TAG_PDEV_DFS_RADAR_DETECTION_EVENT]; if (!ev) { ath11k_warn(ab, "failed to fetch pdev dfs radar detected ev"); kfree(tb); return; } ath11k_dbg(ab, ATH11K_DBG_WMI, "event pdev dfs radar detected on pdev %d, detection mode %d, chan freq %d, chan_width %d, detector id %d, seg id %d, timestamp %d, chirp %d, freq offset %d, sidx %d", ev->pdev_id, ev->detection_mode, ev->chan_freq, ev->chan_width, ev->detector_id, ev->segment_id, ev->timestamp, ev->is_chirp, ev->freq_offset, ev->sidx); rcu_read_lock(); ar = ath11k_mac_get_ar_by_pdev_id(ab, ev->pdev_id); if (!ar) { ath11k_warn(ab, "radar detected in invalid pdev %d\n", ev->pdev_id); goto exit; } ath11k_dbg(ar->ab, ATH11K_DBG_REG, "DFS Radar Detected in pdev %d\n", ev->pdev_id); if (ar->dfs_block_radar_events) ath11k_info(ab, "DFS Radar detected, but ignored as requested\n"); else ieee80211_radar_detected(ar->hw); exit: rcu_read_unlock(); kfree(tb); } static void ath11k_wmi_pdev_temperature_event(struct ath11k_base *ab, struct sk_buff *skb) { struct ath11k *ar; const void **tb; const struct wmi_pdev_temperature_event *ev; int ret; tb = ath11k_wmi_tlv_parse_alloc(ab, skb->data, skb->len, GFP_ATOMIC); if (IS_ERR(tb)) { ret = PTR_ERR(tb); ath11k_warn(ab, "failed to parse tlv: %d\n", ret); return; } ev = tb[WMI_TAG_PDEV_TEMPERATURE_EVENT]; if (!ev) { ath11k_warn(ab, "failed to fetch pdev temp ev"); kfree(tb); return; } ath11k_dbg(ab, ATH11K_DBG_WMI, "event pdev temperature ev temp %d pdev_id %d\n", ev->temp, ev->pdev_id); rcu_read_lock(); ar = ath11k_mac_get_ar_by_pdev_id(ab, ev->pdev_id); if (!ar) { ath11k_warn(ab, "invalid pdev id in pdev temperature ev %d", ev->pdev_id); goto exit; } ath11k_thermal_event_temperature(ar, ev->temp); exit: rcu_read_unlock(); kfree(tb); } static void ath11k_fils_discovery_event(struct ath11k_base *ab, struct sk_buff *skb) { const void **tb; const struct wmi_fils_discovery_event *ev; int ret; tb = ath11k_wmi_tlv_parse_alloc(ab, skb->data, skb->len, GFP_ATOMIC); if (IS_ERR(tb)) { ret = PTR_ERR(tb); ath11k_warn(ab, "failed to parse FILS discovery event tlv %d\n", ret); return; } ath11k_dbg(ab, ATH11K_DBG_WMI, "event fils discovery"); ev = tb[WMI_TAG_HOST_SWFDA_EVENT]; if (!ev) { ath11k_warn(ab, "failed to fetch FILS discovery event\n"); kfree(tb); return; } ath11k_warn(ab, "FILS discovery frame expected from host for vdev_id: %u, transmission scheduled at %u, next TBTT: %u\n", ev->vdev_id, ev->fils_tt, ev->tbtt); kfree(tb); } static void ath11k_probe_resp_tx_status_event(struct ath11k_base *ab, struct sk_buff *skb) { const void **tb; const struct wmi_probe_resp_tx_status_event *ev; int ret; tb = ath11k_wmi_tlv_parse_alloc(ab, skb->data, skb->len, GFP_ATOMIC); if (IS_ERR(tb)) { ret = PTR_ERR(tb); ath11k_warn(ab, "failed to parse probe response transmission status event tlv: %d\n", ret); return; } ath11k_dbg(ab, ATH11K_DBG_WMI, "event probe resp tx status"); ev = tb[WMI_TAG_OFFLOAD_PRB_RSP_TX_STATUS_EVENT]; if (!ev) { ath11k_warn(ab, "failed to fetch probe response transmission status event"); kfree(tb); return; } if (ev->tx_status) ath11k_warn(ab, "Probe response transmission failed for vdev_id %u, status %u\n", ev->vdev_id, ev->tx_status); kfree(tb); } static int ath11k_wmi_tlv_wow_wakeup_host_parse(struct ath11k_base *ab, u16 tag, u16 len, const void *ptr, void *data) { struct wmi_wow_ev_arg *ev = data; const char *wow_pg_fault; int wow_pg_len; switch (tag) { case WMI_TAG_WOW_EVENT_INFO: memcpy(ev, ptr, sizeof(*ev)); ath11k_dbg(ab, ATH11K_DBG_WMI, "wow wakeup host reason %d %s\n", ev->wake_reason, wow_reason(ev->wake_reason)); break; case WMI_TAG_ARRAY_BYTE: if (ev && ev->wake_reason == WOW_REASON_PAGE_FAULT) { wow_pg_fault = ptr; /* the first 4 bytes are length */ wow_pg_len = *(int *)wow_pg_fault; wow_pg_fault += sizeof(int); ath11k_dbg(ab, ATH11K_DBG_WMI, "wow data_len = %d\n", wow_pg_len); ath11k_dbg_dump(ab, ATH11K_DBG_WMI, "wow_event_info_type packet present", "wow_pg_fault ", wow_pg_fault, wow_pg_len); } break; default: break; } return 0; } static void ath11k_wmi_event_wow_wakeup_host(struct ath11k_base *ab, struct sk_buff *skb) { struct wmi_wow_ev_arg ev = { }; int ret; ret = ath11k_wmi_tlv_iter(ab, skb->data, skb->len, ath11k_wmi_tlv_wow_wakeup_host_parse, &ev); if (ret) { ath11k_warn(ab, "failed to parse wmi wow tlv: %d\n", ret); return; } ath11k_dbg(ab, ATH11K_DBG_WMI, "event wow wakeup host"); complete(&ab->wow.wakeup_completed); } static void ath11k_wmi_diag_event(struct ath11k_base *ab, struct sk_buff *skb) { ath11k_dbg(ab, ATH11K_DBG_WMI, "event diag"); trace_ath11k_wmi_diag(ab, skb->data, skb->len); } static const char *ath11k_wmi_twt_add_dialog_event_status(u32 status) { switch (status) { case WMI_ADD_TWT_STATUS_OK: return "ok"; case WMI_ADD_TWT_STATUS_TWT_NOT_ENABLED: return "twt disabled"; case WMI_ADD_TWT_STATUS_USED_DIALOG_ID: return "dialog id in use"; case WMI_ADD_TWT_STATUS_INVALID_PARAM: return "invalid parameters"; case WMI_ADD_TWT_STATUS_NOT_READY: return "not ready"; case WMI_ADD_TWT_STATUS_NO_RESOURCE: return "resource unavailable"; case WMI_ADD_TWT_STATUS_NO_ACK: return "no ack"; case WMI_ADD_TWT_STATUS_NO_RESPONSE: return "no response"; case WMI_ADD_TWT_STATUS_DENIED: return "denied"; case WMI_ADD_TWT_STATUS_UNKNOWN_ERROR: fallthrough; default: return "unknown error"; } } static void ath11k_wmi_twt_add_dialog_event(struct ath11k_base *ab, struct sk_buff *skb) { const void **tb; const struct wmi_twt_add_dialog_event *ev; int ret; tb = ath11k_wmi_tlv_parse_alloc(ab, skb->data, skb->len, GFP_ATOMIC); if (IS_ERR(tb)) { ret = PTR_ERR(tb); ath11k_warn(ab, "failed to parse wmi twt add dialog status event tlv: %d\n", ret); return; } ath11k_dbg(ab, ATH11K_DBG_WMI, "event twt add dialog"); ev = tb[WMI_TAG_TWT_ADD_DIALOG_COMPLETE_EVENT]; if (!ev) { ath11k_warn(ab, "failed to fetch twt add dialog wmi event\n"); goto exit; } if (ev->status) ath11k_warn(ab, "wmi add twt dialog event vdev %d dialog id %d status %s\n", ev->vdev_id, ev->dialog_id, ath11k_wmi_twt_add_dialog_event_status(ev->status)); exit: kfree(tb); } static void ath11k_wmi_gtk_offload_status_event(struct ath11k_base *ab, struct sk_buff *skb) { const void **tb; const struct wmi_gtk_offload_status_event *ev; struct ath11k_vif *arvif; __be64 replay_ctr_be; u64 replay_ctr; int ret; tb = ath11k_wmi_tlv_parse_alloc(ab, skb->data, skb->len, GFP_ATOMIC); if (IS_ERR(tb)) { ret = PTR_ERR(tb); ath11k_warn(ab, "failed to parse tlv: %d\n", ret); return; } ev = tb[WMI_TAG_GTK_OFFLOAD_STATUS_EVENT]; if (!ev) { ath11k_warn(ab, "failed to fetch gtk offload status ev"); kfree(tb); return; } rcu_read_lock(); arvif = ath11k_mac_get_arvif_by_vdev_id(ab, ev->vdev_id); if (!arvif) { ath11k_warn(ab, "failed to get arvif for vdev_id:%d\n", ev->vdev_id); goto exit; } ath11k_dbg(ab, ATH11K_DBG_WMI, "event gtk offload refresh_cnt %d\n", ev->refresh_cnt); ath11k_dbg_dump(ab, ATH11K_DBG_WMI, "replay_cnt", NULL, ev->replay_ctr.counter, GTK_REPLAY_COUNTER_BYTES); replay_ctr = ev->replay_ctr.word1; replay_ctr = (replay_ctr << 32) | ev->replay_ctr.word0; arvif->rekey_data.replay_ctr = replay_ctr; /* supplicant expects big-endian replay counter */ replay_ctr_be = cpu_to_be64(replay_ctr); ieee80211_gtk_rekey_notify(arvif->vif, arvif->bssid, (void *)&replay_ctr_be, GFP_ATOMIC); exit: rcu_read_unlock(); kfree(tb); } static void ath11k_wmi_tlv_op_rx(struct ath11k_base *ab, struct sk_buff *skb) { struct wmi_cmd_hdr *cmd_hdr; enum wmi_tlv_event_id id; cmd_hdr = (struct wmi_cmd_hdr *)skb->data; id = FIELD_GET(WMI_CMD_HDR_CMD_ID, (cmd_hdr->cmd_id)); trace_ath11k_wmi_event(ab, id, skb->data, skb->len); if (skb_pull(skb, sizeof(struct wmi_cmd_hdr)) == NULL) goto out; switch (id) { /* Process all the WMI events here */ case WMI_SERVICE_READY_EVENTID: ath11k_service_ready_event(ab, skb); break; case WMI_SERVICE_READY_EXT_EVENTID: ath11k_service_ready_ext_event(ab, skb); break; case WMI_SERVICE_READY_EXT2_EVENTID: ath11k_service_ready_ext2_event(ab, skb); break; case WMI_REG_CHAN_LIST_CC_EVENTID: ath11k_reg_chan_list_event(ab, skb, WMI_REG_CHAN_LIST_CC_ID); break; case WMI_REG_CHAN_LIST_CC_EXT_EVENTID: ath11k_reg_chan_list_event(ab, skb, WMI_REG_CHAN_LIST_CC_EXT_ID); break; case WMI_READY_EVENTID: ath11k_ready_event(ab, skb); break; case WMI_PEER_DELETE_RESP_EVENTID: ath11k_peer_delete_resp_event(ab, skb); break; case WMI_VDEV_START_RESP_EVENTID: ath11k_vdev_start_resp_event(ab, skb); break; case WMI_OFFLOAD_BCN_TX_STATUS_EVENTID: ath11k_bcn_tx_status_event(ab, skb); break; case WMI_VDEV_STOPPED_EVENTID: ath11k_vdev_stopped_event(ab, skb); break; case WMI_MGMT_RX_EVENTID: ath11k_mgmt_rx_event(ab, skb); /* mgmt_rx_event() owns the skb now! */ return; case WMI_MGMT_TX_COMPLETION_EVENTID: ath11k_mgmt_tx_compl_event(ab, skb); break; case WMI_SCAN_EVENTID: ath11k_scan_event(ab, skb); break; case WMI_PEER_STA_KICKOUT_EVENTID: ath11k_peer_sta_kickout_event(ab, skb); break; case WMI_ROAM_EVENTID: ath11k_roam_event(ab, skb); break; case WMI_CHAN_INFO_EVENTID: ath11k_chan_info_event(ab, skb); break; case WMI_PDEV_BSS_CHAN_INFO_EVENTID: ath11k_pdev_bss_chan_info_event(ab, skb); break; case WMI_VDEV_INSTALL_KEY_COMPLETE_EVENTID: ath11k_vdev_install_key_compl_event(ab, skb); break; case WMI_SERVICE_AVAILABLE_EVENTID: ath11k_service_available_event(ab, skb); break; case WMI_PEER_ASSOC_CONF_EVENTID: ath11k_peer_assoc_conf_event(ab, skb); break; case WMI_UPDATE_STATS_EVENTID: ath11k_update_stats_event(ab, skb); break; case WMI_PDEV_CTL_FAILSAFE_CHECK_EVENTID: ath11k_pdev_ctl_failsafe_check_event(ab, skb); break; case WMI_PDEV_CSA_SWITCH_COUNT_STATUS_EVENTID: ath11k_wmi_pdev_csa_switch_count_status_event(ab, skb); break; case WMI_PDEV_UTF_EVENTID: ath11k_tm_wmi_event(ab, id, skb); break; case WMI_PDEV_TEMPERATURE_EVENTID: ath11k_wmi_pdev_temperature_event(ab, skb); break; case WMI_PDEV_DMA_RING_BUF_RELEASE_EVENTID: ath11k_wmi_pdev_dma_ring_buf_release_event(ab, skb); break; case WMI_HOST_FILS_DISCOVERY_EVENTID: ath11k_fils_discovery_event(ab, skb); break; case WMI_OFFLOAD_PROB_RESP_TX_STATUS_EVENTID: ath11k_probe_resp_tx_status_event(ab, skb); break; case WMI_OBSS_COLOR_COLLISION_DETECTION_EVENTID: ath11k_wmi_obss_color_collision_event(ab, skb); break; case WMI_TWT_ADD_DIALOG_EVENTID: ath11k_wmi_twt_add_dialog_event(ab, skb); break; case WMI_PDEV_DFS_RADAR_DETECTION_EVENTID: ath11k_wmi_pdev_dfs_radar_detected_event(ab, skb); break; case WMI_VDEV_DELETE_RESP_EVENTID: ath11k_vdev_delete_resp_event(ab, skb); break; case WMI_WOW_WAKEUP_HOST_EVENTID: ath11k_wmi_event_wow_wakeup_host(ab, skb); break; case WMI_11D_NEW_COUNTRY_EVENTID: ath11k_reg_11d_new_cc_event(ab, skb); break; case WMI_DIAG_EVENTID: ath11k_wmi_diag_event(ab, skb); break; case WMI_PEER_STA_PS_STATECHG_EVENTID: ath11k_wmi_event_peer_sta_ps_state_chg(ab, skb); break; case WMI_GTK_OFFLOAD_STATUS_EVENTID: ath11k_wmi_gtk_offload_status_event(ab, skb); break; default: ath11k_dbg(ab, ATH11K_DBG_WMI, "unsupported event id 0x%x\n", id); break; } out: dev_kfree_skb(skb); } static int ath11k_connect_pdev_htc_service(struct ath11k_base *ab, u32 pdev_idx) { int status; u32 svc_id[] = { ATH11K_HTC_SVC_ID_WMI_CONTROL, ATH11K_HTC_SVC_ID_WMI_CONTROL_MAC1, ATH11K_HTC_SVC_ID_WMI_CONTROL_MAC2 }; struct ath11k_htc_svc_conn_req conn_req; struct ath11k_htc_svc_conn_resp conn_resp; memset(&conn_req, 0, sizeof(conn_req)); memset(&conn_resp, 0, sizeof(conn_resp)); /* these fields are the same for all service endpoints */ conn_req.ep_ops.ep_tx_complete = ath11k_wmi_htc_tx_complete; conn_req.ep_ops.ep_rx_complete = ath11k_wmi_tlv_op_rx; conn_req.ep_ops.ep_tx_credits = ath11k_wmi_op_ep_tx_credits; /* connect to control service */ conn_req.service_id = svc_id[pdev_idx]; status = ath11k_htc_connect_service(&ab->htc, &conn_req, &conn_resp); if (status) { ath11k_warn(ab, "failed to connect to WMI CONTROL service status: %d\n", status); return status; } ab->wmi_ab.wmi_endpoint_id[pdev_idx] = conn_resp.eid; ab->wmi_ab.wmi[pdev_idx].eid = conn_resp.eid; ab->wmi_ab.max_msg_len[pdev_idx] = conn_resp.max_msg_len; init_waitqueue_head(&ab->wmi_ab.wmi[pdev_idx].tx_ce_desc_wq); return 0; } static int ath11k_wmi_send_unit_test_cmd(struct ath11k *ar, struct wmi_unit_test_cmd ut_cmd, u32 *test_args) { struct ath11k_pdev_wmi *wmi = ar->wmi; struct wmi_unit_test_cmd *cmd; struct sk_buff *skb; struct wmi_tlv *tlv; void *ptr; u32 *ut_cmd_args; int buf_len, arg_len; int ret; int i; arg_len = sizeof(u32) * ut_cmd.num_args; buf_len = sizeof(ut_cmd) + arg_len + TLV_HDR_SIZE; skb = ath11k_wmi_alloc_skb(wmi->wmi_ab, buf_len); if (!skb) return -ENOMEM; cmd = (struct wmi_unit_test_cmd *)skb->data; cmd->tlv_header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_UNIT_TEST_CMD) | FIELD_PREP(WMI_TLV_LEN, sizeof(ut_cmd) - TLV_HDR_SIZE); cmd->vdev_id = ut_cmd.vdev_id; cmd->module_id = ut_cmd.module_id; cmd->num_args = ut_cmd.num_args; cmd->diag_token = ut_cmd.diag_token; ptr = skb->data + sizeof(ut_cmd); tlv = ptr; tlv->header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_ARRAY_UINT32) | FIELD_PREP(WMI_TLV_LEN, arg_len); ptr += TLV_HDR_SIZE; ut_cmd_args = ptr; for (i = 0; i < ut_cmd.num_args; i++) ut_cmd_args[i] = test_args[i]; ret = ath11k_wmi_cmd_send(wmi, skb, WMI_UNIT_TEST_CMDID); if (ret) { ath11k_warn(ar->ab, "failed to send WMI_UNIT_TEST CMD :%d\n", ret); dev_kfree_skb(skb); } ath11k_dbg(ar->ab, ATH11K_DBG_WMI, "cmd unit test module %d vdev %d n_args %d token %d\n", cmd->module_id, cmd->vdev_id, cmd->num_args, cmd->diag_token); return ret; } int ath11k_wmi_simulate_radar(struct ath11k *ar) { struct ath11k_vif *arvif; u32 dfs_args[DFS_MAX_TEST_ARGS]; struct wmi_unit_test_cmd wmi_ut; bool arvif_found = false; list_for_each_entry(arvif, &ar->arvifs, list) { if (arvif->is_started && arvif->vdev_type == WMI_VDEV_TYPE_AP) { arvif_found = true; break; } } if (!arvif_found) return -EINVAL; dfs_args[DFS_TEST_CMDID] = 0; dfs_args[DFS_TEST_PDEV_ID] = ar->pdev->pdev_id; /* Currently we could pass segment_id(b0 - b1), chirp(b2) * freq offset (b3 - b10) to unit test. For simulation * purpose this can be set to 0 which is valid. */ dfs_args[DFS_TEST_RADAR_PARAM] = 0; wmi_ut.vdev_id = arvif->vdev_id; wmi_ut.module_id = DFS_UNIT_TEST_MODULE; wmi_ut.num_args = DFS_MAX_TEST_ARGS; wmi_ut.diag_token = DFS_UNIT_TEST_TOKEN; ath11k_dbg(ar->ab, ATH11K_DBG_REG, "Triggering Radar Simulation\n"); return ath11k_wmi_send_unit_test_cmd(ar, wmi_ut, dfs_args); } int ath11k_wmi_fw_dbglog_cfg(struct ath11k *ar, u32 *module_id_bitmap, struct ath11k_fw_dbglog *dbglog) { struct ath11k_pdev_wmi *wmi = ar->wmi; struct wmi_debug_log_config_cmd_fixed_param *cmd; struct sk_buff *skb; struct wmi_tlv *tlv; int ret, len; len = sizeof(*cmd) + TLV_HDR_SIZE + (MAX_MODULE_ID_BITMAP_WORDS * sizeof(u32)); skb = ath11k_wmi_alloc_skb(wmi->wmi_ab, len); if (!skb) return -ENOMEM; cmd = (struct wmi_debug_log_config_cmd_fixed_param *)skb->data; cmd->tlv_header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_DEBUG_LOG_CONFIG_CMD) | FIELD_PREP(WMI_TLV_LEN, sizeof(*cmd) - TLV_HDR_SIZE); cmd->dbg_log_param = dbglog->param; tlv = (struct wmi_tlv *)((u8 *)cmd + sizeof(*cmd)); tlv->header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_ARRAY_UINT32) | FIELD_PREP(WMI_TLV_LEN, MAX_MODULE_ID_BITMAP_WORDS * sizeof(u32)); switch (dbglog->param) { case WMI_DEBUG_LOG_PARAM_LOG_LEVEL: case WMI_DEBUG_LOG_PARAM_VDEV_ENABLE: case WMI_DEBUG_LOG_PARAM_VDEV_DISABLE: case WMI_DEBUG_LOG_PARAM_VDEV_ENABLE_BITMAP: cmd->value = dbglog->value; break; case WMI_DEBUG_LOG_PARAM_MOD_ENABLE_BITMAP: case WMI_DEBUG_LOG_PARAM_WOW_MOD_ENABLE_BITMAP: cmd->value = dbglog->value; memcpy(tlv->value, module_id_bitmap, MAX_MODULE_ID_BITMAP_WORDS * sizeof(u32)); /* clear current config to be used for next user config */ memset(module_id_bitmap, 0, MAX_MODULE_ID_BITMAP_WORDS * sizeof(u32)); break; default: dev_kfree_skb(skb); return -EINVAL; } ret = ath11k_wmi_cmd_send(wmi, skb, WMI_DBGLOG_CFG_CMDID); if (ret) { ath11k_warn(ar->ab, "failed to send WMI_DBGLOG_CFG_CMDID\n"); dev_kfree_skb(skb); } ath11k_dbg(ar->ab, ATH11K_DBG_WMI, "cmd dbglog cfg"); return ret; } int ath11k_wmi_connect(struct ath11k_base *ab) { u32 i; u8 wmi_ep_count; wmi_ep_count = ab->htc.wmi_ep_count; if (wmi_ep_count > ab->hw_params.max_radios) return -1; for (i = 0; i < wmi_ep_count; i++) ath11k_connect_pdev_htc_service(ab, i); return 0; } static void ath11k_wmi_pdev_detach(struct ath11k_base *ab, u8 pdev_id) { if (WARN_ON(pdev_id >= MAX_RADIOS)) return; /* TODO: Deinit any pdev specific wmi resource */ } int ath11k_wmi_pdev_attach(struct ath11k_base *ab, u8 pdev_id) { struct ath11k_pdev_wmi *wmi_handle; if (pdev_id >= ab->hw_params.max_radios) return -EINVAL; wmi_handle = &ab->wmi_ab.wmi[pdev_id]; wmi_handle->wmi_ab = &ab->wmi_ab; ab->wmi_ab.ab = ab; /* TODO: Init remaining resource specific to pdev */ return 0; } int ath11k_wmi_attach(struct ath11k_base *ab) { int ret; ret = ath11k_wmi_pdev_attach(ab, 0); if (ret) return ret; ab->wmi_ab.ab = ab; ab->wmi_ab.preferred_hw_mode = WMI_HOST_HW_MODE_MAX; /* It's overwritten when service_ext_ready is handled */ if (ab->hw_params.single_pdev_only && ab->hw_params.num_rxmda_per_pdev > 1) ab->wmi_ab.preferred_hw_mode = WMI_HOST_HW_MODE_SINGLE; /* TODO: Init remaining wmi soc resources required */ init_completion(&ab->wmi_ab.service_ready); init_completion(&ab->wmi_ab.unified_ready); return 0; } void ath11k_wmi_detach(struct ath11k_base *ab) { int i; /* TODO: Deinit wmi resource specific to SOC as required */ for (i = 0; i < ab->htc.wmi_ep_count; i++) ath11k_wmi_pdev_detach(ab, i); ath11k_wmi_free_dbring_caps(ab); } int ath11k_wmi_hw_data_filter_cmd(struct ath11k *ar, u32 vdev_id, u32 filter_bitmap, bool enable) { struct wmi_hw_data_filter_cmd *cmd; struct sk_buff *skb; int len; len = sizeof(*cmd); skb = ath11k_wmi_alloc_skb(ar->wmi->wmi_ab, len); if (!skb) return -ENOMEM; cmd = (struct wmi_hw_data_filter_cmd *)skb->data; cmd->tlv_header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_HW_DATA_FILTER_CMD) | FIELD_PREP(WMI_TLV_LEN, sizeof(*cmd) - TLV_HDR_SIZE); cmd->vdev_id = vdev_id; cmd->enable = enable; /* Set all modes in case of disable */ if (cmd->enable) cmd->hw_filter_bitmap = filter_bitmap; else cmd->hw_filter_bitmap = ((u32)~0U); ath11k_dbg(ar->ab, ATH11K_DBG_WMI, "hw data filter enable %d filter_bitmap 0x%x\n", enable, filter_bitmap); return ath11k_wmi_cmd_send(ar->wmi, skb, WMI_HW_DATA_FILTER_CMDID); } int ath11k_wmi_wow_host_wakeup_ind(struct ath11k *ar) { struct wmi_wow_host_wakeup_ind *cmd; struct sk_buff *skb; size_t len; len = sizeof(*cmd); skb = ath11k_wmi_alloc_skb(ar->wmi->wmi_ab, len); if (!skb) return -ENOMEM; cmd = (struct wmi_wow_host_wakeup_ind *)skb->data; cmd->tlv_header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_WOW_HOSTWAKEUP_FROM_SLEEP_CMD) | FIELD_PREP(WMI_TLV_LEN, sizeof(*cmd) - TLV_HDR_SIZE); ath11k_dbg(ar->ab, ATH11K_DBG_WMI, "tlv wow host wakeup ind\n"); return ath11k_wmi_cmd_send(ar->wmi, skb, WMI_WOW_HOSTWAKEUP_FROM_SLEEP_CMDID); } int ath11k_wmi_wow_enable(struct ath11k *ar) { struct wmi_wow_enable_cmd *cmd; struct sk_buff *skb; int len; len = sizeof(*cmd); skb = ath11k_wmi_alloc_skb(ar->wmi->wmi_ab, len); if (!skb) return -ENOMEM; cmd = (struct wmi_wow_enable_cmd *)skb->data; cmd->tlv_header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_WOW_ENABLE_CMD) | FIELD_PREP(WMI_TLV_LEN, sizeof(*cmd) - TLV_HDR_SIZE); cmd->enable = 1; cmd->pause_iface_config = WOW_IFACE_PAUSE_ENABLED; ath11k_dbg(ar->ab, ATH11K_DBG_WMI, "tlv wow enable\n"); return ath11k_wmi_cmd_send(ar->wmi, skb, WMI_WOW_ENABLE_CMDID); } int ath11k_wmi_scan_prob_req_oui(struct ath11k *ar, const u8 mac_addr[ETH_ALEN]) { struct sk_buff *skb; struct wmi_scan_prob_req_oui_cmd *cmd; u32 prob_req_oui; int len; prob_req_oui = (((u32)mac_addr[0]) << 16) | (((u32)mac_addr[1]) << 8) | mac_addr[2]; len = sizeof(*cmd); skb = ath11k_wmi_alloc_skb(ar->wmi->wmi_ab, len); if (!skb) return -ENOMEM; cmd = (struct wmi_scan_prob_req_oui_cmd *)skb->data; cmd->tlv_header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_SCAN_PROB_REQ_OUI_CMD) | FIELD_PREP(WMI_TLV_LEN, sizeof(*cmd) - TLV_HDR_SIZE); cmd->prob_req_oui = prob_req_oui; ath11k_dbg(ar->ab, ATH11K_DBG_WMI, "scan prob req oui %d\n", prob_req_oui); return ath11k_wmi_cmd_send(ar->wmi, skb, WMI_SCAN_PROB_REQ_OUI_CMDID); } int ath11k_wmi_wow_add_wakeup_event(struct ath11k *ar, u32 vdev_id, enum wmi_wow_wakeup_event event, u32 enable) { struct wmi_wow_add_del_event_cmd *cmd; struct sk_buff *skb; size_t len; len = sizeof(*cmd); skb = ath11k_wmi_alloc_skb(ar->wmi->wmi_ab, len); if (!skb) return -ENOMEM; cmd = (struct wmi_wow_add_del_event_cmd *)skb->data; cmd->tlv_header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_WOW_ADD_DEL_EVT_CMD) | FIELD_PREP(WMI_TLV_LEN, sizeof(*cmd) - TLV_HDR_SIZE); cmd->vdev_id = vdev_id; cmd->is_add = enable; cmd->event_bitmap = (1 << event); ath11k_dbg(ar->ab, ATH11K_DBG_WMI, "tlv wow add wakeup event %s enable %d vdev_id %d\n", wow_wakeup_event(event), enable, vdev_id); return ath11k_wmi_cmd_send(ar->wmi, skb, WMI_WOW_ENABLE_DISABLE_WAKE_EVENT_CMDID); } int ath11k_wmi_wow_add_pattern(struct ath11k *ar, u32 vdev_id, u32 pattern_id, const u8 *pattern, const u8 *mask, int pattern_len, int pattern_offset) { struct wmi_wow_add_pattern_cmd *cmd; struct wmi_wow_bitmap_pattern *bitmap; struct wmi_tlv *tlv; struct sk_buff *skb; u8 *ptr; size_t len; len = sizeof(*cmd) + sizeof(*tlv) + /* array struct */ sizeof(*bitmap) + /* bitmap */ sizeof(*tlv) + /* empty ipv4 sync */ sizeof(*tlv) + /* empty ipv6 sync */ sizeof(*tlv) + /* empty magic */ sizeof(*tlv) + /* empty info timeout */ sizeof(*tlv) + sizeof(u32); /* ratelimit interval */ skb = ath11k_wmi_alloc_skb(ar->wmi->wmi_ab, len); if (!skb) return -ENOMEM; /* cmd */ ptr = (u8 *)skb->data; cmd = (struct wmi_wow_add_pattern_cmd *)ptr; cmd->tlv_header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_WOW_ADD_PATTERN_CMD) | FIELD_PREP(WMI_TLV_LEN, sizeof(*cmd) - TLV_HDR_SIZE); cmd->vdev_id = vdev_id; cmd->pattern_id = pattern_id; cmd->pattern_type = WOW_BITMAP_PATTERN; ptr += sizeof(*cmd); /* bitmap */ tlv = (struct wmi_tlv *)ptr; tlv->header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_ARRAY_STRUCT) | FIELD_PREP(WMI_TLV_LEN, sizeof(*bitmap)); ptr += sizeof(*tlv); bitmap = (struct wmi_wow_bitmap_pattern *)ptr; bitmap->tlv_header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_WOW_BITMAP_PATTERN_T) | FIELD_PREP(WMI_TLV_LEN, sizeof(*bitmap) - TLV_HDR_SIZE); memcpy(bitmap->patternbuf, pattern, pattern_len); ath11k_ce_byte_swap(bitmap->patternbuf, roundup(pattern_len, 4)); memcpy(bitmap->bitmaskbuf, mask, pattern_len); ath11k_ce_byte_swap(bitmap->bitmaskbuf, roundup(pattern_len, 4)); bitmap->pattern_offset = pattern_offset; bitmap->pattern_len = pattern_len; bitmap->bitmask_len = pattern_len; bitmap->pattern_id = pattern_id; ptr += sizeof(*bitmap); /* ipv4 sync */ tlv = (struct wmi_tlv *)ptr; tlv->header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_ARRAY_STRUCT) | FIELD_PREP(WMI_TLV_LEN, 0); ptr += sizeof(*tlv); /* ipv6 sync */ tlv = (struct wmi_tlv *)ptr; tlv->header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_ARRAY_STRUCT) | FIELD_PREP(WMI_TLV_LEN, 0); ptr += sizeof(*tlv); /* magic */ tlv = (struct wmi_tlv *)ptr; tlv->header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_ARRAY_STRUCT) | FIELD_PREP(WMI_TLV_LEN, 0); ptr += sizeof(*tlv); /* pattern info timeout */ tlv = (struct wmi_tlv *)ptr; tlv->header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_ARRAY_UINT32) | FIELD_PREP(WMI_TLV_LEN, 0); ptr += sizeof(*tlv); /* ratelimit interval */ tlv = (struct wmi_tlv *)ptr; tlv->header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_ARRAY_UINT32) | FIELD_PREP(WMI_TLV_LEN, sizeof(u32)); ath11k_dbg(ar->ab, ATH11K_DBG_WMI, "tlv wow add pattern vdev_id %d pattern_id %d pattern_offset %d\n", vdev_id, pattern_id, pattern_offset); return ath11k_wmi_cmd_send(ar->wmi, skb, WMI_WOW_ADD_WAKE_PATTERN_CMDID); } int ath11k_wmi_wow_del_pattern(struct ath11k *ar, u32 vdev_id, u32 pattern_id) { struct wmi_wow_del_pattern_cmd *cmd; struct sk_buff *skb; size_t len; len = sizeof(*cmd); skb = ath11k_wmi_alloc_skb(ar->wmi->wmi_ab, len); if (!skb) return -ENOMEM; cmd = (struct wmi_wow_del_pattern_cmd *)skb->data; cmd->tlv_header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_WOW_DEL_PATTERN_CMD) | FIELD_PREP(WMI_TLV_LEN, sizeof(*cmd) - TLV_HDR_SIZE); cmd->vdev_id = vdev_id; cmd->pattern_id = pattern_id; cmd->pattern_type = WOW_BITMAP_PATTERN; ath11k_dbg(ar->ab, ATH11K_DBG_WMI, "tlv wow del pattern vdev_id %d pattern_id %d\n", vdev_id, pattern_id); return ath11k_wmi_cmd_send(ar->wmi, skb, WMI_WOW_DEL_WAKE_PATTERN_CMDID); } static struct sk_buff * ath11k_wmi_op_gen_config_pno_start(struct ath11k *ar, u32 vdev_id, struct wmi_pno_scan_req *pno) { struct nlo_configured_parameters *nlo_list; struct wmi_wow_nlo_config_cmd *cmd; struct wmi_tlv *tlv; struct sk_buff *skb; u32 *channel_list; size_t len, nlo_list_len, channel_list_len; u8 *ptr; u32 i; len = sizeof(*cmd) + sizeof(*tlv) + /* TLV place holder for array of structures * nlo_configured_parameters(nlo_list) */ sizeof(*tlv); /* TLV place holder for array of uint32 channel_list */ channel_list_len = sizeof(u32) * pno->a_networks[0].channel_count; len += channel_list_len; nlo_list_len = sizeof(*nlo_list) * pno->uc_networks_count; len += nlo_list_len; skb = ath11k_wmi_alloc_skb(ar->wmi->wmi_ab, len); if (!skb) return ERR_PTR(-ENOMEM); ptr = (u8 *)skb->data; cmd = (struct wmi_wow_nlo_config_cmd *)ptr; cmd->tlv_header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_NLO_CONFIG_CMD) | FIELD_PREP(WMI_TLV_LEN, sizeof(*cmd) - TLV_HDR_SIZE); cmd->vdev_id = pno->vdev_id; cmd->flags = WMI_NLO_CONFIG_START | WMI_NLO_CONFIG_SSID_HIDE_EN; /* current FW does not support min-max range for dwell time */ cmd->active_dwell_time = pno->active_max_time; cmd->passive_dwell_time = pno->passive_max_time; if (pno->do_passive_scan) cmd->flags |= WMI_NLO_CONFIG_SCAN_PASSIVE; cmd->fast_scan_period = pno->fast_scan_period; cmd->slow_scan_period = pno->slow_scan_period; cmd->fast_scan_max_cycles = pno->fast_scan_max_cycles; cmd->delay_start_time = pno->delay_start_time; if (pno->enable_pno_scan_randomization) { cmd->flags |= WMI_NLO_CONFIG_SPOOFED_MAC_IN_PROBE_REQ | WMI_NLO_CONFIG_RANDOM_SEQ_NO_IN_PROBE_REQ; ether_addr_copy(cmd->mac_addr.addr, pno->mac_addr); ether_addr_copy(cmd->mac_mask.addr, pno->mac_addr_mask); ath11k_ce_byte_swap(cmd->mac_addr.addr, 8); ath11k_ce_byte_swap(cmd->mac_mask.addr, 8); } ptr += sizeof(*cmd); /* nlo_configured_parameters(nlo_list) */ cmd->no_of_ssids = pno->uc_networks_count; tlv = (struct wmi_tlv *)ptr; tlv->header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_ARRAY_STRUCT) | FIELD_PREP(WMI_TLV_LEN, nlo_list_len); ptr += sizeof(*tlv); nlo_list = (struct nlo_configured_parameters *)ptr; for (i = 0; i < cmd->no_of_ssids; i++) { tlv = (struct wmi_tlv *)(&nlo_list[i].tlv_header); tlv->header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_ARRAY_BYTE) | FIELD_PREP(WMI_TLV_LEN, sizeof(*nlo_list) - sizeof(*tlv)); nlo_list[i].ssid.valid = true; nlo_list[i].ssid.ssid.ssid_len = pno->a_networks[i].ssid.ssid_len; memcpy(nlo_list[i].ssid.ssid.ssid, pno->a_networks[i].ssid.ssid, nlo_list[i].ssid.ssid.ssid_len); ath11k_ce_byte_swap(nlo_list[i].ssid.ssid.ssid, roundup(nlo_list[i].ssid.ssid.ssid_len, 4)); if (pno->a_networks[i].rssi_threshold && pno->a_networks[i].rssi_threshold > -300) { nlo_list[i].rssi_cond.valid = true; nlo_list[i].rssi_cond.rssi = pno->a_networks[i].rssi_threshold; } nlo_list[i].bcast_nw_type.valid = true; nlo_list[i].bcast_nw_type.bcast_nw_type = pno->a_networks[i].bcast_nw_type; } ptr += nlo_list_len; cmd->num_of_channels = pno->a_networks[0].channel_count; tlv = (struct wmi_tlv *)ptr; tlv->header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_ARRAY_UINT32) | FIELD_PREP(WMI_TLV_LEN, channel_list_len); ptr += sizeof(*tlv); channel_list = (u32 *)ptr; for (i = 0; i < cmd->num_of_channels; i++) channel_list[i] = pno->a_networks[0].channels[i]; ath11k_dbg(ar->ab, ATH11K_DBG_WMI, "tlv start pno config vdev_id %d\n", vdev_id); return skb; } static struct sk_buff *ath11k_wmi_op_gen_config_pno_stop(struct ath11k *ar, u32 vdev_id) { struct wmi_wow_nlo_config_cmd *cmd; struct sk_buff *skb; size_t len; len = sizeof(*cmd); skb = ath11k_wmi_alloc_skb(ar->wmi->wmi_ab, len); if (!skb) return ERR_PTR(-ENOMEM); cmd = (struct wmi_wow_nlo_config_cmd *)skb->data; cmd->tlv_header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_NLO_CONFIG_CMD) | FIELD_PREP(WMI_TLV_LEN, len - TLV_HDR_SIZE); cmd->vdev_id = vdev_id; cmd->flags = WMI_NLO_CONFIG_STOP; ath11k_dbg(ar->ab, ATH11K_DBG_WMI, "tlv stop pno config vdev_id %d\n", vdev_id); return skb; } int ath11k_wmi_wow_config_pno(struct ath11k *ar, u32 vdev_id, struct wmi_pno_scan_req *pno_scan) { struct sk_buff *skb; if (pno_scan->enable) skb = ath11k_wmi_op_gen_config_pno_start(ar, vdev_id, pno_scan); else skb = ath11k_wmi_op_gen_config_pno_stop(ar, vdev_id); if (IS_ERR_OR_NULL(skb)) return -ENOMEM; return ath11k_wmi_cmd_send(ar->wmi, skb, WMI_NETWORK_LIST_OFFLOAD_CONFIG_CMDID); } static void ath11k_wmi_fill_ns_offload(struct ath11k *ar, struct ath11k_arp_ns_offload *offload, u8 **ptr, bool enable, bool ext) { struct wmi_ns_offload_tuple *ns; struct wmi_tlv *tlv; u8 *buf_ptr = *ptr; u32 ns_cnt, ns_ext_tuples; int i, max_offloads; ns_cnt = offload->ipv6_count; tlv = (struct wmi_tlv *)buf_ptr; if (ext) { ns_ext_tuples = offload->ipv6_count - WMI_MAX_NS_OFFLOADS; tlv->header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_ARRAY_STRUCT) | FIELD_PREP(WMI_TLV_LEN, ns_ext_tuples * sizeof(*ns)); i = WMI_MAX_NS_OFFLOADS; max_offloads = offload->ipv6_count; } else { tlv->header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_ARRAY_STRUCT) | FIELD_PREP(WMI_TLV_LEN, WMI_MAX_NS_OFFLOADS * sizeof(*ns)); i = 0; max_offloads = WMI_MAX_NS_OFFLOADS; } buf_ptr += sizeof(*tlv); for (; i < max_offloads; i++) { ns = (struct wmi_ns_offload_tuple *)buf_ptr; ns->tlv_header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_NS_OFFLOAD_TUPLE) | FIELD_PREP(WMI_TLV_LEN, sizeof(*ns) - TLV_HDR_SIZE); if (enable) { if (i < ns_cnt) ns->flags |= WMI_NSOL_FLAGS_VALID; memcpy(ns->target_ipaddr[0], offload->ipv6_addr[i], 16); memcpy(ns->solicitation_ipaddr, offload->self_ipv6_addr[i], 16); ath11k_ce_byte_swap(ns->target_ipaddr[0], 16); ath11k_ce_byte_swap(ns->solicitation_ipaddr, 16); if (offload->ipv6_type[i]) ns->flags |= WMI_NSOL_FLAGS_IS_IPV6_ANYCAST; memcpy(ns->target_mac.addr, offload->mac_addr, ETH_ALEN); ath11k_ce_byte_swap(ns->target_mac.addr, 8); if (ns->target_mac.word0 != 0 || ns->target_mac.word1 != 0) { ns->flags |= WMI_NSOL_FLAGS_MAC_VALID; } ath11k_dbg(ar->ab, ATH11K_DBG_WMI, "index %d ns_solicited %pI6 target %pI6", i, ns->solicitation_ipaddr, ns->target_ipaddr[0]); } buf_ptr += sizeof(*ns); } *ptr = buf_ptr; } static void ath11k_wmi_fill_arp_offload(struct ath11k *ar, struct ath11k_arp_ns_offload *offload, u8 **ptr, bool enable) { struct wmi_arp_offload_tuple *arp; struct wmi_tlv *tlv; u8 *buf_ptr = *ptr; int i; /* fill arp tuple */ tlv = (struct wmi_tlv *)buf_ptr; tlv->header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_ARRAY_STRUCT) | FIELD_PREP(WMI_TLV_LEN, WMI_MAX_ARP_OFFLOADS * sizeof(*arp)); buf_ptr += sizeof(*tlv); for (i = 0; i < WMI_MAX_ARP_OFFLOADS; i++) { arp = (struct wmi_arp_offload_tuple *)buf_ptr; arp->tlv_header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_ARP_OFFLOAD_TUPLE) | FIELD_PREP(WMI_TLV_LEN, sizeof(*arp) - TLV_HDR_SIZE); if (enable && i < offload->ipv4_count) { /* Copy the target ip addr and flags */ arp->flags = WMI_ARPOL_FLAGS_VALID; memcpy(arp->target_ipaddr, offload->ipv4_addr[i], 4); ath11k_ce_byte_swap(arp->target_ipaddr, 4); ath11k_dbg(ar->ab, ATH11K_DBG_WMI, "arp offload address %pI4", arp->target_ipaddr); } buf_ptr += sizeof(*arp); } *ptr = buf_ptr; } int ath11k_wmi_arp_ns_offload(struct ath11k *ar, struct ath11k_vif *arvif, bool enable) { struct ath11k_arp_ns_offload *offload; struct wmi_set_arp_ns_offload_cmd *cmd; struct wmi_tlv *tlv; struct sk_buff *skb; u8 *buf_ptr; size_t len; u8 ns_cnt, ns_ext_tuples = 0; offload = &arvif->arp_ns_offload; ns_cnt = offload->ipv6_count; len = sizeof(*cmd) + sizeof(*tlv) + WMI_MAX_NS_OFFLOADS * sizeof(struct wmi_ns_offload_tuple) + sizeof(*tlv) + WMI_MAX_ARP_OFFLOADS * sizeof(struct wmi_arp_offload_tuple); if (ns_cnt > WMI_MAX_NS_OFFLOADS) { ns_ext_tuples = ns_cnt - WMI_MAX_NS_OFFLOADS; len += sizeof(*tlv) + ns_ext_tuples * sizeof(struct wmi_ns_offload_tuple); } skb = ath11k_wmi_alloc_skb(ar->wmi->wmi_ab, len); if (!skb) return -ENOMEM; buf_ptr = skb->data; cmd = (struct wmi_set_arp_ns_offload_cmd *)buf_ptr; cmd->tlv_header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_SET_ARP_NS_OFFLOAD_CMD) | FIELD_PREP(WMI_TLV_LEN, sizeof(*cmd) - TLV_HDR_SIZE); cmd->flags = 0; cmd->vdev_id = arvif->vdev_id; cmd->num_ns_ext_tuples = ns_ext_tuples; buf_ptr += sizeof(*cmd); ath11k_wmi_fill_ns_offload(ar, offload, &buf_ptr, enable, 0); ath11k_wmi_fill_arp_offload(ar, offload, &buf_ptr, enable); if (ns_ext_tuples) ath11k_wmi_fill_ns_offload(ar, offload, &buf_ptr, enable, 1); return ath11k_wmi_cmd_send(ar->wmi, skb, WMI_SET_ARP_NS_OFFLOAD_CMDID); } int ath11k_wmi_gtk_rekey_offload(struct ath11k *ar, struct ath11k_vif *arvif, bool enable) { struct wmi_gtk_rekey_offload_cmd *cmd; struct ath11k_rekey_data *rekey_data = &arvif->rekey_data; int len; struct sk_buff *skb; __le64 replay_ctr; len = sizeof(*cmd); skb = ath11k_wmi_alloc_skb(ar->wmi->wmi_ab, len); if (!skb) return -ENOMEM; cmd = (struct wmi_gtk_rekey_offload_cmd *)skb->data; cmd->tlv_header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_GTK_OFFLOAD_CMD) | FIELD_PREP(WMI_TLV_LEN, sizeof(*cmd) - TLV_HDR_SIZE); cmd->vdev_id = arvif->vdev_id; if (enable) { cmd->flags = GTK_OFFLOAD_ENABLE_OPCODE; /* the length in rekey_data and cmd is equal */ memcpy(cmd->kck, rekey_data->kck, sizeof(cmd->kck)); ath11k_ce_byte_swap(cmd->kck, GTK_OFFLOAD_KEK_BYTES); memcpy(cmd->kek, rekey_data->kek, sizeof(cmd->kek)); ath11k_ce_byte_swap(cmd->kek, GTK_OFFLOAD_KEK_BYTES); replay_ctr = cpu_to_le64(rekey_data->replay_ctr); memcpy(cmd->replay_ctr, &replay_ctr, sizeof(replay_ctr)); ath11k_ce_byte_swap(cmd->replay_ctr, GTK_REPLAY_COUNTER_BYTES); } else { cmd->flags = GTK_OFFLOAD_DISABLE_OPCODE; } ath11k_dbg(ar->ab, ATH11K_DBG_WMI, "offload gtk rekey vdev: %d %d\n", arvif->vdev_id, enable); return ath11k_wmi_cmd_send(ar->wmi, skb, WMI_GTK_OFFLOAD_CMDID); } int ath11k_wmi_gtk_rekey_getinfo(struct ath11k *ar, struct ath11k_vif *arvif) { struct wmi_gtk_rekey_offload_cmd *cmd; int len; struct sk_buff *skb; len = sizeof(*cmd); skb = ath11k_wmi_alloc_skb(ar->wmi->wmi_ab, len); if (!skb) return -ENOMEM; cmd = (struct wmi_gtk_rekey_offload_cmd *)skb->data; cmd->tlv_header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_GTK_OFFLOAD_CMD) | FIELD_PREP(WMI_TLV_LEN, sizeof(*cmd) - TLV_HDR_SIZE); cmd->vdev_id = arvif->vdev_id; cmd->flags = GTK_OFFLOAD_REQUEST_STATUS_OPCODE; ath11k_dbg(ar->ab, ATH11K_DBG_WMI, "get gtk rekey vdev_id: %d\n", arvif->vdev_id); return ath11k_wmi_cmd_send(ar->wmi, skb, WMI_GTK_OFFLOAD_CMDID); } int ath11k_wmi_pdev_set_bios_sar_table_param(struct ath11k *ar, const u8 *sar_val) { struct ath11k_pdev_wmi *wmi = ar->wmi; struct wmi_pdev_set_sar_table_cmd *cmd; struct wmi_tlv *tlv; struct sk_buff *skb; u8 *buf_ptr; u32 len, sar_len_aligned, rsvd_len_aligned; sar_len_aligned = roundup(BIOS_SAR_TABLE_LEN, sizeof(u32)); rsvd_len_aligned = roundup(BIOS_SAR_RSVD1_LEN, sizeof(u32)); len = sizeof(*cmd) + TLV_HDR_SIZE + sar_len_aligned + TLV_HDR_SIZE + rsvd_len_aligned; skb = ath11k_wmi_alloc_skb(wmi->wmi_ab, len); if (!skb) return -ENOMEM; cmd = (struct wmi_pdev_set_sar_table_cmd *)skb->data; cmd->tlv_header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_PDEV_SET_BIOS_SAR_TABLE_CMD) | FIELD_PREP(WMI_TLV_LEN, sizeof(*cmd) - TLV_HDR_SIZE); cmd->pdev_id = ar->pdev->pdev_id; cmd->sar_len = BIOS_SAR_TABLE_LEN; cmd->rsvd_len = BIOS_SAR_RSVD1_LEN; buf_ptr = skb->data + sizeof(*cmd); tlv = (struct wmi_tlv *)buf_ptr; tlv->header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_ARRAY_BYTE) | FIELD_PREP(WMI_TLV_LEN, sar_len_aligned); buf_ptr += TLV_HDR_SIZE; memcpy(buf_ptr, sar_val, BIOS_SAR_TABLE_LEN); buf_ptr += sar_len_aligned; tlv = (struct wmi_tlv *)buf_ptr; tlv->header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_ARRAY_BYTE) | FIELD_PREP(WMI_TLV_LEN, rsvd_len_aligned); return ath11k_wmi_cmd_send(wmi, skb, WMI_PDEV_SET_BIOS_SAR_TABLE_CMDID); } int ath11k_wmi_pdev_set_bios_geo_table_param(struct ath11k *ar) { struct ath11k_pdev_wmi *wmi = ar->wmi; struct wmi_pdev_set_geo_table_cmd *cmd; struct wmi_tlv *tlv; struct sk_buff *skb; u8 *buf_ptr; u32 len, rsvd_len_aligned; rsvd_len_aligned = roundup(BIOS_SAR_RSVD2_LEN, sizeof(u32)); len = sizeof(*cmd) + TLV_HDR_SIZE + rsvd_len_aligned; skb = ath11k_wmi_alloc_skb(wmi->wmi_ab, len); if (!skb) return -ENOMEM; cmd = (struct wmi_pdev_set_geo_table_cmd *)skb->data; cmd->tlv_header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_PDEV_SET_BIOS_GEO_TABLE_CMD) | FIELD_PREP(WMI_TLV_LEN, sizeof(*cmd) - TLV_HDR_SIZE); cmd->pdev_id = ar->pdev->pdev_id; cmd->rsvd_len = BIOS_SAR_RSVD2_LEN; buf_ptr = skb->data + sizeof(*cmd); tlv = (struct wmi_tlv *)buf_ptr; tlv->header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_ARRAY_BYTE) | FIELD_PREP(WMI_TLV_LEN, rsvd_len_aligned); return ath11k_wmi_cmd_send(wmi, skb, WMI_PDEV_SET_BIOS_GEO_TABLE_CMDID); } int ath11k_wmi_sta_keepalive(struct ath11k *ar, const struct wmi_sta_keepalive_arg *arg) { struct ath11k_pdev_wmi *wmi = ar->wmi; struct wmi_sta_keepalive_cmd *cmd; struct wmi_sta_keepalive_arp_resp *arp; struct sk_buff *skb; size_t len; len = sizeof(*cmd) + sizeof(*arp); skb = ath11k_wmi_alloc_skb(wmi->wmi_ab, len); if (!skb) return -ENOMEM; cmd = (struct wmi_sta_keepalive_cmd *)skb->data; cmd->tlv_header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_STA_KEEPALIVE_CMD) | FIELD_PREP(WMI_TLV_LEN, sizeof(*cmd) - TLV_HDR_SIZE); cmd->vdev_id = arg->vdev_id; cmd->enabled = arg->enabled; cmd->interval = arg->interval; cmd->method = arg->method; arp = (struct wmi_sta_keepalive_arp_resp *)(cmd + 1); arp->tlv_header = FIELD_PREP(WMI_TLV_TAG, WMI_TAG_STA_KEEPALIVE_ARP_RESPONSE) | FIELD_PREP(WMI_TLV_LEN, sizeof(*arp) - TLV_HDR_SIZE); if (arg->method == WMI_STA_KEEPALIVE_METHOD_UNSOLICITED_ARP_RESPONSE || arg->method == WMI_STA_KEEPALIVE_METHOD_GRATUITOUS_ARP_REQUEST) { arp->src_ip4_addr = arg->src_ip4_addr; arp->dest_ip4_addr = arg->dest_ip4_addr; ether_addr_copy(arp->dest_mac_addr.addr, arg->dest_mac_addr); } ath11k_dbg(ar->ab, ATH11K_DBG_WMI, "sta keepalive vdev %d enabled %d method %d interval %d\n", arg->vdev_id, arg->enabled, arg->method, arg->interval); return ath11k_wmi_cmd_send(wmi, skb, WMI_STA_KEEPALIVE_CMDID); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1