Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Sujith Manoharan | 5070 | 64.78% | 70 | 47.62% |
Felix Fietkau | 2096 | 26.78% | 28 | 19.05% |
Janusz Dziedzic | 210 | 2.68% | 9 | 6.12% |
Luis R. Rodriguez | 168 | 2.15% | 2 | 1.36% |
Rajkumar Manoharan | 64 | 0.82% | 6 | 4.08% |
Toke Höiland-Jörgensen | 36 | 0.46% | 1 | 0.68% |
Oleksij Rempel | 33 | 0.42% | 5 | 3.40% |
Kees Cook | 32 | 0.41% | 1 | 0.68% |
Vasanthakumar Thiagarajan | 31 | 0.40% | 6 | 4.08% |
Simon Wunderlich | 18 | 0.23% | 3 | 2.04% |
Jouni Malinen | 14 | 0.18% | 2 | 1.36% |
Johannes Berg | 14 | 0.18% | 6 | 4.08% |
Avraham Stern | 13 | 0.17% | 2 | 1.36% |
Ville Syrjälä | 10 | 0.13% | 1 | 0.68% |
Arnd Bergmann | 7 | 0.09% | 1 | 0.68% |
John W. Linville | 4 | 0.05% | 1 | 0.68% |
Gustavo A. R. Silva | 4 | 0.05% | 1 | 0.68% |
Joe Perches | 3 | 0.04% | 2 | 1.36% |
Total | 7827 | 147 |
/* * Copyright (c) 2014 Qualcomm Atheros, Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include "ath9k.h" /* Set/change channels. If the channel is really being changed, it's done * by reseting the chip. To accomplish this we must first cleanup any pending * DMA, then restart stuff. */ static int ath_set_channel(struct ath_softc *sc) { struct ath_hw *ah = sc->sc_ah; struct ath_common *common = ath9k_hw_common(ah); struct ieee80211_hw *hw = sc->hw; struct ath9k_channel *hchan; struct cfg80211_chan_def *chandef = &sc->cur_chan->chandef; struct ieee80211_channel *chan = chandef->chan; int pos = chan->hw_value; unsigned long flags; int old_pos = -1; int r; if (test_bit(ATH_OP_INVALID, &common->op_flags)) return -EIO; if (ah->curchan) old_pos = ah->curchan - &ah->channels[0]; ath_dbg(common, CONFIG, "Set channel: %d MHz width: %d\n", chan->center_freq, chandef->width); /* update survey stats for the old channel before switching */ spin_lock_irqsave(&common->cc_lock, flags); ath_update_survey_stats(sc); spin_unlock_irqrestore(&common->cc_lock, flags); ath9k_cmn_get_channel(hw, ah, chandef); /* If the operating channel changes, change the survey in-use flags * along with it. * Reset the survey data for the new channel, unless we're switching * back to the operating channel from an off-channel operation. */ if (!sc->cur_chan->offchannel && sc->cur_survey != &sc->survey[pos]) { if (sc->cur_survey) sc->cur_survey->filled &= ~SURVEY_INFO_IN_USE; sc->cur_survey = &sc->survey[pos]; memset(sc->cur_survey, 0, sizeof(struct survey_info)); sc->cur_survey->filled |= SURVEY_INFO_IN_USE; } else if (!(sc->survey[pos].filled & SURVEY_INFO_IN_USE)) { memset(&sc->survey[pos], 0, sizeof(struct survey_info)); } hchan = &sc->sc_ah->channels[pos]; r = ath_reset(sc, hchan); if (r) return r; /* The most recent snapshot of channel->noisefloor for the old * channel is only available after the hardware reset. Copy it to * the survey stats now. */ if (old_pos >= 0) ath_update_survey_nf(sc, old_pos); /* Enable radar pulse detection if on a DFS channel. Spectral * scanning and radar detection can not be used concurrently. */ if (hw->conf.radar_enabled) { u32 rxfilter; rxfilter = ath9k_hw_getrxfilter(ah); rxfilter |= ATH9K_RX_FILTER_PHYRADAR | ATH9K_RX_FILTER_PHYERR; ath9k_hw_setrxfilter(ah, rxfilter); ath_dbg(common, DFS, "DFS enabled at freq %d\n", chan->center_freq); } else { /* perform spectral scan if requested. */ if (test_bit(ATH_OP_SCANNING, &common->op_flags) && sc->spec_priv.spectral_mode == SPECTRAL_CHANSCAN) ath9k_cmn_spectral_scan_trigger(common, &sc->spec_priv); } return 0; } void ath_chanctx_init(struct ath_softc *sc) { struct ath_chanctx *ctx; struct ath_common *common = ath9k_hw_common(sc->sc_ah); struct ieee80211_supported_band *sband; struct ieee80211_channel *chan; int i, j; sband = &common->sbands[NL80211_BAND_2GHZ]; if (!sband->n_channels) sband = &common->sbands[NL80211_BAND_5GHZ]; chan = &sband->channels[0]; for (i = 0; i < ATH9K_NUM_CHANCTX; i++) { ctx = &sc->chanctx[i]; cfg80211_chandef_create(&ctx->chandef, chan, NL80211_CHAN_HT20); INIT_LIST_HEAD(&ctx->vifs); ctx->txpower = ATH_TXPOWER_MAX; ctx->flush_timeout = HZ / 5; /* 200ms */ for (j = 0; j < ARRAY_SIZE(ctx->acq); j++) { INIT_LIST_HEAD(&ctx->acq[j].acq_new); INIT_LIST_HEAD(&ctx->acq[j].acq_old); spin_lock_init(&ctx->acq[j].lock); } } } void ath_chanctx_set_channel(struct ath_softc *sc, struct ath_chanctx *ctx, struct cfg80211_chan_def *chandef) { struct ath_common *common = ath9k_hw_common(sc->sc_ah); bool cur_chan; spin_lock_bh(&sc->chan_lock); if (chandef) memcpy(&ctx->chandef, chandef, sizeof(*chandef)); cur_chan = sc->cur_chan == ctx; spin_unlock_bh(&sc->chan_lock); if (!cur_chan) { ath_dbg(common, CHAN_CTX, "Current context differs from the new context\n"); return; } ath_set_channel(sc); } #ifdef CONFIG_ATH9K_CHANNEL_CONTEXT /*************/ /* Utilities */ /*************/ struct ath_chanctx* ath_is_go_chanctx_present(struct ath_softc *sc) { struct ath_chanctx *ctx; struct ath_vif *avp; struct ieee80211_vif *vif; spin_lock_bh(&sc->chan_lock); ath_for_each_chanctx(sc, ctx) { if (!ctx->active) continue; list_for_each_entry(avp, &ctx->vifs, list) { vif = avp->vif; if (ieee80211_vif_type_p2p(vif) == NL80211_IFTYPE_P2P_GO) { spin_unlock_bh(&sc->chan_lock); return ctx; } } } spin_unlock_bh(&sc->chan_lock); return NULL; } /**********************************************************/ /* Functions to handle the channel context state machine. */ /**********************************************************/ static const char *offchannel_state_string(enum ath_offchannel_state state) { switch (state) { case_rtn_string(ATH_OFFCHANNEL_IDLE); case_rtn_string(ATH_OFFCHANNEL_PROBE_SEND); case_rtn_string(ATH_OFFCHANNEL_PROBE_WAIT); case_rtn_string(ATH_OFFCHANNEL_SUSPEND); case_rtn_string(ATH_OFFCHANNEL_ROC_START); case_rtn_string(ATH_OFFCHANNEL_ROC_WAIT); case_rtn_string(ATH_OFFCHANNEL_ROC_DONE); default: return "unknown"; } } static const char *chanctx_event_string(enum ath_chanctx_event ev) { switch (ev) { case_rtn_string(ATH_CHANCTX_EVENT_BEACON_PREPARE); case_rtn_string(ATH_CHANCTX_EVENT_BEACON_SENT); case_rtn_string(ATH_CHANCTX_EVENT_TSF_TIMER); case_rtn_string(ATH_CHANCTX_EVENT_BEACON_RECEIVED); case_rtn_string(ATH_CHANCTX_EVENT_AUTHORIZED); case_rtn_string(ATH_CHANCTX_EVENT_SWITCH); case_rtn_string(ATH_CHANCTX_EVENT_ASSIGN); case_rtn_string(ATH_CHANCTX_EVENT_UNASSIGN); case_rtn_string(ATH_CHANCTX_EVENT_CHANGE); case_rtn_string(ATH_CHANCTX_EVENT_ENABLE_MULTICHANNEL); default: return "unknown"; } } static const char *chanctx_state_string(enum ath_chanctx_state state) { switch (state) { case_rtn_string(ATH_CHANCTX_STATE_IDLE); case_rtn_string(ATH_CHANCTX_STATE_WAIT_FOR_BEACON); case_rtn_string(ATH_CHANCTX_STATE_WAIT_FOR_TIMER); case_rtn_string(ATH_CHANCTX_STATE_SWITCH); case_rtn_string(ATH_CHANCTX_STATE_FORCE_ACTIVE); default: return "unknown"; } } static u32 chanctx_event_delta(struct ath_softc *sc) { u64 ms; struct timespec64 ts, *old; ktime_get_raw_ts64(&ts); old = &sc->last_event_time; ms = ts.tv_sec * 1000 + ts.tv_nsec / 1000000; ms -= old->tv_sec * 1000 + old->tv_nsec / 1000000; sc->last_event_time = ts; return (u32)ms; } void ath_chanctx_check_active(struct ath_softc *sc, struct ath_chanctx *ctx) { struct ath_common *common = ath9k_hw_common(sc->sc_ah); struct ath_chanctx *ictx; struct ath_vif *avp; bool active = false; u8 n_active = 0; if (!ctx) return; if (ctx == &sc->offchannel.chan) { spin_lock_bh(&sc->chan_lock); if (likely(sc->sched.channel_switch_time)) ctx->flush_timeout = usecs_to_jiffies(sc->sched.channel_switch_time); else ctx->flush_timeout = msecs_to_jiffies(10); spin_unlock_bh(&sc->chan_lock); /* * There is no need to iterate over the * active/assigned channel contexts if * the current context is offchannel. */ return; } ictx = ctx; list_for_each_entry(avp, &ctx->vifs, list) { struct ieee80211_vif *vif = avp->vif; switch (vif->type) { case NL80211_IFTYPE_P2P_CLIENT: case NL80211_IFTYPE_STATION: if (avp->assoc) active = true; break; default: active = true; break; } } ctx->active = active; ath_for_each_chanctx(sc, ctx) { if (!ctx->assigned || list_empty(&ctx->vifs)) continue; n_active++; } spin_lock_bh(&sc->chan_lock); if (n_active <= 1) { ictx->flush_timeout = HZ / 5; clear_bit(ATH_OP_MULTI_CHANNEL, &common->op_flags); spin_unlock_bh(&sc->chan_lock); return; } ictx->flush_timeout = usecs_to_jiffies(sc->sched.channel_switch_time); if (test_and_set_bit(ATH_OP_MULTI_CHANNEL, &common->op_flags)) { spin_unlock_bh(&sc->chan_lock); return; } spin_unlock_bh(&sc->chan_lock); if (ath9k_is_chanctx_enabled()) { ath_chanctx_event(sc, NULL, ATH_CHANCTX_EVENT_ENABLE_MULTICHANNEL); } } static struct ath_chanctx * ath_chanctx_get_next(struct ath_softc *sc, struct ath_chanctx *ctx) { int idx = ctx - &sc->chanctx[0]; return &sc->chanctx[!idx]; } static void ath_chanctx_adjust_tbtt_delta(struct ath_softc *sc) { struct ath_chanctx *prev, *cur; struct timespec64 ts; u32 cur_tsf, prev_tsf, beacon_int; s32 offset; beacon_int = TU_TO_USEC(sc->cur_chan->beacon.beacon_interval); cur = sc->cur_chan; prev = ath_chanctx_get_next(sc, cur); if (!prev->switch_after_beacon) return; ktime_get_raw_ts64(&ts); cur_tsf = (u32) cur->tsf_val + ath9k_hw_get_tsf_offset(&cur->tsf_ts, &ts); prev_tsf = prev->last_beacon - (u32) prev->tsf_val + cur_tsf; prev_tsf -= ath9k_hw_get_tsf_offset(&prev->tsf_ts, &ts); /* Adjust the TSF time of the AP chanctx to keep its beacons * at half beacon interval offset relative to the STA chanctx. */ offset = cur_tsf - prev_tsf; /* Ignore stale data or spurious timestamps */ if (offset < 0 || offset > 3 * beacon_int) return; offset = beacon_int / 2 - (offset % beacon_int); prev->tsf_val += offset; } /* Configure the TSF based hardware timer for a channel switch. * Also set up backup software timer, in case the gen timer fails. * This could be caused by a hardware reset. */ static void ath_chanctx_setup_timer(struct ath_softc *sc, u32 tsf_time) { struct ath_common *common = ath9k_hw_common(sc->sc_ah); struct ath_hw *ah = sc->sc_ah; unsigned long timeout; ath9k_hw_gen_timer_start(ah, sc->p2p_ps_timer, tsf_time, 1000000); tsf_time -= ath9k_hw_gettsf32(ah); timeout = msecs_to_jiffies(tsf_time / 1000) + 1; mod_timer(&sc->sched.timer, jiffies + timeout); ath_dbg(common, CHAN_CTX, "Setup chanctx timer with timeout: %d (%d) ms\n", tsf_time / 1000, jiffies_to_msecs(timeout)); } static void ath_chanctx_handle_bmiss(struct ath_softc *sc, struct ath_chanctx *ctx, struct ath_vif *avp) { /* * Clear the extend_absence flag if it had been * set during the previous beacon transmission, * since we need to revert to the normal NoA * schedule. */ if (ctx->active && sc->sched.extend_absence) { avp->noa_duration = 0; sc->sched.extend_absence = false; } /* If at least two consecutive beacons were missed on the STA * chanctx, stay on the STA channel for one extra beacon period, * to resync the timer properly. */ if (ctx->active && sc->sched.beacon_miss >= 2) { avp->noa_duration = 0; sc->sched.extend_absence = true; } } static void ath_chanctx_offchannel_noa(struct ath_softc *sc, struct ath_chanctx *ctx, struct ath_vif *avp, u32 tsf_time) { struct ath_common *common = ath9k_hw_common(sc->sc_ah); avp->noa_index++; avp->offchannel_start = tsf_time; avp->offchannel_duration = sc->sched.offchannel_duration; ath_dbg(common, CHAN_CTX, "offchannel noa_duration: %d, noa_start: %u, noa_index: %d\n", avp->offchannel_duration, avp->offchannel_start, avp->noa_index); /* * When multiple contexts are active, the NoA * has to be recalculated and advertised after * an offchannel operation. */ if (ctx->active && avp->noa_duration) avp->noa_duration = 0; } static void ath_chanctx_set_periodic_noa(struct ath_softc *sc, struct ath_vif *avp, struct ath_beacon_config *cur_conf, u32 tsf_time, u32 beacon_int) { struct ath_common *common = ath9k_hw_common(sc->sc_ah); avp->noa_index++; avp->noa_start = tsf_time; if (sc->sched.extend_absence) avp->noa_duration = (3 * beacon_int / 2) + sc->sched.channel_switch_time; else avp->noa_duration = TU_TO_USEC(cur_conf->beacon_interval) / 2 + sc->sched.channel_switch_time; if (test_bit(ATH_OP_SCANNING, &common->op_flags) || sc->sched.extend_absence) avp->periodic_noa = false; else avp->periodic_noa = true; ath_dbg(common, CHAN_CTX, "noa_duration: %d, noa_start: %u, noa_index: %d, periodic: %d\n", avp->noa_duration, avp->noa_start, avp->noa_index, avp->periodic_noa); } static void ath_chanctx_set_oneshot_noa(struct ath_softc *sc, struct ath_vif *avp, u32 tsf_time, u32 duration) { struct ath_common *common = ath9k_hw_common(sc->sc_ah); avp->noa_index++; avp->noa_start = tsf_time; avp->periodic_noa = false; avp->oneshot_noa = true; avp->noa_duration = duration + sc->sched.channel_switch_time; ath_dbg(common, CHAN_CTX, "oneshot noa_duration: %d, noa_start: %u, noa_index: %d, periodic: %d\n", avp->noa_duration, avp->noa_start, avp->noa_index, avp->periodic_noa); } void ath_chanctx_event(struct ath_softc *sc, struct ieee80211_vif *vif, enum ath_chanctx_event ev) { struct ath_hw *ah = sc->sc_ah; struct ath_common *common = ath9k_hw_common(ah); struct ath_beacon_config *cur_conf; struct ath_vif *avp = NULL; struct ath_chanctx *ctx; u32 tsf_time; u32 beacon_int; if (vif) avp = (struct ath_vif *) vif->drv_priv; spin_lock_bh(&sc->chan_lock); ath_dbg(common, CHAN_CTX, "cur_chan: %d MHz, event: %s, state: %s, delta: %u ms\n", sc->cur_chan->chandef.center_freq1, chanctx_event_string(ev), chanctx_state_string(sc->sched.state), chanctx_event_delta(sc)); switch (ev) { case ATH_CHANCTX_EVENT_BEACON_PREPARE: if (avp->offchannel_duration) avp->offchannel_duration = 0; if (avp->oneshot_noa) { avp->noa_duration = 0; avp->oneshot_noa = false; ath_dbg(common, CHAN_CTX, "Clearing oneshot NoA\n"); } if (avp->chanctx != sc->cur_chan) { ath_dbg(common, CHAN_CTX, "Contexts differ, not preparing beacon\n"); break; } if (sc->sched.offchannel_pending && !sc->sched.wait_switch) { sc->sched.offchannel_pending = false; sc->next_chan = &sc->offchannel.chan; sc->sched.state = ATH_CHANCTX_STATE_WAIT_FOR_BEACON; ath_dbg(common, CHAN_CTX, "Setting offchannel_pending to false\n"); } ctx = ath_chanctx_get_next(sc, sc->cur_chan); if (ctx->active && sc->sched.state == ATH_CHANCTX_STATE_IDLE) { sc->next_chan = ctx; sc->sched.state = ATH_CHANCTX_STATE_WAIT_FOR_BEACON; ath_dbg(common, CHAN_CTX, "Set next context, move chanctx state to WAIT_FOR_BEACON\n"); } /* if the timer missed its window, use the next interval */ if (sc->sched.state == ATH_CHANCTX_STATE_WAIT_FOR_TIMER) { sc->sched.state = ATH_CHANCTX_STATE_WAIT_FOR_BEACON; ath_dbg(common, CHAN_CTX, "Move chanctx state from WAIT_FOR_TIMER to WAIT_FOR_BEACON\n"); } if (sc->sched.mgd_prepare_tx) sc->sched.state = ATH_CHANCTX_STATE_WAIT_FOR_BEACON; /* * When a context becomes inactive, for example, * disassociation of a station context, the NoA * attribute needs to be removed from subsequent * beacons. */ if (!ctx->active && avp->noa_duration && sc->sched.state != ATH_CHANCTX_STATE_WAIT_FOR_BEACON) { avp->noa_duration = 0; avp->periodic_noa = false; ath_dbg(common, CHAN_CTX, "Clearing NoA schedule\n"); } if (sc->sched.state != ATH_CHANCTX_STATE_WAIT_FOR_BEACON) break; ath_dbg(common, CHAN_CTX, "Preparing beacon for vif: %pM\n", vif->addr); sc->sched.beacon_pending = true; sc->sched.next_tbtt = REG_READ(ah, AR_NEXT_TBTT_TIMER); cur_conf = &sc->cur_chan->beacon; beacon_int = TU_TO_USEC(cur_conf->beacon_interval); /* defer channel switch by a quarter beacon interval */ tsf_time = sc->sched.next_tbtt + beacon_int / 4; sc->sched.switch_start_time = tsf_time; sc->cur_chan->last_beacon = sc->sched.next_tbtt; /* * If an offchannel switch is scheduled to happen after * a beacon transmission, update the NoA with one-shot * values and increment the index. */ if (sc->next_chan == &sc->offchannel.chan) { ath_chanctx_offchannel_noa(sc, ctx, avp, tsf_time); break; } ath_chanctx_handle_bmiss(sc, ctx, avp); /* * If a mgd_prepare_tx() has been called by mac80211, * a one-shot NoA needs to be sent. This can happen * with one or more active channel contexts - in both * cases, a new NoA schedule has to be advertised. */ if (sc->sched.mgd_prepare_tx) { ath_chanctx_set_oneshot_noa(sc, avp, tsf_time, jiffies_to_usecs(HZ / 5)); break; } /* Prevent wrap-around issues */ if (avp->noa_duration && tsf_time - avp->noa_start > BIT(30)) avp->noa_duration = 0; /* * If multiple contexts are active, start periodic * NoA and increment the index for the first * announcement. */ if (ctx->active && (!avp->noa_duration || sc->sched.force_noa_update)) ath_chanctx_set_periodic_noa(sc, avp, cur_conf, tsf_time, beacon_int); if (ctx->active && sc->sched.force_noa_update) sc->sched.force_noa_update = false; break; case ATH_CHANCTX_EVENT_BEACON_SENT: if (!sc->sched.beacon_pending) { ath_dbg(common, CHAN_CTX, "No pending beacon\n"); break; } sc->sched.beacon_pending = false; if (sc->sched.mgd_prepare_tx) { sc->sched.mgd_prepare_tx = false; complete(&sc->go_beacon); ath_dbg(common, CHAN_CTX, "Beacon sent, complete go_beacon\n"); break; } if (sc->sched.state != ATH_CHANCTX_STATE_WAIT_FOR_BEACON) break; ath_dbg(common, CHAN_CTX, "Move chanctx state to WAIT_FOR_TIMER\n"); sc->sched.state = ATH_CHANCTX_STATE_WAIT_FOR_TIMER; ath_chanctx_setup_timer(sc, sc->sched.switch_start_time); break; case ATH_CHANCTX_EVENT_TSF_TIMER: if (sc->sched.state != ATH_CHANCTX_STATE_WAIT_FOR_TIMER) break; if (!sc->cur_chan->switch_after_beacon && sc->sched.beacon_pending) sc->sched.beacon_miss++; ath_dbg(common, CHAN_CTX, "Move chanctx state to SWITCH\n"); sc->sched.state = ATH_CHANCTX_STATE_SWITCH; ieee80211_queue_work(sc->hw, &sc->chanctx_work); break; case ATH_CHANCTX_EVENT_BEACON_RECEIVED: if (!test_bit(ATH_OP_MULTI_CHANNEL, &common->op_flags) || sc->cur_chan == &sc->offchannel.chan) break; sc->sched.beacon_pending = false; sc->sched.beacon_miss = 0; if (sc->sched.state == ATH_CHANCTX_STATE_FORCE_ACTIVE || !sc->sched.beacon_adjust || !sc->cur_chan->tsf_val) break; ath_chanctx_adjust_tbtt_delta(sc); /* TSF time might have been updated by the incoming beacon, * need update the channel switch timer to reflect the change. */ tsf_time = sc->sched.switch_start_time; tsf_time -= (u32) sc->cur_chan->tsf_val + ath9k_hw_get_tsf_offset(&sc->cur_chan->tsf_ts, NULL); tsf_time += ath9k_hw_gettsf32(ah); sc->sched.beacon_adjust = false; ath_chanctx_setup_timer(sc, tsf_time); break; case ATH_CHANCTX_EVENT_AUTHORIZED: if (sc->sched.state != ATH_CHANCTX_STATE_FORCE_ACTIVE || avp->chanctx != sc->cur_chan) break; ath_dbg(common, CHAN_CTX, "Move chanctx state from FORCE_ACTIVE to IDLE\n"); sc->sched.state = ATH_CHANCTX_STATE_IDLE; fallthrough; case ATH_CHANCTX_EVENT_SWITCH: if (!test_bit(ATH_OP_MULTI_CHANNEL, &common->op_flags) || sc->sched.state == ATH_CHANCTX_STATE_FORCE_ACTIVE || sc->cur_chan->switch_after_beacon || sc->cur_chan == &sc->offchannel.chan) break; /* If this is a station chanctx, stay active for a half * beacon period (minus channel switch time) */ sc->next_chan = ath_chanctx_get_next(sc, sc->cur_chan); cur_conf = &sc->cur_chan->beacon; ath_dbg(common, CHAN_CTX, "Move chanctx state to WAIT_FOR_TIMER (event SWITCH)\n"); sc->sched.state = ATH_CHANCTX_STATE_WAIT_FOR_TIMER; sc->sched.wait_switch = false; tsf_time = TU_TO_USEC(cur_conf->beacon_interval) / 2; if (sc->sched.extend_absence) { sc->sched.beacon_miss = 0; tsf_time *= 3; } tsf_time -= sc->sched.channel_switch_time; tsf_time += ath9k_hw_gettsf32(sc->sc_ah); sc->sched.switch_start_time = tsf_time; ath_chanctx_setup_timer(sc, tsf_time); sc->sched.beacon_pending = true; sc->sched.beacon_adjust = true; break; case ATH_CHANCTX_EVENT_ENABLE_MULTICHANNEL: if (sc->cur_chan == &sc->offchannel.chan || sc->cur_chan->switch_after_beacon) break; sc->next_chan = ath_chanctx_get_next(sc, sc->cur_chan); ieee80211_queue_work(sc->hw, &sc->chanctx_work); break; case ATH_CHANCTX_EVENT_UNASSIGN: if (sc->cur_chan->assigned) { if (sc->next_chan && !sc->next_chan->assigned && sc->next_chan != &sc->offchannel.chan) sc->sched.state = ATH_CHANCTX_STATE_IDLE; break; } ctx = ath_chanctx_get_next(sc, sc->cur_chan); sc->sched.state = ATH_CHANCTX_STATE_IDLE; if (!ctx->assigned) break; sc->next_chan = ctx; ieee80211_queue_work(sc->hw, &sc->chanctx_work); break; case ATH_CHANCTX_EVENT_ASSIGN: break; case ATH_CHANCTX_EVENT_CHANGE: break; } spin_unlock_bh(&sc->chan_lock); } void ath_chanctx_beacon_sent_ev(struct ath_softc *sc, enum ath_chanctx_event ev) { if (sc->sched.beacon_pending) ath_chanctx_event(sc, NULL, ev); } void ath_chanctx_beacon_recv_ev(struct ath_softc *sc, enum ath_chanctx_event ev) { ath_chanctx_event(sc, NULL, ev); } static int ath_scan_channel_duration(struct ath_softc *sc, struct ieee80211_channel *chan) { struct cfg80211_scan_request *req = sc->offchannel.scan_req; if (!req->n_ssids || (chan->flags & IEEE80211_CHAN_NO_IR)) return (HZ / 9); /* ~110 ms */ return (HZ / 16); /* ~60 ms */ } static void ath_chanctx_switch(struct ath_softc *sc, struct ath_chanctx *ctx, struct cfg80211_chan_def *chandef) { struct ath_common *common = ath9k_hw_common(sc->sc_ah); spin_lock_bh(&sc->chan_lock); if (test_bit(ATH_OP_MULTI_CHANNEL, &common->op_flags) && (sc->cur_chan != ctx) && (ctx == &sc->offchannel.chan)) { if (chandef) ctx->chandef = *chandef; sc->sched.offchannel_pending = true; sc->sched.wait_switch = true; sc->sched.offchannel_duration = jiffies_to_usecs(sc->offchannel.duration) + sc->sched.channel_switch_time; spin_unlock_bh(&sc->chan_lock); ath_dbg(common, CHAN_CTX, "Set offchannel_pending to true\n"); return; } sc->next_chan = ctx; if (chandef) { ctx->chandef = *chandef; ath_dbg(common, CHAN_CTX, "Assigned next_chan to %d MHz\n", chandef->center_freq1); } if (sc->next_chan == &sc->offchannel.chan) { sc->sched.offchannel_duration = jiffies_to_usecs(sc->offchannel.duration) + sc->sched.channel_switch_time; if (chandef) { ath_dbg(common, CHAN_CTX, "Offchannel duration for chan %d MHz : %u\n", chandef->center_freq1, sc->sched.offchannel_duration); } } spin_unlock_bh(&sc->chan_lock); ieee80211_queue_work(sc->hw, &sc->chanctx_work); } static void ath_chanctx_offchan_switch(struct ath_softc *sc, struct ieee80211_channel *chan) { struct ath_common *common = ath9k_hw_common(sc->sc_ah); struct cfg80211_chan_def chandef; cfg80211_chandef_create(&chandef, chan, NL80211_CHAN_NO_HT); ath_dbg(common, CHAN_CTX, "Channel definition created: %d MHz\n", chandef.center_freq1); ath_chanctx_switch(sc, &sc->offchannel.chan, &chandef); } static struct ath_chanctx *ath_chanctx_get_oper_chan(struct ath_softc *sc, bool active) { struct ath_chanctx *ctx; ath_for_each_chanctx(sc, ctx) { if (!ctx->assigned || list_empty(&ctx->vifs)) continue; if (active && !ctx->active) continue; if (ctx->switch_after_beacon) return ctx; } return &sc->chanctx[0]; } static void ath_scan_next_channel(struct ath_softc *sc) { struct ath_common *common = ath9k_hw_common(sc->sc_ah); struct cfg80211_scan_request *req = sc->offchannel.scan_req; struct ieee80211_channel *chan; if (sc->offchannel.scan_idx >= req->n_channels) { ath_dbg(common, CHAN_CTX, "Moving offchannel state to ATH_OFFCHANNEL_IDLE, " "scan_idx: %d, n_channels: %d\n", sc->offchannel.scan_idx, req->n_channels); sc->offchannel.state = ATH_OFFCHANNEL_IDLE; ath_chanctx_switch(sc, ath_chanctx_get_oper_chan(sc, false), NULL); return; } ath_dbg(common, CHAN_CTX, "Moving offchannel state to ATH_OFFCHANNEL_PROBE_SEND, scan_idx: %d\n", sc->offchannel.scan_idx); chan = req->channels[sc->offchannel.scan_idx++]; sc->offchannel.duration = ath_scan_channel_duration(sc, chan); sc->offchannel.state = ATH_OFFCHANNEL_PROBE_SEND; ath_chanctx_offchan_switch(sc, chan); } void ath_offchannel_next(struct ath_softc *sc) { struct ieee80211_vif *vif; if (sc->offchannel.scan_req) { vif = sc->offchannel.scan_vif; sc->offchannel.chan.txpower = vif->bss_conf.txpower; ath_scan_next_channel(sc); } else if (sc->offchannel.roc_vif) { vif = sc->offchannel.roc_vif; sc->offchannel.chan.txpower = vif->bss_conf.txpower; sc->offchannel.duration = msecs_to_jiffies(sc->offchannel.roc_duration); sc->offchannel.state = ATH_OFFCHANNEL_ROC_START; ath_chanctx_offchan_switch(sc, sc->offchannel.roc_chan); } else { spin_lock_bh(&sc->chan_lock); sc->sched.offchannel_pending = false; sc->sched.wait_switch = false; spin_unlock_bh(&sc->chan_lock); ath_chanctx_switch(sc, ath_chanctx_get_oper_chan(sc, false), NULL); sc->offchannel.state = ATH_OFFCHANNEL_IDLE; if (sc->ps_idle) ath_cancel_work(sc); } } void ath_roc_complete(struct ath_softc *sc, enum ath_roc_complete_reason reason) { struct ath_common *common = ath9k_hw_common(sc->sc_ah); sc->offchannel.roc_vif = NULL; sc->offchannel.roc_chan = NULL; switch (reason) { case ATH_ROC_COMPLETE_ABORT: ath_dbg(common, CHAN_CTX, "RoC aborted\n"); ieee80211_remain_on_channel_expired(sc->hw); break; case ATH_ROC_COMPLETE_EXPIRE: ath_dbg(common, CHAN_CTX, "RoC expired\n"); ieee80211_remain_on_channel_expired(sc->hw); break; case ATH_ROC_COMPLETE_CANCEL: ath_dbg(common, CHAN_CTX, "RoC canceled\n"); break; } ath_offchannel_next(sc); ath9k_ps_restore(sc); } void ath_scan_complete(struct ath_softc *sc, bool abort) { struct ath_common *common = ath9k_hw_common(sc->sc_ah); struct cfg80211_scan_info info = { .aborted = abort, }; if (abort) ath_dbg(common, CHAN_CTX, "HW scan aborted\n"); else ath_dbg(common, CHAN_CTX, "HW scan complete\n"); sc->offchannel.scan_req = NULL; sc->offchannel.scan_vif = NULL; sc->offchannel.state = ATH_OFFCHANNEL_IDLE; ieee80211_scan_completed(sc->hw, &info); clear_bit(ATH_OP_SCANNING, &common->op_flags); spin_lock_bh(&sc->chan_lock); if (test_bit(ATH_OP_MULTI_CHANNEL, &common->op_flags)) sc->sched.force_noa_update = true; spin_unlock_bh(&sc->chan_lock); ath_offchannel_next(sc); ath9k_ps_restore(sc); } static void ath_scan_send_probe(struct ath_softc *sc, struct cfg80211_ssid *ssid) { struct cfg80211_scan_request *req = sc->offchannel.scan_req; struct ieee80211_vif *vif = sc->offchannel.scan_vif; struct ath_tx_control txctl = {}; struct sk_buff *skb; struct ieee80211_tx_info *info; int band = sc->offchannel.chan.chandef.chan->band; skb = ieee80211_probereq_get(sc->hw, vif->addr, ssid->ssid, ssid->ssid_len, req->ie_len); if (!skb) return; info = IEEE80211_SKB_CB(skb); if (req->no_cck) info->flags |= IEEE80211_TX_CTL_NO_CCK_RATE; if (req->ie_len) skb_put_data(skb, req->ie, req->ie_len); skb_set_queue_mapping(skb, IEEE80211_AC_VO); if (!ieee80211_tx_prepare_skb(sc->hw, vif, skb, band, NULL)) goto error; txctl.txq = sc->tx.txq_map[IEEE80211_AC_VO]; if (ath_tx_start(sc->hw, skb, &txctl)) goto error; return; error: ieee80211_free_txskb(sc->hw, skb); } static void ath_scan_channel_start(struct ath_softc *sc) { struct ath_common *common = ath9k_hw_common(sc->sc_ah); struct cfg80211_scan_request *req = sc->offchannel.scan_req; int i; if (!(sc->cur_chan->chandef.chan->flags & IEEE80211_CHAN_NO_IR) && req->n_ssids) { for (i = 0; i < req->n_ssids; i++) ath_scan_send_probe(sc, &req->ssids[i]); } ath_dbg(common, CHAN_CTX, "Moving offchannel state to ATH_OFFCHANNEL_PROBE_WAIT\n"); sc->offchannel.state = ATH_OFFCHANNEL_PROBE_WAIT; mod_timer(&sc->offchannel.timer, jiffies + sc->offchannel.duration); } static void ath_chanctx_timer(struct timer_list *t) { struct ath_softc *sc = from_timer(sc, t, sched.timer); struct ath_common *common = ath9k_hw_common(sc->sc_ah); ath_dbg(common, CHAN_CTX, "Channel context timer invoked\n"); ath_chanctx_event(sc, NULL, ATH_CHANCTX_EVENT_TSF_TIMER); } static void ath_offchannel_timer(struct timer_list *t) { struct ath_softc *sc = from_timer(sc, t, offchannel.timer); struct ath_chanctx *ctx; struct ath_common *common = ath9k_hw_common(sc->sc_ah); ath_dbg(common, CHAN_CTX, "%s: offchannel state: %s\n", __func__, offchannel_state_string(sc->offchannel.state)); switch (sc->offchannel.state) { case ATH_OFFCHANNEL_PROBE_WAIT: if (!sc->offchannel.scan_req) return; /* get first active channel context */ ctx = ath_chanctx_get_oper_chan(sc, true); if (ctx->active) { ath_dbg(common, CHAN_CTX, "Switch to oper/active context, " "move offchannel state to ATH_OFFCHANNEL_SUSPEND\n"); sc->offchannel.state = ATH_OFFCHANNEL_SUSPEND; ath_chanctx_switch(sc, ctx, NULL); mod_timer(&sc->offchannel.timer, jiffies + HZ / 10); break; } fallthrough; case ATH_OFFCHANNEL_SUSPEND: if (!sc->offchannel.scan_req) return; ath_scan_next_channel(sc); break; case ATH_OFFCHANNEL_ROC_START: case ATH_OFFCHANNEL_ROC_WAIT: sc->offchannel.state = ATH_OFFCHANNEL_ROC_DONE; ath_roc_complete(sc, ATH_ROC_COMPLETE_EXPIRE); break; default: break; } } static bool ath_chanctx_send_vif_ps_frame(struct ath_softc *sc, struct ath_vif *avp, bool powersave) { struct ieee80211_vif *vif = avp->vif; struct ieee80211_sta *sta = NULL; struct ieee80211_hdr_3addr *nullfunc; struct ath_tx_control txctl; struct sk_buff *skb; int band = sc->cur_chan->chandef.chan->band; switch (vif->type) { case NL80211_IFTYPE_STATION: if (!avp->assoc) return false; skb = ieee80211_nullfunc_get(sc->hw, vif, -1, false); if (!skb) return false; nullfunc = (struct ieee80211_hdr_3addr *) skb->data; if (powersave) nullfunc->frame_control |= cpu_to_le16(IEEE80211_FCTL_PM); skb->priority = 7; skb_set_queue_mapping(skb, IEEE80211_AC_VO); if (!ieee80211_tx_prepare_skb(sc->hw, vif, skb, band, &sta)) { dev_kfree_skb_any(skb); return false; } break; default: return false; } memset(&txctl, 0, sizeof(txctl)); txctl.txq = sc->tx.txq_map[IEEE80211_AC_VO]; txctl.sta = sta; if (ath_tx_start(sc->hw, skb, &txctl)) { ieee80211_free_txskb(sc->hw, skb); return false; } return true; } static bool ath_chanctx_send_ps_frame(struct ath_softc *sc, bool powersave) { struct ath_vif *avp; bool sent = false; rcu_read_lock(); list_for_each_entry(avp, &sc->cur_chan->vifs, list) { if (ath_chanctx_send_vif_ps_frame(sc, avp, powersave)) sent = true; } rcu_read_unlock(); return sent; } static bool ath_chanctx_defer_switch(struct ath_softc *sc) { struct ath_common *common = ath9k_hw_common(sc->sc_ah); if (sc->cur_chan == &sc->offchannel.chan) return false; switch (sc->sched.state) { case ATH_CHANCTX_STATE_SWITCH: return false; case ATH_CHANCTX_STATE_IDLE: if (!sc->cur_chan->switch_after_beacon) return false; ath_dbg(common, CHAN_CTX, "Defer switch, set chanctx state to WAIT_FOR_BEACON\n"); sc->sched.state = ATH_CHANCTX_STATE_WAIT_FOR_BEACON; break; default: break; } return true; } static void ath_offchannel_channel_change(struct ath_softc *sc) { struct ath_common *common = ath9k_hw_common(sc->sc_ah); ath_dbg(common, CHAN_CTX, "%s: offchannel state: %s\n", __func__, offchannel_state_string(sc->offchannel.state)); switch (sc->offchannel.state) { case ATH_OFFCHANNEL_PROBE_SEND: if (!sc->offchannel.scan_req) return; if (sc->cur_chan->chandef.chan != sc->offchannel.chan.chandef.chan) return; ath_scan_channel_start(sc); break; case ATH_OFFCHANNEL_IDLE: if (!sc->offchannel.scan_req) return; ath_scan_complete(sc, false); break; case ATH_OFFCHANNEL_ROC_START: if (sc->cur_chan != &sc->offchannel.chan) break; sc->offchannel.state = ATH_OFFCHANNEL_ROC_WAIT; mod_timer(&sc->offchannel.timer, jiffies + sc->offchannel.duration); ieee80211_ready_on_channel(sc->hw); break; case ATH_OFFCHANNEL_ROC_DONE: break; default: break; } } void ath_chanctx_set_next(struct ath_softc *sc, bool force) { struct ath_common *common = ath9k_hw_common(sc->sc_ah); struct ath_chanctx *old_ctx; struct timespec64 ts; bool measure_time = false; bool send_ps = false; bool queues_stopped = false; spin_lock_bh(&sc->chan_lock); if (!sc->next_chan) { spin_unlock_bh(&sc->chan_lock); return; } if (!force && ath_chanctx_defer_switch(sc)) { spin_unlock_bh(&sc->chan_lock); return; } ath_dbg(common, CHAN_CTX, "%s: current: %d MHz, next: %d MHz\n", __func__, sc->cur_chan->chandef.center_freq1, sc->next_chan->chandef.center_freq1); if (sc->cur_chan != sc->next_chan) { ath_dbg(common, CHAN_CTX, "Stopping current chanctx: %d\n", sc->cur_chan->chandef.center_freq1); sc->cur_chan->stopped = true; spin_unlock_bh(&sc->chan_lock); if (sc->next_chan == &sc->offchannel.chan) { ktime_get_raw_ts64(&ts); measure_time = true; } ath9k_chanctx_stop_queues(sc, sc->cur_chan); queues_stopped = true; __ath9k_flush(sc->hw, ~0, true, false, false); if (ath_chanctx_send_ps_frame(sc, true)) __ath9k_flush(sc->hw, BIT(IEEE80211_AC_VO), false, false, false); send_ps = true; spin_lock_bh(&sc->chan_lock); if (sc->cur_chan != &sc->offchannel.chan) { ktime_get_raw_ts64(&sc->cur_chan->tsf_ts); sc->cur_chan->tsf_val = ath9k_hw_gettsf64(sc->sc_ah); } } old_ctx = sc->cur_chan; sc->cur_chan = sc->next_chan; sc->cur_chan->stopped = false; sc->next_chan = NULL; if (!sc->sched.offchannel_pending) sc->sched.offchannel_duration = 0; if (sc->sched.state != ATH_CHANCTX_STATE_FORCE_ACTIVE) sc->sched.state = ATH_CHANCTX_STATE_IDLE; spin_unlock_bh(&sc->chan_lock); if (sc->sc_ah->chip_fullsleep || memcmp(&sc->cur_chandef, &sc->cur_chan->chandef, sizeof(sc->cur_chandef))) { ath_dbg(common, CHAN_CTX, "%s: Set channel %d MHz\n", __func__, sc->cur_chan->chandef.center_freq1); ath_set_channel(sc); if (measure_time) sc->sched.channel_switch_time = ath9k_hw_get_tsf_offset(&ts, NULL); /* * A reset will ensure that all queues are woken up, * so there is no need to awaken them again. */ goto out; } if (queues_stopped) ath9k_chanctx_wake_queues(sc, old_ctx); out: if (send_ps) ath_chanctx_send_ps_frame(sc, false); ath_offchannel_channel_change(sc); ath_chanctx_event(sc, NULL, ATH_CHANCTX_EVENT_SWITCH); } static void ath_chanctx_work(struct work_struct *work) { struct ath_softc *sc = container_of(work, struct ath_softc, chanctx_work); mutex_lock(&sc->mutex); ath_chanctx_set_next(sc, false); mutex_unlock(&sc->mutex); } void ath9k_offchannel_init(struct ath_softc *sc) { struct ath_chanctx *ctx; struct ath_common *common = ath9k_hw_common(sc->sc_ah); struct ieee80211_supported_band *sband; struct ieee80211_channel *chan; int i; sband = &common->sbands[NL80211_BAND_2GHZ]; if (!sband->n_channels) sband = &common->sbands[NL80211_BAND_5GHZ]; chan = &sband->channels[0]; ctx = &sc->offchannel.chan; INIT_LIST_HEAD(&ctx->vifs); ctx->txpower = ATH_TXPOWER_MAX; cfg80211_chandef_create(&ctx->chandef, chan, NL80211_CHAN_HT20); for (i = 0; i < ARRAY_SIZE(ctx->acq); i++) { INIT_LIST_HEAD(&ctx->acq[i].acq_new); INIT_LIST_HEAD(&ctx->acq[i].acq_old); spin_lock_init(&ctx->acq[i].lock); } sc->offchannel.chan.offchannel = true; } void ath9k_init_channel_context(struct ath_softc *sc) { INIT_WORK(&sc->chanctx_work, ath_chanctx_work); timer_setup(&sc->offchannel.timer, ath_offchannel_timer, 0); timer_setup(&sc->sched.timer, ath_chanctx_timer, 0); init_completion(&sc->go_beacon); } void ath9k_deinit_channel_context(struct ath_softc *sc) { cancel_work_sync(&sc->chanctx_work); } bool ath9k_is_chanctx_enabled(void) { return (ath9k_use_chanctx == 1); } /********************/ /* Queue management */ /********************/ void ath9k_chanctx_stop_queues(struct ath_softc *sc, struct ath_chanctx *ctx) { struct ath_hw *ah = sc->sc_ah; int i; if (ctx == &sc->offchannel.chan) { ieee80211_stop_queue(sc->hw, sc->hw->offchannel_tx_hw_queue); } else { for (i = 0; i < IEEE80211_NUM_ACS; i++) ieee80211_stop_queue(sc->hw, ctx->hw_queue_base + i); } if (ah->opmode == NL80211_IFTYPE_AP) ieee80211_stop_queue(sc->hw, sc->hw->queues - 2); } void ath9k_chanctx_wake_queues(struct ath_softc *sc, struct ath_chanctx *ctx) { struct ath_hw *ah = sc->sc_ah; int i; if (ctx == &sc->offchannel.chan) { ieee80211_wake_queue(sc->hw, sc->hw->offchannel_tx_hw_queue); } else { for (i = 0; i < IEEE80211_NUM_ACS; i++) ieee80211_wake_queue(sc->hw, ctx->hw_queue_base + i); } if (ah->opmode == NL80211_IFTYPE_AP) ieee80211_wake_queue(sc->hw, sc->hw->queues - 2); } /*****************/ /* P2P Powersave */ /*****************/ static void ath9k_update_p2p_ps_timer(struct ath_softc *sc, struct ath_vif *avp) { struct ath_common *common = ath9k_hw_common(sc->sc_ah); struct ath_hw *ah = sc->sc_ah; u32 tsf, target_tsf; if (!avp || !avp->noa.has_next_tsf) return; ath9k_hw_gen_timer_stop(ah, sc->p2p_ps_timer); tsf = ath9k_hw_gettsf32(sc->sc_ah); target_tsf = avp->noa.next_tsf; if (!avp->noa.absent) target_tsf -= ATH_P2P_PS_STOP_TIME; else target_tsf += ATH_P2P_PS_STOP_TIME; if (target_tsf - tsf < ATH_P2P_PS_STOP_TIME) target_tsf = tsf + ATH_P2P_PS_STOP_TIME; ath_dbg(common, CHAN_CTX, "%s absent %d tsf 0x%08X next_tsf 0x%08X (%dms)\n", __func__, avp->noa.absent, tsf, target_tsf, (target_tsf - tsf) / 1000); ath9k_hw_gen_timer_start(ah, sc->p2p_ps_timer, target_tsf, 1000000); } static void ath9k_update_p2p_ps(struct ath_softc *sc, struct ieee80211_vif *vif) { struct ath_vif *avp = (void *)vif->drv_priv; u32 tsf; if (!sc->p2p_ps_timer) return; if (vif->type != NL80211_IFTYPE_STATION) return; sc->p2p_ps_vif = avp; if (sc->ps_flags & PS_BEACON_SYNC) return; tsf = ath9k_hw_gettsf32(sc->sc_ah); ieee80211_parse_p2p_noa(&vif->bss_conf.p2p_noa_attr, &avp->noa, tsf); ath9k_update_p2p_ps_timer(sc, avp); } static u8 ath9k_get_ctwin(struct ath_softc *sc, struct ath_vif *avp) { struct ath_beacon_config *cur_conf = &sc->cur_chan->beacon; u8 switch_time, ctwin; /* * Channel switch in multi-channel mode is deferred * by a quarter beacon interval when handling * ATH_CHANCTX_EVENT_BEACON_PREPARE, so the P2P-GO * interface is guaranteed to be discoverable * for that duration after a TBTT. */ switch_time = cur_conf->beacon_interval / 4; ctwin = avp->vif->bss_conf.p2p_noa_attr.oppps_ctwindow; if (ctwin && (ctwin < switch_time)) return ctwin; if (switch_time < P2P_DEFAULT_CTWIN) return 0; return P2P_DEFAULT_CTWIN; } void ath9k_beacon_add_noa(struct ath_softc *sc, struct ath_vif *avp, struct sk_buff *skb) { static const u8 noa_ie_hdr[] = { WLAN_EID_VENDOR_SPECIFIC, /* type */ 0, /* length */ 0x50, 0x6f, 0x9a, /* WFA OUI */ 0x09, /* P2P subtype */ 0x0c, /* Notice of Absence */ 0x00, /* LSB of little-endian len */ 0x00, /* MSB of little-endian len */ }; struct ieee80211_p2p_noa_attr *noa; int noa_len, noa_desc, i = 0; u8 *hdr; if (!avp->offchannel_duration && !avp->noa_duration) return; noa_desc = !!avp->offchannel_duration + !!avp->noa_duration; noa_len = 2 + sizeof(struct ieee80211_p2p_noa_desc) * noa_desc; hdr = skb_put_data(skb, noa_ie_hdr, sizeof(noa_ie_hdr)); hdr[1] = sizeof(noa_ie_hdr) + noa_len - 2; hdr[7] = noa_len; noa = skb_put_zero(skb, noa_len); noa->index = avp->noa_index; noa->oppps_ctwindow = ath9k_get_ctwin(sc, avp); if (noa->oppps_ctwindow) noa->oppps_ctwindow |= BIT(7); if (avp->noa_duration) { if (avp->periodic_noa) { u32 interval = TU_TO_USEC(sc->cur_chan->beacon.beacon_interval); noa->desc[i].count = 255; noa->desc[i].interval = cpu_to_le32(interval); } else { noa->desc[i].count = 1; } noa->desc[i].start_time = cpu_to_le32(avp->noa_start); noa->desc[i].duration = cpu_to_le32(avp->noa_duration); i++; } if (avp->offchannel_duration) { noa->desc[i].count = 1; noa->desc[i].start_time = cpu_to_le32(avp->offchannel_start); noa->desc[i].duration = cpu_to_le32(avp->offchannel_duration); } } void ath9k_p2p_ps_timer(void *priv) { struct ath_softc *sc = priv; struct ath_vif *avp = sc->p2p_ps_vif; struct ieee80211_vif *vif; struct ieee80211_sta *sta; struct ath_node *an; u32 tsf; del_timer_sync(&sc->sched.timer); ath9k_hw_gen_timer_stop(sc->sc_ah, sc->p2p_ps_timer); ath_chanctx_event(sc, NULL, ATH_CHANCTX_EVENT_TSF_TIMER); if (!avp || avp->chanctx != sc->cur_chan) return; tsf = ath9k_hw_gettsf32(sc->sc_ah); if (!avp->noa.absent) tsf += ATH_P2P_PS_STOP_TIME; else tsf -= ATH_P2P_PS_STOP_TIME; if (!avp->noa.has_next_tsf || avp->noa.next_tsf - tsf > BIT(31)) ieee80211_update_p2p_noa(&avp->noa, tsf); ath9k_update_p2p_ps_timer(sc, avp); rcu_read_lock(); vif = avp->vif; sta = ieee80211_find_sta(vif, avp->bssid); if (!sta) goto out; an = (void *) sta->drv_priv; if (an->sleeping == !!avp->noa.absent) goto out; an->sleeping = avp->noa.absent; if (an->sleeping) ath_tx_aggr_sleep(sta, sc, an); else ath_tx_aggr_wakeup(sc, an); out: rcu_read_unlock(); } void ath9k_p2p_bss_info_changed(struct ath_softc *sc, struct ieee80211_vif *vif) { unsigned long flags; spin_lock_bh(&sc->sc_pcu_lock); spin_lock_irqsave(&sc->sc_pm_lock, flags); ath9k_update_p2p_ps(sc, vif); spin_unlock_irqrestore(&sc->sc_pm_lock, flags); spin_unlock_bh(&sc->sc_pcu_lock); } void ath9k_p2p_beacon_sync(struct ath_softc *sc) { if (sc->p2p_ps_vif) ath9k_update_p2p_ps(sc, sc->p2p_ps_vif->vif); } void ath9k_p2p_remove_vif(struct ath_softc *sc, struct ieee80211_vif *vif) { struct ath_vif *avp = (void *)vif->drv_priv; spin_lock_bh(&sc->sc_pcu_lock); if (avp == sc->p2p_ps_vif) { sc->p2p_ps_vif = NULL; ath9k_update_p2p_ps_timer(sc, NULL); } spin_unlock_bh(&sc->sc_pcu_lock); } int ath9k_init_p2p(struct ath_softc *sc) { sc->p2p_ps_timer = ath_gen_timer_alloc(sc->sc_ah, ath9k_p2p_ps_timer, NULL, sc, AR_FIRST_NDP_TIMER); if (!sc->p2p_ps_timer) return -ENOMEM; return 0; } void ath9k_deinit_p2p(struct ath_softc *sc) { if (sc->p2p_ps_timer) ath_gen_timer_free(sc->sc_ah, sc->p2p_ps_timer); } #endif /* CONFIG_ATH9K_CHANNEL_CONTEXT */
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1