Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Eugene Krasnikov | 4352 | 54.57% | 1 | 0.94% |
Bryan O'Donoghue | 1275 | 15.99% | 28 | 26.42% |
Björn Andersson | 702 | 8.80% | 10 | 9.43% |
Loic Poulain | 618 | 7.75% | 16 | 15.09% |
Pontus Fuchs | 346 | 4.34% | 11 | 10.38% |
Daniel Mack | 146 | 1.83% | 7 | 6.60% |
Benjamin Li | 136 | 1.71% | 4 | 3.77% |
Bob Copeland | 100 | 1.25% | 3 | 2.83% |
Johannes Berg | 91 | 1.14% | 9 | 8.49% |
Edmond Gagnon | 65 | 0.82% | 1 | 0.94% |
Sara Sharon | 35 | 0.44% | 1 | 0.94% |
Sriram R | 16 | 0.20% | 1 | 0.94% |
Lad Prabhakar | 14 | 0.18% | 1 | 0.94% |
Joseph Gates | 13 | 0.16% | 1 | 0.94% |
Vladimir Lypak | 13 | 0.16% | 1 | 0.94% |
Andrzej Zaborowski | 11 | 0.14% | 1 | 0.94% |
Eyal Ilsar | 9 | 0.11% | 1 | 0.94% |
Ramon Fried | 9 | 0.11% | 1 | 0.94% |
Christophe Jaillet | 8 | 0.10% | 2 | 1.89% |
Alexander Wetzel | 5 | 0.06% | 1 | 0.94% |
Chun-Yeow Yeoh | 4 | 0.05% | 1 | 0.94% |
Rob Herring | 2 | 0.03% | 1 | 0.94% |
Dan Carpenter | 2 | 0.03% | 1 | 0.94% |
striebit | 2 | 0.03% | 1 | 0.94% |
Johan Hovold | 1 | 0.01% | 1 | 0.94% |
Total | 7975 | 106 |
/* * Copyright (c) 2013 Eugene Krasnikov <k.eugene.e@gmail.com> * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/module.h> #include <linux/firmware.h> #include <linux/platform_device.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/rpmsg.h> #include <linux/soc/qcom/smem_state.h> #include <linux/soc/qcom/wcnss_ctrl.h> #include <net/ipv6.h> #include "wcn36xx.h" #include "testmode.h" #include "firmware.h" unsigned int wcn36xx_dbg_mask; module_param_named(debug_mask, wcn36xx_dbg_mask, uint, 0644); MODULE_PARM_DESC(debug_mask, "Debugging mask"); #define CHAN2G(_freq, _idx) { \ .band = NL80211_BAND_2GHZ, \ .center_freq = (_freq), \ .hw_value = (_idx), \ .max_power = 25, \ } #define CHAN5G(_freq, _idx, _phy_val) { \ .band = NL80211_BAND_5GHZ, \ .center_freq = (_freq), \ .hw_value = (_phy_val) << HW_VALUE_PHY_SHIFT | HW_VALUE_CHANNEL(_idx), \ .max_power = 25, \ } /* The wcn firmware expects channel values to matching * their mnemonic values. So use these for .hw_value. */ static struct ieee80211_channel wcn_2ghz_channels[] = { CHAN2G(2412, 1), /* Channel 1 */ CHAN2G(2417, 2), /* Channel 2 */ CHAN2G(2422, 3), /* Channel 3 */ CHAN2G(2427, 4), /* Channel 4 */ CHAN2G(2432, 5), /* Channel 5 */ CHAN2G(2437, 6), /* Channel 6 */ CHAN2G(2442, 7), /* Channel 7 */ CHAN2G(2447, 8), /* Channel 8 */ CHAN2G(2452, 9), /* Channel 9 */ CHAN2G(2457, 10), /* Channel 10 */ CHAN2G(2462, 11), /* Channel 11 */ CHAN2G(2467, 12), /* Channel 12 */ CHAN2G(2472, 13), /* Channel 13 */ CHAN2G(2484, 14) /* Channel 14 */ }; static struct ieee80211_channel wcn_5ghz_channels[] = { CHAN5G(5180, 36, PHY_QUADRUPLE_CHANNEL_20MHZ_LOW_40MHZ_LOW), CHAN5G(5200, 40, PHY_QUADRUPLE_CHANNEL_20MHZ_HIGH_40MHZ_LOW), CHAN5G(5220, 44, PHY_QUADRUPLE_CHANNEL_20MHZ_LOW_40MHZ_HIGH), CHAN5G(5240, 48, PHY_QUADRUPLE_CHANNEL_20MHZ_HIGH_40MHZ_HIGH), CHAN5G(5260, 52, PHY_QUADRUPLE_CHANNEL_20MHZ_LOW_40MHZ_LOW), CHAN5G(5280, 56, PHY_QUADRUPLE_CHANNEL_20MHZ_HIGH_40MHZ_LOW), CHAN5G(5300, 60, PHY_QUADRUPLE_CHANNEL_20MHZ_LOW_40MHZ_HIGH), CHAN5G(5320, 64, PHY_QUADRUPLE_CHANNEL_20MHZ_HIGH_40MHZ_HIGH), CHAN5G(5500, 100, PHY_QUADRUPLE_CHANNEL_20MHZ_LOW_40MHZ_LOW), CHAN5G(5520, 104, PHY_QUADRUPLE_CHANNEL_20MHZ_HIGH_40MHZ_LOW), CHAN5G(5540, 108, PHY_QUADRUPLE_CHANNEL_20MHZ_LOW_40MHZ_HIGH), CHAN5G(5560, 112, PHY_QUADRUPLE_CHANNEL_20MHZ_HIGH_40MHZ_HIGH), CHAN5G(5580, 116, PHY_QUADRUPLE_CHANNEL_20MHZ_LOW_40MHZ_LOW), CHAN5G(5600, 120, PHY_QUADRUPLE_CHANNEL_20MHZ_HIGH_40MHZ_LOW), CHAN5G(5620, 124, PHY_QUADRUPLE_CHANNEL_20MHZ_LOW_40MHZ_HIGH), CHAN5G(5640, 128, PHY_QUADRUPLE_CHANNEL_20MHZ_HIGH_40MHZ_HIGH), CHAN5G(5660, 132, PHY_QUADRUPLE_CHANNEL_20MHZ_LOW_40MHZ_LOW), CHAN5G(5680, 136, PHY_QUADRUPLE_CHANNEL_20MHZ_HIGH_40MHZ_LOW), CHAN5G(5700, 140, PHY_QUADRUPLE_CHANNEL_20MHZ_LOW_40MHZ_HIGH), CHAN5G(5720, 144, PHY_QUADRUPLE_CHANNEL_20MHZ_HIGH_40MHZ_HIGH), CHAN5G(5745, 149, PHY_QUADRUPLE_CHANNEL_20MHZ_LOW_40MHZ_LOW), CHAN5G(5765, 153, PHY_QUADRUPLE_CHANNEL_20MHZ_HIGH_40MHZ_LOW), CHAN5G(5785, 157, PHY_QUADRUPLE_CHANNEL_20MHZ_LOW_40MHZ_HIGH), CHAN5G(5805, 161, PHY_QUADRUPLE_CHANNEL_20MHZ_HIGH_40MHZ_HIGH), CHAN5G(5825, 165, 0) }; #define RATE(_bitrate, _hw_rate, _flags) { \ .bitrate = (_bitrate), \ .flags = (_flags), \ .hw_value = (_hw_rate), \ .hw_value_short = (_hw_rate) \ } static struct ieee80211_rate wcn_2ghz_rates[] = { RATE(10, HW_RATE_INDEX_1MBPS, 0), RATE(20, HW_RATE_INDEX_2MBPS, IEEE80211_RATE_SHORT_PREAMBLE), RATE(55, HW_RATE_INDEX_5_5MBPS, IEEE80211_RATE_SHORT_PREAMBLE), RATE(110, HW_RATE_INDEX_11MBPS, IEEE80211_RATE_SHORT_PREAMBLE), RATE(60, HW_RATE_INDEX_6MBPS, 0), RATE(90, HW_RATE_INDEX_9MBPS, 0), RATE(120, HW_RATE_INDEX_12MBPS, 0), RATE(180, HW_RATE_INDEX_18MBPS, 0), RATE(240, HW_RATE_INDEX_24MBPS, 0), RATE(360, HW_RATE_INDEX_36MBPS, 0), RATE(480, HW_RATE_INDEX_48MBPS, 0), RATE(540, HW_RATE_INDEX_54MBPS, 0) }; static struct ieee80211_rate wcn_5ghz_rates[] = { RATE(60, HW_RATE_INDEX_6MBPS, 0), RATE(90, HW_RATE_INDEX_9MBPS, 0), RATE(120, HW_RATE_INDEX_12MBPS, 0), RATE(180, HW_RATE_INDEX_18MBPS, 0), RATE(240, HW_RATE_INDEX_24MBPS, 0), RATE(360, HW_RATE_INDEX_36MBPS, 0), RATE(480, HW_RATE_INDEX_48MBPS, 0), RATE(540, HW_RATE_INDEX_54MBPS, 0) }; static struct ieee80211_supported_band wcn_band_2ghz = { .channels = wcn_2ghz_channels, .n_channels = ARRAY_SIZE(wcn_2ghz_channels), .bitrates = wcn_2ghz_rates, .n_bitrates = ARRAY_SIZE(wcn_2ghz_rates), .ht_cap = { .cap = IEEE80211_HT_CAP_GRN_FLD | IEEE80211_HT_CAP_SGI_20 | IEEE80211_HT_CAP_DSSSCCK40 | IEEE80211_HT_CAP_LSIG_TXOP_PROT | IEEE80211_HT_CAP_SGI_40 | IEEE80211_HT_CAP_SUP_WIDTH_20_40, .ht_supported = true, .ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K, .ampdu_density = IEEE80211_HT_MPDU_DENSITY_16, .mcs = { .rx_mask = { 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, .rx_highest = cpu_to_le16(72), .tx_params = IEEE80211_HT_MCS_TX_DEFINED, } } }; static struct ieee80211_supported_band wcn_band_5ghz = { .channels = wcn_5ghz_channels, .n_channels = ARRAY_SIZE(wcn_5ghz_channels), .bitrates = wcn_5ghz_rates, .n_bitrates = ARRAY_SIZE(wcn_5ghz_rates), .ht_cap = { .cap = IEEE80211_HT_CAP_GRN_FLD | IEEE80211_HT_CAP_SGI_20 | IEEE80211_HT_CAP_DSSSCCK40 | IEEE80211_HT_CAP_LSIG_TXOP_PROT | IEEE80211_HT_CAP_SGI_40 | IEEE80211_HT_CAP_SUP_WIDTH_20_40, .ht_supported = true, .ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K, .ampdu_density = IEEE80211_HT_MPDU_DENSITY_16, .mcs = { .rx_mask = { 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, .rx_highest = cpu_to_le16(150), .tx_params = IEEE80211_HT_MCS_TX_DEFINED, } } }; #ifdef CONFIG_PM static const struct wiphy_wowlan_support wowlan_support = { .flags = WIPHY_WOWLAN_ANY | WIPHY_WOWLAN_MAGIC_PKT | WIPHY_WOWLAN_SUPPORTS_GTK_REKEY }; #endif static inline u8 get_sta_index(struct ieee80211_vif *vif, struct wcn36xx_sta *sta_priv) { return NL80211_IFTYPE_STATION == vif->type ? sta_priv->bss_sta_index : sta_priv->sta_index; } static void wcn36xx_feat_caps_info(struct wcn36xx *wcn) { int i; for (i = 0; i < MAX_FEATURE_SUPPORTED; i++) { if (wcn36xx_firmware_get_feat_caps(wcn->fw_feat_caps, i)) { wcn36xx_dbg(WCN36XX_DBG_MAC, "FW Cap %s\n", wcn36xx_firmware_get_cap_name(i)); } } } static int wcn36xx_start(struct ieee80211_hw *hw) { struct wcn36xx *wcn = hw->priv; int ret; wcn36xx_dbg(WCN36XX_DBG_MAC, "mac start\n"); /* SMD initialization */ ret = wcn36xx_smd_open(wcn); if (ret) { wcn36xx_err("Failed to open smd channel: %d\n", ret); goto out_err; } /* Allocate memory pools for Mgmt BD headers and Data BD headers */ ret = wcn36xx_dxe_allocate_mem_pools(wcn); if (ret) { wcn36xx_err("Failed to alloc DXE mempool: %d\n", ret); goto out_smd_close; } ret = wcn36xx_dxe_alloc_ctl_blks(wcn); if (ret) { wcn36xx_err("Failed to alloc DXE ctl blocks: %d\n", ret); goto out_free_dxe_pool; } ret = wcn36xx_smd_load_nv(wcn); if (ret) { wcn36xx_err("Failed to push NV to chip\n"); goto out_free_dxe_ctl; } ret = wcn36xx_smd_start(wcn); if (ret) { wcn36xx_err("Failed to start chip\n"); goto out_free_dxe_ctl; } if (!wcn36xx_is_fw_version(wcn, 1, 2, 2, 24)) { ret = wcn36xx_smd_feature_caps_exchange(wcn); if (ret) wcn36xx_warn("Exchange feature caps failed\n"); else wcn36xx_feat_caps_info(wcn); } /* DMA channel initialization */ ret = wcn36xx_dxe_init(wcn); if (ret) { wcn36xx_err("DXE init failed\n"); goto out_smd_stop; } wcn36xx_debugfs_init(wcn); INIT_LIST_HEAD(&wcn->vif_list); spin_lock_init(&wcn->dxe_lock); spin_lock_init(&wcn->survey_lock); return 0; out_smd_stop: wcn36xx_smd_stop(wcn); out_free_dxe_ctl: wcn36xx_dxe_free_ctl_blks(wcn); out_free_dxe_pool: wcn36xx_dxe_free_mem_pools(wcn); out_smd_close: wcn36xx_smd_close(wcn); out_err: return ret; } static void wcn36xx_stop(struct ieee80211_hw *hw) { struct wcn36xx *wcn = hw->priv; wcn36xx_dbg(WCN36XX_DBG_MAC, "mac stop\n"); mutex_lock(&wcn->scan_lock); if (wcn->scan_req) { struct cfg80211_scan_info scan_info = { .aborted = true, }; ieee80211_scan_completed(wcn->hw, &scan_info); } wcn->scan_req = NULL; mutex_unlock(&wcn->scan_lock); wcn36xx_debugfs_exit(wcn); wcn36xx_smd_stop(wcn); wcn36xx_dxe_deinit(wcn); wcn36xx_smd_close(wcn); wcn36xx_dxe_free_mem_pools(wcn); wcn36xx_dxe_free_ctl_blks(wcn); } static void wcn36xx_change_ps(struct wcn36xx *wcn, bool enable) { struct ieee80211_vif *vif = NULL; struct wcn36xx_vif *tmp; list_for_each_entry(tmp, &wcn->vif_list, list) { vif = wcn36xx_priv_to_vif(tmp); if (enable && !wcn->sw_scan) { if (vif->cfg.ps) /* ps allowed ? */ wcn36xx_pmc_enter_bmps_state(wcn, vif); } else { wcn36xx_pmc_exit_bmps_state(wcn, vif); } } } static void wcn36xx_change_opchannel(struct wcn36xx *wcn, int ch) { struct ieee80211_vif *vif = NULL; struct wcn36xx_vif *tmp; struct ieee80211_supported_band *band; struct ieee80211_channel *channel = NULL; unsigned long flags; int i, j; for (i = 0; i < ARRAY_SIZE(wcn->hw->wiphy->bands); i++) { band = wcn->hw->wiphy->bands[i]; if (!band) break; for (j = 0; j < band->n_channels; j++) { if (HW_VALUE_CHANNEL(band->channels[j].hw_value) == ch) { channel = &band->channels[j]; break; } } if (channel) break; } if (!channel) { wcn36xx_err("Cannot tune to channel %d\n", ch); return; } spin_lock_irqsave(&wcn->survey_lock, flags); wcn->band = band; wcn->channel = channel; spin_unlock_irqrestore(&wcn->survey_lock, flags); list_for_each_entry(tmp, &wcn->vif_list, list) { vif = wcn36xx_priv_to_vif(tmp); wcn36xx_smd_switch_channel(wcn, vif, ch); } return; } static int wcn36xx_config(struct ieee80211_hw *hw, u32 changed) { struct wcn36xx *wcn = hw->priv; int ret; wcn36xx_dbg(WCN36XX_DBG_MAC, "mac config changed 0x%08x\n", changed); mutex_lock(&wcn->conf_mutex); if (changed & IEEE80211_CONF_CHANGE_CHANNEL) { int ch = WCN36XX_HW_CHANNEL(wcn); wcn36xx_dbg(WCN36XX_DBG_MAC, "wcn36xx_config channel switch=%d\n", ch); if (wcn->sw_scan_opchannel == ch && wcn->sw_scan_channel) { /* If channel is the initial operating channel, we may * want to receive/transmit regular data packets, then * simply stop the scan session and exit PS mode. */ if (wcn->sw_scan_channel) wcn36xx_smd_end_scan(wcn, wcn->sw_scan_channel); if (wcn->sw_scan_init) { wcn36xx_smd_finish_scan(wcn, HAL_SYS_MODE_SCAN, wcn->sw_scan_vif); } } else if (wcn->sw_scan) { /* A scan is ongoing, do not change the operating * channel, but start a scan session on the channel. */ if (wcn->sw_scan_channel) wcn36xx_smd_end_scan(wcn, wcn->sw_scan_channel); if (!wcn->sw_scan_init) { /* This can fail if we are unable to notify the * operating channel. */ ret = wcn36xx_smd_init_scan(wcn, HAL_SYS_MODE_SCAN, wcn->sw_scan_vif); if (ret) { mutex_unlock(&wcn->conf_mutex); return -EIO; } } wcn36xx_smd_start_scan(wcn, ch); } else { wcn36xx_change_opchannel(wcn, ch); } } if (changed & IEEE80211_CONF_CHANGE_PS) wcn36xx_change_ps(wcn, hw->conf.flags & IEEE80211_CONF_PS); if (changed & IEEE80211_CONF_CHANGE_IDLE) { if (hw->conf.flags & IEEE80211_CONF_IDLE) wcn36xx_smd_enter_imps(wcn); else wcn36xx_smd_exit_imps(wcn); } mutex_unlock(&wcn->conf_mutex); return 0; } static void wcn36xx_configure_filter(struct ieee80211_hw *hw, unsigned int changed, unsigned int *total, u64 multicast) { struct wcn36xx_hal_rcv_flt_mc_addr_list_type *fp; struct wcn36xx *wcn = hw->priv; struct wcn36xx_vif *tmp; struct ieee80211_vif *vif = NULL; wcn36xx_dbg(WCN36XX_DBG_MAC, "mac configure filter\n"); mutex_lock(&wcn->conf_mutex); *total &= FIF_ALLMULTI; fp = (void *)(unsigned long)multicast; list_for_each_entry(tmp, &wcn->vif_list, list) { vif = wcn36xx_priv_to_vif(tmp); /* FW handles MC filtering only when connected as STA */ if (*total & FIF_ALLMULTI) wcn36xx_smd_set_mc_list(wcn, vif, NULL); else if (NL80211_IFTYPE_STATION == vif->type && tmp->sta_assoc) wcn36xx_smd_set_mc_list(wcn, vif, fp); } mutex_unlock(&wcn->conf_mutex); kfree(fp); } static u64 wcn36xx_prepare_multicast(struct ieee80211_hw *hw, struct netdev_hw_addr_list *mc_list) { struct wcn36xx_hal_rcv_flt_mc_addr_list_type *fp; struct netdev_hw_addr *ha; wcn36xx_dbg(WCN36XX_DBG_MAC, "mac prepare multicast list\n"); fp = kzalloc(sizeof(*fp), GFP_ATOMIC); if (!fp) { wcn36xx_err("Out of memory setting filters.\n"); return 0; } fp->mc_addr_count = 0; /* update multicast filtering parameters */ if (netdev_hw_addr_list_count(mc_list) <= WCN36XX_HAL_MAX_NUM_MULTICAST_ADDRESS) { netdev_hw_addr_list_for_each(ha, mc_list) { memcpy(fp->mc_addr[fp->mc_addr_count], ha->addr, ETH_ALEN); fp->mc_addr_count++; } } return (u64)(unsigned long)fp; } static void wcn36xx_tx(struct ieee80211_hw *hw, struct ieee80211_tx_control *control, struct sk_buff *skb) { struct wcn36xx *wcn = hw->priv; struct wcn36xx_sta *sta_priv = NULL; if (control->sta) sta_priv = wcn36xx_sta_to_priv(control->sta); if (wcn36xx_start_tx(wcn, sta_priv, skb)) ieee80211_free_txskb(wcn->hw, skb); } static int wcn36xx_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd, struct ieee80211_vif *vif, struct ieee80211_sta *sta, struct ieee80211_key_conf *key_conf) { struct wcn36xx *wcn = hw->priv; struct wcn36xx_vif *vif_priv = wcn36xx_vif_to_priv(vif); struct wcn36xx_sta *sta_priv = sta ? wcn36xx_sta_to_priv(sta) : NULL; int ret = 0; u8 key[WLAN_MAX_KEY_LEN]; wcn36xx_dbg(WCN36XX_DBG_MAC, "mac80211 set key\n"); wcn36xx_dbg(WCN36XX_DBG_MAC, "Key: cmd=0x%x algo:0x%x, id:%d, len:%d flags 0x%x\n", cmd, key_conf->cipher, key_conf->keyidx, key_conf->keylen, key_conf->flags); wcn36xx_dbg_dump(WCN36XX_DBG_MAC, "KEY: ", key_conf->key, key_conf->keylen); mutex_lock(&wcn->conf_mutex); switch (key_conf->cipher) { case WLAN_CIPHER_SUITE_WEP40: vif_priv->encrypt_type = WCN36XX_HAL_ED_WEP40; break; case WLAN_CIPHER_SUITE_WEP104: vif_priv->encrypt_type = WCN36XX_HAL_ED_WEP104; break; case WLAN_CIPHER_SUITE_CCMP: vif_priv->encrypt_type = WCN36XX_HAL_ED_CCMP; break; case WLAN_CIPHER_SUITE_TKIP: vif_priv->encrypt_type = WCN36XX_HAL_ED_TKIP; break; default: wcn36xx_err("Unsupported key type 0x%x\n", key_conf->cipher); ret = -EOPNOTSUPP; goto out; } switch (cmd) { case SET_KEY: if (WCN36XX_HAL_ED_TKIP == vif_priv->encrypt_type) { /* * Supplicant is sending key in the wrong order: * Temporal Key (16 b) - TX MIC (8 b) - RX MIC (8 b) * but HW expects it to be in the order as described in * IEEE 802.11 spec (see chapter 11.7) like this: * Temporal Key (16 b) - RX MIC (8 b) - TX MIC (8 b) */ memcpy(key, key_conf->key, 16); memcpy(key + 16, key_conf->key + 24, 8); memcpy(key + 24, key_conf->key + 16, 8); } else { memcpy(key, key_conf->key, key_conf->keylen); } if (IEEE80211_KEY_FLAG_PAIRWISE & key_conf->flags) { sta_priv->is_data_encrypted = true; /* Reconfigure bss with encrypt_type */ if (NL80211_IFTYPE_STATION == vif->type) { wcn36xx_smd_config_bss(wcn, vif, sta, sta->addr, true); wcn36xx_smd_config_sta(wcn, vif, sta); } wcn36xx_smd_set_stakey(wcn, vif_priv->encrypt_type, key_conf->keyidx, key_conf->keylen, key, get_sta_index(vif, sta_priv)); } else { wcn36xx_smd_set_bsskey(wcn, vif_priv->encrypt_type, vif_priv->bss_index, key_conf->keyidx, key_conf->keylen, key); if ((WLAN_CIPHER_SUITE_WEP40 == key_conf->cipher) || (WLAN_CIPHER_SUITE_WEP104 == key_conf->cipher)) { list_for_each_entry(sta_priv, &vif_priv->sta_list, list) { sta_priv->is_data_encrypted = true; wcn36xx_smd_set_stakey(wcn, vif_priv->encrypt_type, key_conf->keyidx, key_conf->keylen, key, get_sta_index(vif, sta_priv)); } } } break; case DISABLE_KEY: if (!(IEEE80211_KEY_FLAG_PAIRWISE & key_conf->flags)) { if (vif_priv->bss_index != WCN36XX_HAL_BSS_INVALID_IDX) wcn36xx_smd_remove_bsskey(wcn, vif_priv->encrypt_type, vif_priv->bss_index, key_conf->keyidx); vif_priv->encrypt_type = WCN36XX_HAL_ED_NONE; } else { sta_priv->is_data_encrypted = false; /* do not remove key if disassociated */ if (sta_priv->aid) wcn36xx_smd_remove_stakey(wcn, vif_priv->encrypt_type, key_conf->keyidx, get_sta_index(vif, sta_priv)); } break; default: wcn36xx_err("Unsupported key cmd 0x%x\n", cmd); ret = -EOPNOTSUPP; goto out; } out: mutex_unlock(&wcn->conf_mutex); return ret; } static int wcn36xx_hw_scan(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_scan_request *hw_req) { struct wcn36xx *wcn = hw->priv; if (!wcn36xx_firmware_get_feat_caps(wcn->fw_feat_caps, SCAN_OFFLOAD)) { /* fallback to mac80211 software scan */ return 1; } /* Firmware scan offload is limited to 48 channels, fallback to * software driven scanning otherwise. */ if (hw_req->req.n_channels > 48) { wcn36xx_warn("Offload scan aborted, n_channels=%u", hw_req->req.n_channels); return 1; } mutex_lock(&wcn->scan_lock); if (wcn->scan_req) { mutex_unlock(&wcn->scan_lock); return -EBUSY; } wcn->scan_aborted = false; wcn->scan_req = &hw_req->req; mutex_unlock(&wcn->scan_lock); wcn36xx_smd_update_channel_list(wcn, &hw_req->req); return wcn36xx_smd_start_hw_scan(wcn, vif, &hw_req->req); } static void wcn36xx_cancel_hw_scan(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct wcn36xx *wcn = hw->priv; mutex_lock(&wcn->scan_lock); wcn->scan_aborted = true; mutex_unlock(&wcn->scan_lock); if (wcn36xx_firmware_get_feat_caps(wcn->fw_feat_caps, SCAN_OFFLOAD)) { /* ieee80211_scan_completed will be called on FW scan * indication */ wcn36xx_smd_stop_hw_scan(wcn); } } static void wcn36xx_sw_scan_start(struct ieee80211_hw *hw, struct ieee80211_vif *vif, const u8 *mac_addr) { struct wcn36xx *wcn = hw->priv; struct wcn36xx_vif *vif_priv = wcn36xx_vif_to_priv(vif); wcn36xx_dbg(WCN36XX_DBG_MAC, "sw_scan_start"); wcn->sw_scan = true; wcn->sw_scan_vif = vif; wcn->sw_scan_channel = 0; if (vif_priv->sta_assoc) wcn->sw_scan_opchannel = WCN36XX_HW_CHANNEL(wcn); else wcn->sw_scan_opchannel = 0; } static void wcn36xx_sw_scan_complete(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct wcn36xx *wcn = hw->priv; wcn36xx_dbg(WCN36XX_DBG_MAC, "sw_scan_complete"); /* ensure that any scan session is finished */ if (wcn->sw_scan_channel) wcn36xx_smd_end_scan(wcn, wcn->sw_scan_channel); if (wcn->sw_scan_init) { wcn36xx_smd_finish_scan(wcn, HAL_SYS_MODE_SCAN, wcn->sw_scan_vif); } wcn->sw_scan = false; wcn->sw_scan_opchannel = 0; } static void wcn36xx_update_allowed_rates(struct ieee80211_sta *sta, enum nl80211_band band) { int i, size; u16 *rates_table; struct wcn36xx_sta *sta_priv = wcn36xx_sta_to_priv(sta); u32 rates = sta->deflink.supp_rates[band]; memset(&sta_priv->supported_rates, 0, sizeof(sta_priv->supported_rates)); sta_priv->supported_rates.op_rate_mode = STA_11n; size = ARRAY_SIZE(sta_priv->supported_rates.dsss_rates); rates_table = sta_priv->supported_rates.dsss_rates; if (band == NL80211_BAND_2GHZ) { for (i = 0; i < size; i++) { if (rates & 0x01) { rates_table[i] = wcn_2ghz_rates[i].hw_value; rates = rates >> 1; } } } size = ARRAY_SIZE(sta_priv->supported_rates.ofdm_rates); rates_table = sta_priv->supported_rates.ofdm_rates; for (i = 0; i < size; i++) { if (rates & 0x01) { rates_table[i] = wcn_5ghz_rates[i].hw_value; rates = rates >> 1; } } if (sta->deflink.ht_cap.ht_supported) { BUILD_BUG_ON(sizeof(sta->deflink.ht_cap.mcs.rx_mask) > sizeof(sta_priv->supported_rates.supported_mcs_set)); memcpy(sta_priv->supported_rates.supported_mcs_set, sta->deflink.ht_cap.mcs.rx_mask, sizeof(sta->deflink.ht_cap.mcs.rx_mask)); } if (sta->deflink.vht_cap.vht_supported) { sta_priv->supported_rates.op_rate_mode = STA_11ac; sta_priv->supported_rates.vht_rx_mcs_map = sta->deflink.vht_cap.vht_mcs.rx_mcs_map; sta_priv->supported_rates.vht_tx_mcs_map = sta->deflink.vht_cap.vht_mcs.tx_mcs_map; } } void wcn36xx_set_default_rates(struct wcn36xx_hal_supported_rates *rates) { u16 ofdm_rates[WCN36XX_HAL_NUM_OFDM_RATES] = { HW_RATE_INDEX_6MBPS, HW_RATE_INDEX_9MBPS, HW_RATE_INDEX_12MBPS, HW_RATE_INDEX_18MBPS, HW_RATE_INDEX_24MBPS, HW_RATE_INDEX_36MBPS, HW_RATE_INDEX_48MBPS, HW_RATE_INDEX_54MBPS }; u16 dsss_rates[WCN36XX_HAL_NUM_DSSS_RATES] = { HW_RATE_INDEX_1MBPS, HW_RATE_INDEX_2MBPS, HW_RATE_INDEX_5_5MBPS, HW_RATE_INDEX_11MBPS }; rates->op_rate_mode = STA_11n; memcpy(rates->dsss_rates, dsss_rates, sizeof(*dsss_rates) * WCN36XX_HAL_NUM_DSSS_RATES); memcpy(rates->ofdm_rates, ofdm_rates, sizeof(*ofdm_rates) * WCN36XX_HAL_NUM_OFDM_RATES); rates->supported_mcs_set[0] = 0xFF; } void wcn36xx_set_default_rates_v1(struct wcn36xx_hal_supported_rates_v1 *rates) { rates->op_rate_mode = STA_11ac; rates->vht_rx_mcs_map = IEEE80211_VHT_MCS_SUPPORT_0_9; rates->vht_tx_mcs_map = IEEE80211_VHT_MCS_SUPPORT_0_9; } static void wcn36xx_bss_info_changed(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_bss_conf *bss_conf, u64 changed) { struct wcn36xx *wcn = hw->priv; struct sk_buff *skb = NULL; u16 tim_off, tim_len; enum wcn36xx_hal_link_state link_state; struct wcn36xx_vif *vif_priv = wcn36xx_vif_to_priv(vif); wcn36xx_dbg(WCN36XX_DBG_MAC, "mac bss info changed vif %p changed 0x%llx\n", vif, changed); mutex_lock(&wcn->conf_mutex); if (changed & BSS_CHANGED_BEACON_INFO) { wcn36xx_dbg(WCN36XX_DBG_MAC, "mac bss changed dtim period %d\n", bss_conf->dtim_period); vif_priv->dtim_period = bss_conf->dtim_period; } if (changed & BSS_CHANGED_BSSID) { wcn36xx_dbg(WCN36XX_DBG_MAC, "mac bss changed_bssid %pM\n", bss_conf->bssid); if (!is_zero_ether_addr(bss_conf->bssid)) { vif_priv->is_joining = true; vif_priv->bss_index = WCN36XX_HAL_BSS_INVALID_IDX; wcn36xx_smd_set_link_st(wcn, bss_conf->bssid, vif->addr, WCN36XX_HAL_LINK_PREASSOC_STATE); wcn36xx_smd_join(wcn, bss_conf->bssid, vif->addr, WCN36XX_HW_CHANNEL(wcn)); wcn36xx_smd_config_bss(wcn, vif, NULL, bss_conf->bssid, false); } else { vif_priv->is_joining = false; wcn36xx_smd_delete_bss(wcn, vif); wcn36xx_smd_set_link_st(wcn, bss_conf->bssid, vif->addr, WCN36XX_HAL_LINK_IDLE_STATE); vif_priv->encrypt_type = WCN36XX_HAL_ED_NONE; } } if (changed & BSS_CHANGED_SSID) { wcn36xx_dbg(WCN36XX_DBG_MAC, "mac bss changed ssid\n"); wcn36xx_dbg_dump(WCN36XX_DBG_MAC, "ssid ", vif->cfg.ssid, vif->cfg.ssid_len); vif_priv->ssid.length = vif->cfg.ssid_len; memcpy(&vif_priv->ssid.ssid, vif->cfg.ssid, vif->cfg.ssid_len); } if (changed & BSS_CHANGED_ASSOC) { vif_priv->is_joining = false; if (vif->cfg.assoc) { struct ieee80211_sta *sta; struct wcn36xx_sta *sta_priv; wcn36xx_dbg(WCN36XX_DBG_MAC, "mac assoc bss %pM vif %pM AID=%d\n", bss_conf->bssid, vif->addr, vif->cfg.aid); vif_priv->sta_assoc = true; /* * Holding conf_mutex ensures mutal exclusion with * wcn36xx_sta_remove() and as such ensures that sta * won't be freed while we're operating on it. As such * we do not need to hold the rcu_read_lock(). */ sta = ieee80211_find_sta(vif, bss_conf->bssid); if (!sta) { wcn36xx_err("sta %pM is not found\n", bss_conf->bssid); goto out; } sta_priv = wcn36xx_sta_to_priv(sta); wcn36xx_update_allowed_rates(sta, WCN36XX_BAND(wcn)); wcn36xx_smd_set_link_st(wcn, bss_conf->bssid, vif->addr, WCN36XX_HAL_LINK_POSTASSOC_STATE); wcn36xx_smd_config_bss(wcn, vif, sta, bss_conf->bssid, true); sta_priv->aid = vif->cfg.aid; /* * config_sta must be called from because this is the * place where AID is available. */ wcn36xx_smd_config_sta(wcn, vif, sta); if (vif->type == NL80211_IFTYPE_STATION) wcn36xx_smd_add_beacon_filter(wcn, vif); wcn36xx_enable_keep_alive_null_packet(wcn, vif); } else { wcn36xx_dbg(WCN36XX_DBG_MAC, "disassociated bss %pM vif %pM AID=%d\n", bss_conf->bssid, vif->addr, vif->cfg.aid); vif_priv->sta_assoc = false; wcn36xx_smd_set_link_st(wcn, bss_conf->bssid, vif->addr, WCN36XX_HAL_LINK_IDLE_STATE); } } if (changed & BSS_CHANGED_AP_PROBE_RESP) { wcn36xx_dbg(WCN36XX_DBG_MAC, "mac bss changed ap probe resp\n"); skb = ieee80211_proberesp_get(hw, vif); if (!skb) { wcn36xx_err("failed to alloc probereq skb\n"); goto out; } wcn36xx_smd_update_proberesp_tmpl(wcn, vif, skb); dev_kfree_skb(skb); } if (changed & BSS_CHANGED_BEACON_ENABLED || changed & BSS_CHANGED_BEACON) { wcn36xx_dbg(WCN36XX_DBG_MAC, "mac bss changed beacon enabled %d\n", bss_conf->enable_beacon); if (bss_conf->enable_beacon) { vif_priv->dtim_period = bss_conf->dtim_period; vif_priv->bss_index = WCN36XX_HAL_BSS_INVALID_IDX; wcn36xx_smd_config_bss(wcn, vif, NULL, vif->addr, false); skb = ieee80211_beacon_get_tim(hw, vif, &tim_off, &tim_len, 0); if (!skb) { wcn36xx_err("failed to alloc beacon skb\n"); goto out; } wcn36xx_smd_send_beacon(wcn, vif, skb, tim_off, 0); dev_kfree_skb(skb); if (vif->type == NL80211_IFTYPE_ADHOC || vif->type == NL80211_IFTYPE_MESH_POINT) link_state = WCN36XX_HAL_LINK_IBSS_STATE; else link_state = WCN36XX_HAL_LINK_AP_STATE; wcn36xx_smd_set_link_st(wcn, vif->addr, vif->addr, link_state); } else { wcn36xx_smd_delete_bss(wcn, vif); wcn36xx_smd_set_link_st(wcn, vif->addr, vif->addr, WCN36XX_HAL_LINK_IDLE_STATE); } } out: mutex_unlock(&wcn->conf_mutex); } /* this is required when using IEEE80211_HW_HAS_RATE_CONTROL */ static int wcn36xx_set_rts_threshold(struct ieee80211_hw *hw, u32 value) { struct wcn36xx *wcn = hw->priv; wcn36xx_dbg(WCN36XX_DBG_MAC, "mac set RTS threshold %d\n", value); mutex_lock(&wcn->conf_mutex); wcn36xx_smd_update_cfg(wcn, WCN36XX_HAL_CFG_RTS_THRESHOLD, value); mutex_unlock(&wcn->conf_mutex); return 0; } static void wcn36xx_remove_interface(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct wcn36xx *wcn = hw->priv; struct wcn36xx_vif *vif_priv = wcn36xx_vif_to_priv(vif); wcn36xx_dbg(WCN36XX_DBG_MAC, "mac remove interface vif %p\n", vif); mutex_lock(&wcn->conf_mutex); list_del(&vif_priv->list); wcn36xx_smd_delete_sta_self(wcn, vif->addr); mutex_unlock(&wcn->conf_mutex); } static int wcn36xx_add_interface(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct wcn36xx *wcn = hw->priv; struct wcn36xx_vif *vif_priv = wcn36xx_vif_to_priv(vif); wcn36xx_dbg(WCN36XX_DBG_MAC, "mac add interface vif %p type %d\n", vif, vif->type); if (!(NL80211_IFTYPE_STATION == vif->type || NL80211_IFTYPE_AP == vif->type || NL80211_IFTYPE_ADHOC == vif->type || NL80211_IFTYPE_MESH_POINT == vif->type)) { wcn36xx_warn("Unsupported interface type requested: %d\n", vif->type); return -EOPNOTSUPP; } mutex_lock(&wcn->conf_mutex); vif_priv->bss_index = WCN36XX_HAL_BSS_INVALID_IDX; INIT_LIST_HEAD(&vif_priv->sta_list); list_add(&vif_priv->list, &wcn->vif_list); wcn36xx_smd_add_sta_self(wcn, vif); mutex_unlock(&wcn->conf_mutex); return 0; } static int wcn36xx_sta_add(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_sta *sta) { struct wcn36xx *wcn = hw->priv; struct wcn36xx_vif *vif_priv = wcn36xx_vif_to_priv(vif); struct wcn36xx_sta *sta_priv = wcn36xx_sta_to_priv(sta); wcn36xx_dbg(WCN36XX_DBG_MAC, "mac sta add vif %p sta %pM\n", vif, sta->addr); mutex_lock(&wcn->conf_mutex); spin_lock_init(&sta_priv->ampdu_lock); sta_priv->vif = vif_priv; list_add(&sta_priv->list, &vif_priv->sta_list); /* * For STA mode HW will be configured on BSS_CHANGED_ASSOC because * at this stage AID is not available yet. */ if (NL80211_IFTYPE_STATION != vif->type) { wcn36xx_update_allowed_rates(sta, WCN36XX_BAND(wcn)); sta_priv->aid = sta->aid; wcn36xx_smd_config_sta(wcn, vif, sta); } mutex_unlock(&wcn->conf_mutex); return 0; } static int wcn36xx_sta_remove(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_sta *sta) { struct wcn36xx *wcn = hw->priv; struct wcn36xx_sta *sta_priv = wcn36xx_sta_to_priv(sta); wcn36xx_dbg(WCN36XX_DBG_MAC, "mac sta remove vif %p sta %pM index %d\n", vif, sta->addr, sta_priv->sta_index); mutex_lock(&wcn->conf_mutex); list_del(&sta_priv->list); wcn36xx_smd_delete_sta(wcn, sta_priv->sta_index); sta_priv->vif = NULL; mutex_unlock(&wcn->conf_mutex); return 0; } #ifdef CONFIG_PM static struct ieee80211_vif *wcn36xx_get_first_assoc_vif(struct wcn36xx *wcn) { struct wcn36xx_vif *vif_priv = NULL; struct ieee80211_vif *vif = NULL; list_for_each_entry(vif_priv, &wcn->vif_list, list) { if (vif_priv->sta_assoc) { vif = wcn36xx_priv_to_vif(vif_priv); break; } } return vif; } static int wcn36xx_suspend(struct ieee80211_hw *hw, struct cfg80211_wowlan *wow) { struct wcn36xx *wcn = hw->priv; struct ieee80211_vif *vif = NULL; int ret = 0; wcn36xx_dbg(WCN36XX_DBG_MAC, "mac suspend\n"); mutex_lock(&wcn->conf_mutex); vif = wcn36xx_get_first_assoc_vif(wcn); if (vif) { ret = wcn36xx_smd_arp_offload(wcn, vif, true); if (ret) goto out; ret = wcn36xx_smd_ipv6_ns_offload(wcn, vif, true); if (ret) goto out; ret = wcn36xx_smd_gtk_offload(wcn, vif, true); if (ret) goto out; ret = wcn36xx_smd_set_power_params(wcn, true); if (ret) goto out; ret = wcn36xx_smd_wlan_host_suspend_ind(wcn); } /* Disable IRQ, we don't want to handle any packet before mac80211 is * resumed and ready to receive packets. */ disable_irq(wcn->tx_irq); disable_irq(wcn->rx_irq); out: mutex_unlock(&wcn->conf_mutex); return ret; } static int wcn36xx_resume(struct ieee80211_hw *hw) { struct wcn36xx *wcn = hw->priv; struct ieee80211_vif *vif = NULL; wcn36xx_dbg(WCN36XX_DBG_MAC, "mac resume\n"); mutex_lock(&wcn->conf_mutex); vif = wcn36xx_get_first_assoc_vif(wcn); if (vif) { wcn36xx_smd_host_resume(wcn); wcn36xx_smd_set_power_params(wcn, false); wcn36xx_smd_gtk_offload_get_info(wcn, vif); wcn36xx_smd_gtk_offload(wcn, vif, false); wcn36xx_smd_ipv6_ns_offload(wcn, vif, false); wcn36xx_smd_arp_offload(wcn, vif, false); } enable_irq(wcn->tx_irq); enable_irq(wcn->rx_irq); mutex_unlock(&wcn->conf_mutex); return 0; } static void wcn36xx_set_rekey_data(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct cfg80211_gtk_rekey_data *data) { struct wcn36xx *wcn = hw->priv; struct wcn36xx_vif *vif_priv = wcn36xx_vif_to_priv(vif); mutex_lock(&wcn->conf_mutex); memcpy(vif_priv->rekey_data.kek, data->kek, NL80211_KEK_LEN); memcpy(vif_priv->rekey_data.kck, data->kck, NL80211_KCK_LEN); vif_priv->rekey_data.replay_ctr = cpu_to_le64(be64_to_cpup((__be64 *)data->replay_ctr)); vif_priv->rekey_data.valid = true; mutex_unlock(&wcn->conf_mutex); } #endif static int wcn36xx_ampdu_action(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_ampdu_params *params) { struct wcn36xx *wcn = hw->priv; struct wcn36xx_sta *sta_priv = wcn36xx_sta_to_priv(params->sta); struct ieee80211_sta *sta = params->sta; enum ieee80211_ampdu_mlme_action action = params->action; u16 tid = params->tid; u16 *ssn = ¶ms->ssn; int ret = 0; int session; wcn36xx_dbg(WCN36XX_DBG_MAC, "mac ampdu action action %d tid %d\n", action, tid); mutex_lock(&wcn->conf_mutex); switch (action) { case IEEE80211_AMPDU_RX_START: sta_priv->tid = tid; session = wcn36xx_smd_add_ba_session(wcn, sta, tid, ssn, 0, get_sta_index(vif, sta_priv)); if (session < 0) { ret = session; goto out; } wcn36xx_smd_add_ba(wcn, session); break; case IEEE80211_AMPDU_RX_STOP: wcn36xx_smd_del_ba(wcn, tid, 0, get_sta_index(vif, sta_priv)); break; case IEEE80211_AMPDU_TX_START: spin_lock_bh(&sta_priv->ampdu_lock); sta_priv->ampdu_state[tid] = WCN36XX_AMPDU_START; spin_unlock_bh(&sta_priv->ampdu_lock); /* Replace the mac80211 ssn with the firmware one */ wcn36xx_dbg(WCN36XX_DBG_MAC, "mac ampdu ssn = %u\n", *ssn); wcn36xx_smd_trigger_ba(wcn, get_sta_index(vif, sta_priv), tid, ssn); wcn36xx_dbg(WCN36XX_DBG_MAC, "mac ampdu fw-ssn = %u\n", *ssn); /* Start BA session */ session = wcn36xx_smd_add_ba_session(wcn, sta, tid, ssn, 1, get_sta_index(vif, sta_priv)); if (session < 0) { ret = session; goto out; } ret = IEEE80211_AMPDU_TX_START_IMMEDIATE; break; case IEEE80211_AMPDU_TX_OPERATIONAL: spin_lock_bh(&sta_priv->ampdu_lock); sta_priv->ampdu_state[tid] = WCN36XX_AMPDU_OPERATIONAL; spin_unlock_bh(&sta_priv->ampdu_lock); break; case IEEE80211_AMPDU_TX_STOP_FLUSH: case IEEE80211_AMPDU_TX_STOP_FLUSH_CONT: case IEEE80211_AMPDU_TX_STOP_CONT: spin_lock_bh(&sta_priv->ampdu_lock); sta_priv->ampdu_state[tid] = WCN36XX_AMPDU_NONE; spin_unlock_bh(&sta_priv->ampdu_lock); wcn36xx_smd_del_ba(wcn, tid, 1, get_sta_index(vif, sta_priv)); ieee80211_stop_tx_ba_cb_irqsafe(vif, sta->addr, tid); break; default: wcn36xx_err("Unknown AMPDU action\n"); } out: mutex_unlock(&wcn->conf_mutex); return ret; } #if IS_ENABLED(CONFIG_IPV6) static void wcn36xx_ipv6_addr_change(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct inet6_dev *idev) { struct wcn36xx_vif *vif_priv = wcn36xx_vif_to_priv(vif); struct inet6_ifaddr *ifa; int idx = 0; memset(vif_priv->tentative_addrs, 0, sizeof(vif_priv->tentative_addrs)); read_lock_bh(&idev->lock); list_for_each_entry(ifa, &idev->addr_list, if_list) { vif_priv->target_ipv6_addrs[idx] = ifa->addr; if (ifa->flags & IFA_F_TENTATIVE) __set_bit(idx, vif_priv->tentative_addrs); idx++; if (idx >= WCN36XX_HAL_IPV6_OFFLOAD_ADDR_MAX) break; wcn36xx_dbg(WCN36XX_DBG_MAC, "%pI6 %s\n", &ifa->addr, (ifa->flags & IFA_F_TENTATIVE) ? "tentative" : NULL); } read_unlock_bh(&idev->lock); vif_priv->num_target_ipv6_addrs = idx; } #endif static void wcn36xx_flush(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u32 queues, bool drop) { struct wcn36xx *wcn = hw->priv; if (wcn36xx_dxe_tx_flush(wcn)) { wcn36xx_err("Failed to flush hardware tx queues\n"); } } static int wcn36xx_get_survey(struct ieee80211_hw *hw, int idx, struct survey_info *survey) { struct wcn36xx *wcn = hw->priv; struct ieee80211_supported_band *sband; struct wcn36xx_chan_survey *chan_survey; int band_idx; unsigned long flags; sband = wcn->hw->wiphy->bands[NL80211_BAND_2GHZ]; band_idx = idx; if (band_idx >= sband->n_channels) { band_idx -= sband->n_channels; sband = wcn->hw->wiphy->bands[NL80211_BAND_5GHZ]; } if (!sband || band_idx >= sband->n_channels) return -ENOENT; spin_lock_irqsave(&wcn->survey_lock, flags); chan_survey = &wcn->chan_survey[idx]; survey->channel = &sband->channels[band_idx]; survey->noise = chan_survey->rssi - chan_survey->snr; survey->filled = 0; if (chan_survey->rssi > -100 && chan_survey->rssi < 0) survey->filled |= SURVEY_INFO_NOISE_DBM; if (survey->channel == wcn->channel) survey->filled |= SURVEY_INFO_IN_USE; spin_unlock_irqrestore(&wcn->survey_lock, flags); wcn36xx_dbg(WCN36XX_DBG_MAC, "ch %d rssi %d snr %d noise %d filled %x freq %d\n", HW_VALUE_CHANNEL(survey->channel->hw_value), chan_survey->rssi, chan_survey->snr, survey->noise, survey->filled, survey->channel->center_freq); return 0; } static void wcn36xx_sta_statistics(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_sta *sta, struct station_info *sinfo) { struct wcn36xx *wcn; u8 sta_index; int status; wcn = hw->priv; sta_index = get_sta_index(vif, wcn36xx_sta_to_priv(sta)); status = wcn36xx_smd_get_stats(wcn, sta_index, HAL_GLOBAL_CLASS_A_STATS_INFO, sinfo); if (status) wcn36xx_err("wcn36xx_smd_get_stats failed\n"); } static const struct ieee80211_ops wcn36xx_ops = { .start = wcn36xx_start, .stop = wcn36xx_stop, .add_interface = wcn36xx_add_interface, .remove_interface = wcn36xx_remove_interface, #ifdef CONFIG_PM .suspend = wcn36xx_suspend, .resume = wcn36xx_resume, .set_rekey_data = wcn36xx_set_rekey_data, #endif .config = wcn36xx_config, .prepare_multicast = wcn36xx_prepare_multicast, .configure_filter = wcn36xx_configure_filter, .tx = wcn36xx_tx, .wake_tx_queue = ieee80211_handle_wake_tx_queue, .set_key = wcn36xx_set_key, .hw_scan = wcn36xx_hw_scan, .cancel_hw_scan = wcn36xx_cancel_hw_scan, .sw_scan_start = wcn36xx_sw_scan_start, .sw_scan_complete = wcn36xx_sw_scan_complete, .bss_info_changed = wcn36xx_bss_info_changed, .set_rts_threshold = wcn36xx_set_rts_threshold, .sta_add = wcn36xx_sta_add, .sta_remove = wcn36xx_sta_remove, .sta_statistics = wcn36xx_sta_statistics, .ampdu_action = wcn36xx_ampdu_action, #if IS_ENABLED(CONFIG_IPV6) .ipv6_addr_change = wcn36xx_ipv6_addr_change, #endif .flush = wcn36xx_flush, .get_survey = wcn36xx_get_survey, CFG80211_TESTMODE_CMD(wcn36xx_tm_cmd) }; static void wcn36xx_set_ieee80211_vht_caps(struct ieee80211_sta_vht_cap *vht_cap) { vht_cap->vht_supported = true; vht_cap->cap = (IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895 | IEEE80211_VHT_CAP_SHORT_GI_80 | IEEE80211_VHT_CAP_RXSTBC_1 | IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE | IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE | 3 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT | 7 << IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT); vht_cap->vht_mcs.rx_mcs_map = cpu_to_le16(IEEE80211_VHT_MCS_SUPPORT_0_9 | IEEE80211_VHT_MCS_NOT_SUPPORTED << 2 | IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 | IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 | IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 | IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 | IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 | IEEE80211_VHT_MCS_NOT_SUPPORTED << 14); vht_cap->vht_mcs.rx_highest = cpu_to_le16(433); vht_cap->vht_mcs.tx_highest = vht_cap->vht_mcs.rx_highest; vht_cap->vht_mcs.tx_mcs_map = vht_cap->vht_mcs.rx_mcs_map; } static int wcn36xx_init_ieee80211(struct wcn36xx *wcn) { static const u32 cipher_suites[] = { WLAN_CIPHER_SUITE_WEP40, WLAN_CIPHER_SUITE_WEP104, WLAN_CIPHER_SUITE_TKIP, WLAN_CIPHER_SUITE_CCMP, }; ieee80211_hw_set(wcn->hw, TIMING_BEACON_ONLY); ieee80211_hw_set(wcn->hw, AMPDU_AGGREGATION); ieee80211_hw_set(wcn->hw, SUPPORTS_PS); ieee80211_hw_set(wcn->hw, SIGNAL_DBM); ieee80211_hw_set(wcn->hw, HAS_RATE_CONTROL); ieee80211_hw_set(wcn->hw, SINGLE_SCAN_ON_ALL_BANDS); ieee80211_hw_set(wcn->hw, REPORTS_TX_ACK_STATUS); wcn->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION) | BIT(NL80211_IFTYPE_AP) | BIT(NL80211_IFTYPE_ADHOC) | BIT(NL80211_IFTYPE_MESH_POINT); wcn->hw->wiphy->bands[NL80211_BAND_2GHZ] = &wcn_band_2ghz; if (wcn->rf_id != RF_IRIS_WCN3620) wcn->hw->wiphy->bands[NL80211_BAND_5GHZ] = &wcn_band_5ghz; if (wcn->rf_id == RF_IRIS_WCN3680) wcn36xx_set_ieee80211_vht_caps(&wcn_band_5ghz.vht_cap); wcn->hw->wiphy->max_scan_ssids = WCN36XX_MAX_SCAN_SSIDS; wcn->hw->wiphy->max_scan_ie_len = WCN36XX_MAX_SCAN_IE_LEN; wcn->hw->wiphy->cipher_suites = cipher_suites; wcn->hw->wiphy->n_cipher_suites = ARRAY_SIZE(cipher_suites); #ifdef CONFIG_PM wcn->hw->wiphy->wowlan = &wowlan_support; #endif wcn->hw->max_listen_interval = 200; wcn->hw->queues = 4; SET_IEEE80211_DEV(wcn->hw, wcn->dev); wcn->hw->sta_data_size = sizeof(struct wcn36xx_sta); wcn->hw->vif_data_size = sizeof(struct wcn36xx_vif); wiphy_ext_feature_set(wcn->hw->wiphy, NL80211_EXT_FEATURE_CQM_RSSI_LIST); return 0; } static int wcn36xx_platform_get_resources(struct wcn36xx *wcn, struct platform_device *pdev) { struct device_node *mmio_node; struct device_node *iris_node; int index; int ret; /* Set TX IRQ */ ret = platform_get_irq_byname(pdev, "tx"); if (ret < 0) return ret; wcn->tx_irq = ret; /* Set RX IRQ */ ret = platform_get_irq_byname(pdev, "rx"); if (ret < 0) return ret; wcn->rx_irq = ret; /* Acquire SMSM tx enable handle */ wcn->tx_enable_state = qcom_smem_state_get(&pdev->dev, "tx-enable", &wcn->tx_enable_state_bit); if (IS_ERR(wcn->tx_enable_state)) { wcn36xx_err("failed to get tx-enable state\n"); return PTR_ERR(wcn->tx_enable_state); } /* Acquire SMSM tx rings empty handle */ wcn->tx_rings_empty_state = qcom_smem_state_get(&pdev->dev, "tx-rings-empty", &wcn->tx_rings_empty_state_bit); if (IS_ERR(wcn->tx_rings_empty_state)) { wcn36xx_err("failed to get tx-rings-empty state\n"); return PTR_ERR(wcn->tx_rings_empty_state); } mmio_node = of_parse_phandle(pdev->dev.parent->of_node, "qcom,mmio", 0); if (!mmio_node) { wcn36xx_err("failed to acquire qcom,mmio reference\n"); return -EINVAL; } wcn->is_pronto = !!of_device_is_compatible(mmio_node, "qcom,pronto"); wcn->is_pronto_v3 = !!of_device_is_compatible(mmio_node, "qcom,pronto-v3-pil"); /* Map the CCU memory */ index = of_property_match_string(mmio_node, "reg-names", "ccu"); wcn->ccu_base = of_iomap(mmio_node, index); if (!wcn->ccu_base) { wcn36xx_err("failed to map ccu memory\n"); ret = -ENOMEM; goto put_mmio_node; } /* Map the DXE memory */ index = of_property_match_string(mmio_node, "reg-names", "dxe"); wcn->dxe_base = of_iomap(mmio_node, index); if (!wcn->dxe_base) { wcn36xx_err("failed to map dxe memory\n"); ret = -ENOMEM; goto unmap_ccu; } /* External RF module */ iris_node = of_get_child_by_name(mmio_node, "iris"); if (iris_node) { if (of_device_is_compatible(iris_node, "qcom,wcn3620")) wcn->rf_id = RF_IRIS_WCN3620; if (of_device_is_compatible(iris_node, "qcom,wcn3660") || of_device_is_compatible(iris_node, "qcom,wcn3660b")) wcn->rf_id = RF_IRIS_WCN3660; if (of_device_is_compatible(iris_node, "qcom,wcn3680")) wcn->rf_id = RF_IRIS_WCN3680; of_node_put(iris_node); } of_node_put(mmio_node); return 0; unmap_ccu: iounmap(wcn->ccu_base); put_mmio_node: of_node_put(mmio_node); return ret; } static int wcn36xx_probe(struct platform_device *pdev) { struct ieee80211_hw *hw; struct wcn36xx *wcn; void *wcnss; int ret; const u8 *addr; int n_channels; wcn36xx_dbg(WCN36XX_DBG_MAC, "platform probe\n"); wcnss = dev_get_drvdata(pdev->dev.parent); hw = ieee80211_alloc_hw(sizeof(struct wcn36xx), &wcn36xx_ops); if (!hw) { wcn36xx_err("failed to alloc hw\n"); ret = -ENOMEM; goto out_err; } platform_set_drvdata(pdev, hw); wcn = hw->priv; wcn->hw = hw; wcn->dev = &pdev->dev; wcn->first_boot = true; mutex_init(&wcn->conf_mutex); mutex_init(&wcn->hal_mutex); mutex_init(&wcn->scan_lock); __skb_queue_head_init(&wcn->amsdu); wcn->hal_buf = devm_kmalloc(wcn->dev, WCN36XX_HAL_BUF_SIZE, GFP_KERNEL); if (!wcn->hal_buf) { ret = -ENOMEM; goto out_wq; } n_channels = wcn_band_2ghz.n_channels + wcn_band_5ghz.n_channels; wcn->chan_survey = devm_kmalloc(wcn->dev, n_channels, GFP_KERNEL); if (!wcn->chan_survey) { ret = -ENOMEM; goto out_wq; } ret = dma_set_mask_and_coherent(wcn->dev, DMA_BIT_MASK(32)); if (ret < 0) { wcn36xx_err("failed to set DMA mask: %d\n", ret); goto out_wq; } wcn->nv_file = WLAN_NV_FILE; ret = of_property_read_string(wcn->dev->parent->of_node, "firmware-name", &wcn->nv_file); if (ret < 0 && ret != -EINVAL) { wcn36xx_err("failed to read \"firmware-name\" property: %d\n", ret); goto out_wq; } wcn->smd_channel = qcom_wcnss_open_channel(wcnss, "WLAN_CTRL", wcn36xx_smd_rsp_process, hw); if (IS_ERR(wcn->smd_channel)) { wcn36xx_err("failed to open WLAN_CTRL channel\n"); ret = PTR_ERR(wcn->smd_channel); goto out_wq; } addr = of_get_property(pdev->dev.of_node, "local-mac-address", &ret); if (addr && ret != ETH_ALEN) { wcn36xx_err("invalid local-mac-address\n"); ret = -EINVAL; goto out_destroy_ept; } else if (addr) { wcn36xx_info("mac address: %pM\n", addr); SET_IEEE80211_PERM_ADDR(wcn->hw, addr); } ret = wcn36xx_platform_get_resources(wcn, pdev); if (ret) goto out_destroy_ept; wcn36xx_init_ieee80211(wcn); ret = ieee80211_register_hw(wcn->hw); if (ret) goto out_unmap; return 0; out_unmap: iounmap(wcn->ccu_base); iounmap(wcn->dxe_base); out_destroy_ept: rpmsg_destroy_ept(wcn->smd_channel); out_wq: ieee80211_free_hw(hw); out_err: return ret; } static int wcn36xx_remove(struct platform_device *pdev) { struct ieee80211_hw *hw = platform_get_drvdata(pdev); struct wcn36xx *wcn = hw->priv; wcn36xx_dbg(WCN36XX_DBG_MAC, "platform remove\n"); release_firmware(wcn->nv); ieee80211_unregister_hw(hw); qcom_smem_state_put(wcn->tx_enable_state); qcom_smem_state_put(wcn->tx_rings_empty_state); rpmsg_destroy_ept(wcn->smd_channel); iounmap(wcn->dxe_base); iounmap(wcn->ccu_base); __skb_queue_purge(&wcn->amsdu); mutex_destroy(&wcn->hal_mutex); ieee80211_free_hw(hw); return 0; } static const struct of_device_id wcn36xx_of_match[] = { { .compatible = "qcom,wcnss-wlan" }, {} }; MODULE_DEVICE_TABLE(of, wcn36xx_of_match); static struct platform_driver wcn36xx_driver = { .probe = wcn36xx_probe, .remove = wcn36xx_remove, .driver = { .name = "wcn36xx", .of_match_table = wcn36xx_of_match, }, }; module_platform_driver(wcn36xx_driver); MODULE_LICENSE("Dual BSD/GPL"); MODULE_AUTHOR("Eugene Krasnikov k.eugene.e@gmail.com"); MODULE_FIRMWARE(WLAN_NV_FILE);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1