Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Emmanuel Grumbach | 3042 | 31.43% | 71 | 26.89% |
Sara Sharon | 2408 | 24.88% | 31 | 11.74% |
Johannes Berg | 2056 | 21.24% | 73 | 27.65% |
Haim Dreyfuss | 507 | 5.24% | 4 | 1.52% |
Golan Ben-Ami | 484 | 5.00% | 6 | 2.27% |
striebit | 262 | 2.71% | 4 | 1.52% |
Yi Zhu | 141 | 1.46% | 3 | 1.14% |
Mordechai Goodstein | 102 | 1.05% | 5 | 1.89% |
Tomas Winkler | 99 | 1.02% | 7 | 2.65% |
Mukesh Sisodiya | 84 | 0.87% | 1 | 0.38% |
Gregory Greenman | 59 | 0.61% | 2 | 0.76% |
Meenakshi Venkataraman | 51 | 0.53% | 2 | 0.76% |
Mohamed Abbas | 34 | 0.35% | 3 | 1.14% |
Luciano Coelho | 33 | 0.34% | 5 | 1.89% |
Ido Yariv | 23 | 0.24% | 1 | 0.38% |
Wey-Yi Guy | 22 | 0.23% | 7 | 2.65% |
Arik Nemtsov | 22 | 0.23% | 1 | 0.38% |
Michal Nazarewicz | 21 | 0.22% | 1 | 0.38% |
Mike Golant | 21 | 0.22% | 1 | 0.38% |
John W. Linville | 19 | 0.20% | 1 | 0.38% |
Matti Gottlieb | 19 | 0.20% | 1 | 0.38% |
Samuel Ortiz | 18 | 0.19% | 1 | 0.38% |
Ilan Peer | 17 | 0.18% | 1 | 0.38% |
Shahar S Matityahu | 17 | 0.18% | 3 | 1.14% |
Anjaneyulu | 14 | 0.14% | 1 | 0.38% |
Ben M Cahill | 12 | 0.12% | 5 | 1.89% |
Eliad Peller | 12 | 0.12% | 2 | 0.76% |
Ron Rindjunsky | 12 | 0.12% | 1 | 0.38% |
Sharon Dvir | 9 | 0.09% | 1 | 0.38% |
Liad Kaufman | 9 | 0.09% | 1 | 0.38% |
Andrei Otcheretianski | 8 | 0.08% | 1 | 0.38% |
Avri Altman | 7 | 0.07% | 1 | 0.38% |
Stanislaw Gruszka | 5 | 0.05% | 3 | 1.14% |
David S. Miller | 5 | 0.05% | 1 | 0.38% |
Reinette Chatre | 5 | 0.05% | 1 | 0.38% |
Don Fry | 3 | 0.03% | 2 | 0.76% |
Assaf Krauss | 3 | 0.03% | 1 | 0.38% |
Tejun Heo | 3 | 0.03% | 1 | 0.38% |
Luis R. Rodriguez | 3 | 0.03% | 1 | 0.38% |
Ansuel Smith | 2 | 0.02% | 1 | 0.38% |
Avraham Stern | 2 | 0.02% | 1 | 0.38% |
Xiang wangx | 1 | 0.01% | 1 | 0.38% |
Jay Sternberg | 1 | 0.01% | 1 | 0.38% |
Shanyu Zhao | 1 | 0.01% | 1 | 0.38% |
Waiman Long | 1 | 0.01% | 1 | 0.38% |
Total | 9679 | 264 |
// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause /* * Copyright (C) 2003-2014, 2018-2023 Intel Corporation * Copyright (C) 2013-2015 Intel Mobile Communications GmbH * Copyright (C) 2016-2017 Intel Deutschland GmbH */ #include <linux/sched.h> #include <linux/wait.h> #include <linux/gfp.h> #include "iwl-prph.h" #include "iwl-io.h" #include "internal.h" #include "iwl-op-mode.h" #include "iwl-context-info-gen3.h" /****************************************************************************** * * RX path functions * ******************************************************************************/ /* * Rx theory of operation * * Driver allocates a circular buffer of Receive Buffer Descriptors (RBDs), * each of which point to Receive Buffers to be filled by the NIC. These get * used not only for Rx frames, but for any command response or notification * from the NIC. The driver and NIC manage the Rx buffers by means * of indexes into the circular buffer. * * Rx Queue Indexes * The host/firmware share two index registers for managing the Rx buffers. * * The READ index maps to the first position that the firmware may be writing * to -- the driver can read up to (but not including) this position and get * good data. * The READ index is managed by the firmware once the card is enabled. * * The WRITE index maps to the last position the driver has read from -- the * position preceding WRITE is the last slot the firmware can place a packet. * * The queue is empty (no good data) if WRITE = READ - 1, and is full if * WRITE = READ. * * During initialization, the host sets up the READ queue position to the first * INDEX position, and WRITE to the last (READ - 1 wrapped) * * When the firmware places a packet in a buffer, it will advance the READ index * and fire the RX interrupt. The driver can then query the READ index and * process as many packets as possible, moving the WRITE index forward as it * resets the Rx queue buffers with new memory. * * The management in the driver is as follows: * + A list of pre-allocated RBDs is stored in iwl->rxq->rx_free. * When the interrupt handler is called, the request is processed. * The page is either stolen - transferred to the upper layer * or reused - added immediately to the iwl->rxq->rx_free list. * + When the page is stolen - the driver updates the matching queue's used * count, detaches the RBD and transfers it to the queue used list. * When there are two used RBDs - they are transferred to the allocator empty * list. Work is then scheduled for the allocator to start allocating * eight buffers. * When there are another 6 used RBDs - they are transferred to the allocator * empty list and the driver tries to claim the pre-allocated buffers and * add them to iwl->rxq->rx_free. If it fails - it continues to claim them * until ready. * When there are 8+ buffers in the free list - either from allocation or from * 8 reused unstolen pages - restock is called to update the FW and indexes. * + In order to make sure the allocator always has RBDs to use for allocation * the allocator has initial pool in the size of num_queues*(8-2) - the * maximum missing RBDs per allocation request (request posted with 2 * empty RBDs, there is no guarantee when the other 6 RBDs are supplied). * The queues supplies the recycle of the rest of the RBDs. * + A received packet is processed and handed to the kernel network stack, * detached from the iwl->rxq. The driver 'processed' index is updated. * + If there are no allocated buffers in iwl->rxq->rx_free, * the READ INDEX is not incremented and iwl->status(RX_STALLED) is set. * If there were enough free buffers and RX_STALLED is set it is cleared. * * * Driver sequence: * * iwl_rxq_alloc() Allocates rx_free * iwl_pcie_rx_replenish() Replenishes rx_free list from rx_used, and calls * iwl_pcie_rxq_restock. * Used only during initialization. * iwl_pcie_rxq_restock() Moves available buffers from rx_free into Rx * queue, updates firmware pointers, and updates * the WRITE index. * iwl_pcie_rx_allocator() Background work for allocating pages. * * -- enable interrupts -- * ISR - iwl_rx() Detach iwl_rx_mem_buffers from pool up to the * READ INDEX, detaching the SKB from the pool. * Moves the packet buffer from queue to rx_used. * Posts and claims requests to the allocator. * Calls iwl_pcie_rxq_restock to refill any empty * slots. * * RBD life-cycle: * * Init: * rxq.pool -> rxq.rx_used -> rxq.rx_free -> rxq.queue * * Regular Receive interrupt: * Page Stolen: * rxq.queue -> rxq.rx_used -> allocator.rbd_empty -> * allocator.rbd_allocated -> rxq.rx_free -> rxq.queue * Page not Stolen: * rxq.queue -> rxq.rx_free -> rxq.queue * ... * */ /* * iwl_rxq_space - Return number of free slots available in queue. */ static int iwl_rxq_space(const struct iwl_rxq *rxq) { /* Make sure rx queue size is a power of 2 */ WARN_ON(rxq->queue_size & (rxq->queue_size - 1)); /* * There can be up to (RX_QUEUE_SIZE - 1) free slots, to avoid ambiguity * between empty and completely full queues. * The following is equivalent to modulo by RX_QUEUE_SIZE and is well * defined for negative dividends. */ return (rxq->read - rxq->write - 1) & (rxq->queue_size - 1); } /* * iwl_dma_addr2rbd_ptr - convert a DMA address to a uCode read buffer ptr */ static inline __le32 iwl_pcie_dma_addr2rbd_ptr(dma_addr_t dma_addr) { return cpu_to_le32((u32)(dma_addr >> 8)); } /* * iwl_pcie_rx_stop - stops the Rx DMA */ int iwl_pcie_rx_stop(struct iwl_trans *trans) { if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) { /* TODO: remove this once fw does it */ iwl_write_umac_prph(trans, RFH_RXF_DMA_CFG_GEN3, 0); return iwl_poll_umac_prph_bit(trans, RFH_GEN_STATUS_GEN3, RXF_DMA_IDLE, RXF_DMA_IDLE, 1000); } else if (trans->trans_cfg->mq_rx_supported) { iwl_write_prph(trans, RFH_RXF_DMA_CFG, 0); return iwl_poll_prph_bit(trans, RFH_GEN_STATUS, RXF_DMA_IDLE, RXF_DMA_IDLE, 1000); } else { iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0); return iwl_poll_direct_bit(trans, FH_MEM_RSSR_RX_STATUS_REG, FH_RSSR_CHNL0_RX_STATUS_CHNL_IDLE, 1000); } } /* * iwl_pcie_rxq_inc_wr_ptr - Update the write pointer for the RX queue */ static void iwl_pcie_rxq_inc_wr_ptr(struct iwl_trans *trans, struct iwl_rxq *rxq) { u32 reg; lockdep_assert_held(&rxq->lock); /* * explicitly wake up the NIC if: * 1. shadow registers aren't enabled * 2. there is a chance that the NIC is asleep */ if (!trans->trans_cfg->base_params->shadow_reg_enable && test_bit(STATUS_TPOWER_PMI, &trans->status)) { reg = iwl_read32(trans, CSR_UCODE_DRV_GP1); if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) { IWL_DEBUG_INFO(trans, "Rx queue requesting wakeup, GP1 = 0x%x\n", reg); iwl_set_bit(trans, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ); rxq->need_update = true; return; } } rxq->write_actual = round_down(rxq->write, 8); if (!trans->trans_cfg->mq_rx_supported) iwl_write32(trans, FH_RSCSR_CHNL0_WPTR, rxq->write_actual); else if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_BZ) iwl_write32(trans, HBUS_TARG_WRPTR, rxq->write_actual | HBUS_TARG_WRPTR_RX_Q(rxq->id)); else iwl_write32(trans, RFH_Q_FRBDCB_WIDX_TRG(rxq->id), rxq->write_actual); } static void iwl_pcie_rxq_check_wrptr(struct iwl_trans *trans) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); int i; for (i = 0; i < trans->num_rx_queues; i++) { struct iwl_rxq *rxq = &trans_pcie->rxq[i]; if (!rxq->need_update) continue; spin_lock_bh(&rxq->lock); iwl_pcie_rxq_inc_wr_ptr(trans, rxq); rxq->need_update = false; spin_unlock_bh(&rxq->lock); } } static void iwl_pcie_restock_bd(struct iwl_trans *trans, struct iwl_rxq *rxq, struct iwl_rx_mem_buffer *rxb) { if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) { struct iwl_rx_transfer_desc *bd = rxq->bd; BUILD_BUG_ON(sizeof(*bd) != 2 * sizeof(u64)); bd[rxq->write].addr = cpu_to_le64(rxb->page_dma); bd[rxq->write].rbid = cpu_to_le16(rxb->vid); } else { __le64 *bd = rxq->bd; bd[rxq->write] = cpu_to_le64(rxb->page_dma | rxb->vid); } IWL_DEBUG_RX(trans, "Assigned virtual RB ID %u to queue %d index %d\n", (u32)rxb->vid, rxq->id, rxq->write); } /* * iwl_pcie_rxmq_restock - restock implementation for multi-queue rx */ static void iwl_pcie_rxmq_restock(struct iwl_trans *trans, struct iwl_rxq *rxq) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); struct iwl_rx_mem_buffer *rxb; /* * If the device isn't enabled - no need to try to add buffers... * This can happen when we stop the device and still have an interrupt * pending. We stop the APM before we sync the interrupts because we * have to (see comment there). On the other hand, since the APM is * stopped, we cannot access the HW (in particular not prph). * So don't try to restock if the APM has been already stopped. */ if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status)) return; spin_lock_bh(&rxq->lock); while (rxq->free_count) { /* Get next free Rx buffer, remove from free list */ rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer, list); list_del(&rxb->list); rxb->invalid = false; /* some low bits are expected to be unset (depending on hw) */ WARN_ON(rxb->page_dma & trans_pcie->supported_dma_mask); /* Point to Rx buffer via next RBD in circular buffer */ iwl_pcie_restock_bd(trans, rxq, rxb); rxq->write = (rxq->write + 1) & (rxq->queue_size - 1); rxq->free_count--; } spin_unlock_bh(&rxq->lock); /* * If we've added more space for the firmware to place data, tell it. * Increment device's write pointer in multiples of 8. */ if (rxq->write_actual != (rxq->write & ~0x7)) { spin_lock_bh(&rxq->lock); iwl_pcie_rxq_inc_wr_ptr(trans, rxq); spin_unlock_bh(&rxq->lock); } } /* * iwl_pcie_rxsq_restock - restock implementation for single queue rx */ static void iwl_pcie_rxsq_restock(struct iwl_trans *trans, struct iwl_rxq *rxq) { struct iwl_rx_mem_buffer *rxb; /* * If the device isn't enabled - not need to try to add buffers... * This can happen when we stop the device and still have an interrupt * pending. We stop the APM before we sync the interrupts because we * have to (see comment there). On the other hand, since the APM is * stopped, we cannot access the HW (in particular not prph). * So don't try to restock if the APM has been already stopped. */ if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status)) return; spin_lock_bh(&rxq->lock); while ((iwl_rxq_space(rxq) > 0) && (rxq->free_count)) { __le32 *bd = (__le32 *)rxq->bd; /* The overwritten rxb must be a used one */ rxb = rxq->queue[rxq->write]; BUG_ON(rxb && rxb->page); /* Get next free Rx buffer, remove from free list */ rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer, list); list_del(&rxb->list); rxb->invalid = false; /* Point to Rx buffer via next RBD in circular buffer */ bd[rxq->write] = iwl_pcie_dma_addr2rbd_ptr(rxb->page_dma); rxq->queue[rxq->write] = rxb; rxq->write = (rxq->write + 1) & RX_QUEUE_MASK; rxq->free_count--; } spin_unlock_bh(&rxq->lock); /* If we've added more space for the firmware to place data, tell it. * Increment device's write pointer in multiples of 8. */ if (rxq->write_actual != (rxq->write & ~0x7)) { spin_lock_bh(&rxq->lock); iwl_pcie_rxq_inc_wr_ptr(trans, rxq); spin_unlock_bh(&rxq->lock); } } /* * iwl_pcie_rxq_restock - refill RX queue from pre-allocated pool * * If there are slots in the RX queue that need to be restocked, * and we have free pre-allocated buffers, fill the ranks as much * as we can, pulling from rx_free. * * This moves the 'write' index forward to catch up with 'processed', and * also updates the memory address in the firmware to reference the new * target buffer. */ static void iwl_pcie_rxq_restock(struct iwl_trans *trans, struct iwl_rxq *rxq) { if (trans->trans_cfg->mq_rx_supported) iwl_pcie_rxmq_restock(trans, rxq); else iwl_pcie_rxsq_restock(trans, rxq); } /* * iwl_pcie_rx_alloc_page - allocates and returns a page. * */ static struct page *iwl_pcie_rx_alloc_page(struct iwl_trans *trans, u32 *offset, gfp_t priority) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); unsigned int rbsize = iwl_trans_get_rb_size(trans_pcie->rx_buf_size); unsigned int allocsize = PAGE_SIZE << trans_pcie->rx_page_order; struct page *page; gfp_t gfp_mask = priority; if (trans_pcie->rx_page_order > 0) gfp_mask |= __GFP_COMP; if (trans_pcie->alloc_page) { spin_lock_bh(&trans_pcie->alloc_page_lock); /* recheck */ if (trans_pcie->alloc_page) { *offset = trans_pcie->alloc_page_used; page = trans_pcie->alloc_page; trans_pcie->alloc_page_used += rbsize; if (trans_pcie->alloc_page_used >= allocsize) trans_pcie->alloc_page = NULL; else get_page(page); spin_unlock_bh(&trans_pcie->alloc_page_lock); return page; } spin_unlock_bh(&trans_pcie->alloc_page_lock); } /* Alloc a new receive buffer */ page = alloc_pages(gfp_mask, trans_pcie->rx_page_order); if (!page) { if (net_ratelimit()) IWL_DEBUG_INFO(trans, "alloc_pages failed, order: %d\n", trans_pcie->rx_page_order); /* * Issue an error if we don't have enough pre-allocated * buffers. */ if (!(gfp_mask & __GFP_NOWARN) && net_ratelimit()) IWL_CRIT(trans, "Failed to alloc_pages\n"); return NULL; } if (2 * rbsize <= allocsize) { spin_lock_bh(&trans_pcie->alloc_page_lock); if (!trans_pcie->alloc_page) { get_page(page); trans_pcie->alloc_page = page; trans_pcie->alloc_page_used = rbsize; } spin_unlock_bh(&trans_pcie->alloc_page_lock); } *offset = 0; return page; } /* * iwl_pcie_rxq_alloc_rbs - allocate a page for each used RBD * * A used RBD is an Rx buffer that has been given to the stack. To use it again * a page must be allocated and the RBD must point to the page. This function * doesn't change the HW pointer but handles the list of pages that is used by * iwl_pcie_rxq_restock. The latter function will update the HW to use the newly * allocated buffers. */ void iwl_pcie_rxq_alloc_rbs(struct iwl_trans *trans, gfp_t priority, struct iwl_rxq *rxq) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); struct iwl_rx_mem_buffer *rxb; struct page *page; while (1) { unsigned int offset; spin_lock_bh(&rxq->lock); if (list_empty(&rxq->rx_used)) { spin_unlock_bh(&rxq->lock); return; } spin_unlock_bh(&rxq->lock); page = iwl_pcie_rx_alloc_page(trans, &offset, priority); if (!page) return; spin_lock_bh(&rxq->lock); if (list_empty(&rxq->rx_used)) { spin_unlock_bh(&rxq->lock); __free_pages(page, trans_pcie->rx_page_order); return; } rxb = list_first_entry(&rxq->rx_used, struct iwl_rx_mem_buffer, list); list_del(&rxb->list); spin_unlock_bh(&rxq->lock); BUG_ON(rxb->page); rxb->page = page; rxb->offset = offset; /* Get physical address of the RB */ rxb->page_dma = dma_map_page(trans->dev, page, rxb->offset, trans_pcie->rx_buf_bytes, DMA_FROM_DEVICE); if (dma_mapping_error(trans->dev, rxb->page_dma)) { rxb->page = NULL; spin_lock_bh(&rxq->lock); list_add(&rxb->list, &rxq->rx_used); spin_unlock_bh(&rxq->lock); __free_pages(page, trans_pcie->rx_page_order); return; } spin_lock_bh(&rxq->lock); list_add_tail(&rxb->list, &rxq->rx_free); rxq->free_count++; spin_unlock_bh(&rxq->lock); } } void iwl_pcie_free_rbs_pool(struct iwl_trans *trans) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); int i; if (!trans_pcie->rx_pool) return; for (i = 0; i < RX_POOL_SIZE(trans_pcie->num_rx_bufs); i++) { if (!trans_pcie->rx_pool[i].page) continue; dma_unmap_page(trans->dev, trans_pcie->rx_pool[i].page_dma, trans_pcie->rx_buf_bytes, DMA_FROM_DEVICE); __free_pages(trans_pcie->rx_pool[i].page, trans_pcie->rx_page_order); trans_pcie->rx_pool[i].page = NULL; } } /* * iwl_pcie_rx_allocator - Allocates pages in the background for RX queues * * Allocates for each received request 8 pages * Called as a scheduled work item. */ static void iwl_pcie_rx_allocator(struct iwl_trans *trans) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); struct iwl_rb_allocator *rba = &trans_pcie->rba; struct list_head local_empty; int pending = atomic_read(&rba->req_pending); IWL_DEBUG_TPT(trans, "Pending allocation requests = %d\n", pending); /* If we were scheduled - there is at least one request */ spin_lock_bh(&rba->lock); /* swap out the rba->rbd_empty to a local list */ list_replace_init(&rba->rbd_empty, &local_empty); spin_unlock_bh(&rba->lock); while (pending) { int i; LIST_HEAD(local_allocated); gfp_t gfp_mask = GFP_KERNEL; /* Do not post a warning if there are only a few requests */ if (pending < RX_PENDING_WATERMARK) gfp_mask |= __GFP_NOWARN; for (i = 0; i < RX_CLAIM_REQ_ALLOC;) { struct iwl_rx_mem_buffer *rxb; struct page *page; /* List should never be empty - each reused RBD is * returned to the list, and initial pool covers any * possible gap between the time the page is allocated * to the time the RBD is added. */ BUG_ON(list_empty(&local_empty)); /* Get the first rxb from the rbd list */ rxb = list_first_entry(&local_empty, struct iwl_rx_mem_buffer, list); BUG_ON(rxb->page); /* Alloc a new receive buffer */ page = iwl_pcie_rx_alloc_page(trans, &rxb->offset, gfp_mask); if (!page) continue; rxb->page = page; /* Get physical address of the RB */ rxb->page_dma = dma_map_page(trans->dev, page, rxb->offset, trans_pcie->rx_buf_bytes, DMA_FROM_DEVICE); if (dma_mapping_error(trans->dev, rxb->page_dma)) { rxb->page = NULL; __free_pages(page, trans_pcie->rx_page_order); continue; } /* move the allocated entry to the out list */ list_move(&rxb->list, &local_allocated); i++; } atomic_dec(&rba->req_pending); pending--; if (!pending) { pending = atomic_read(&rba->req_pending); if (pending) IWL_DEBUG_TPT(trans, "Got more pending allocation requests = %d\n", pending); } spin_lock_bh(&rba->lock); /* add the allocated rbds to the allocator allocated list */ list_splice_tail(&local_allocated, &rba->rbd_allocated); /* get more empty RBDs for current pending requests */ list_splice_tail_init(&rba->rbd_empty, &local_empty); spin_unlock_bh(&rba->lock); atomic_inc(&rba->req_ready); } spin_lock_bh(&rba->lock); /* return unused rbds to the allocator empty list */ list_splice_tail(&local_empty, &rba->rbd_empty); spin_unlock_bh(&rba->lock); IWL_DEBUG_TPT(trans, "%s, exit.\n", __func__); } /* * iwl_pcie_rx_allocator_get - returns the pre-allocated pages .* .* Called by queue when the queue posted allocation request and * has freed 8 RBDs in order to restock itself. * This function directly moves the allocated RBs to the queue's ownership * and updates the relevant counters. */ static void iwl_pcie_rx_allocator_get(struct iwl_trans *trans, struct iwl_rxq *rxq) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); struct iwl_rb_allocator *rba = &trans_pcie->rba; int i; lockdep_assert_held(&rxq->lock); /* * atomic_dec_if_positive returns req_ready - 1 for any scenario. * If req_ready is 0 atomic_dec_if_positive will return -1 and this * function will return early, as there are no ready requests. * atomic_dec_if_positive will perofrm the *actual* decrement only if * req_ready > 0, i.e. - there are ready requests and the function * hands one request to the caller. */ if (atomic_dec_if_positive(&rba->req_ready) < 0) return; spin_lock(&rba->lock); for (i = 0; i < RX_CLAIM_REQ_ALLOC; i++) { /* Get next free Rx buffer, remove it from free list */ struct iwl_rx_mem_buffer *rxb = list_first_entry(&rba->rbd_allocated, struct iwl_rx_mem_buffer, list); list_move(&rxb->list, &rxq->rx_free); } spin_unlock(&rba->lock); rxq->used_count -= RX_CLAIM_REQ_ALLOC; rxq->free_count += RX_CLAIM_REQ_ALLOC; } void iwl_pcie_rx_allocator_work(struct work_struct *data) { struct iwl_rb_allocator *rba_p = container_of(data, struct iwl_rb_allocator, rx_alloc); struct iwl_trans_pcie *trans_pcie = container_of(rba_p, struct iwl_trans_pcie, rba); iwl_pcie_rx_allocator(trans_pcie->trans); } static int iwl_pcie_free_bd_size(struct iwl_trans *trans) { if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) return sizeof(struct iwl_rx_transfer_desc); return trans->trans_cfg->mq_rx_supported ? sizeof(__le64) : sizeof(__le32); } static int iwl_pcie_used_bd_size(struct iwl_trans *trans) { if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_BZ) return sizeof(struct iwl_rx_completion_desc_bz); if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) return sizeof(struct iwl_rx_completion_desc); return sizeof(__le32); } static void iwl_pcie_free_rxq_dma(struct iwl_trans *trans, struct iwl_rxq *rxq) { int free_size = iwl_pcie_free_bd_size(trans); if (rxq->bd) dma_free_coherent(trans->dev, free_size * rxq->queue_size, rxq->bd, rxq->bd_dma); rxq->bd_dma = 0; rxq->bd = NULL; rxq->rb_stts_dma = 0; rxq->rb_stts = NULL; if (rxq->used_bd) dma_free_coherent(trans->dev, iwl_pcie_used_bd_size(trans) * rxq->queue_size, rxq->used_bd, rxq->used_bd_dma); rxq->used_bd_dma = 0; rxq->used_bd = NULL; } static size_t iwl_pcie_rb_stts_size(struct iwl_trans *trans) { bool use_rx_td = (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210); if (use_rx_td) return sizeof(__le16); return sizeof(struct iwl_rb_status); } static int iwl_pcie_alloc_rxq_dma(struct iwl_trans *trans, struct iwl_rxq *rxq) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); size_t rb_stts_size = iwl_pcie_rb_stts_size(trans); struct device *dev = trans->dev; int i; int free_size; spin_lock_init(&rxq->lock); if (trans->trans_cfg->mq_rx_supported) rxq->queue_size = trans->cfg->num_rbds; else rxq->queue_size = RX_QUEUE_SIZE; free_size = iwl_pcie_free_bd_size(trans); /* * Allocate the circular buffer of Read Buffer Descriptors * (RBDs) */ rxq->bd = dma_alloc_coherent(dev, free_size * rxq->queue_size, &rxq->bd_dma, GFP_KERNEL); if (!rxq->bd) goto err; if (trans->trans_cfg->mq_rx_supported) { rxq->used_bd = dma_alloc_coherent(dev, iwl_pcie_used_bd_size(trans) * rxq->queue_size, &rxq->used_bd_dma, GFP_KERNEL); if (!rxq->used_bd) goto err; } rxq->rb_stts = (u8 *)trans_pcie->base_rb_stts + rxq->id * rb_stts_size; rxq->rb_stts_dma = trans_pcie->base_rb_stts_dma + rxq->id * rb_stts_size; return 0; err: for (i = 0; i < trans->num_rx_queues; i++) { struct iwl_rxq *rxq = &trans_pcie->rxq[i]; iwl_pcie_free_rxq_dma(trans, rxq); } return -ENOMEM; } static int iwl_pcie_rx_alloc(struct iwl_trans *trans) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); size_t rb_stts_size = iwl_pcie_rb_stts_size(trans); struct iwl_rb_allocator *rba = &trans_pcie->rba; int i, ret; if (WARN_ON(trans_pcie->rxq)) return -EINVAL; trans_pcie->rxq = kcalloc(trans->num_rx_queues, sizeof(struct iwl_rxq), GFP_KERNEL); trans_pcie->rx_pool = kcalloc(RX_POOL_SIZE(trans_pcie->num_rx_bufs), sizeof(trans_pcie->rx_pool[0]), GFP_KERNEL); trans_pcie->global_table = kcalloc(RX_POOL_SIZE(trans_pcie->num_rx_bufs), sizeof(trans_pcie->global_table[0]), GFP_KERNEL); if (!trans_pcie->rxq || !trans_pcie->rx_pool || !trans_pcie->global_table) { ret = -ENOMEM; goto err; } spin_lock_init(&rba->lock); /* * Allocate the driver's pointer to receive buffer status. * Allocate for all queues continuously (HW requirement). */ trans_pcie->base_rb_stts = dma_alloc_coherent(trans->dev, rb_stts_size * trans->num_rx_queues, &trans_pcie->base_rb_stts_dma, GFP_KERNEL); if (!trans_pcie->base_rb_stts) { ret = -ENOMEM; goto err; } for (i = 0; i < trans->num_rx_queues; i++) { struct iwl_rxq *rxq = &trans_pcie->rxq[i]; rxq->id = i; ret = iwl_pcie_alloc_rxq_dma(trans, rxq); if (ret) goto err; } return 0; err: if (trans_pcie->base_rb_stts) { dma_free_coherent(trans->dev, rb_stts_size * trans->num_rx_queues, trans_pcie->base_rb_stts, trans_pcie->base_rb_stts_dma); trans_pcie->base_rb_stts = NULL; trans_pcie->base_rb_stts_dma = 0; } kfree(trans_pcie->rx_pool); trans_pcie->rx_pool = NULL; kfree(trans_pcie->global_table); trans_pcie->global_table = NULL; kfree(trans_pcie->rxq); trans_pcie->rxq = NULL; return ret; } static void iwl_pcie_rx_hw_init(struct iwl_trans *trans, struct iwl_rxq *rxq) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); u32 rb_size; const u32 rfdnlog = RX_QUEUE_SIZE_LOG; /* 256 RBDs */ switch (trans_pcie->rx_buf_size) { case IWL_AMSDU_4K: rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K; break; case IWL_AMSDU_8K: rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_8K; break; case IWL_AMSDU_12K: rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_12K; break; default: WARN_ON(1); rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K; } if (!iwl_trans_grab_nic_access(trans)) return; /* Stop Rx DMA */ iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0); /* reset and flush pointers */ iwl_write32(trans, FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0); iwl_write32(trans, FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0); iwl_write32(trans, FH_RSCSR_CHNL0_RDPTR, 0); /* Reset driver's Rx queue write index */ iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0); /* Tell device where to find RBD circular buffer in DRAM */ iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_BASE_REG, (u32)(rxq->bd_dma >> 8)); /* Tell device where in DRAM to update its Rx status */ iwl_write32(trans, FH_RSCSR_CHNL0_STTS_WPTR_REG, rxq->rb_stts_dma >> 4); /* Enable Rx DMA * FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY is set because of HW bug in * the credit mechanism in 5000 HW RX FIFO * Direct rx interrupts to hosts * Rx buffer size 4 or 8k or 12k * RB timeout 0x10 * 256 RBDs */ iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL | FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY | FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL | rb_size | (RX_RB_TIMEOUT << FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS) | (rfdnlog << FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS)); iwl_trans_release_nic_access(trans); /* Set interrupt coalescing timer to default (2048 usecs) */ iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF); /* W/A for interrupt coalescing bug in 7260 and 3160 */ if (trans->cfg->host_interrupt_operation_mode) iwl_set_bit(trans, CSR_INT_COALESCING, IWL_HOST_INT_OPER_MODE); } static void iwl_pcie_rx_mq_hw_init(struct iwl_trans *trans) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); u32 rb_size, enabled = 0; int i; switch (trans_pcie->rx_buf_size) { case IWL_AMSDU_2K: rb_size = RFH_RXF_DMA_RB_SIZE_2K; break; case IWL_AMSDU_4K: rb_size = RFH_RXF_DMA_RB_SIZE_4K; break; case IWL_AMSDU_8K: rb_size = RFH_RXF_DMA_RB_SIZE_8K; break; case IWL_AMSDU_12K: rb_size = RFH_RXF_DMA_RB_SIZE_12K; break; default: WARN_ON(1); rb_size = RFH_RXF_DMA_RB_SIZE_4K; } if (!iwl_trans_grab_nic_access(trans)) return; /* Stop Rx DMA */ iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG, 0); /* disable free amd used rx queue operation */ iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, 0); for (i = 0; i < trans->num_rx_queues; i++) { /* Tell device where to find RBD free table in DRAM */ iwl_write_prph64_no_grab(trans, RFH_Q_FRBDCB_BA_LSB(i), trans_pcie->rxq[i].bd_dma); /* Tell device where to find RBD used table in DRAM */ iwl_write_prph64_no_grab(trans, RFH_Q_URBDCB_BA_LSB(i), trans_pcie->rxq[i].used_bd_dma); /* Tell device where in DRAM to update its Rx status */ iwl_write_prph64_no_grab(trans, RFH_Q_URBD_STTS_WPTR_LSB(i), trans_pcie->rxq[i].rb_stts_dma); /* Reset device indice tables */ iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_WIDX(i), 0); iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_RIDX(i), 0); iwl_write_prph_no_grab(trans, RFH_Q_URBDCB_WIDX(i), 0); enabled |= BIT(i) | BIT(i + 16); } /* * Enable Rx DMA * Rx buffer size 4 or 8k or 12k * Min RB size 4 or 8 * Drop frames that exceed RB size * 512 RBDs */ iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG, RFH_DMA_EN_ENABLE_VAL | rb_size | RFH_RXF_DMA_MIN_RB_4_8 | RFH_RXF_DMA_DROP_TOO_LARGE_MASK | RFH_RXF_DMA_RBDCB_SIZE_512); /* * Activate DMA snooping. * Set RX DMA chunk size to 64B for IOSF and 128B for PCIe * Default queue is 0 */ iwl_write_prph_no_grab(trans, RFH_GEN_CFG, RFH_GEN_CFG_RFH_DMA_SNOOP | RFH_GEN_CFG_VAL(DEFAULT_RXQ_NUM, 0) | RFH_GEN_CFG_SERVICE_DMA_SNOOP | RFH_GEN_CFG_VAL(RB_CHUNK_SIZE, trans->trans_cfg->integrated ? RFH_GEN_CFG_RB_CHUNK_SIZE_64 : RFH_GEN_CFG_RB_CHUNK_SIZE_128)); /* Enable the relevant rx queues */ iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, enabled); iwl_trans_release_nic_access(trans); /* Set interrupt coalescing timer to default (2048 usecs) */ iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF); } void iwl_pcie_rx_init_rxb_lists(struct iwl_rxq *rxq) { lockdep_assert_held(&rxq->lock); INIT_LIST_HEAD(&rxq->rx_free); INIT_LIST_HEAD(&rxq->rx_used); rxq->free_count = 0; rxq->used_count = 0; } static int iwl_pcie_rx_handle(struct iwl_trans *trans, int queue, int budget); static int iwl_pcie_napi_poll(struct napi_struct *napi, int budget) { struct iwl_rxq *rxq = container_of(napi, struct iwl_rxq, napi); struct iwl_trans_pcie *trans_pcie; struct iwl_trans *trans; int ret; trans_pcie = container_of(napi->dev, struct iwl_trans_pcie, napi_dev); trans = trans_pcie->trans; ret = iwl_pcie_rx_handle(trans, rxq->id, budget); IWL_DEBUG_ISR(trans, "[%d] handled %d, budget %d\n", rxq->id, ret, budget); if (ret < budget) { spin_lock(&trans_pcie->irq_lock); if (test_bit(STATUS_INT_ENABLED, &trans->status)) _iwl_enable_interrupts(trans); spin_unlock(&trans_pcie->irq_lock); napi_complete_done(&rxq->napi, ret); } return ret; } static int iwl_pcie_napi_poll_msix(struct napi_struct *napi, int budget) { struct iwl_rxq *rxq = container_of(napi, struct iwl_rxq, napi); struct iwl_trans_pcie *trans_pcie; struct iwl_trans *trans; int ret; trans_pcie = container_of(napi->dev, struct iwl_trans_pcie, napi_dev); trans = trans_pcie->trans; ret = iwl_pcie_rx_handle(trans, rxq->id, budget); IWL_DEBUG_ISR(trans, "[%d] handled %d, budget %d\n", rxq->id, ret, budget); if (ret < budget) { int irq_line = rxq->id; /* FIRST_RSS is shared with line 0 */ if (trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS && rxq->id == 1) irq_line = 0; spin_lock(&trans_pcie->irq_lock); iwl_pcie_clear_irq(trans, irq_line); spin_unlock(&trans_pcie->irq_lock); napi_complete_done(&rxq->napi, ret); } return ret; } void iwl_pcie_rx_napi_sync(struct iwl_trans *trans) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); int i; if (unlikely(!trans_pcie->rxq)) return; for (i = 0; i < trans->num_rx_queues; i++) { struct iwl_rxq *rxq = &trans_pcie->rxq[i]; if (rxq && rxq->napi.poll) napi_synchronize(&rxq->napi); } } static int _iwl_pcie_rx_init(struct iwl_trans *trans) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); struct iwl_rxq *def_rxq; struct iwl_rb_allocator *rba = &trans_pcie->rba; int i, err, queue_size, allocator_pool_size, num_alloc; if (!trans_pcie->rxq) { err = iwl_pcie_rx_alloc(trans); if (err) return err; } def_rxq = trans_pcie->rxq; cancel_work_sync(&rba->rx_alloc); spin_lock_bh(&rba->lock); atomic_set(&rba->req_pending, 0); atomic_set(&rba->req_ready, 0); INIT_LIST_HEAD(&rba->rbd_allocated); INIT_LIST_HEAD(&rba->rbd_empty); spin_unlock_bh(&rba->lock); /* free all first - we overwrite everything here */ iwl_pcie_free_rbs_pool(trans); for (i = 0; i < RX_QUEUE_SIZE; i++) def_rxq->queue[i] = NULL; for (i = 0; i < trans->num_rx_queues; i++) { struct iwl_rxq *rxq = &trans_pcie->rxq[i]; spin_lock_bh(&rxq->lock); /* * Set read write pointer to reflect that we have processed * and used all buffers, but have not restocked the Rx queue * with fresh buffers */ rxq->read = 0; rxq->write = 0; rxq->write_actual = 0; memset(rxq->rb_stts, 0, (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) ? sizeof(__le16) : sizeof(struct iwl_rb_status)); iwl_pcie_rx_init_rxb_lists(rxq); spin_unlock_bh(&rxq->lock); if (!rxq->napi.poll) { int (*poll)(struct napi_struct *, int) = iwl_pcie_napi_poll; if (trans_pcie->msix_enabled) poll = iwl_pcie_napi_poll_msix; netif_napi_add(&trans_pcie->napi_dev, &rxq->napi, poll); napi_enable(&rxq->napi); } } /* move the pool to the default queue and allocator ownerships */ queue_size = trans->trans_cfg->mq_rx_supported ? trans_pcie->num_rx_bufs - 1 : RX_QUEUE_SIZE; allocator_pool_size = trans->num_rx_queues * (RX_CLAIM_REQ_ALLOC - RX_POST_REQ_ALLOC); num_alloc = queue_size + allocator_pool_size; for (i = 0; i < num_alloc; i++) { struct iwl_rx_mem_buffer *rxb = &trans_pcie->rx_pool[i]; if (i < allocator_pool_size) list_add(&rxb->list, &rba->rbd_empty); else list_add(&rxb->list, &def_rxq->rx_used); trans_pcie->global_table[i] = rxb; rxb->vid = (u16)(i + 1); rxb->invalid = true; } iwl_pcie_rxq_alloc_rbs(trans, GFP_KERNEL, def_rxq); return 0; } int iwl_pcie_rx_init(struct iwl_trans *trans) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); int ret = _iwl_pcie_rx_init(trans); if (ret) return ret; if (trans->trans_cfg->mq_rx_supported) iwl_pcie_rx_mq_hw_init(trans); else iwl_pcie_rx_hw_init(trans, trans_pcie->rxq); iwl_pcie_rxq_restock(trans, trans_pcie->rxq); spin_lock_bh(&trans_pcie->rxq->lock); iwl_pcie_rxq_inc_wr_ptr(trans, trans_pcie->rxq); spin_unlock_bh(&trans_pcie->rxq->lock); return 0; } int iwl_pcie_gen2_rx_init(struct iwl_trans *trans) { /* Set interrupt coalescing timer to default (2048 usecs) */ iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF); /* * We don't configure the RFH. * Restock will be done at alive, after firmware configured the RFH. */ return _iwl_pcie_rx_init(trans); } void iwl_pcie_rx_free(struct iwl_trans *trans) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); size_t rb_stts_size = iwl_pcie_rb_stts_size(trans); struct iwl_rb_allocator *rba = &trans_pcie->rba; int i; /* * if rxq is NULL, it means that nothing has been allocated, * exit now */ if (!trans_pcie->rxq) { IWL_DEBUG_INFO(trans, "Free NULL rx context\n"); return; } cancel_work_sync(&rba->rx_alloc); iwl_pcie_free_rbs_pool(trans); if (trans_pcie->base_rb_stts) { dma_free_coherent(trans->dev, rb_stts_size * trans->num_rx_queues, trans_pcie->base_rb_stts, trans_pcie->base_rb_stts_dma); trans_pcie->base_rb_stts = NULL; trans_pcie->base_rb_stts_dma = 0; } for (i = 0; i < trans->num_rx_queues; i++) { struct iwl_rxq *rxq = &trans_pcie->rxq[i]; iwl_pcie_free_rxq_dma(trans, rxq); if (rxq->napi.poll) { napi_disable(&rxq->napi); netif_napi_del(&rxq->napi); } } kfree(trans_pcie->rx_pool); kfree(trans_pcie->global_table); kfree(trans_pcie->rxq); if (trans_pcie->alloc_page) __free_pages(trans_pcie->alloc_page, trans_pcie->rx_page_order); } static void iwl_pcie_rx_move_to_allocator(struct iwl_rxq *rxq, struct iwl_rb_allocator *rba) { spin_lock(&rba->lock); list_splice_tail_init(&rxq->rx_used, &rba->rbd_empty); spin_unlock(&rba->lock); } /* * iwl_pcie_rx_reuse_rbd - Recycle used RBDs * * Called when a RBD can be reused. The RBD is transferred to the allocator. * When there are 2 empty RBDs - a request for allocation is posted */ static void iwl_pcie_rx_reuse_rbd(struct iwl_trans *trans, struct iwl_rx_mem_buffer *rxb, struct iwl_rxq *rxq, bool emergency) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); struct iwl_rb_allocator *rba = &trans_pcie->rba; /* Move the RBD to the used list, will be moved to allocator in batches * before claiming or posting a request*/ list_add_tail(&rxb->list, &rxq->rx_used); if (unlikely(emergency)) return; /* Count the allocator owned RBDs */ rxq->used_count++; /* If we have RX_POST_REQ_ALLOC new released rx buffers - * issue a request for allocator. Modulo RX_CLAIM_REQ_ALLOC is * used for the case we failed to claim RX_CLAIM_REQ_ALLOC, * after but we still need to post another request. */ if ((rxq->used_count % RX_CLAIM_REQ_ALLOC) == RX_POST_REQ_ALLOC) { /* Move the 2 RBDs to the allocator ownership. Allocator has another 6 from pool for the request completion*/ iwl_pcie_rx_move_to_allocator(rxq, rba); atomic_inc(&rba->req_pending); queue_work(rba->alloc_wq, &rba->rx_alloc); } } static void iwl_pcie_rx_handle_rb(struct iwl_trans *trans, struct iwl_rxq *rxq, struct iwl_rx_mem_buffer *rxb, bool emergency, int i) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); struct iwl_txq *txq = trans->txqs.txq[trans->txqs.cmd.q_id]; bool page_stolen = false; int max_len = trans_pcie->rx_buf_bytes; u32 offset = 0; if (WARN_ON(!rxb)) return; dma_unmap_page(trans->dev, rxb->page_dma, max_len, DMA_FROM_DEVICE); while (offset + sizeof(u32) + sizeof(struct iwl_cmd_header) < max_len) { struct iwl_rx_packet *pkt; bool reclaim; int len; struct iwl_rx_cmd_buffer rxcb = { ._offset = rxb->offset + offset, ._rx_page_order = trans_pcie->rx_page_order, ._page = rxb->page, ._page_stolen = false, .truesize = max_len, }; pkt = rxb_addr(&rxcb); if (pkt->len_n_flags == cpu_to_le32(FH_RSCSR_FRAME_INVALID)) { IWL_DEBUG_RX(trans, "Q %d: RB end marker at offset %d\n", rxq->id, offset); break; } WARN((le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >> FH_RSCSR_RXQ_POS != rxq->id, "frame on invalid queue - is on %d and indicates %d\n", rxq->id, (le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >> FH_RSCSR_RXQ_POS); IWL_DEBUG_RX(trans, "Q %d: cmd at offset %d: %s (%.2x.%2x, seq 0x%x)\n", rxq->id, offset, iwl_get_cmd_string(trans, WIDE_ID(pkt->hdr.group_id, pkt->hdr.cmd)), pkt->hdr.group_id, pkt->hdr.cmd, le16_to_cpu(pkt->hdr.sequence)); len = iwl_rx_packet_len(pkt); len += sizeof(u32); /* account for status word */ offset += ALIGN(len, FH_RSCSR_FRAME_ALIGN); /* check that what the device tells us made sense */ if (len < sizeof(*pkt) || offset > max_len) break; trace_iwlwifi_dev_rx(trans->dev, trans, pkt, len); trace_iwlwifi_dev_rx_data(trans->dev, trans, pkt, len); /* Reclaim a command buffer only if this packet is a response * to a (driver-originated) command. * If the packet (e.g. Rx frame) originated from uCode, * there is no command buffer to reclaim. * Ucode should set SEQ_RX_FRAME bit if ucode-originated, * but apparently a few don't get set; catch them here. */ reclaim = !(pkt->hdr.sequence & SEQ_RX_FRAME); if (reclaim && !pkt->hdr.group_id) { int i; for (i = 0; i < trans_pcie->n_no_reclaim_cmds; i++) { if (trans_pcie->no_reclaim_cmds[i] == pkt->hdr.cmd) { reclaim = false; break; } } } if (rxq->id == IWL_DEFAULT_RX_QUEUE) iwl_op_mode_rx(trans->op_mode, &rxq->napi, &rxcb); else iwl_op_mode_rx_rss(trans->op_mode, &rxq->napi, &rxcb, rxq->id); /* * After here, we should always check rxcb._page_stolen, * if it is true then one of the handlers took the page. */ if (reclaim && txq) { u16 sequence = le16_to_cpu(pkt->hdr.sequence); int index = SEQ_TO_INDEX(sequence); int cmd_index = iwl_txq_get_cmd_index(txq, index); kfree_sensitive(txq->entries[cmd_index].free_buf); txq->entries[cmd_index].free_buf = NULL; /* Invoke any callbacks, transfer the buffer to caller, * and fire off the (possibly) blocking * iwl_trans_send_cmd() * as we reclaim the driver command queue */ if (!rxcb._page_stolen) iwl_pcie_hcmd_complete(trans, &rxcb); else IWL_WARN(trans, "Claim null rxb?\n"); } page_stolen |= rxcb._page_stolen; if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) break; } /* page was stolen from us -- free our reference */ if (page_stolen) { __free_pages(rxb->page, trans_pcie->rx_page_order); rxb->page = NULL; } /* Reuse the page if possible. For notification packets and * SKBs that fail to Rx correctly, add them back into the * rx_free list for reuse later. */ if (rxb->page != NULL) { rxb->page_dma = dma_map_page(trans->dev, rxb->page, rxb->offset, trans_pcie->rx_buf_bytes, DMA_FROM_DEVICE); if (dma_mapping_error(trans->dev, rxb->page_dma)) { /* * free the page(s) as well to not break * the invariant that the items on the used * list have no page(s) */ __free_pages(rxb->page, trans_pcie->rx_page_order); rxb->page = NULL; iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency); } else { list_add_tail(&rxb->list, &rxq->rx_free); rxq->free_count++; } } else iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency); } static struct iwl_rx_mem_buffer *iwl_pcie_get_rxb(struct iwl_trans *trans, struct iwl_rxq *rxq, int i, bool *join) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); struct iwl_rx_mem_buffer *rxb; u16 vid; BUILD_BUG_ON(sizeof(struct iwl_rx_completion_desc) != 32); BUILD_BUG_ON(sizeof(struct iwl_rx_completion_desc_bz) != 4); if (!trans->trans_cfg->mq_rx_supported) { rxb = rxq->queue[i]; rxq->queue[i] = NULL; return rxb; } if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_BZ) { struct iwl_rx_completion_desc_bz *cd = rxq->used_bd; vid = le16_to_cpu(cd[i].rbid); *join = cd[i].flags & IWL_RX_CD_FLAGS_FRAGMENTED; } else if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) { struct iwl_rx_completion_desc *cd = rxq->used_bd; vid = le16_to_cpu(cd[i].rbid); *join = cd[i].flags & IWL_RX_CD_FLAGS_FRAGMENTED; } else { __le32 *cd = rxq->used_bd; vid = le32_to_cpu(cd[i]) & 0x0FFF; /* 12-bit VID */ } if (!vid || vid > RX_POOL_SIZE(trans_pcie->num_rx_bufs)) goto out_err; rxb = trans_pcie->global_table[vid - 1]; if (rxb->invalid) goto out_err; IWL_DEBUG_RX(trans, "Got virtual RB ID %u\n", (u32)rxb->vid); rxb->invalid = true; return rxb; out_err: WARN(1, "Invalid rxb from HW %u\n", (u32)vid); iwl_force_nmi(trans); return NULL; } /* * iwl_pcie_rx_handle - Main entry function for receiving responses from fw */ static int iwl_pcie_rx_handle(struct iwl_trans *trans, int queue, int budget) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); struct iwl_rxq *rxq; u32 r, i, count = 0, handled = 0; bool emergency = false; if (WARN_ON_ONCE(!trans_pcie->rxq || !trans_pcie->rxq[queue].bd)) return budget; rxq = &trans_pcie->rxq[queue]; restart: spin_lock(&rxq->lock); /* uCode's read index (stored in shared DRAM) indicates the last Rx * buffer that the driver may process (last buffer filled by ucode). */ r = iwl_get_closed_rb_stts(trans, rxq); i = rxq->read; /* W/A 9000 device step A0 wrap-around bug */ r &= (rxq->queue_size - 1); /* Rx interrupt, but nothing sent from uCode */ if (i == r) IWL_DEBUG_RX(trans, "Q %d: HW = SW = %d\n", rxq->id, r); while (i != r && ++handled < budget) { struct iwl_rb_allocator *rba = &trans_pcie->rba; struct iwl_rx_mem_buffer *rxb; /* number of RBDs still waiting for page allocation */ u32 rb_pending_alloc = atomic_read(&trans_pcie->rba.req_pending) * RX_CLAIM_REQ_ALLOC; bool join = false; if (unlikely(rb_pending_alloc >= rxq->queue_size / 2 && !emergency)) { iwl_pcie_rx_move_to_allocator(rxq, rba); emergency = true; IWL_DEBUG_TPT(trans, "RX path is in emergency. Pending allocations %d\n", rb_pending_alloc); } IWL_DEBUG_RX(trans, "Q %d: HW = %d, SW = %d\n", rxq->id, r, i); rxb = iwl_pcie_get_rxb(trans, rxq, i, &join); if (!rxb) goto out; if (unlikely(join || rxq->next_rb_is_fragment)) { rxq->next_rb_is_fragment = join; /* * We can only get a multi-RB in the following cases: * - firmware issue, sending a too big notification * - sniffer mode with a large A-MSDU * - large MTU frames (>2k) * since the multi-RB functionality is limited to newer * hardware that cannot put multiple entries into a * single RB. * * Right now, the higher layers aren't set up to deal * with that, so discard all of these. */ list_add_tail(&rxb->list, &rxq->rx_free); rxq->free_count++; } else { iwl_pcie_rx_handle_rb(trans, rxq, rxb, emergency, i); } i = (i + 1) & (rxq->queue_size - 1); /* * If we have RX_CLAIM_REQ_ALLOC released rx buffers - * try to claim the pre-allocated buffers from the allocator. * If not ready - will try to reclaim next time. * There is no need to reschedule work - allocator exits only * on success */ if (rxq->used_count >= RX_CLAIM_REQ_ALLOC) iwl_pcie_rx_allocator_get(trans, rxq); if (rxq->used_count % RX_CLAIM_REQ_ALLOC == 0 && !emergency) { /* Add the remaining empty RBDs for allocator use */ iwl_pcie_rx_move_to_allocator(rxq, rba); } else if (emergency) { count++; if (count == 8) { count = 0; if (rb_pending_alloc < rxq->queue_size / 3) { IWL_DEBUG_TPT(trans, "RX path exited emergency. Pending allocations %d\n", rb_pending_alloc); emergency = false; } rxq->read = i; spin_unlock(&rxq->lock); iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq); iwl_pcie_rxq_restock(trans, rxq); goto restart; } } } out: /* Backtrack one entry */ rxq->read = i; spin_unlock(&rxq->lock); /* * handle a case where in emergency there are some unallocated RBDs. * those RBDs are in the used list, but are not tracked by the queue's * used_count which counts allocator owned RBDs. * unallocated emergency RBDs must be allocated on exit, otherwise * when called again the function may not be in emergency mode and * they will be handed to the allocator with no tracking in the RBD * allocator counters, which will lead to them never being claimed back * by the queue. * by allocating them here, they are now in the queue free list, and * will be restocked by the next call of iwl_pcie_rxq_restock. */ if (unlikely(emergency && count)) iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq); iwl_pcie_rxq_restock(trans, rxq); return handled; } static struct iwl_trans_pcie *iwl_pcie_get_trans_pcie(struct msix_entry *entry) { u8 queue = entry->entry; struct msix_entry *entries = entry - queue; return container_of(entries, struct iwl_trans_pcie, msix_entries[0]); } /* * iwl_pcie_rx_msix_handle - Main entry function for receiving responses from fw * This interrupt handler should be used with RSS queue only. */ irqreturn_t iwl_pcie_irq_rx_msix_handler(int irq, void *dev_id) { struct msix_entry *entry = dev_id; struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry); struct iwl_trans *trans = trans_pcie->trans; struct iwl_rxq *rxq; trace_iwlwifi_dev_irq_msix(trans->dev, entry, false, 0, 0); if (WARN_ON(entry->entry >= trans->num_rx_queues)) return IRQ_NONE; if (!trans_pcie->rxq) { if (net_ratelimit()) IWL_ERR(trans, "[%d] Got MSI-X interrupt before we have Rx queues\n", entry->entry); return IRQ_NONE; } rxq = &trans_pcie->rxq[entry->entry]; lock_map_acquire(&trans->sync_cmd_lockdep_map); IWL_DEBUG_ISR(trans, "[%d] Got interrupt\n", entry->entry); local_bh_disable(); if (!napi_schedule(&rxq->napi)) iwl_pcie_clear_irq(trans, entry->entry); local_bh_enable(); lock_map_release(&trans->sync_cmd_lockdep_map); return IRQ_HANDLED; } /* * iwl_pcie_irq_handle_error - called for HW or SW error interrupt from card */ static void iwl_pcie_irq_handle_error(struct iwl_trans *trans) { int i; /* W/A for WiFi/WiMAX coex and WiMAX own the RF */ if (trans->cfg->internal_wimax_coex && !trans->cfg->apmg_not_supported && (!(iwl_read_prph(trans, APMG_CLK_CTRL_REG) & APMS_CLK_VAL_MRB_FUNC_MODE) || (iwl_read_prph(trans, APMG_PS_CTRL_REG) & APMG_PS_CTRL_VAL_RESET_REQ))) { clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status); iwl_op_mode_wimax_active(trans->op_mode); wake_up(&trans->wait_command_queue); return; } for (i = 0; i < trans->trans_cfg->base_params->num_of_queues; i++) { if (!trans->txqs.txq[i]) continue; del_timer(&trans->txqs.txq[i]->stuck_timer); } /* The STATUS_FW_ERROR bit is set in this function. This must happen * before we wake up the command caller, to ensure a proper cleanup. */ iwl_trans_fw_error(trans, false); clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status); wake_up(&trans->wait_command_queue); } static u32 iwl_pcie_int_cause_non_ict(struct iwl_trans *trans) { u32 inta; lockdep_assert_held(&IWL_TRANS_GET_PCIE_TRANS(trans)->irq_lock); trace_iwlwifi_dev_irq(trans->dev); /* Discover which interrupts are active/pending */ inta = iwl_read32(trans, CSR_INT); /* the thread will service interrupts and re-enable them */ return inta; } /* a device (PCI-E) page is 4096 bytes long */ #define ICT_SHIFT 12 #define ICT_SIZE (1 << ICT_SHIFT) #define ICT_COUNT (ICT_SIZE / sizeof(u32)) /* interrupt handler using ict table, with this interrupt driver will * stop using INTA register to get device's interrupt, reading this register * is expensive, device will write interrupts in ICT dram table, increment * index then will fire interrupt to driver, driver will OR all ICT table * entries from current index up to table entry with 0 value. the result is * the interrupt we need to service, driver will set the entries back to 0 and * set index. */ static u32 iwl_pcie_int_cause_ict(struct iwl_trans *trans) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); u32 inta; u32 val = 0; u32 read; trace_iwlwifi_dev_irq(trans->dev); /* Ignore interrupt if there's nothing in NIC to service. * This may be due to IRQ shared with another device, * or due to sporadic interrupts thrown from our NIC. */ read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]); trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index, read); if (!read) return 0; /* * Collect all entries up to the first 0, starting from ict_index; * note we already read at ict_index. */ do { val |= read; IWL_DEBUG_ISR(trans, "ICT index %d value 0x%08X\n", trans_pcie->ict_index, read); trans_pcie->ict_tbl[trans_pcie->ict_index] = 0; trans_pcie->ict_index = ((trans_pcie->ict_index + 1) & (ICT_COUNT - 1)); read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]); trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index, read); } while (read); /* We should not get this value, just ignore it. */ if (val == 0xffffffff) val = 0; /* * this is a w/a for a h/w bug. the h/w bug may cause the Rx bit * (bit 15 before shifting it to 31) to clear when using interrupt * coalescing. fortunately, bits 18 and 19 stay set when this happens * so we use them to decide on the real state of the Rx bit. * In order words, bit 15 is set if bit 18 or bit 19 are set. */ if (val & 0xC0000) val |= 0x8000; inta = (0xff & val) | ((0xff00 & val) << 16); return inta; } void iwl_pcie_handle_rfkill_irq(struct iwl_trans *trans, bool from_irq) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); struct isr_statistics *isr_stats = &trans_pcie->isr_stats; bool hw_rfkill, prev, report; mutex_lock(&trans_pcie->mutex); prev = test_bit(STATUS_RFKILL_OPMODE, &trans->status); hw_rfkill = iwl_is_rfkill_set(trans); if (hw_rfkill) { set_bit(STATUS_RFKILL_OPMODE, &trans->status); set_bit(STATUS_RFKILL_HW, &trans->status); } if (trans_pcie->opmode_down) report = hw_rfkill; else report = test_bit(STATUS_RFKILL_OPMODE, &trans->status); IWL_WARN(trans, "RF_KILL bit toggled to %s.\n", hw_rfkill ? "disable radio" : "enable radio"); isr_stats->rfkill++; if (prev != report) iwl_trans_pcie_rf_kill(trans, report, from_irq); mutex_unlock(&trans_pcie->mutex); if (hw_rfkill) { if (test_and_clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status)) IWL_DEBUG_RF_KILL(trans, "Rfkill while SYNC HCMD in flight\n"); wake_up(&trans->wait_command_queue); } else { clear_bit(STATUS_RFKILL_HW, &trans->status); if (trans_pcie->opmode_down) clear_bit(STATUS_RFKILL_OPMODE, &trans->status); } } irqreturn_t iwl_pcie_irq_handler(int irq, void *dev_id) { struct iwl_trans *trans = dev_id; struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); struct isr_statistics *isr_stats = &trans_pcie->isr_stats; u32 inta = 0; u32 handled = 0; bool polling = false; lock_map_acquire(&trans->sync_cmd_lockdep_map); spin_lock_bh(&trans_pcie->irq_lock); /* dram interrupt table not set yet, * use legacy interrupt. */ if (likely(trans_pcie->use_ict)) inta = iwl_pcie_int_cause_ict(trans); else inta = iwl_pcie_int_cause_non_ict(trans); if (iwl_have_debug_level(IWL_DL_ISR)) { IWL_DEBUG_ISR(trans, "ISR inta 0x%08x, enabled 0x%08x(sw), enabled(hw) 0x%08x, fh 0x%08x\n", inta, trans_pcie->inta_mask, iwl_read32(trans, CSR_INT_MASK), iwl_read32(trans, CSR_FH_INT_STATUS)); if (inta & (~trans_pcie->inta_mask)) IWL_DEBUG_ISR(trans, "We got a masked interrupt (0x%08x)\n", inta & (~trans_pcie->inta_mask)); } inta &= trans_pcie->inta_mask; /* * Ignore interrupt if there's nothing in NIC to service. * This may be due to IRQ shared with another device, * or due to sporadic interrupts thrown from our NIC. */ if (unlikely(!inta)) { IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n"); /* * Re-enable interrupts here since we don't * have anything to service */ if (test_bit(STATUS_INT_ENABLED, &trans->status)) _iwl_enable_interrupts(trans); spin_unlock_bh(&trans_pcie->irq_lock); lock_map_release(&trans->sync_cmd_lockdep_map); return IRQ_NONE; } if (unlikely(inta == 0xFFFFFFFF || iwl_trans_is_hw_error_value(inta))) { /* * Hardware disappeared. It might have * already raised an interrupt. */ IWL_WARN(trans, "HARDWARE GONE?? INTA == 0x%08x\n", inta); spin_unlock_bh(&trans_pcie->irq_lock); goto out; } /* Ack/clear/reset pending uCode interrupts. * Note: Some bits in CSR_INT are "OR" of bits in CSR_FH_INT_STATUS, */ /* There is a hardware bug in the interrupt mask function that some * interrupts (i.e. CSR_INT_BIT_SCD) can still be generated even if * they are disabled in the CSR_INT_MASK register. Furthermore the * ICT interrupt handling mechanism has another bug that might cause * these unmasked interrupts fail to be detected. We workaround the * hardware bugs here by ACKing all the possible interrupts so that * interrupt coalescing can still be achieved. */ iwl_write32(trans, CSR_INT, inta | ~trans_pcie->inta_mask); if (iwl_have_debug_level(IWL_DL_ISR)) IWL_DEBUG_ISR(trans, "inta 0x%08x, enabled 0x%08x\n", inta, iwl_read32(trans, CSR_INT_MASK)); spin_unlock_bh(&trans_pcie->irq_lock); /* Now service all interrupt bits discovered above. */ if (inta & CSR_INT_BIT_HW_ERR) { IWL_ERR(trans, "Hardware error detected. Restarting.\n"); /* Tell the device to stop sending interrupts */ iwl_disable_interrupts(trans); isr_stats->hw++; iwl_pcie_irq_handle_error(trans); handled |= CSR_INT_BIT_HW_ERR; goto out; } /* NIC fires this, but we don't use it, redundant with WAKEUP */ if (inta & CSR_INT_BIT_SCD) { IWL_DEBUG_ISR(trans, "Scheduler finished to transmit the frame/frames.\n"); isr_stats->sch++; } /* Alive notification via Rx interrupt will do the real work */ if (inta & CSR_INT_BIT_ALIVE) { IWL_DEBUG_ISR(trans, "Alive interrupt\n"); isr_stats->alive++; if (trans->trans_cfg->gen2) { /* * We can restock, since firmware configured * the RFH */ iwl_pcie_rxmq_restock(trans, trans_pcie->rxq); } handled |= CSR_INT_BIT_ALIVE; } /* Safely ignore these bits for debug checks below */ inta &= ~(CSR_INT_BIT_SCD | CSR_INT_BIT_ALIVE); /* HW RF KILL switch toggled */ if (inta & CSR_INT_BIT_RF_KILL) { iwl_pcie_handle_rfkill_irq(trans, true); handled |= CSR_INT_BIT_RF_KILL; } /* Chip got too hot and stopped itself */ if (inta & CSR_INT_BIT_CT_KILL) { IWL_ERR(trans, "Microcode CT kill error detected.\n"); isr_stats->ctkill++; handled |= CSR_INT_BIT_CT_KILL; } /* Error detected by uCode */ if (inta & CSR_INT_BIT_SW_ERR) { IWL_ERR(trans, "Microcode SW error detected. " " Restarting 0x%X.\n", inta); isr_stats->sw++; iwl_pcie_irq_handle_error(trans); handled |= CSR_INT_BIT_SW_ERR; } /* uCode wakes up after power-down sleep */ if (inta & CSR_INT_BIT_WAKEUP) { IWL_DEBUG_ISR(trans, "Wakeup interrupt\n"); iwl_pcie_rxq_check_wrptr(trans); iwl_pcie_txq_check_wrptrs(trans); isr_stats->wakeup++; handled |= CSR_INT_BIT_WAKEUP; } /* All uCode command responses, including Tx command responses, * Rx "responses" (frame-received notification), and other * notifications from uCode come through here*/ if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX | CSR_INT_BIT_RX_PERIODIC)) { IWL_DEBUG_ISR(trans, "Rx interrupt\n"); if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX)) { handled |= (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX); iwl_write32(trans, CSR_FH_INT_STATUS, CSR_FH_INT_RX_MASK); } if (inta & CSR_INT_BIT_RX_PERIODIC) { handled |= CSR_INT_BIT_RX_PERIODIC; iwl_write32(trans, CSR_INT, CSR_INT_BIT_RX_PERIODIC); } /* Sending RX interrupt require many steps to be done in the * device: * 1- write interrupt to current index in ICT table. * 2- dma RX frame. * 3- update RX shared data to indicate last write index. * 4- send interrupt. * This could lead to RX race, driver could receive RX interrupt * but the shared data changes does not reflect this; * periodic interrupt will detect any dangling Rx activity. */ /* Disable periodic interrupt; we use it as just a one-shot. */ iwl_write8(trans, CSR_INT_PERIODIC_REG, CSR_INT_PERIODIC_DIS); /* * Enable periodic interrupt in 8 msec only if we received * real RX interrupt (instead of just periodic int), to catch * any dangling Rx interrupt. If it was just the periodic * interrupt, there was no dangling Rx activity, and no need * to extend the periodic interrupt; one-shot is enough. */ if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX)) iwl_write8(trans, CSR_INT_PERIODIC_REG, CSR_INT_PERIODIC_ENA); isr_stats->rx++; local_bh_disable(); if (napi_schedule_prep(&trans_pcie->rxq[0].napi)) { polling = true; __napi_schedule(&trans_pcie->rxq[0].napi); } local_bh_enable(); } /* This "Tx" DMA channel is used only for loading uCode */ if (inta & CSR_INT_BIT_FH_TX) { iwl_write32(trans, CSR_FH_INT_STATUS, CSR_FH_INT_TX_MASK); IWL_DEBUG_ISR(trans, "uCode load interrupt\n"); isr_stats->tx++; handled |= CSR_INT_BIT_FH_TX; /* Wake up uCode load routine, now that load is complete */ trans_pcie->ucode_write_complete = true; wake_up(&trans_pcie->ucode_write_waitq); /* Wake up IMR write routine, now that write to SRAM is complete */ if (trans_pcie->imr_status == IMR_D2S_REQUESTED) { trans_pcie->imr_status = IMR_D2S_COMPLETED; wake_up(&trans_pcie->ucode_write_waitq); } } if (inta & ~handled) { IWL_ERR(trans, "Unhandled INTA bits 0x%08x\n", inta & ~handled); isr_stats->unhandled++; } if (inta & ~(trans_pcie->inta_mask)) { IWL_WARN(trans, "Disabled INTA bits 0x%08x were pending\n", inta & ~trans_pcie->inta_mask); } if (!polling) { spin_lock_bh(&trans_pcie->irq_lock); /* only Re-enable all interrupt if disabled by irq */ if (test_bit(STATUS_INT_ENABLED, &trans->status)) _iwl_enable_interrupts(trans); /* we are loading the firmware, enable FH_TX interrupt only */ else if (handled & CSR_INT_BIT_FH_TX) iwl_enable_fw_load_int(trans); /* Re-enable RF_KILL if it occurred */ else if (handled & CSR_INT_BIT_RF_KILL) iwl_enable_rfkill_int(trans); /* Re-enable the ALIVE / Rx interrupt if it occurred */ else if (handled & (CSR_INT_BIT_ALIVE | CSR_INT_BIT_FH_RX)) iwl_enable_fw_load_int_ctx_info(trans); spin_unlock_bh(&trans_pcie->irq_lock); } out: lock_map_release(&trans->sync_cmd_lockdep_map); return IRQ_HANDLED; } /****************************************************************************** * * ICT functions * ******************************************************************************/ /* Free dram table */ void iwl_pcie_free_ict(struct iwl_trans *trans) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); if (trans_pcie->ict_tbl) { dma_free_coherent(trans->dev, ICT_SIZE, trans_pcie->ict_tbl, trans_pcie->ict_tbl_dma); trans_pcie->ict_tbl = NULL; trans_pcie->ict_tbl_dma = 0; } } /* * allocate dram shared table, it is an aligned memory * block of ICT_SIZE. * also reset all data related to ICT table interrupt. */ int iwl_pcie_alloc_ict(struct iwl_trans *trans) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); trans_pcie->ict_tbl = dma_alloc_coherent(trans->dev, ICT_SIZE, &trans_pcie->ict_tbl_dma, GFP_KERNEL); if (!trans_pcie->ict_tbl) return -ENOMEM; /* just an API sanity check ... it is guaranteed to be aligned */ if (WARN_ON(trans_pcie->ict_tbl_dma & (ICT_SIZE - 1))) { iwl_pcie_free_ict(trans); return -EINVAL; } return 0; } /* Device is going up inform it about using ICT interrupt table, * also we need to tell the driver to start using ICT interrupt. */ void iwl_pcie_reset_ict(struct iwl_trans *trans) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); u32 val; if (!trans_pcie->ict_tbl) return; spin_lock_bh(&trans_pcie->irq_lock); _iwl_disable_interrupts(trans); memset(trans_pcie->ict_tbl, 0, ICT_SIZE); val = trans_pcie->ict_tbl_dma >> ICT_SHIFT; val |= CSR_DRAM_INT_TBL_ENABLE | CSR_DRAM_INIT_TBL_WRAP_CHECK | CSR_DRAM_INIT_TBL_WRITE_POINTER; IWL_DEBUG_ISR(trans, "CSR_DRAM_INT_TBL_REG =0x%x\n", val); iwl_write32(trans, CSR_DRAM_INT_TBL_REG, val); trans_pcie->use_ict = true; trans_pcie->ict_index = 0; iwl_write32(trans, CSR_INT, trans_pcie->inta_mask); _iwl_enable_interrupts(trans); spin_unlock_bh(&trans_pcie->irq_lock); } /* Device is going down disable ict interrupt usage */ void iwl_pcie_disable_ict(struct iwl_trans *trans) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); spin_lock_bh(&trans_pcie->irq_lock); trans_pcie->use_ict = false; spin_unlock_bh(&trans_pcie->irq_lock); } irqreturn_t iwl_pcie_isr(int irq, void *data) { struct iwl_trans *trans = data; if (!trans) return IRQ_NONE; /* Disable (but don't clear!) interrupts here to avoid * back-to-back ISRs and sporadic interrupts from our NIC. * If we have something to service, the tasklet will re-enable ints. * If we *don't* have something, we'll re-enable before leaving here. */ iwl_write32(trans, CSR_INT_MASK, 0x00000000); return IRQ_WAKE_THREAD; } irqreturn_t iwl_pcie_msix_isr(int irq, void *data) { return IRQ_WAKE_THREAD; } irqreturn_t iwl_pcie_irq_msix_handler(int irq, void *dev_id) { struct msix_entry *entry = dev_id; struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry); struct iwl_trans *trans = trans_pcie->trans; struct isr_statistics *isr_stats = &trans_pcie->isr_stats; u32 inta_fh_msk = ~MSIX_FH_INT_CAUSES_DATA_QUEUE; u32 inta_fh, inta_hw; bool polling = false; bool sw_err; if (trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_NON_RX) inta_fh_msk |= MSIX_FH_INT_CAUSES_Q0; if (trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS) inta_fh_msk |= MSIX_FH_INT_CAUSES_Q1; lock_map_acquire(&trans->sync_cmd_lockdep_map); spin_lock_bh(&trans_pcie->irq_lock); inta_fh = iwl_read32(trans, CSR_MSIX_FH_INT_CAUSES_AD); inta_hw = iwl_read32(trans, CSR_MSIX_HW_INT_CAUSES_AD); /* * Clear causes registers to avoid being handling the same cause. */ iwl_write32(trans, CSR_MSIX_FH_INT_CAUSES_AD, inta_fh & inta_fh_msk); iwl_write32(trans, CSR_MSIX_HW_INT_CAUSES_AD, inta_hw); spin_unlock_bh(&trans_pcie->irq_lock); trace_iwlwifi_dev_irq_msix(trans->dev, entry, true, inta_fh, inta_hw); if (unlikely(!(inta_fh | inta_hw))) { IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n"); lock_map_release(&trans->sync_cmd_lockdep_map); return IRQ_NONE; } if (iwl_have_debug_level(IWL_DL_ISR)) { IWL_DEBUG_ISR(trans, "ISR[%d] inta_fh 0x%08x, enabled (sw) 0x%08x (hw) 0x%08x\n", entry->entry, inta_fh, trans_pcie->fh_mask, iwl_read32(trans, CSR_MSIX_FH_INT_MASK_AD)); if (inta_fh & ~trans_pcie->fh_mask) IWL_DEBUG_ISR(trans, "We got a masked interrupt (0x%08x)\n", inta_fh & ~trans_pcie->fh_mask); } inta_fh &= trans_pcie->fh_mask; if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_NON_RX) && inta_fh & MSIX_FH_INT_CAUSES_Q0) { local_bh_disable(); if (napi_schedule_prep(&trans_pcie->rxq[0].napi)) { polling = true; __napi_schedule(&trans_pcie->rxq[0].napi); } local_bh_enable(); } if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS) && inta_fh & MSIX_FH_INT_CAUSES_Q1) { local_bh_disable(); if (napi_schedule_prep(&trans_pcie->rxq[1].napi)) { polling = true; __napi_schedule(&trans_pcie->rxq[1].napi); } local_bh_enable(); } /* This "Tx" DMA channel is used only for loading uCode */ if (inta_fh & MSIX_FH_INT_CAUSES_D2S_CH0_NUM && trans_pcie->imr_status == IMR_D2S_REQUESTED) { IWL_DEBUG_ISR(trans, "IMR Complete interrupt\n"); isr_stats->tx++; /* Wake up IMR routine once write to SRAM is complete */ if (trans_pcie->imr_status == IMR_D2S_REQUESTED) { trans_pcie->imr_status = IMR_D2S_COMPLETED; wake_up(&trans_pcie->ucode_write_waitq); } } else if (inta_fh & MSIX_FH_INT_CAUSES_D2S_CH0_NUM) { IWL_DEBUG_ISR(trans, "uCode load interrupt\n"); isr_stats->tx++; /* * Wake up uCode load routine, * now that load is complete */ trans_pcie->ucode_write_complete = true; wake_up(&trans_pcie->ucode_write_waitq); /* Wake up IMR routine once write to SRAM is complete */ if (trans_pcie->imr_status == IMR_D2S_REQUESTED) { trans_pcie->imr_status = IMR_D2S_COMPLETED; wake_up(&trans_pcie->ucode_write_waitq); } } if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_BZ) sw_err = inta_hw & MSIX_HW_INT_CAUSES_REG_SW_ERR_BZ; else sw_err = inta_hw & MSIX_HW_INT_CAUSES_REG_SW_ERR; if (inta_hw & MSIX_HW_INT_CAUSES_REG_TOP_FATAL_ERR) { IWL_ERR(trans, "TOP Fatal error detected, inta_hw=0x%x.\n", inta_hw); /* TODO: PLDR flow required here for >= Bz */ } /* Error detected by uCode */ if ((inta_fh & MSIX_FH_INT_CAUSES_FH_ERR) || sw_err) { IWL_ERR(trans, "Microcode SW error detected. Restarting 0x%X.\n", inta_fh); isr_stats->sw++; /* during FW reset flow report errors from there */ if (trans_pcie->imr_status == IMR_D2S_REQUESTED) { trans_pcie->imr_status = IMR_D2S_ERROR; wake_up(&trans_pcie->imr_waitq); } else if (trans_pcie->fw_reset_state == FW_RESET_REQUESTED) { trans_pcie->fw_reset_state = FW_RESET_ERROR; wake_up(&trans_pcie->fw_reset_waitq); } else { iwl_pcie_irq_handle_error(trans); } } /* After checking FH register check HW register */ if (iwl_have_debug_level(IWL_DL_ISR)) { IWL_DEBUG_ISR(trans, "ISR[%d] inta_hw 0x%08x, enabled (sw) 0x%08x (hw) 0x%08x\n", entry->entry, inta_hw, trans_pcie->hw_mask, iwl_read32(trans, CSR_MSIX_HW_INT_MASK_AD)); if (inta_hw & ~trans_pcie->hw_mask) IWL_DEBUG_ISR(trans, "We got a masked interrupt 0x%08x\n", inta_hw & ~trans_pcie->hw_mask); } inta_hw &= trans_pcie->hw_mask; /* Alive notification via Rx interrupt will do the real work */ if (inta_hw & MSIX_HW_INT_CAUSES_REG_ALIVE) { IWL_DEBUG_ISR(trans, "Alive interrupt\n"); isr_stats->alive++; if (trans->trans_cfg->gen2) { /* We can restock, since firmware configured the RFH */ iwl_pcie_rxmq_restock(trans, trans_pcie->rxq); } } /* * In some rare cases when the HW is in a bad state, we may * get this interrupt too early, when prph_info is still NULL. * So make sure that it's not NULL to prevent crashing. */ if (inta_hw & MSIX_HW_INT_CAUSES_REG_WAKEUP && trans_pcie->prph_info) { u32 sleep_notif = le32_to_cpu(trans_pcie->prph_info->sleep_notif); if (sleep_notif == IWL_D3_SLEEP_STATUS_SUSPEND || sleep_notif == IWL_D3_SLEEP_STATUS_RESUME) { IWL_DEBUG_ISR(trans, "Sx interrupt: sleep notification = 0x%x\n", sleep_notif); trans_pcie->sx_complete = true; wake_up(&trans_pcie->sx_waitq); } else { /* uCode wakes up after power-down sleep */ IWL_DEBUG_ISR(trans, "Wakeup interrupt\n"); iwl_pcie_rxq_check_wrptr(trans); iwl_pcie_txq_check_wrptrs(trans); isr_stats->wakeup++; } } /* Chip got too hot and stopped itself */ if (inta_hw & MSIX_HW_INT_CAUSES_REG_CT_KILL) { IWL_ERR(trans, "Microcode CT kill error detected.\n"); isr_stats->ctkill++; } /* HW RF KILL switch toggled */ if (inta_hw & MSIX_HW_INT_CAUSES_REG_RF_KILL) iwl_pcie_handle_rfkill_irq(trans, true); if (inta_hw & MSIX_HW_INT_CAUSES_REG_HW_ERR) { IWL_ERR(trans, "Hardware error detected. Restarting.\n"); isr_stats->hw++; trans->dbg.hw_error = true; iwl_pcie_irq_handle_error(trans); } if (inta_hw & MSIX_HW_INT_CAUSES_REG_RESET_DONE) { IWL_DEBUG_ISR(trans, "Reset flow completed\n"); trans_pcie->fw_reset_state = FW_RESET_OK; wake_up(&trans_pcie->fw_reset_waitq); } if (!polling) iwl_pcie_clear_irq(trans, entry->entry); lock_map_release(&trans->sync_cmd_lockdep_map); return IRQ_HANDLED; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1