Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Hante Meuleman | 6980 | 56.99% | 30 | 20.00% |
Hector Martin | 2246 | 18.34% | 19 | 12.67% |
Arend Van Spriel | 929 | 7.59% | 36 | 24.00% |
Franky Lin | 908 | 7.41% | 20 | 13.33% |
Wright Feng | 532 | 4.34% | 5 | 3.33% |
Rafał Miłecki | 469 | 3.83% | 13 | 8.67% |
Hans de Goede | 46 | 0.38% | 2 | 1.33% |
Konrad Dybcio | 17 | 0.14% | 1 | 0.67% |
brian m. carlson | 16 | 0.13% | 1 | 0.67% |
Seung-Woo Kim | 15 | 0.12% | 1 | 0.67% |
Chung-Hsien Hsu | 14 | 0.11% | 1 | 0.67% |
Eric Caruso | 12 | 0.10% | 1 | 0.67% |
Dan Carpenter | 9 | 0.07% | 2 | 1.33% |
Matthias Brugger | 8 | 0.07% | 2 | 1.33% |
Jia-Shyr Chuang | 6 | 0.05% | 1 | 0.67% |
Alexander Prutskov | 6 | 0.05% | 1 | 0.67% |
Winnie Chang | 5 | 0.04% | 1 | 0.67% |
Soontak Lee | 5 | 0.04% | 1 | 0.67% |
Ahmad Fatoum | 4 | 0.03% | 1 | 0.67% |
Johannes Berg | 4 | 0.03% | 1 | 0.67% |
Greg Kroah-Hartman | 4 | 0.03% | 1 | 0.67% |
Arvind Yadav | 2 | 0.02% | 1 | 0.67% |
Christoph Hellwig | 2 | 0.02% | 1 | 0.67% |
Luis R. Rodriguez | 2 | 0.02% | 1 | 0.67% |
Dan Haab | 1 | 0.01% | 1 | 0.67% |
Ingo Molnar | 1 | 0.01% | 1 | 0.67% |
Julia Lawall | 1 | 0.01% | 1 | 0.67% |
Wang Yufen | 1 | 0.01% | 1 | 0.67% |
Lee Jones | 1 | 0.01% | 1 | 0.67% |
Stephen Rothwell | 1 | 0.01% | 1 | 0.67% |
Total | 12247 | 150 |
// SPDX-License-Identifier: ISC /* * Copyright (c) 2014 Broadcom Corporation */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/firmware.h> #include <linux/pci.h> #include <linux/vmalloc.h> #include <linux/delay.h> #include <linux/interrupt.h> #include <linux/bcma/bcma.h> #include <linux/sched.h> #include <linux/sched/signal.h> #include <linux/kthread.h> #include <linux/io.h> #include <linux/random.h> #include <asm/unaligned.h> #include <soc.h> #include <chipcommon.h> #include <brcmu_utils.h> #include <brcmu_wifi.h> #include <brcm_hw_ids.h> /* Custom brcmf_err() that takes bus arg and passes it further */ #define brcmf_err(bus, fmt, ...) \ do { \ if (IS_ENABLED(CONFIG_BRCMDBG) || \ IS_ENABLED(CONFIG_BRCM_TRACING) || \ net_ratelimit()) \ __brcmf_err(bus, __func__, fmt, ##__VA_ARGS__); \ } while (0) #include "debug.h" #include "bus.h" #include "commonring.h" #include "msgbuf.h" #include "pcie.h" #include "firmware.h" #include "chip.h" #include "core.h" #include "common.h" enum brcmf_pcie_state { BRCMFMAC_PCIE_STATE_DOWN, BRCMFMAC_PCIE_STATE_UP }; BRCMF_FW_DEF(43602, "brcmfmac43602-pcie"); BRCMF_FW_DEF(4350, "brcmfmac4350-pcie"); BRCMF_FW_DEF(4350C, "brcmfmac4350c2-pcie"); BRCMF_FW_CLM_DEF(4355, "brcmfmac4355-pcie"); BRCMF_FW_CLM_DEF(4355C1, "brcmfmac4355c1-pcie"); BRCMF_FW_CLM_DEF(4356, "brcmfmac4356-pcie"); BRCMF_FW_CLM_DEF(43570, "brcmfmac43570-pcie"); BRCMF_FW_DEF(4358, "brcmfmac4358-pcie"); BRCMF_FW_DEF(4359, "brcmfmac4359-pcie"); BRCMF_FW_DEF(4359C, "brcmfmac4359c-pcie"); BRCMF_FW_CLM_DEF(4364B2, "brcmfmac4364b2-pcie"); BRCMF_FW_CLM_DEF(4364B3, "brcmfmac4364b3-pcie"); BRCMF_FW_DEF(4365B, "brcmfmac4365b-pcie"); BRCMF_FW_DEF(4365C, "brcmfmac4365c-pcie"); BRCMF_FW_DEF(4366B, "brcmfmac4366b-pcie"); BRCMF_FW_DEF(4366C, "brcmfmac4366c-pcie"); BRCMF_FW_DEF(4371, "brcmfmac4371-pcie"); BRCMF_FW_CLM_DEF(4377B3, "brcmfmac4377b3-pcie"); BRCMF_FW_CLM_DEF(4378B1, "brcmfmac4378b1-pcie"); BRCMF_FW_CLM_DEF(4378B3, "brcmfmac4378b3-pcie"); BRCMF_FW_CLM_DEF(4387C2, "brcmfmac4387c2-pcie"); /* firmware config files */ MODULE_FIRMWARE(BRCMF_FW_DEFAULT_PATH "brcmfmac*-pcie.txt"); MODULE_FIRMWARE(BRCMF_FW_DEFAULT_PATH "brcmfmac*-pcie.*.txt"); /* per-board firmware binaries */ MODULE_FIRMWARE(BRCMF_FW_DEFAULT_PATH "brcmfmac*-pcie.*.bin"); MODULE_FIRMWARE(BRCMF_FW_DEFAULT_PATH "brcmfmac*-pcie.*.clm_blob"); MODULE_FIRMWARE(BRCMF_FW_DEFAULT_PATH "brcmfmac*-pcie.*.txcap_blob"); static const struct brcmf_firmware_mapping brcmf_pcie_fwnames[] = { BRCMF_FW_ENTRY(BRCM_CC_43602_CHIP_ID, 0xFFFFFFFF, 43602), BRCMF_FW_ENTRY(BRCM_CC_43465_CHIP_ID, 0xFFFFFFF0, 4366C), BRCMF_FW_ENTRY(BRCM_CC_4350_CHIP_ID, 0x000000FF, 4350C), BRCMF_FW_ENTRY(BRCM_CC_4350_CHIP_ID, 0xFFFFFF00, 4350), BRCMF_FW_ENTRY(BRCM_CC_43525_CHIP_ID, 0xFFFFFFF0, 4365C), BRCMF_FW_ENTRY(BRCM_CC_4355_CHIP_ID, 0x000007FF, 4355), BRCMF_FW_ENTRY(BRCM_CC_4355_CHIP_ID, 0xFFFFF800, 4355C1), /* rev ID 12/C2 seen */ BRCMF_FW_ENTRY(BRCM_CC_4356_CHIP_ID, 0xFFFFFFFF, 4356), BRCMF_FW_ENTRY(BRCM_CC_43567_CHIP_ID, 0xFFFFFFFF, 43570), BRCMF_FW_ENTRY(BRCM_CC_43569_CHIP_ID, 0xFFFFFFFF, 43570), BRCMF_FW_ENTRY(BRCM_CC_43570_CHIP_ID, 0xFFFFFFFF, 43570), BRCMF_FW_ENTRY(BRCM_CC_4358_CHIP_ID, 0xFFFFFFFF, 4358), BRCMF_FW_ENTRY(BRCM_CC_4359_CHIP_ID, 0x000001FF, 4359), BRCMF_FW_ENTRY(BRCM_CC_4359_CHIP_ID, 0xFFFFFE00, 4359C), BRCMF_FW_ENTRY(BRCM_CC_4364_CHIP_ID, 0x0000000F, 4364B2), /* 3 */ BRCMF_FW_ENTRY(BRCM_CC_4364_CHIP_ID, 0xFFFFFFF0, 4364B3), /* 4 */ BRCMF_FW_ENTRY(BRCM_CC_4365_CHIP_ID, 0x0000000F, 4365B), BRCMF_FW_ENTRY(BRCM_CC_4365_CHIP_ID, 0xFFFFFFF0, 4365C), BRCMF_FW_ENTRY(BRCM_CC_4366_CHIP_ID, 0x0000000F, 4366B), BRCMF_FW_ENTRY(BRCM_CC_4366_CHIP_ID, 0xFFFFFFF0, 4366C), BRCMF_FW_ENTRY(BRCM_CC_43664_CHIP_ID, 0xFFFFFFF0, 4366C), BRCMF_FW_ENTRY(BRCM_CC_43666_CHIP_ID, 0xFFFFFFF0, 4366C), BRCMF_FW_ENTRY(BRCM_CC_4371_CHIP_ID, 0xFFFFFFFF, 4371), BRCMF_FW_ENTRY(BRCM_CC_4377_CHIP_ID, 0xFFFFFFFF, 4377B3), /* revision ID 4 */ BRCMF_FW_ENTRY(BRCM_CC_4378_CHIP_ID, 0x0000000F, 4378B1), /* revision ID 3 */ BRCMF_FW_ENTRY(BRCM_CC_4378_CHIP_ID, 0xFFFFFFE0, 4378B3), /* revision ID 5 */ BRCMF_FW_ENTRY(BRCM_CC_4387_CHIP_ID, 0xFFFFFFFF, 4387C2), /* revision ID 7 */ }; #define BRCMF_PCIE_FW_UP_TIMEOUT 5000 /* msec */ #define BRCMF_PCIE_REG_MAP_SIZE (32 * 1024) /* backplane addres space accessed by BAR0 */ #define BRCMF_PCIE_BAR0_WINDOW 0x80 #define BRCMF_PCIE_BAR0_REG_SIZE 0x1000 #define BRCMF_PCIE_BAR0_WRAPPERBASE 0x70 #define BRCMF_PCIE_BAR0_WRAPBASE_DMP_OFFSET 0x1000 #define BRCMF_PCIE_BARO_PCIE_ENUM_OFFSET 0x2000 #define BRCMF_PCIE_ARMCR4REG_BANKIDX 0x40 #define BRCMF_PCIE_ARMCR4REG_BANKPDA 0x4C #define BRCMF_PCIE_REG_INTSTATUS 0x90 #define BRCMF_PCIE_REG_INTMASK 0x94 #define BRCMF_PCIE_REG_SBMBX 0x98 #define BRCMF_PCIE_REG_LINK_STATUS_CTRL 0xBC #define BRCMF_PCIE_PCIE2REG_INTMASK 0x24 #define BRCMF_PCIE_PCIE2REG_MAILBOXINT 0x48 #define BRCMF_PCIE_PCIE2REG_MAILBOXMASK 0x4C #define BRCMF_PCIE_PCIE2REG_CONFIGADDR 0x120 #define BRCMF_PCIE_PCIE2REG_CONFIGDATA 0x124 #define BRCMF_PCIE_PCIE2REG_H2D_MAILBOX_0 0x140 #define BRCMF_PCIE_PCIE2REG_H2D_MAILBOX_1 0x144 #define BRCMF_PCIE_64_PCIE2REG_INTMASK 0xC14 #define BRCMF_PCIE_64_PCIE2REG_MAILBOXINT 0xC30 #define BRCMF_PCIE_64_PCIE2REG_MAILBOXMASK 0xC34 #define BRCMF_PCIE_64_PCIE2REG_H2D_MAILBOX_0 0xA20 #define BRCMF_PCIE_64_PCIE2REG_H2D_MAILBOX_1 0xA24 #define BRCMF_PCIE2_INTA 0x01 #define BRCMF_PCIE2_INTB 0x02 #define BRCMF_PCIE_INT_0 0x01 #define BRCMF_PCIE_INT_1 0x02 #define BRCMF_PCIE_INT_DEF (BRCMF_PCIE_INT_0 | \ BRCMF_PCIE_INT_1) #define BRCMF_PCIE_MB_INT_FN0_0 0x0100 #define BRCMF_PCIE_MB_INT_FN0_1 0x0200 #define BRCMF_PCIE_MB_INT_D2H0_DB0 0x10000 #define BRCMF_PCIE_MB_INT_D2H0_DB1 0x20000 #define BRCMF_PCIE_MB_INT_D2H1_DB0 0x40000 #define BRCMF_PCIE_MB_INT_D2H1_DB1 0x80000 #define BRCMF_PCIE_MB_INT_D2H2_DB0 0x100000 #define BRCMF_PCIE_MB_INT_D2H2_DB1 0x200000 #define BRCMF_PCIE_MB_INT_D2H3_DB0 0x400000 #define BRCMF_PCIE_MB_INT_D2H3_DB1 0x800000 #define BRCMF_PCIE_MB_INT_FN0 (BRCMF_PCIE_MB_INT_FN0_0 | \ BRCMF_PCIE_MB_INT_FN0_1) #define BRCMF_PCIE_MB_INT_D2H_DB (BRCMF_PCIE_MB_INT_D2H0_DB0 | \ BRCMF_PCIE_MB_INT_D2H0_DB1 | \ BRCMF_PCIE_MB_INT_D2H1_DB0 | \ BRCMF_PCIE_MB_INT_D2H1_DB1 | \ BRCMF_PCIE_MB_INT_D2H2_DB0 | \ BRCMF_PCIE_MB_INT_D2H2_DB1 | \ BRCMF_PCIE_MB_INT_D2H3_DB0 | \ BRCMF_PCIE_MB_INT_D2H3_DB1) #define BRCMF_PCIE_64_MB_INT_D2H0_DB0 0x1 #define BRCMF_PCIE_64_MB_INT_D2H0_DB1 0x2 #define BRCMF_PCIE_64_MB_INT_D2H1_DB0 0x4 #define BRCMF_PCIE_64_MB_INT_D2H1_DB1 0x8 #define BRCMF_PCIE_64_MB_INT_D2H2_DB0 0x10 #define BRCMF_PCIE_64_MB_INT_D2H2_DB1 0x20 #define BRCMF_PCIE_64_MB_INT_D2H3_DB0 0x40 #define BRCMF_PCIE_64_MB_INT_D2H3_DB1 0x80 #define BRCMF_PCIE_64_MB_INT_D2H4_DB0 0x100 #define BRCMF_PCIE_64_MB_INT_D2H4_DB1 0x200 #define BRCMF_PCIE_64_MB_INT_D2H5_DB0 0x400 #define BRCMF_PCIE_64_MB_INT_D2H5_DB1 0x800 #define BRCMF_PCIE_64_MB_INT_D2H6_DB0 0x1000 #define BRCMF_PCIE_64_MB_INT_D2H6_DB1 0x2000 #define BRCMF_PCIE_64_MB_INT_D2H7_DB0 0x4000 #define BRCMF_PCIE_64_MB_INT_D2H7_DB1 0x8000 #define BRCMF_PCIE_64_MB_INT_D2H_DB (BRCMF_PCIE_64_MB_INT_D2H0_DB0 | \ BRCMF_PCIE_64_MB_INT_D2H0_DB1 | \ BRCMF_PCIE_64_MB_INT_D2H1_DB0 | \ BRCMF_PCIE_64_MB_INT_D2H1_DB1 | \ BRCMF_PCIE_64_MB_INT_D2H2_DB0 | \ BRCMF_PCIE_64_MB_INT_D2H2_DB1 | \ BRCMF_PCIE_64_MB_INT_D2H3_DB0 | \ BRCMF_PCIE_64_MB_INT_D2H3_DB1 | \ BRCMF_PCIE_64_MB_INT_D2H4_DB0 | \ BRCMF_PCIE_64_MB_INT_D2H4_DB1 | \ BRCMF_PCIE_64_MB_INT_D2H5_DB0 | \ BRCMF_PCIE_64_MB_INT_D2H5_DB1 | \ BRCMF_PCIE_64_MB_INT_D2H6_DB0 | \ BRCMF_PCIE_64_MB_INT_D2H6_DB1 | \ BRCMF_PCIE_64_MB_INT_D2H7_DB0 | \ BRCMF_PCIE_64_MB_INT_D2H7_DB1) #define BRCMF_PCIE_SHARED_VERSION_7 7 #define BRCMF_PCIE_MIN_SHARED_VERSION 5 #define BRCMF_PCIE_MAX_SHARED_VERSION BRCMF_PCIE_SHARED_VERSION_7 #define BRCMF_PCIE_SHARED_VERSION_MASK 0x00FF #define BRCMF_PCIE_SHARED_DMA_INDEX 0x10000 #define BRCMF_PCIE_SHARED_DMA_2B_IDX 0x100000 #define BRCMF_PCIE_SHARED_HOSTRDY_DB1 0x10000000 #define BRCMF_PCIE_FLAGS_HTOD_SPLIT 0x4000 #define BRCMF_PCIE_FLAGS_DTOH_SPLIT 0x8000 #define BRCMF_SHARED_MAX_RXBUFPOST_OFFSET 34 #define BRCMF_SHARED_RING_BASE_OFFSET 52 #define BRCMF_SHARED_RX_DATAOFFSET_OFFSET 36 #define BRCMF_SHARED_CONSOLE_ADDR_OFFSET 20 #define BRCMF_SHARED_HTOD_MB_DATA_ADDR_OFFSET 40 #define BRCMF_SHARED_DTOH_MB_DATA_ADDR_OFFSET 44 #define BRCMF_SHARED_RING_INFO_ADDR_OFFSET 48 #define BRCMF_SHARED_DMA_SCRATCH_LEN_OFFSET 52 #define BRCMF_SHARED_DMA_SCRATCH_ADDR_OFFSET 56 #define BRCMF_SHARED_DMA_RINGUPD_LEN_OFFSET 64 #define BRCMF_SHARED_DMA_RINGUPD_ADDR_OFFSET 68 #define BRCMF_RING_H2D_RING_COUNT_OFFSET 0 #define BRCMF_RING_D2H_RING_COUNT_OFFSET 1 #define BRCMF_RING_H2D_RING_MEM_OFFSET 4 #define BRCMF_RING_H2D_RING_STATE_OFFSET 8 #define BRCMF_RING_MEM_BASE_ADDR_OFFSET 8 #define BRCMF_RING_MAX_ITEM_OFFSET 4 #define BRCMF_RING_LEN_ITEMS_OFFSET 6 #define BRCMF_RING_MEM_SZ 16 #define BRCMF_RING_STATE_SZ 8 #define BRCMF_DEF_MAX_RXBUFPOST 255 #define BRCMF_CONSOLE_BUFADDR_OFFSET 8 #define BRCMF_CONSOLE_BUFSIZE_OFFSET 12 #define BRCMF_CONSOLE_WRITEIDX_OFFSET 16 #define BRCMF_DMA_D2H_SCRATCH_BUF_LEN 8 #define BRCMF_DMA_D2H_RINGUPD_BUF_LEN 1024 #define BRCMF_D2H_DEV_D3_ACK 0x00000001 #define BRCMF_D2H_DEV_DS_ENTER_REQ 0x00000002 #define BRCMF_D2H_DEV_DS_EXIT_NOTE 0x00000004 #define BRCMF_D2H_DEV_FWHALT 0x10000000 #define BRCMF_H2D_HOST_D3_INFORM 0x00000001 #define BRCMF_H2D_HOST_DS_ACK 0x00000002 #define BRCMF_H2D_HOST_D0_INFORM_IN_USE 0x00000008 #define BRCMF_H2D_HOST_D0_INFORM 0x00000010 #define BRCMF_PCIE_MBDATA_TIMEOUT msecs_to_jiffies(2000) #define BRCMF_PCIE_CFGREG_STATUS_CMD 0x4 #define BRCMF_PCIE_CFGREG_PM_CSR 0x4C #define BRCMF_PCIE_CFGREG_MSI_CAP 0x58 #define BRCMF_PCIE_CFGREG_MSI_ADDR_L 0x5C #define BRCMF_PCIE_CFGREG_MSI_ADDR_H 0x60 #define BRCMF_PCIE_CFGREG_MSI_DATA 0x64 #define BRCMF_PCIE_CFGREG_LINK_STATUS_CTRL 0xBC #define BRCMF_PCIE_CFGREG_LINK_STATUS_CTRL2 0xDC #define BRCMF_PCIE_CFGREG_RBAR_CTRL 0x228 #define BRCMF_PCIE_CFGREG_PML1_SUB_CTRL1 0x248 #define BRCMF_PCIE_CFGREG_REG_BAR2_CONFIG 0x4E0 #define BRCMF_PCIE_CFGREG_REG_BAR3_CONFIG 0x4F4 #define BRCMF_PCIE_LINK_STATUS_CTRL_ASPM_ENAB 3 /* Magic number at a magic location to find RAM size */ #define BRCMF_RAMSIZE_MAGIC 0x534d4152 /* SMAR */ #define BRCMF_RAMSIZE_OFFSET 0x6c struct brcmf_pcie_console { u32 base_addr; u32 buf_addr; u32 bufsize; u32 read_idx; u8 log_str[256]; u8 log_idx; }; struct brcmf_pcie_shared_info { u32 tcm_base_address; u32 flags; struct brcmf_pcie_ringbuf *commonrings[BRCMF_NROF_COMMON_MSGRINGS]; struct brcmf_pcie_ringbuf *flowrings; u16 max_rxbufpost; u16 max_flowrings; u16 max_submissionrings; u16 max_completionrings; u32 rx_dataoffset; u32 htod_mb_data_addr; u32 dtoh_mb_data_addr; u32 ring_info_addr; struct brcmf_pcie_console console; void *scratch; dma_addr_t scratch_dmahandle; void *ringupd; dma_addr_t ringupd_dmahandle; u8 version; }; struct brcmf_pcie_core_info { u32 base; u32 wrapbase; }; #define BRCMF_OTP_MAX_PARAM_LEN 16 struct brcmf_otp_params { char module[BRCMF_OTP_MAX_PARAM_LEN]; char vendor[BRCMF_OTP_MAX_PARAM_LEN]; char version[BRCMF_OTP_MAX_PARAM_LEN]; bool valid; }; struct brcmf_pciedev_info { enum brcmf_pcie_state state; bool in_irq; struct pci_dev *pdev; char fw_name[BRCMF_FW_NAME_LEN]; char nvram_name[BRCMF_FW_NAME_LEN]; char clm_name[BRCMF_FW_NAME_LEN]; char txcap_name[BRCMF_FW_NAME_LEN]; const struct firmware *clm_fw; const struct firmware *txcap_fw; const struct brcmf_pcie_reginfo *reginfo; void __iomem *regs; void __iomem *tcm; u32 ram_base; u32 ram_size; struct brcmf_chip *ci; u32 coreid; struct brcmf_pcie_shared_info shared; wait_queue_head_t mbdata_resp_wait; bool mbdata_completed; bool irq_allocated; bool wowl_enabled; u8 dma_idx_sz; void *idxbuf; u32 idxbuf_sz; dma_addr_t idxbuf_dmahandle; u16 (*read_ptr)(struct brcmf_pciedev_info *devinfo, u32 mem_offset); void (*write_ptr)(struct brcmf_pciedev_info *devinfo, u32 mem_offset, u16 value); struct brcmf_mp_device *settings; struct brcmf_otp_params otp; #ifdef DEBUG u32 console_interval; bool console_active; struct timer_list timer; #endif }; struct brcmf_pcie_ringbuf { struct brcmf_commonring commonring; dma_addr_t dma_handle; u32 w_idx_addr; u32 r_idx_addr; struct brcmf_pciedev_info *devinfo; u8 id; }; /** * struct brcmf_pcie_dhi_ringinfo - dongle/host interface shared ring info * * @ringmem: dongle memory pointer to ring memory location * @h2d_w_idx_ptr: h2d ring write indices dongle memory pointers * @h2d_r_idx_ptr: h2d ring read indices dongle memory pointers * @d2h_w_idx_ptr: d2h ring write indices dongle memory pointers * @d2h_r_idx_ptr: d2h ring read indices dongle memory pointers * @h2d_w_idx_hostaddr: h2d ring write indices host memory pointers * @h2d_r_idx_hostaddr: h2d ring read indices host memory pointers * @d2h_w_idx_hostaddr: d2h ring write indices host memory pointers * @d2h_r_idx_hostaddr: d2h ring reaD indices host memory pointers * @max_flowrings: maximum number of tx flow rings supported. * @max_submissionrings: maximum number of submission rings(h2d) supported. * @max_completionrings: maximum number of completion rings(d2h) supported. */ struct brcmf_pcie_dhi_ringinfo { __le32 ringmem; __le32 h2d_w_idx_ptr; __le32 h2d_r_idx_ptr; __le32 d2h_w_idx_ptr; __le32 d2h_r_idx_ptr; struct msgbuf_buf_addr h2d_w_idx_hostaddr; struct msgbuf_buf_addr h2d_r_idx_hostaddr; struct msgbuf_buf_addr d2h_w_idx_hostaddr; struct msgbuf_buf_addr d2h_r_idx_hostaddr; __le16 max_flowrings; __le16 max_submissionrings; __le16 max_completionrings; }; static const u32 brcmf_ring_max_item[BRCMF_NROF_COMMON_MSGRINGS] = { BRCMF_H2D_MSGRING_CONTROL_SUBMIT_MAX_ITEM, BRCMF_H2D_MSGRING_RXPOST_SUBMIT_MAX_ITEM, BRCMF_D2H_MSGRING_CONTROL_COMPLETE_MAX_ITEM, BRCMF_D2H_MSGRING_TX_COMPLETE_MAX_ITEM, BRCMF_D2H_MSGRING_RX_COMPLETE_MAX_ITEM }; static const u32 brcmf_ring_itemsize_pre_v7[BRCMF_NROF_COMMON_MSGRINGS] = { BRCMF_H2D_MSGRING_CONTROL_SUBMIT_ITEMSIZE, BRCMF_H2D_MSGRING_RXPOST_SUBMIT_ITEMSIZE, BRCMF_D2H_MSGRING_CONTROL_COMPLETE_ITEMSIZE, BRCMF_D2H_MSGRING_TX_COMPLETE_ITEMSIZE_PRE_V7, BRCMF_D2H_MSGRING_RX_COMPLETE_ITEMSIZE_PRE_V7 }; static const u32 brcmf_ring_itemsize[BRCMF_NROF_COMMON_MSGRINGS] = { BRCMF_H2D_MSGRING_CONTROL_SUBMIT_ITEMSIZE, BRCMF_H2D_MSGRING_RXPOST_SUBMIT_ITEMSIZE, BRCMF_D2H_MSGRING_CONTROL_COMPLETE_ITEMSIZE, BRCMF_D2H_MSGRING_TX_COMPLETE_ITEMSIZE, BRCMF_D2H_MSGRING_RX_COMPLETE_ITEMSIZE }; struct brcmf_pcie_reginfo { u32 intmask; u32 mailboxint; u32 mailboxmask; u32 h2d_mailbox_0; u32 h2d_mailbox_1; u32 int_d2h_db; u32 int_fn0; }; static const struct brcmf_pcie_reginfo brcmf_reginfo_default = { .intmask = BRCMF_PCIE_PCIE2REG_INTMASK, .mailboxint = BRCMF_PCIE_PCIE2REG_MAILBOXINT, .mailboxmask = BRCMF_PCIE_PCIE2REG_MAILBOXMASK, .h2d_mailbox_0 = BRCMF_PCIE_PCIE2REG_H2D_MAILBOX_0, .h2d_mailbox_1 = BRCMF_PCIE_PCIE2REG_H2D_MAILBOX_1, .int_d2h_db = BRCMF_PCIE_MB_INT_D2H_DB, .int_fn0 = BRCMF_PCIE_MB_INT_FN0, }; static const struct brcmf_pcie_reginfo brcmf_reginfo_64 = { .intmask = BRCMF_PCIE_64_PCIE2REG_INTMASK, .mailboxint = BRCMF_PCIE_64_PCIE2REG_MAILBOXINT, .mailboxmask = BRCMF_PCIE_64_PCIE2REG_MAILBOXMASK, .h2d_mailbox_0 = BRCMF_PCIE_64_PCIE2REG_H2D_MAILBOX_0, .h2d_mailbox_1 = BRCMF_PCIE_64_PCIE2REG_H2D_MAILBOX_1, .int_d2h_db = BRCMF_PCIE_64_MB_INT_D2H_DB, .int_fn0 = 0, }; static void brcmf_pcie_setup(struct device *dev, int ret, struct brcmf_fw_request *fwreq); static struct brcmf_fw_request * brcmf_pcie_prepare_fw_request(struct brcmf_pciedev_info *devinfo); static void brcmf_pcie_fwcon_timer(struct brcmf_pciedev_info *devinfo, bool active); static void brcmf_pcie_debugfs_create(struct device *dev); static u16 brcmf_pcie_read_reg16(struct brcmf_pciedev_info *devinfo, u32 reg_offset) { void __iomem *address = devinfo->regs + reg_offset; return ioread16(address); } static u32 brcmf_pcie_read_reg32(struct brcmf_pciedev_info *devinfo, u32 reg_offset) { void __iomem *address = devinfo->regs + reg_offset; return (ioread32(address)); } static void brcmf_pcie_write_reg32(struct brcmf_pciedev_info *devinfo, u32 reg_offset, u32 value) { void __iomem *address = devinfo->regs + reg_offset; iowrite32(value, address); } static u8 brcmf_pcie_read_tcm8(struct brcmf_pciedev_info *devinfo, u32 mem_offset) { void __iomem *address = devinfo->tcm + mem_offset; return (ioread8(address)); } static u16 brcmf_pcie_read_tcm16(struct brcmf_pciedev_info *devinfo, u32 mem_offset) { void __iomem *address = devinfo->tcm + mem_offset; return (ioread16(address)); } static void brcmf_pcie_write_tcm16(struct brcmf_pciedev_info *devinfo, u32 mem_offset, u16 value) { void __iomem *address = devinfo->tcm + mem_offset; iowrite16(value, address); } static u16 brcmf_pcie_read_idx(struct brcmf_pciedev_info *devinfo, u32 mem_offset) { u16 *address = devinfo->idxbuf + mem_offset; return (*(address)); } static void brcmf_pcie_write_idx(struct brcmf_pciedev_info *devinfo, u32 mem_offset, u16 value) { u16 *address = devinfo->idxbuf + mem_offset; *(address) = value; } static u32 brcmf_pcie_read_tcm32(struct brcmf_pciedev_info *devinfo, u32 mem_offset) { void __iomem *address = devinfo->tcm + mem_offset; return (ioread32(address)); } static void brcmf_pcie_write_tcm32(struct brcmf_pciedev_info *devinfo, u32 mem_offset, u32 value) { void __iomem *address = devinfo->tcm + mem_offset; iowrite32(value, address); } static u32 brcmf_pcie_read_ram32(struct brcmf_pciedev_info *devinfo, u32 mem_offset) { void __iomem *addr = devinfo->tcm + devinfo->ci->rambase + mem_offset; return (ioread32(addr)); } static void brcmf_pcie_write_ram32(struct brcmf_pciedev_info *devinfo, u32 mem_offset, u32 value) { void __iomem *addr = devinfo->tcm + devinfo->ci->rambase + mem_offset; iowrite32(value, addr); } static void brcmf_pcie_copy_dev_tomem(struct brcmf_pciedev_info *devinfo, u32 mem_offset, void *dstaddr, u32 len) { void __iomem *address = devinfo->tcm + mem_offset; __le32 *dst32; __le16 *dst16; u8 *dst8; if (((ulong)address & 4) || ((ulong)dstaddr & 4) || (len & 4)) { if (((ulong)address & 2) || ((ulong)dstaddr & 2) || (len & 2)) { dst8 = (u8 *)dstaddr; while (len) { *dst8 = ioread8(address); address++; dst8++; len--; } } else { len = len / 2; dst16 = (__le16 *)dstaddr; while (len) { *dst16 = cpu_to_le16(ioread16(address)); address += 2; dst16++; len--; } } } else { len = len / 4; dst32 = (__le32 *)dstaddr; while (len) { *dst32 = cpu_to_le32(ioread32(address)); address += 4; dst32++; len--; } } } #define READCC32(devinfo, reg) brcmf_pcie_read_reg32(devinfo, \ CHIPCREGOFFS(reg)) #define WRITECC32(devinfo, reg, value) brcmf_pcie_write_reg32(devinfo, \ CHIPCREGOFFS(reg), value) static void brcmf_pcie_select_core(struct brcmf_pciedev_info *devinfo, u16 coreid) { const struct pci_dev *pdev = devinfo->pdev; struct brcmf_bus *bus = dev_get_drvdata(&pdev->dev); struct brcmf_core *core; u32 bar0_win; core = brcmf_chip_get_core(devinfo->ci, coreid); if (core) { bar0_win = core->base; pci_write_config_dword(pdev, BRCMF_PCIE_BAR0_WINDOW, bar0_win); if (pci_read_config_dword(pdev, BRCMF_PCIE_BAR0_WINDOW, &bar0_win) == 0) { if (bar0_win != core->base) { bar0_win = core->base; pci_write_config_dword(pdev, BRCMF_PCIE_BAR0_WINDOW, bar0_win); } } } else { brcmf_err(bus, "Unsupported core selected %x\n", coreid); } } static void brcmf_pcie_reset_device(struct brcmf_pciedev_info *devinfo) { struct brcmf_core *core; u16 cfg_offset[] = { BRCMF_PCIE_CFGREG_STATUS_CMD, BRCMF_PCIE_CFGREG_PM_CSR, BRCMF_PCIE_CFGREG_MSI_CAP, BRCMF_PCIE_CFGREG_MSI_ADDR_L, BRCMF_PCIE_CFGREG_MSI_ADDR_H, BRCMF_PCIE_CFGREG_MSI_DATA, BRCMF_PCIE_CFGREG_LINK_STATUS_CTRL2, BRCMF_PCIE_CFGREG_RBAR_CTRL, BRCMF_PCIE_CFGREG_PML1_SUB_CTRL1, BRCMF_PCIE_CFGREG_REG_BAR2_CONFIG, BRCMF_PCIE_CFGREG_REG_BAR3_CONFIG }; u32 i; u32 val; u32 lsc; if (!devinfo->ci) return; /* Disable ASPM */ brcmf_pcie_select_core(devinfo, BCMA_CORE_PCIE2); pci_read_config_dword(devinfo->pdev, BRCMF_PCIE_REG_LINK_STATUS_CTRL, &lsc); val = lsc & (~BRCMF_PCIE_LINK_STATUS_CTRL_ASPM_ENAB); pci_write_config_dword(devinfo->pdev, BRCMF_PCIE_REG_LINK_STATUS_CTRL, val); /* Watchdog reset */ brcmf_pcie_select_core(devinfo, BCMA_CORE_CHIPCOMMON); WRITECC32(devinfo, watchdog, 4); msleep(100); /* Restore ASPM */ brcmf_pcie_select_core(devinfo, BCMA_CORE_PCIE2); pci_write_config_dword(devinfo->pdev, BRCMF_PCIE_REG_LINK_STATUS_CTRL, lsc); core = brcmf_chip_get_core(devinfo->ci, BCMA_CORE_PCIE2); if (core->rev <= 13) { for (i = 0; i < ARRAY_SIZE(cfg_offset); i++) { brcmf_pcie_write_reg32(devinfo, BRCMF_PCIE_PCIE2REG_CONFIGADDR, cfg_offset[i]); val = brcmf_pcie_read_reg32(devinfo, BRCMF_PCIE_PCIE2REG_CONFIGDATA); brcmf_dbg(PCIE, "config offset 0x%04x, value 0x%04x\n", cfg_offset[i], val); brcmf_pcie_write_reg32(devinfo, BRCMF_PCIE_PCIE2REG_CONFIGDATA, val); } } } static void brcmf_pcie_attach(struct brcmf_pciedev_info *devinfo) { u32 config; /* BAR1 window may not be sized properly */ brcmf_pcie_select_core(devinfo, BCMA_CORE_PCIE2); brcmf_pcie_write_reg32(devinfo, BRCMF_PCIE_PCIE2REG_CONFIGADDR, 0x4e0); config = brcmf_pcie_read_reg32(devinfo, BRCMF_PCIE_PCIE2REG_CONFIGDATA); brcmf_pcie_write_reg32(devinfo, BRCMF_PCIE_PCIE2REG_CONFIGDATA, config); device_wakeup_enable(&devinfo->pdev->dev); } static int brcmf_pcie_enter_download_state(struct brcmf_pciedev_info *devinfo) { if (devinfo->ci->chip == BRCM_CC_43602_CHIP_ID) { brcmf_pcie_select_core(devinfo, BCMA_CORE_ARM_CR4); brcmf_pcie_write_reg32(devinfo, BRCMF_PCIE_ARMCR4REG_BANKIDX, 5); brcmf_pcie_write_reg32(devinfo, BRCMF_PCIE_ARMCR4REG_BANKPDA, 0); brcmf_pcie_write_reg32(devinfo, BRCMF_PCIE_ARMCR4REG_BANKIDX, 7); brcmf_pcie_write_reg32(devinfo, BRCMF_PCIE_ARMCR4REG_BANKPDA, 0); } return 0; } static int brcmf_pcie_exit_download_state(struct brcmf_pciedev_info *devinfo, u32 resetintr) { struct brcmf_core *core; if (devinfo->ci->chip == BRCM_CC_43602_CHIP_ID) { core = brcmf_chip_get_core(devinfo->ci, BCMA_CORE_INTERNAL_MEM); brcmf_chip_resetcore(core, 0, 0, 0); } if (!brcmf_chip_set_active(devinfo->ci, resetintr)) return -EIO; return 0; } static int brcmf_pcie_send_mb_data(struct brcmf_pciedev_info *devinfo, u32 htod_mb_data) { struct brcmf_pcie_shared_info *shared; struct brcmf_core *core; u32 addr; u32 cur_htod_mb_data; u32 i; shared = &devinfo->shared; addr = shared->htod_mb_data_addr; cur_htod_mb_data = brcmf_pcie_read_tcm32(devinfo, addr); if (cur_htod_mb_data != 0) brcmf_dbg(PCIE, "MB transaction is already pending 0x%04x\n", cur_htod_mb_data); i = 0; while (cur_htod_mb_data != 0) { msleep(10); i++; if (i > 100) return -EIO; cur_htod_mb_data = brcmf_pcie_read_tcm32(devinfo, addr); } brcmf_pcie_write_tcm32(devinfo, addr, htod_mb_data); pci_write_config_dword(devinfo->pdev, BRCMF_PCIE_REG_SBMBX, 1); /* Send mailbox interrupt twice as a hardware workaround */ core = brcmf_chip_get_core(devinfo->ci, BCMA_CORE_PCIE2); if (core->rev <= 13) pci_write_config_dword(devinfo->pdev, BRCMF_PCIE_REG_SBMBX, 1); return 0; } static void brcmf_pcie_handle_mb_data(struct brcmf_pciedev_info *devinfo) { struct brcmf_pcie_shared_info *shared; u32 addr; u32 dtoh_mb_data; shared = &devinfo->shared; addr = shared->dtoh_mb_data_addr; dtoh_mb_data = brcmf_pcie_read_tcm32(devinfo, addr); if (!dtoh_mb_data) return; brcmf_pcie_write_tcm32(devinfo, addr, 0); brcmf_dbg(PCIE, "D2H_MB_DATA: 0x%04x\n", dtoh_mb_data); if (dtoh_mb_data & BRCMF_D2H_DEV_DS_ENTER_REQ) { brcmf_dbg(PCIE, "D2H_MB_DATA: DEEP SLEEP REQ\n"); brcmf_pcie_send_mb_data(devinfo, BRCMF_H2D_HOST_DS_ACK); brcmf_dbg(PCIE, "D2H_MB_DATA: sent DEEP SLEEP ACK\n"); } if (dtoh_mb_data & BRCMF_D2H_DEV_DS_EXIT_NOTE) brcmf_dbg(PCIE, "D2H_MB_DATA: DEEP SLEEP EXIT\n"); if (dtoh_mb_data & BRCMF_D2H_DEV_D3_ACK) { brcmf_dbg(PCIE, "D2H_MB_DATA: D3 ACK\n"); devinfo->mbdata_completed = true; wake_up(&devinfo->mbdata_resp_wait); } if (dtoh_mb_data & BRCMF_D2H_DEV_FWHALT) { brcmf_dbg(PCIE, "D2H_MB_DATA: FW HALT\n"); brcmf_fw_crashed(&devinfo->pdev->dev); } } static void brcmf_pcie_bus_console_init(struct brcmf_pciedev_info *devinfo) { struct brcmf_pcie_shared_info *shared; struct brcmf_pcie_console *console; u32 addr; shared = &devinfo->shared; console = &shared->console; addr = shared->tcm_base_address + BRCMF_SHARED_CONSOLE_ADDR_OFFSET; console->base_addr = brcmf_pcie_read_tcm32(devinfo, addr); addr = console->base_addr + BRCMF_CONSOLE_BUFADDR_OFFSET; console->buf_addr = brcmf_pcie_read_tcm32(devinfo, addr); addr = console->base_addr + BRCMF_CONSOLE_BUFSIZE_OFFSET; console->bufsize = brcmf_pcie_read_tcm32(devinfo, addr); brcmf_dbg(FWCON, "Console: base %x, buf %x, size %d\n", console->base_addr, console->buf_addr, console->bufsize); } /** * brcmf_pcie_bus_console_read - reads firmware messages * * @devinfo: pointer to the device data structure * @error: specifies if error has occurred (prints messages unconditionally) */ static void brcmf_pcie_bus_console_read(struct brcmf_pciedev_info *devinfo, bool error) { struct pci_dev *pdev = devinfo->pdev; struct brcmf_bus *bus = dev_get_drvdata(&pdev->dev); struct brcmf_pcie_console *console; u32 addr; u8 ch; u32 newidx; if (!error && !BRCMF_FWCON_ON()) return; console = &devinfo->shared.console; if (!console->base_addr) return; addr = console->base_addr + BRCMF_CONSOLE_WRITEIDX_OFFSET; newidx = brcmf_pcie_read_tcm32(devinfo, addr); while (newidx != console->read_idx) { addr = console->buf_addr + console->read_idx; ch = brcmf_pcie_read_tcm8(devinfo, addr); console->read_idx++; if (console->read_idx == console->bufsize) console->read_idx = 0; if (ch == '\r') continue; console->log_str[console->log_idx] = ch; console->log_idx++; if ((ch != '\n') && (console->log_idx == (sizeof(console->log_str) - 2))) { ch = '\n'; console->log_str[console->log_idx] = ch; console->log_idx++; } if (ch == '\n') { console->log_str[console->log_idx] = 0; if (error) __brcmf_err(bus, __func__, "CONSOLE: %s", console->log_str); else pr_debug("CONSOLE: %s", console->log_str); console->log_idx = 0; } } } static void brcmf_pcie_intr_disable(struct brcmf_pciedev_info *devinfo) { brcmf_pcie_write_reg32(devinfo, devinfo->reginfo->mailboxmask, 0); } static void brcmf_pcie_intr_enable(struct brcmf_pciedev_info *devinfo) { brcmf_pcie_write_reg32(devinfo, devinfo->reginfo->mailboxmask, devinfo->reginfo->int_d2h_db | devinfo->reginfo->int_fn0); } static void brcmf_pcie_hostready(struct brcmf_pciedev_info *devinfo) { if (devinfo->shared.flags & BRCMF_PCIE_SHARED_HOSTRDY_DB1) brcmf_pcie_write_reg32(devinfo, devinfo->reginfo->h2d_mailbox_1, 1); } static irqreturn_t brcmf_pcie_quick_check_isr(int irq, void *arg) { struct brcmf_pciedev_info *devinfo = (struct brcmf_pciedev_info *)arg; if (brcmf_pcie_read_reg32(devinfo, devinfo->reginfo->mailboxint)) { brcmf_pcie_intr_disable(devinfo); brcmf_dbg(PCIE, "Enter\n"); return IRQ_WAKE_THREAD; } return IRQ_NONE; } static irqreturn_t brcmf_pcie_isr_thread(int irq, void *arg) { struct brcmf_pciedev_info *devinfo = (struct brcmf_pciedev_info *)arg; u32 status; devinfo->in_irq = true; status = brcmf_pcie_read_reg32(devinfo, devinfo->reginfo->mailboxint); brcmf_dbg(PCIE, "Enter %x\n", status); if (status) { brcmf_pcie_write_reg32(devinfo, devinfo->reginfo->mailboxint, status); if (status & devinfo->reginfo->int_fn0) brcmf_pcie_handle_mb_data(devinfo); if (status & devinfo->reginfo->int_d2h_db) { if (devinfo->state == BRCMFMAC_PCIE_STATE_UP) brcmf_proto_msgbuf_rx_trigger( &devinfo->pdev->dev); } } brcmf_pcie_bus_console_read(devinfo, false); if (devinfo->state == BRCMFMAC_PCIE_STATE_UP) brcmf_pcie_intr_enable(devinfo); devinfo->in_irq = false; return IRQ_HANDLED; } static int brcmf_pcie_request_irq(struct brcmf_pciedev_info *devinfo) { struct pci_dev *pdev = devinfo->pdev; struct brcmf_bus *bus = dev_get_drvdata(&pdev->dev); brcmf_pcie_intr_disable(devinfo); brcmf_dbg(PCIE, "Enter\n"); pci_enable_msi(pdev); if (request_threaded_irq(pdev->irq, brcmf_pcie_quick_check_isr, brcmf_pcie_isr_thread, IRQF_SHARED, "brcmf_pcie_intr", devinfo)) { pci_disable_msi(pdev); brcmf_err(bus, "Failed to request IRQ %d\n", pdev->irq); return -EIO; } devinfo->irq_allocated = true; return 0; } static void brcmf_pcie_release_irq(struct brcmf_pciedev_info *devinfo) { struct pci_dev *pdev = devinfo->pdev; struct brcmf_bus *bus = dev_get_drvdata(&pdev->dev); u32 status; u32 count; if (!devinfo->irq_allocated) return; brcmf_pcie_intr_disable(devinfo); free_irq(pdev->irq, devinfo); pci_disable_msi(pdev); msleep(50); count = 0; while ((devinfo->in_irq) && (count < 20)) { msleep(50); count++; } if (devinfo->in_irq) brcmf_err(bus, "Still in IRQ (processing) !!!\n"); status = brcmf_pcie_read_reg32(devinfo, devinfo->reginfo->mailboxint); brcmf_pcie_write_reg32(devinfo, devinfo->reginfo->mailboxint, status); devinfo->irq_allocated = false; } static int brcmf_pcie_ring_mb_write_rptr(void *ctx) { struct brcmf_pcie_ringbuf *ring = (struct brcmf_pcie_ringbuf *)ctx; struct brcmf_pciedev_info *devinfo = ring->devinfo; struct brcmf_commonring *commonring = &ring->commonring; if (devinfo->state != BRCMFMAC_PCIE_STATE_UP) return -EIO; brcmf_dbg(PCIE, "W r_ptr %d (%d), ring %d\n", commonring->r_ptr, commonring->w_ptr, ring->id); devinfo->write_ptr(devinfo, ring->r_idx_addr, commonring->r_ptr); return 0; } static int brcmf_pcie_ring_mb_write_wptr(void *ctx) { struct brcmf_pcie_ringbuf *ring = (struct brcmf_pcie_ringbuf *)ctx; struct brcmf_pciedev_info *devinfo = ring->devinfo; struct brcmf_commonring *commonring = &ring->commonring; if (devinfo->state != BRCMFMAC_PCIE_STATE_UP) return -EIO; brcmf_dbg(PCIE, "W w_ptr %d (%d), ring %d\n", commonring->w_ptr, commonring->r_ptr, ring->id); devinfo->write_ptr(devinfo, ring->w_idx_addr, commonring->w_ptr); return 0; } static int brcmf_pcie_ring_mb_ring_bell(void *ctx) { struct brcmf_pcie_ringbuf *ring = (struct brcmf_pcie_ringbuf *)ctx; struct brcmf_pciedev_info *devinfo = ring->devinfo; if (devinfo->state != BRCMFMAC_PCIE_STATE_UP) return -EIO; brcmf_dbg(PCIE, "RING !\n"); /* Any arbitrary value will do, lets use 1 */ brcmf_pcie_write_reg32(devinfo, devinfo->reginfo->h2d_mailbox_0, 1); return 0; } static int brcmf_pcie_ring_mb_update_rptr(void *ctx) { struct brcmf_pcie_ringbuf *ring = (struct brcmf_pcie_ringbuf *)ctx; struct brcmf_pciedev_info *devinfo = ring->devinfo; struct brcmf_commonring *commonring = &ring->commonring; if (devinfo->state != BRCMFMAC_PCIE_STATE_UP) return -EIO; commonring->r_ptr = devinfo->read_ptr(devinfo, ring->r_idx_addr); brcmf_dbg(PCIE, "R r_ptr %d (%d), ring %d\n", commonring->r_ptr, commonring->w_ptr, ring->id); return 0; } static int brcmf_pcie_ring_mb_update_wptr(void *ctx) { struct brcmf_pcie_ringbuf *ring = (struct brcmf_pcie_ringbuf *)ctx; struct brcmf_pciedev_info *devinfo = ring->devinfo; struct brcmf_commonring *commonring = &ring->commonring; if (devinfo->state != BRCMFMAC_PCIE_STATE_UP) return -EIO; commonring->w_ptr = devinfo->read_ptr(devinfo, ring->w_idx_addr); brcmf_dbg(PCIE, "R w_ptr %d (%d), ring %d\n", commonring->w_ptr, commonring->r_ptr, ring->id); return 0; } static void * brcmf_pcie_init_dmabuffer_for_device(struct brcmf_pciedev_info *devinfo, u32 size, u32 tcm_dma_phys_addr, dma_addr_t *dma_handle) { void *ring; u64 address; ring = dma_alloc_coherent(&devinfo->pdev->dev, size, dma_handle, GFP_KERNEL); if (!ring) return NULL; address = (u64)*dma_handle; brcmf_pcie_write_tcm32(devinfo, tcm_dma_phys_addr, address & 0xffffffff); brcmf_pcie_write_tcm32(devinfo, tcm_dma_phys_addr + 4, address >> 32); return (ring); } static struct brcmf_pcie_ringbuf * brcmf_pcie_alloc_dma_and_ring(struct brcmf_pciedev_info *devinfo, u32 ring_id, u32 tcm_ring_phys_addr) { void *dma_buf; dma_addr_t dma_handle; struct brcmf_pcie_ringbuf *ring; u32 size; u32 addr; const u32 *ring_itemsize_array; if (devinfo->shared.version < BRCMF_PCIE_SHARED_VERSION_7) ring_itemsize_array = brcmf_ring_itemsize_pre_v7; else ring_itemsize_array = brcmf_ring_itemsize; size = brcmf_ring_max_item[ring_id] * ring_itemsize_array[ring_id]; dma_buf = brcmf_pcie_init_dmabuffer_for_device(devinfo, size, tcm_ring_phys_addr + BRCMF_RING_MEM_BASE_ADDR_OFFSET, &dma_handle); if (!dma_buf) return NULL; addr = tcm_ring_phys_addr + BRCMF_RING_MAX_ITEM_OFFSET; brcmf_pcie_write_tcm16(devinfo, addr, brcmf_ring_max_item[ring_id]); addr = tcm_ring_phys_addr + BRCMF_RING_LEN_ITEMS_OFFSET; brcmf_pcie_write_tcm16(devinfo, addr, ring_itemsize_array[ring_id]); ring = kzalloc(sizeof(*ring), GFP_KERNEL); if (!ring) { dma_free_coherent(&devinfo->pdev->dev, size, dma_buf, dma_handle); return NULL; } brcmf_commonring_config(&ring->commonring, brcmf_ring_max_item[ring_id], ring_itemsize_array[ring_id], dma_buf); ring->dma_handle = dma_handle; ring->devinfo = devinfo; brcmf_commonring_register_cb(&ring->commonring, brcmf_pcie_ring_mb_ring_bell, brcmf_pcie_ring_mb_update_rptr, brcmf_pcie_ring_mb_update_wptr, brcmf_pcie_ring_mb_write_rptr, brcmf_pcie_ring_mb_write_wptr, ring); return (ring); } static void brcmf_pcie_release_ringbuffer(struct device *dev, struct brcmf_pcie_ringbuf *ring) { void *dma_buf; u32 size; if (!ring) return; dma_buf = ring->commonring.buf_addr; if (dma_buf) { size = ring->commonring.depth * ring->commonring.item_len; dma_free_coherent(dev, size, dma_buf, ring->dma_handle); } kfree(ring); } static void brcmf_pcie_release_ringbuffers(struct brcmf_pciedev_info *devinfo) { u32 i; for (i = 0; i < BRCMF_NROF_COMMON_MSGRINGS; i++) { brcmf_pcie_release_ringbuffer(&devinfo->pdev->dev, devinfo->shared.commonrings[i]); devinfo->shared.commonrings[i] = NULL; } kfree(devinfo->shared.flowrings); devinfo->shared.flowrings = NULL; if (devinfo->idxbuf) { dma_free_coherent(&devinfo->pdev->dev, devinfo->idxbuf_sz, devinfo->idxbuf, devinfo->idxbuf_dmahandle); devinfo->idxbuf = NULL; } } static int brcmf_pcie_init_ringbuffers(struct brcmf_pciedev_info *devinfo) { struct brcmf_bus *bus = dev_get_drvdata(&devinfo->pdev->dev); struct brcmf_pcie_ringbuf *ring; struct brcmf_pcie_ringbuf *rings; u32 d2h_w_idx_ptr; u32 d2h_r_idx_ptr; u32 h2d_w_idx_ptr; u32 h2d_r_idx_ptr; u32 ring_mem_ptr; u32 i; u64 address; u32 bufsz; u8 idx_offset; struct brcmf_pcie_dhi_ringinfo ringinfo; u16 max_flowrings; u16 max_submissionrings; u16 max_completionrings; memcpy_fromio(&ringinfo, devinfo->tcm + devinfo->shared.ring_info_addr, sizeof(ringinfo)); if (devinfo->shared.version >= 6) { max_submissionrings = le16_to_cpu(ringinfo.max_submissionrings); max_flowrings = le16_to_cpu(ringinfo.max_flowrings); max_completionrings = le16_to_cpu(ringinfo.max_completionrings); } else { max_submissionrings = le16_to_cpu(ringinfo.max_flowrings); max_flowrings = max_submissionrings - BRCMF_NROF_H2D_COMMON_MSGRINGS; max_completionrings = BRCMF_NROF_D2H_COMMON_MSGRINGS; } if (max_flowrings > 512) { brcmf_err(bus, "invalid max_flowrings(%d)\n", max_flowrings); return -EIO; } if (devinfo->dma_idx_sz != 0) { bufsz = (max_submissionrings + max_completionrings) * devinfo->dma_idx_sz * 2; devinfo->idxbuf = dma_alloc_coherent(&devinfo->pdev->dev, bufsz, &devinfo->idxbuf_dmahandle, GFP_KERNEL); if (!devinfo->idxbuf) devinfo->dma_idx_sz = 0; } if (devinfo->dma_idx_sz == 0) { d2h_w_idx_ptr = le32_to_cpu(ringinfo.d2h_w_idx_ptr); d2h_r_idx_ptr = le32_to_cpu(ringinfo.d2h_r_idx_ptr); h2d_w_idx_ptr = le32_to_cpu(ringinfo.h2d_w_idx_ptr); h2d_r_idx_ptr = le32_to_cpu(ringinfo.h2d_r_idx_ptr); idx_offset = sizeof(u32); devinfo->write_ptr = brcmf_pcie_write_tcm16; devinfo->read_ptr = brcmf_pcie_read_tcm16; brcmf_dbg(PCIE, "Using TCM indices\n"); } else { memset(devinfo->idxbuf, 0, bufsz); devinfo->idxbuf_sz = bufsz; idx_offset = devinfo->dma_idx_sz; devinfo->write_ptr = brcmf_pcie_write_idx; devinfo->read_ptr = brcmf_pcie_read_idx; h2d_w_idx_ptr = 0; address = (u64)devinfo->idxbuf_dmahandle; ringinfo.h2d_w_idx_hostaddr.low_addr = cpu_to_le32(address & 0xffffffff); ringinfo.h2d_w_idx_hostaddr.high_addr = cpu_to_le32(address >> 32); h2d_r_idx_ptr = h2d_w_idx_ptr + max_submissionrings * idx_offset; address += max_submissionrings * idx_offset; ringinfo.h2d_r_idx_hostaddr.low_addr = cpu_to_le32(address & 0xffffffff); ringinfo.h2d_r_idx_hostaddr.high_addr = cpu_to_le32(address >> 32); d2h_w_idx_ptr = h2d_r_idx_ptr + max_submissionrings * idx_offset; address += max_submissionrings * idx_offset; ringinfo.d2h_w_idx_hostaddr.low_addr = cpu_to_le32(address & 0xffffffff); ringinfo.d2h_w_idx_hostaddr.high_addr = cpu_to_le32(address >> 32); d2h_r_idx_ptr = d2h_w_idx_ptr + max_completionrings * idx_offset; address += max_completionrings * idx_offset; ringinfo.d2h_r_idx_hostaddr.low_addr = cpu_to_le32(address & 0xffffffff); ringinfo.d2h_r_idx_hostaddr.high_addr = cpu_to_le32(address >> 32); memcpy_toio(devinfo->tcm + devinfo->shared.ring_info_addr, &ringinfo, sizeof(ringinfo)); brcmf_dbg(PCIE, "Using host memory indices\n"); } ring_mem_ptr = le32_to_cpu(ringinfo.ringmem); for (i = 0; i < BRCMF_NROF_H2D_COMMON_MSGRINGS; i++) { ring = brcmf_pcie_alloc_dma_and_ring(devinfo, i, ring_mem_ptr); if (!ring) goto fail; ring->w_idx_addr = h2d_w_idx_ptr; ring->r_idx_addr = h2d_r_idx_ptr; ring->id = i; devinfo->shared.commonrings[i] = ring; h2d_w_idx_ptr += idx_offset; h2d_r_idx_ptr += idx_offset; ring_mem_ptr += BRCMF_RING_MEM_SZ; } for (i = BRCMF_NROF_H2D_COMMON_MSGRINGS; i < BRCMF_NROF_COMMON_MSGRINGS; i++) { ring = brcmf_pcie_alloc_dma_and_ring(devinfo, i, ring_mem_ptr); if (!ring) goto fail; ring->w_idx_addr = d2h_w_idx_ptr; ring->r_idx_addr = d2h_r_idx_ptr; ring->id = i; devinfo->shared.commonrings[i] = ring; d2h_w_idx_ptr += idx_offset; d2h_r_idx_ptr += idx_offset; ring_mem_ptr += BRCMF_RING_MEM_SZ; } devinfo->shared.max_flowrings = max_flowrings; devinfo->shared.max_submissionrings = max_submissionrings; devinfo->shared.max_completionrings = max_completionrings; rings = kcalloc(max_flowrings, sizeof(*ring), GFP_KERNEL); if (!rings) goto fail; brcmf_dbg(PCIE, "Nr of flowrings is %d\n", max_flowrings); for (i = 0; i < max_flowrings; i++) { ring = &rings[i]; ring->devinfo = devinfo; ring->id = i + BRCMF_H2D_MSGRING_FLOWRING_IDSTART; brcmf_commonring_register_cb(&ring->commonring, brcmf_pcie_ring_mb_ring_bell, brcmf_pcie_ring_mb_update_rptr, brcmf_pcie_ring_mb_update_wptr, brcmf_pcie_ring_mb_write_rptr, brcmf_pcie_ring_mb_write_wptr, ring); ring->w_idx_addr = h2d_w_idx_ptr; ring->r_idx_addr = h2d_r_idx_ptr; h2d_w_idx_ptr += idx_offset; h2d_r_idx_ptr += idx_offset; } devinfo->shared.flowrings = rings; return 0; fail: brcmf_err(bus, "Allocating ring buffers failed\n"); brcmf_pcie_release_ringbuffers(devinfo); return -ENOMEM; } static void brcmf_pcie_release_scratchbuffers(struct brcmf_pciedev_info *devinfo) { if (devinfo->shared.scratch) dma_free_coherent(&devinfo->pdev->dev, BRCMF_DMA_D2H_SCRATCH_BUF_LEN, devinfo->shared.scratch, devinfo->shared.scratch_dmahandle); if (devinfo->shared.ringupd) dma_free_coherent(&devinfo->pdev->dev, BRCMF_DMA_D2H_RINGUPD_BUF_LEN, devinfo->shared.ringupd, devinfo->shared.ringupd_dmahandle); } static int brcmf_pcie_init_scratchbuffers(struct brcmf_pciedev_info *devinfo) { struct brcmf_bus *bus = dev_get_drvdata(&devinfo->pdev->dev); u64 address; u32 addr; devinfo->shared.scratch = dma_alloc_coherent(&devinfo->pdev->dev, BRCMF_DMA_D2H_SCRATCH_BUF_LEN, &devinfo->shared.scratch_dmahandle, GFP_KERNEL); if (!devinfo->shared.scratch) goto fail; addr = devinfo->shared.tcm_base_address + BRCMF_SHARED_DMA_SCRATCH_ADDR_OFFSET; address = (u64)devinfo->shared.scratch_dmahandle; brcmf_pcie_write_tcm32(devinfo, addr, address & 0xffffffff); brcmf_pcie_write_tcm32(devinfo, addr + 4, address >> 32); addr = devinfo->shared.tcm_base_address + BRCMF_SHARED_DMA_SCRATCH_LEN_OFFSET; brcmf_pcie_write_tcm32(devinfo, addr, BRCMF_DMA_D2H_SCRATCH_BUF_LEN); devinfo->shared.ringupd = dma_alloc_coherent(&devinfo->pdev->dev, BRCMF_DMA_D2H_RINGUPD_BUF_LEN, &devinfo->shared.ringupd_dmahandle, GFP_KERNEL); if (!devinfo->shared.ringupd) goto fail; addr = devinfo->shared.tcm_base_address + BRCMF_SHARED_DMA_RINGUPD_ADDR_OFFSET; address = (u64)devinfo->shared.ringupd_dmahandle; brcmf_pcie_write_tcm32(devinfo, addr, address & 0xffffffff); brcmf_pcie_write_tcm32(devinfo, addr + 4, address >> 32); addr = devinfo->shared.tcm_base_address + BRCMF_SHARED_DMA_RINGUPD_LEN_OFFSET; brcmf_pcie_write_tcm32(devinfo, addr, BRCMF_DMA_D2H_RINGUPD_BUF_LEN); return 0; fail: brcmf_err(bus, "Allocating scratch buffers failed\n"); brcmf_pcie_release_scratchbuffers(devinfo); return -ENOMEM; } static void brcmf_pcie_down(struct device *dev) { struct brcmf_bus *bus_if = dev_get_drvdata(dev); struct brcmf_pciedev *pcie_bus_dev = bus_if->bus_priv.pcie; struct brcmf_pciedev_info *devinfo = pcie_bus_dev->devinfo; brcmf_pcie_fwcon_timer(devinfo, false); } static int brcmf_pcie_preinit(struct device *dev) { struct brcmf_bus *bus_if = dev_get_drvdata(dev); struct brcmf_pciedev *buspub = bus_if->bus_priv.pcie; brcmf_dbg(PCIE, "Enter\n"); brcmf_pcie_intr_enable(buspub->devinfo); brcmf_pcie_hostready(buspub->devinfo); return 0; } static int brcmf_pcie_tx(struct device *dev, struct sk_buff *skb) { return 0; } static int brcmf_pcie_tx_ctlpkt(struct device *dev, unsigned char *msg, uint len) { return 0; } static int brcmf_pcie_rx_ctlpkt(struct device *dev, unsigned char *msg, uint len) { return 0; } static void brcmf_pcie_wowl_config(struct device *dev, bool enabled) { struct brcmf_bus *bus_if = dev_get_drvdata(dev); struct brcmf_pciedev *buspub = bus_if->bus_priv.pcie; struct brcmf_pciedev_info *devinfo = buspub->devinfo; brcmf_dbg(PCIE, "Configuring WOWL, enabled=%d\n", enabled); devinfo->wowl_enabled = enabled; } static size_t brcmf_pcie_get_ramsize(struct device *dev) { struct brcmf_bus *bus_if = dev_get_drvdata(dev); struct brcmf_pciedev *buspub = bus_if->bus_priv.pcie; struct brcmf_pciedev_info *devinfo = buspub->devinfo; return devinfo->ci->ramsize - devinfo->ci->srsize; } static int brcmf_pcie_get_memdump(struct device *dev, void *data, size_t len) { struct brcmf_bus *bus_if = dev_get_drvdata(dev); struct brcmf_pciedev *buspub = bus_if->bus_priv.pcie; struct brcmf_pciedev_info *devinfo = buspub->devinfo; brcmf_dbg(PCIE, "dump at 0x%08X: len=%zu\n", devinfo->ci->rambase, len); brcmf_pcie_copy_dev_tomem(devinfo, devinfo->ci->rambase, data, len); return 0; } static int brcmf_pcie_get_blob(struct device *dev, const struct firmware **fw, enum brcmf_blob_type type) { struct brcmf_bus *bus_if = dev_get_drvdata(dev); struct brcmf_pciedev *buspub = bus_if->bus_priv.pcie; struct brcmf_pciedev_info *devinfo = buspub->devinfo; switch (type) { case BRCMF_BLOB_CLM: *fw = devinfo->clm_fw; devinfo->clm_fw = NULL; break; case BRCMF_BLOB_TXCAP: *fw = devinfo->txcap_fw; devinfo->txcap_fw = NULL; break; default: return -ENOENT; } if (!*fw) return -ENOENT; return 0; } static int brcmf_pcie_reset(struct device *dev) { struct brcmf_bus *bus_if = dev_get_drvdata(dev); struct brcmf_pciedev *buspub = bus_if->bus_priv.pcie; struct brcmf_pciedev_info *devinfo = buspub->devinfo; struct brcmf_fw_request *fwreq; int err; brcmf_pcie_intr_disable(devinfo); brcmf_pcie_bus_console_read(devinfo, true); brcmf_detach(dev); brcmf_pcie_release_irq(devinfo); brcmf_pcie_release_scratchbuffers(devinfo); brcmf_pcie_release_ringbuffers(devinfo); brcmf_pcie_reset_device(devinfo); fwreq = brcmf_pcie_prepare_fw_request(devinfo); if (!fwreq) { dev_err(dev, "Failed to prepare FW request\n"); return -ENOMEM; } err = brcmf_fw_get_firmwares(dev, fwreq, brcmf_pcie_setup); if (err) { dev_err(dev, "Failed to prepare FW request\n"); kfree(fwreq); } return err; } static const struct brcmf_bus_ops brcmf_pcie_bus_ops = { .preinit = brcmf_pcie_preinit, .txdata = brcmf_pcie_tx, .stop = brcmf_pcie_down, .txctl = brcmf_pcie_tx_ctlpkt, .rxctl = brcmf_pcie_rx_ctlpkt, .wowl_config = brcmf_pcie_wowl_config, .get_ramsize = brcmf_pcie_get_ramsize, .get_memdump = brcmf_pcie_get_memdump, .get_blob = brcmf_pcie_get_blob, .reset = brcmf_pcie_reset, .debugfs_create = brcmf_pcie_debugfs_create, }; static void brcmf_pcie_adjust_ramsize(struct brcmf_pciedev_info *devinfo, u8 *data, u32 data_len) { __le32 *field; u32 newsize; if (data_len < BRCMF_RAMSIZE_OFFSET + 8) return; field = (__le32 *)&data[BRCMF_RAMSIZE_OFFSET]; if (le32_to_cpup(field) != BRCMF_RAMSIZE_MAGIC) return; field++; newsize = le32_to_cpup(field); brcmf_dbg(PCIE, "Found ramsize info in FW, adjusting to 0x%x\n", newsize); devinfo->ci->ramsize = newsize; } static int brcmf_pcie_init_share_ram_info(struct brcmf_pciedev_info *devinfo, u32 sharedram_addr) { struct brcmf_bus *bus = dev_get_drvdata(&devinfo->pdev->dev); struct brcmf_pcie_shared_info *shared; u32 addr; shared = &devinfo->shared; shared->tcm_base_address = sharedram_addr; shared->flags = brcmf_pcie_read_tcm32(devinfo, sharedram_addr); shared->version = (u8)(shared->flags & BRCMF_PCIE_SHARED_VERSION_MASK); brcmf_dbg(PCIE, "PCIe protocol version %d\n", shared->version); if ((shared->version > BRCMF_PCIE_MAX_SHARED_VERSION) || (shared->version < BRCMF_PCIE_MIN_SHARED_VERSION)) { brcmf_err(bus, "Unsupported PCIE version %d\n", shared->version); return -EINVAL; } /* check firmware support dma indicies */ if (shared->flags & BRCMF_PCIE_SHARED_DMA_INDEX) { if (shared->flags & BRCMF_PCIE_SHARED_DMA_2B_IDX) devinfo->dma_idx_sz = sizeof(u16); else devinfo->dma_idx_sz = sizeof(u32); } addr = sharedram_addr + BRCMF_SHARED_MAX_RXBUFPOST_OFFSET; shared->max_rxbufpost = brcmf_pcie_read_tcm16(devinfo, addr); if (shared->max_rxbufpost == 0) shared->max_rxbufpost = BRCMF_DEF_MAX_RXBUFPOST; addr = sharedram_addr + BRCMF_SHARED_RX_DATAOFFSET_OFFSET; shared->rx_dataoffset = brcmf_pcie_read_tcm32(devinfo, addr); addr = sharedram_addr + BRCMF_SHARED_HTOD_MB_DATA_ADDR_OFFSET; shared->htod_mb_data_addr = brcmf_pcie_read_tcm32(devinfo, addr); addr = sharedram_addr + BRCMF_SHARED_DTOH_MB_DATA_ADDR_OFFSET; shared->dtoh_mb_data_addr = brcmf_pcie_read_tcm32(devinfo, addr); addr = sharedram_addr + BRCMF_SHARED_RING_INFO_ADDR_OFFSET; shared->ring_info_addr = brcmf_pcie_read_tcm32(devinfo, addr); brcmf_dbg(PCIE, "max rx buf post %d, rx dataoffset %d\n", shared->max_rxbufpost, shared->rx_dataoffset); brcmf_pcie_bus_console_init(devinfo); brcmf_pcie_bus_console_read(devinfo, false); return 0; } struct brcmf_random_seed_footer { __le32 length; __le32 magic; }; #define BRCMF_RANDOM_SEED_MAGIC 0xfeedc0de #define BRCMF_RANDOM_SEED_LENGTH 0x100 static int brcmf_pcie_download_fw_nvram(struct brcmf_pciedev_info *devinfo, const struct firmware *fw, void *nvram, u32 nvram_len) { struct brcmf_bus *bus = dev_get_drvdata(&devinfo->pdev->dev); u32 sharedram_addr; u32 sharedram_addr_written; u32 loop_counter; int err; u32 address; u32 resetintr; brcmf_dbg(PCIE, "Halt ARM.\n"); err = brcmf_pcie_enter_download_state(devinfo); if (err) return err; brcmf_dbg(PCIE, "Download FW %s\n", devinfo->fw_name); memcpy_toio(devinfo->tcm + devinfo->ci->rambase, (void *)fw->data, fw->size); resetintr = get_unaligned_le32(fw->data); release_firmware(fw); /* reset last 4 bytes of RAM address. to be used for shared * area. This identifies when FW is running */ brcmf_pcie_write_ram32(devinfo, devinfo->ci->ramsize - 4, 0); if (nvram) { brcmf_dbg(PCIE, "Download NVRAM %s\n", devinfo->nvram_name); address = devinfo->ci->rambase + devinfo->ci->ramsize - nvram_len; memcpy_toio(devinfo->tcm + address, nvram, nvram_len); brcmf_fw_nvram_free(nvram); if (devinfo->otp.valid) { size_t rand_len = BRCMF_RANDOM_SEED_LENGTH; struct brcmf_random_seed_footer footer = { .length = cpu_to_le32(rand_len), .magic = cpu_to_le32(BRCMF_RANDOM_SEED_MAGIC), }; void *randbuf; /* Some Apple chips/firmwares expect a buffer of random * data to be present before NVRAM */ brcmf_dbg(PCIE, "Download random seed\n"); address -= sizeof(footer); memcpy_toio(devinfo->tcm + address, &footer, sizeof(footer)); address -= rand_len; randbuf = kzalloc(rand_len, GFP_KERNEL); get_random_bytes(randbuf, rand_len); memcpy_toio(devinfo->tcm + address, randbuf, rand_len); kfree(randbuf); } } else { brcmf_dbg(PCIE, "No matching NVRAM file found %s\n", devinfo->nvram_name); } sharedram_addr_written = brcmf_pcie_read_ram32(devinfo, devinfo->ci->ramsize - 4); brcmf_dbg(PCIE, "Bring ARM in running state\n"); err = brcmf_pcie_exit_download_state(devinfo, resetintr); if (err) return err; brcmf_dbg(PCIE, "Wait for FW init\n"); sharedram_addr = sharedram_addr_written; loop_counter = BRCMF_PCIE_FW_UP_TIMEOUT / 50; while ((sharedram_addr == sharedram_addr_written) && (loop_counter)) { msleep(50); sharedram_addr = brcmf_pcie_read_ram32(devinfo, devinfo->ci->ramsize - 4); loop_counter--; } if (sharedram_addr == sharedram_addr_written) { brcmf_err(bus, "FW failed to initialize\n"); return -ENODEV; } if (sharedram_addr < devinfo->ci->rambase || sharedram_addr >= devinfo->ci->rambase + devinfo->ci->ramsize) { brcmf_err(bus, "Invalid shared RAM address 0x%08x\n", sharedram_addr); return -ENODEV; } brcmf_dbg(PCIE, "Shared RAM addr: 0x%08x\n", sharedram_addr); return (brcmf_pcie_init_share_ram_info(devinfo, sharedram_addr)); } static int brcmf_pcie_get_resource(struct brcmf_pciedev_info *devinfo) { struct pci_dev *pdev = devinfo->pdev; struct brcmf_bus *bus = dev_get_drvdata(&pdev->dev); int err; phys_addr_t bar0_addr, bar1_addr; ulong bar1_size; err = pci_enable_device(pdev); if (err) { brcmf_err(bus, "pci_enable_device failed err=%d\n", err); return err; } pci_set_master(pdev); /* Bar-0 mapped address */ bar0_addr = pci_resource_start(pdev, 0); /* Bar-1 mapped address */ bar1_addr = pci_resource_start(pdev, 2); /* read Bar-1 mapped memory range */ bar1_size = pci_resource_len(pdev, 2); if ((bar1_size == 0) || (bar1_addr == 0)) { brcmf_err(bus, "BAR1 Not enabled, device size=%ld, addr=%#016llx\n", bar1_size, (unsigned long long)bar1_addr); return -EINVAL; } devinfo->regs = ioremap(bar0_addr, BRCMF_PCIE_REG_MAP_SIZE); devinfo->tcm = ioremap(bar1_addr, bar1_size); if (!devinfo->regs || !devinfo->tcm) { brcmf_err(bus, "ioremap() failed (%p,%p)\n", devinfo->regs, devinfo->tcm); return -EINVAL; } brcmf_dbg(PCIE, "Phys addr : reg space = %p base addr %#016llx\n", devinfo->regs, (unsigned long long)bar0_addr); brcmf_dbg(PCIE, "Phys addr : mem space = %p base addr %#016llx size 0x%x\n", devinfo->tcm, (unsigned long long)bar1_addr, (unsigned int)bar1_size); return 0; } static void brcmf_pcie_release_resource(struct brcmf_pciedev_info *devinfo) { if (devinfo->tcm) iounmap(devinfo->tcm); if (devinfo->regs) iounmap(devinfo->regs); pci_disable_device(devinfo->pdev); } static u32 brcmf_pcie_buscore_prep_addr(const struct pci_dev *pdev, u32 addr) { u32 ret_addr; ret_addr = addr & (BRCMF_PCIE_BAR0_REG_SIZE - 1); addr &= ~(BRCMF_PCIE_BAR0_REG_SIZE - 1); pci_write_config_dword(pdev, BRCMF_PCIE_BAR0_WINDOW, addr); return ret_addr; } static u32 brcmf_pcie_buscore_read32(void *ctx, u32 addr) { struct brcmf_pciedev_info *devinfo = (struct brcmf_pciedev_info *)ctx; addr = brcmf_pcie_buscore_prep_addr(devinfo->pdev, addr); return brcmf_pcie_read_reg32(devinfo, addr); } static void brcmf_pcie_buscore_write32(void *ctx, u32 addr, u32 value) { struct brcmf_pciedev_info *devinfo = (struct brcmf_pciedev_info *)ctx; addr = brcmf_pcie_buscore_prep_addr(devinfo->pdev, addr); brcmf_pcie_write_reg32(devinfo, addr, value); } static int brcmf_pcie_buscoreprep(void *ctx) { return brcmf_pcie_get_resource(ctx); } static int brcmf_pcie_buscore_reset(void *ctx, struct brcmf_chip *chip) { struct brcmf_pciedev_info *devinfo = (struct brcmf_pciedev_info *)ctx; struct brcmf_core *core; u32 val, reg; devinfo->ci = chip; brcmf_pcie_reset_device(devinfo); /* reginfo is not ready yet */ core = brcmf_chip_get_core(chip, BCMA_CORE_PCIE2); if (core->rev >= 64) reg = BRCMF_PCIE_64_PCIE2REG_MAILBOXINT; else reg = BRCMF_PCIE_PCIE2REG_MAILBOXINT; val = brcmf_pcie_read_reg32(devinfo, reg); if (val != 0xffffffff) brcmf_pcie_write_reg32(devinfo, reg, val); return 0; } static void brcmf_pcie_buscore_activate(void *ctx, struct brcmf_chip *chip, u32 rstvec) { struct brcmf_pciedev_info *devinfo = (struct brcmf_pciedev_info *)ctx; brcmf_pcie_write_tcm32(devinfo, 0, rstvec); } static const struct brcmf_buscore_ops brcmf_pcie_buscore_ops = { .prepare = brcmf_pcie_buscoreprep, .reset = brcmf_pcie_buscore_reset, .activate = brcmf_pcie_buscore_activate, .read32 = brcmf_pcie_buscore_read32, .write32 = brcmf_pcie_buscore_write32, }; #define BRCMF_OTP_SYS_VENDOR 0x15 #define BRCMF_OTP_BRCM_CIS 0x80 #define BRCMF_OTP_VENDOR_HDR 0x00000008 static int brcmf_pcie_parse_otp_sys_vendor(struct brcmf_pciedev_info *devinfo, u8 *data, size_t size) { int idx = 4; const char *chip_params; const char *board_params; const char *p; /* 4-byte header and two empty strings */ if (size < 6) return -EINVAL; if (get_unaligned_le32(data) != BRCMF_OTP_VENDOR_HDR) return -EINVAL; chip_params = &data[idx]; /* Skip first string, including terminator */ idx += strnlen(chip_params, size - idx) + 1; if (idx >= size) return -EINVAL; board_params = &data[idx]; /* Skip to terminator of second string */ idx += strnlen(board_params, size - idx); if (idx >= size) return -EINVAL; /* At this point both strings are guaranteed NUL-terminated */ brcmf_dbg(PCIE, "OTP: chip_params='%s' board_params='%s'\n", chip_params, board_params); p = skip_spaces(board_params); while (*p) { char tag = *p++; const char *end; size_t len; if (*p++ != '=') /* implicit NUL check */ return -EINVAL; /* *p might be NUL here, if so end == p and len == 0 */ end = strchrnul(p, ' '); len = end - p; /* leave 1 byte for NUL in destination string */ if (len > (BRCMF_OTP_MAX_PARAM_LEN - 1)) return -EINVAL; /* Copy len characters plus a NUL terminator */ switch (tag) { case 'M': strscpy(devinfo->otp.module, p, len + 1); break; case 'V': strscpy(devinfo->otp.vendor, p, len + 1); break; case 'm': strscpy(devinfo->otp.version, p, len + 1); break; } /* Skip to next arg, if any */ p = skip_spaces(end); } brcmf_dbg(PCIE, "OTP: module=%s vendor=%s version=%s\n", devinfo->otp.module, devinfo->otp.vendor, devinfo->otp.version); if (!devinfo->otp.module[0] || !devinfo->otp.vendor[0] || !devinfo->otp.version[0]) return -EINVAL; devinfo->otp.valid = true; return 0; } static int brcmf_pcie_parse_otp(struct brcmf_pciedev_info *devinfo, u8 *otp, size_t size) { int p = 0; int ret = -EINVAL; brcmf_dbg(PCIE, "parse_otp size=%zd\n", size); while (p < (size - 1)) { u8 type = otp[p]; u8 length = otp[p + 1]; if (type == 0) break; if ((p + 2 + length) > size) break; switch (type) { case BRCMF_OTP_SYS_VENDOR: brcmf_dbg(PCIE, "OTP @ 0x%x (%d): SYS_VENDOR\n", p, length); ret = brcmf_pcie_parse_otp_sys_vendor(devinfo, &otp[p + 2], length); break; case BRCMF_OTP_BRCM_CIS: brcmf_dbg(PCIE, "OTP @ 0x%x (%d): BRCM_CIS\n", p, length); break; default: brcmf_dbg(PCIE, "OTP @ 0x%x (%d): Unknown type 0x%x\n", p, length, type); break; } p += 2 + length; } return ret; } static int brcmf_pcie_read_otp(struct brcmf_pciedev_info *devinfo) { const struct pci_dev *pdev = devinfo->pdev; struct brcmf_bus *bus = dev_get_drvdata(&pdev->dev); u32 coreid, base, words, idx, sromctl; u16 *otp; struct brcmf_core *core; int ret; switch (devinfo->ci->chip) { case BRCM_CC_4355_CHIP_ID: coreid = BCMA_CORE_CHIPCOMMON; base = 0x8c0; words = 0xb2; break; case BRCM_CC_4364_CHIP_ID: coreid = BCMA_CORE_CHIPCOMMON; base = 0x8c0; words = 0x1a0; break; case BRCM_CC_4377_CHIP_ID: case BRCM_CC_4378_CHIP_ID: coreid = BCMA_CORE_GCI; base = 0x1120; words = 0x170; break; case BRCM_CC_4387_CHIP_ID: coreid = BCMA_CORE_GCI; base = 0x113c; words = 0x170; break; default: /* OTP not supported on this chip */ return 0; } core = brcmf_chip_get_core(devinfo->ci, coreid); if (!core) { brcmf_err(bus, "No OTP core\n"); return -ENODEV; } if (coreid == BCMA_CORE_CHIPCOMMON) { /* Chips with OTP accessed via ChipCommon need additional * handling to access the OTP */ brcmf_pcie_select_core(devinfo, coreid); sromctl = READCC32(devinfo, sromcontrol); if (!(sromctl & BCMA_CC_SROM_CONTROL_OTP_PRESENT)) { /* Chip lacks OTP, try without it... */ brcmf_err(bus, "OTP unavailable, using default firmware\n"); return 0; } /* Map OTP to shadow area */ WRITECC32(devinfo, sromcontrol, sromctl | BCMA_CC_SROM_CONTROL_OTPSEL); } otp = kcalloc(words, sizeof(u16), GFP_KERNEL); if (!otp) return -ENOMEM; /* Map bus window to SROM/OTP shadow area in core */ base = brcmf_pcie_buscore_prep_addr(devinfo->pdev, base + core->base); brcmf_dbg(PCIE, "OTP data:\n"); for (idx = 0; idx < words; idx++) { otp[idx] = brcmf_pcie_read_reg16(devinfo, base + 2 * idx); brcmf_dbg(PCIE, "[%8x] 0x%04x\n", base + 2 * idx, otp[idx]); } if (coreid == BCMA_CORE_CHIPCOMMON) { brcmf_pcie_select_core(devinfo, coreid); WRITECC32(devinfo, sromcontrol, sromctl); } ret = brcmf_pcie_parse_otp(devinfo, (u8 *)otp, 2 * words); kfree(otp); return ret; } #define BRCMF_PCIE_FW_CODE 0 #define BRCMF_PCIE_FW_NVRAM 1 #define BRCMF_PCIE_FW_CLM 2 #define BRCMF_PCIE_FW_TXCAP 3 static void brcmf_pcie_setup(struct device *dev, int ret, struct brcmf_fw_request *fwreq) { const struct firmware *fw; void *nvram; struct brcmf_bus *bus; struct brcmf_pciedev *pcie_bus_dev; struct brcmf_pciedev_info *devinfo; struct brcmf_commonring **flowrings; u32 i, nvram_len; bus = dev_get_drvdata(dev); pcie_bus_dev = bus->bus_priv.pcie; devinfo = pcie_bus_dev->devinfo; /* check firmware loading result */ if (ret) goto fail; brcmf_pcie_attach(devinfo); fw = fwreq->items[BRCMF_PCIE_FW_CODE].binary; nvram = fwreq->items[BRCMF_PCIE_FW_NVRAM].nv_data.data; nvram_len = fwreq->items[BRCMF_PCIE_FW_NVRAM].nv_data.len; devinfo->clm_fw = fwreq->items[BRCMF_PCIE_FW_CLM].binary; devinfo->txcap_fw = fwreq->items[BRCMF_PCIE_FW_TXCAP].binary; kfree(fwreq); ret = brcmf_chip_get_raminfo(devinfo->ci); if (ret) { brcmf_err(bus, "Failed to get RAM info\n"); release_firmware(fw); brcmf_fw_nvram_free(nvram); goto fail; } /* Some of the firmwares have the size of the memory of the device * defined inside the firmware. This is because part of the memory in * the device is shared and the devision is determined by FW. Parse * the firmware and adjust the chip memory size now. */ brcmf_pcie_adjust_ramsize(devinfo, (u8 *)fw->data, fw->size); ret = brcmf_pcie_download_fw_nvram(devinfo, fw, nvram, nvram_len); if (ret) goto fail; devinfo->state = BRCMFMAC_PCIE_STATE_UP; ret = brcmf_pcie_init_ringbuffers(devinfo); if (ret) goto fail; ret = brcmf_pcie_init_scratchbuffers(devinfo); if (ret) goto fail; brcmf_pcie_select_core(devinfo, BCMA_CORE_PCIE2); ret = brcmf_pcie_request_irq(devinfo); if (ret) goto fail; /* hook the commonrings in the bus structure. */ for (i = 0; i < BRCMF_NROF_COMMON_MSGRINGS; i++) bus->msgbuf->commonrings[i] = &devinfo->shared.commonrings[i]->commonring; flowrings = kcalloc(devinfo->shared.max_flowrings, sizeof(*flowrings), GFP_KERNEL); if (!flowrings) goto fail; for (i = 0; i < devinfo->shared.max_flowrings; i++) flowrings[i] = &devinfo->shared.flowrings[i].commonring; bus->msgbuf->flowrings = flowrings; bus->msgbuf->rx_dataoffset = devinfo->shared.rx_dataoffset; bus->msgbuf->max_rxbufpost = devinfo->shared.max_rxbufpost; bus->msgbuf->max_flowrings = devinfo->shared.max_flowrings; init_waitqueue_head(&devinfo->mbdata_resp_wait); ret = brcmf_attach(&devinfo->pdev->dev); if (ret) goto fail; brcmf_pcie_bus_console_read(devinfo, false); brcmf_pcie_fwcon_timer(devinfo, true); return; fail: brcmf_err(bus, "Dongle setup failed\n"); brcmf_pcie_bus_console_read(devinfo, true); brcmf_fw_crashed(dev); device_release_driver(dev); } static struct brcmf_fw_request * brcmf_pcie_prepare_fw_request(struct brcmf_pciedev_info *devinfo) { struct brcmf_fw_request *fwreq; struct brcmf_fw_name fwnames[] = { { ".bin", devinfo->fw_name }, { ".txt", devinfo->nvram_name }, { ".clm_blob", devinfo->clm_name }, { ".txcap_blob", devinfo->txcap_name }, }; fwreq = brcmf_fw_alloc_request(devinfo->ci->chip, devinfo->ci->chiprev, brcmf_pcie_fwnames, ARRAY_SIZE(brcmf_pcie_fwnames), fwnames, ARRAY_SIZE(fwnames)); if (!fwreq) return NULL; fwreq->items[BRCMF_PCIE_FW_CODE].type = BRCMF_FW_TYPE_BINARY; fwreq->items[BRCMF_PCIE_FW_NVRAM].type = BRCMF_FW_TYPE_NVRAM; fwreq->items[BRCMF_PCIE_FW_NVRAM].flags = BRCMF_FW_REQF_OPTIONAL; fwreq->items[BRCMF_PCIE_FW_CLM].type = BRCMF_FW_TYPE_BINARY; fwreq->items[BRCMF_PCIE_FW_CLM].flags = BRCMF_FW_REQF_OPTIONAL; fwreq->items[BRCMF_PCIE_FW_TXCAP].type = BRCMF_FW_TYPE_BINARY; fwreq->items[BRCMF_PCIE_FW_TXCAP].flags = BRCMF_FW_REQF_OPTIONAL; /* NVRAM reserves PCI domain 0 for Broadcom's SDK faked bus */ fwreq->domain_nr = pci_domain_nr(devinfo->pdev->bus) + 1; fwreq->bus_nr = devinfo->pdev->bus->number; /* Apple platforms with fancy firmware/NVRAM selection */ if (devinfo->settings->board_type && devinfo->settings->antenna_sku && devinfo->otp.valid) { const struct brcmf_otp_params *otp = &devinfo->otp; struct device *dev = &devinfo->pdev->dev; const char **bt = fwreq->board_types; brcmf_dbg(PCIE, "Apple board: %s\n", devinfo->settings->board_type); /* Example: apple,shikoku-RASP-m-6.11-X3 */ bt[0] = devm_kasprintf(dev, GFP_KERNEL, "%s-%s-%s-%s-%s", devinfo->settings->board_type, otp->module, otp->vendor, otp->version, devinfo->settings->antenna_sku); bt[1] = devm_kasprintf(dev, GFP_KERNEL, "%s-%s-%s-%s", devinfo->settings->board_type, otp->module, otp->vendor, otp->version); bt[2] = devm_kasprintf(dev, GFP_KERNEL, "%s-%s-%s", devinfo->settings->board_type, otp->module, otp->vendor); bt[3] = devm_kasprintf(dev, GFP_KERNEL, "%s-%s", devinfo->settings->board_type, otp->module); bt[4] = devm_kasprintf(dev, GFP_KERNEL, "%s-%s", devinfo->settings->board_type, devinfo->settings->antenna_sku); bt[5] = devinfo->settings->board_type; if (!bt[0] || !bt[1] || !bt[2] || !bt[3] || !bt[4]) { kfree(fwreq); return NULL; } } else { brcmf_dbg(PCIE, "Board: %s\n", devinfo->settings->board_type); fwreq->board_types[0] = devinfo->settings->board_type; } return fwreq; } #ifdef DEBUG static void brcmf_pcie_fwcon_timer(struct brcmf_pciedev_info *devinfo, bool active) { if (!active) { if (devinfo->console_active) { del_timer_sync(&devinfo->timer); devinfo->console_active = false; } return; } /* don't start the timer */ if (devinfo->state != BRCMFMAC_PCIE_STATE_UP || !devinfo->console_interval || !BRCMF_FWCON_ON()) return; if (!devinfo->console_active) { devinfo->timer.expires = jiffies + devinfo->console_interval; add_timer(&devinfo->timer); devinfo->console_active = true; } else { /* Reschedule the timer */ mod_timer(&devinfo->timer, jiffies + devinfo->console_interval); } } static void brcmf_pcie_fwcon(struct timer_list *t) { struct brcmf_pciedev_info *devinfo = from_timer(devinfo, t, timer); if (!devinfo->console_active) return; brcmf_pcie_bus_console_read(devinfo, false); /* Reschedule the timer if console interval is not zero */ mod_timer(&devinfo->timer, jiffies + devinfo->console_interval); } static int brcmf_pcie_console_interval_get(void *data, u64 *val) { struct brcmf_pciedev_info *devinfo = data; *val = devinfo->console_interval; return 0; } static int brcmf_pcie_console_interval_set(void *data, u64 val) { struct brcmf_pciedev_info *devinfo = data; if (val > MAX_CONSOLE_INTERVAL) return -EINVAL; devinfo->console_interval = val; if (!val && devinfo->console_active) brcmf_pcie_fwcon_timer(devinfo, false); else if (val) brcmf_pcie_fwcon_timer(devinfo, true); return 0; } DEFINE_SIMPLE_ATTRIBUTE(brcmf_pcie_console_interval_fops, brcmf_pcie_console_interval_get, brcmf_pcie_console_interval_set, "%llu\n"); static void brcmf_pcie_debugfs_create(struct device *dev) { struct brcmf_bus *bus_if = dev_get_drvdata(dev); struct brcmf_pub *drvr = bus_if->drvr; struct brcmf_pciedev *pcie_bus_dev = bus_if->bus_priv.pcie; struct brcmf_pciedev_info *devinfo = pcie_bus_dev->devinfo; struct dentry *dentry = brcmf_debugfs_get_devdir(drvr); if (IS_ERR_OR_NULL(dentry)) return; devinfo->console_interval = BRCMF_CONSOLE; debugfs_create_file("console_interval", 0644, dentry, devinfo, &brcmf_pcie_console_interval_fops); } #else void brcmf_pcie_fwcon_timer(struct brcmf_pciedev_info *devinfo, bool active) { } static void brcmf_pcie_debugfs_create(struct device *dev) { } #endif /* Forward declaration for pci_match_id() call */ static const struct pci_device_id brcmf_pcie_devid_table[]; static int brcmf_pcie_probe(struct pci_dev *pdev, const struct pci_device_id *id) { int ret; struct brcmf_fw_request *fwreq; struct brcmf_pciedev_info *devinfo; struct brcmf_pciedev *pcie_bus_dev; struct brcmf_core *core; struct brcmf_bus *bus; if (!id) { id = pci_match_id(brcmf_pcie_devid_table, pdev); if (!id) { pci_err(pdev, "Error could not find pci_device_id for %x:%x\n", pdev->vendor, pdev->device); return -ENODEV; } } brcmf_dbg(PCIE, "Enter %x:%x\n", pdev->vendor, pdev->device); ret = -ENOMEM; devinfo = kzalloc(sizeof(*devinfo), GFP_KERNEL); if (devinfo == NULL) return ret; devinfo->pdev = pdev; pcie_bus_dev = NULL; devinfo->ci = brcmf_chip_attach(devinfo, pdev->device, &brcmf_pcie_buscore_ops); if (IS_ERR(devinfo->ci)) { ret = PTR_ERR(devinfo->ci); devinfo->ci = NULL; goto fail; } core = brcmf_chip_get_core(devinfo->ci, BCMA_CORE_PCIE2); if (core->rev >= 64) devinfo->reginfo = &brcmf_reginfo_64; else devinfo->reginfo = &brcmf_reginfo_default; pcie_bus_dev = kzalloc(sizeof(*pcie_bus_dev), GFP_KERNEL); if (pcie_bus_dev == NULL) { ret = -ENOMEM; goto fail; } devinfo->settings = brcmf_get_module_param(&devinfo->pdev->dev, BRCMF_BUSTYPE_PCIE, devinfo->ci->chip, devinfo->ci->chiprev); if (!devinfo->settings) { ret = -ENOMEM; goto fail; } bus = kzalloc(sizeof(*bus), GFP_KERNEL); if (!bus) { ret = -ENOMEM; goto fail; } bus->msgbuf = kzalloc(sizeof(*bus->msgbuf), GFP_KERNEL); if (!bus->msgbuf) { ret = -ENOMEM; kfree(bus); goto fail; } /* hook it all together. */ pcie_bus_dev->devinfo = devinfo; pcie_bus_dev->bus = bus; bus->dev = &pdev->dev; bus->bus_priv.pcie = pcie_bus_dev; bus->ops = &brcmf_pcie_bus_ops; bus->proto_type = BRCMF_PROTO_MSGBUF; bus->fwvid = id->driver_data; bus->chip = devinfo->coreid; bus->wowl_supported = pci_pme_capable(pdev, PCI_D3hot); dev_set_drvdata(&pdev->dev, bus); ret = brcmf_alloc(&devinfo->pdev->dev, devinfo->settings); if (ret) goto fail_bus; ret = brcmf_pcie_read_otp(devinfo); if (ret) { brcmf_err(bus, "failed to parse OTP\n"); goto fail_brcmf; } #ifdef DEBUG /* Set up the fwcon timer */ timer_setup(&devinfo->timer, brcmf_pcie_fwcon, 0); #endif fwreq = brcmf_pcie_prepare_fw_request(devinfo); if (!fwreq) { ret = -ENOMEM; goto fail_brcmf; } ret = brcmf_fw_get_firmwares(bus->dev, fwreq, brcmf_pcie_setup); if (ret < 0) { kfree(fwreq); goto fail_brcmf; } return 0; fail_brcmf: brcmf_free(&devinfo->pdev->dev); fail_bus: kfree(bus->msgbuf); kfree(bus); fail: brcmf_err(NULL, "failed %x:%x\n", pdev->vendor, pdev->device); brcmf_pcie_release_resource(devinfo); if (devinfo->ci) brcmf_chip_detach(devinfo->ci); if (devinfo->settings) brcmf_release_module_param(devinfo->settings); kfree(pcie_bus_dev); kfree(devinfo); return ret; } static void brcmf_pcie_remove(struct pci_dev *pdev) { struct brcmf_pciedev_info *devinfo; struct brcmf_bus *bus; brcmf_dbg(PCIE, "Enter\n"); bus = dev_get_drvdata(&pdev->dev); if (bus == NULL) return; devinfo = bus->bus_priv.pcie->devinfo; brcmf_pcie_bus_console_read(devinfo, false); brcmf_pcie_fwcon_timer(devinfo, false); devinfo->state = BRCMFMAC_PCIE_STATE_DOWN; if (devinfo->ci) brcmf_pcie_intr_disable(devinfo); brcmf_detach(&pdev->dev); brcmf_free(&pdev->dev); kfree(bus->bus_priv.pcie); kfree(bus->msgbuf->flowrings); kfree(bus->msgbuf); kfree(bus); brcmf_pcie_release_irq(devinfo); brcmf_pcie_release_scratchbuffers(devinfo); brcmf_pcie_release_ringbuffers(devinfo); brcmf_pcie_reset_device(devinfo); brcmf_pcie_release_resource(devinfo); release_firmware(devinfo->clm_fw); release_firmware(devinfo->txcap_fw); if (devinfo->ci) brcmf_chip_detach(devinfo->ci); if (devinfo->settings) brcmf_release_module_param(devinfo->settings); kfree(devinfo); dev_set_drvdata(&pdev->dev, NULL); } #ifdef CONFIG_PM static int brcmf_pcie_pm_enter_D3(struct device *dev) { struct brcmf_pciedev_info *devinfo; struct brcmf_bus *bus; brcmf_dbg(PCIE, "Enter\n"); bus = dev_get_drvdata(dev); devinfo = bus->bus_priv.pcie->devinfo; brcmf_pcie_fwcon_timer(devinfo, false); brcmf_bus_change_state(bus, BRCMF_BUS_DOWN); devinfo->mbdata_completed = false; brcmf_pcie_send_mb_data(devinfo, BRCMF_H2D_HOST_D3_INFORM); wait_event_timeout(devinfo->mbdata_resp_wait, devinfo->mbdata_completed, BRCMF_PCIE_MBDATA_TIMEOUT); if (!devinfo->mbdata_completed) { brcmf_err(bus, "Timeout on response for entering D3 substate\n"); brcmf_bus_change_state(bus, BRCMF_BUS_UP); return -EIO; } devinfo->state = BRCMFMAC_PCIE_STATE_DOWN; return 0; } static int brcmf_pcie_pm_leave_D3(struct device *dev) { struct brcmf_pciedev_info *devinfo; struct brcmf_bus *bus; struct pci_dev *pdev; int err; brcmf_dbg(PCIE, "Enter\n"); bus = dev_get_drvdata(dev); devinfo = bus->bus_priv.pcie->devinfo; brcmf_dbg(PCIE, "Enter, dev=%p, bus=%p\n", dev, bus); /* Check if device is still up and running, if so we are ready */ if (brcmf_pcie_read_reg32(devinfo, devinfo->reginfo->intmask) != 0) { brcmf_dbg(PCIE, "Try to wakeup device....\n"); if (brcmf_pcie_send_mb_data(devinfo, BRCMF_H2D_HOST_D0_INFORM)) goto cleanup; brcmf_dbg(PCIE, "Hot resume, continue....\n"); devinfo->state = BRCMFMAC_PCIE_STATE_UP; brcmf_pcie_select_core(devinfo, BCMA_CORE_PCIE2); brcmf_bus_change_state(bus, BRCMF_BUS_UP); brcmf_pcie_intr_enable(devinfo); brcmf_pcie_hostready(devinfo); brcmf_pcie_fwcon_timer(devinfo, true); return 0; } cleanup: brcmf_chip_detach(devinfo->ci); devinfo->ci = NULL; pdev = devinfo->pdev; brcmf_pcie_remove(pdev); err = brcmf_pcie_probe(pdev, NULL); if (err) __brcmf_err(NULL, __func__, "probe after resume failed, err=%d\n", err); return err; } static const struct dev_pm_ops brcmf_pciedrvr_pm = { .suspend = brcmf_pcie_pm_enter_D3, .resume = brcmf_pcie_pm_leave_D3, .freeze = brcmf_pcie_pm_enter_D3, .restore = brcmf_pcie_pm_leave_D3, }; #endif /* CONFIG_PM */ #define BRCMF_PCIE_DEVICE(dev_id, fw_vend) \ { \ BRCM_PCIE_VENDOR_ID_BROADCOM, (dev_id), \ PCI_ANY_ID, PCI_ANY_ID, \ PCI_CLASS_NETWORK_OTHER << 8, 0xffff00, \ BRCMF_FWVENDOR_ ## fw_vend \ } #define BRCMF_PCIE_DEVICE_SUB(dev_id, subvend, subdev, fw_vend) \ { \ BRCM_PCIE_VENDOR_ID_BROADCOM, (dev_id), \ (subvend), (subdev), \ PCI_CLASS_NETWORK_OTHER << 8, 0xffff00, \ BRCMF_FWVENDOR_ ## fw_vend \ } static const struct pci_device_id brcmf_pcie_devid_table[] = { BRCMF_PCIE_DEVICE(BRCM_PCIE_4350_DEVICE_ID, WCC), BRCMF_PCIE_DEVICE_SUB(0x4355, BRCM_PCIE_VENDOR_ID_BROADCOM, 0x4355, WCC), BRCMF_PCIE_DEVICE(BRCM_PCIE_4354_RAW_DEVICE_ID, WCC), BRCMF_PCIE_DEVICE(BRCM_PCIE_4355_DEVICE_ID, WCC), BRCMF_PCIE_DEVICE(BRCM_PCIE_4356_DEVICE_ID, WCC), BRCMF_PCIE_DEVICE(BRCM_PCIE_43567_DEVICE_ID, WCC), BRCMF_PCIE_DEVICE(BRCM_PCIE_43570_DEVICE_ID, WCC), BRCMF_PCIE_DEVICE(BRCM_PCIE_43570_RAW_DEVICE_ID, WCC), BRCMF_PCIE_DEVICE(BRCM_PCIE_4358_DEVICE_ID, WCC), BRCMF_PCIE_DEVICE(BRCM_PCIE_4359_DEVICE_ID, WCC), BRCMF_PCIE_DEVICE(BRCM_PCIE_43602_DEVICE_ID, WCC), BRCMF_PCIE_DEVICE(BRCM_PCIE_43602_2G_DEVICE_ID, WCC), BRCMF_PCIE_DEVICE(BRCM_PCIE_43602_5G_DEVICE_ID, WCC), BRCMF_PCIE_DEVICE(BRCM_PCIE_43602_RAW_DEVICE_ID, WCC), BRCMF_PCIE_DEVICE(BRCM_PCIE_4364_DEVICE_ID, WCC), BRCMF_PCIE_DEVICE(BRCM_PCIE_4365_DEVICE_ID, BCA), BRCMF_PCIE_DEVICE(BRCM_PCIE_4365_2G_DEVICE_ID, BCA), BRCMF_PCIE_DEVICE(BRCM_PCIE_4365_5G_DEVICE_ID, BCA), BRCMF_PCIE_DEVICE_SUB(0x4365, BRCM_PCIE_VENDOR_ID_BROADCOM, 0x4365, BCA), BRCMF_PCIE_DEVICE(BRCM_PCIE_4366_DEVICE_ID, BCA), BRCMF_PCIE_DEVICE(BRCM_PCIE_4366_2G_DEVICE_ID, BCA), BRCMF_PCIE_DEVICE(BRCM_PCIE_4366_5G_DEVICE_ID, BCA), BRCMF_PCIE_DEVICE(BRCM_PCIE_4371_DEVICE_ID, WCC), BRCMF_PCIE_DEVICE(BRCM_PCIE_43596_DEVICE_ID, CYW), BRCMF_PCIE_DEVICE(BRCM_PCIE_4377_DEVICE_ID, WCC), BRCMF_PCIE_DEVICE(BRCM_PCIE_4378_DEVICE_ID, WCC), BRCMF_PCIE_DEVICE(BRCM_PCIE_4387_DEVICE_ID, WCC), { /* end: all zeroes */ } }; MODULE_DEVICE_TABLE(pci, brcmf_pcie_devid_table); static struct pci_driver brcmf_pciedrvr = { .node = {}, .name = KBUILD_MODNAME, .id_table = brcmf_pcie_devid_table, .probe = brcmf_pcie_probe, .remove = brcmf_pcie_remove, #ifdef CONFIG_PM .driver.pm = &brcmf_pciedrvr_pm, #endif .driver.coredump = brcmf_dev_coredump, }; int brcmf_pcie_register(void) { brcmf_dbg(PCIE, "Enter\n"); return pci_register_driver(&brcmf_pciedrvr); } void brcmf_pcie_exit(void) { brcmf_dbg(PCIE, "Enter\n"); pci_unregister_driver(&brcmf_pciedrvr); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1