Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Xiangliang Yu | 4842 | 82.61% | 2 | 6.67% |
Arindam Nath | 625 | 10.66% | 12 | 40.00% |
Sanjay R Mehta | 130 | 2.22% | 4 | 13.33% |
Logan Gunthorpe | 118 | 2.01% | 1 | 3.33% |
Serge Semin | 103 | 1.76% | 4 | 13.33% |
Yuan Can | 17 | 0.29% | 1 | 3.33% |
Christophe Jaillet | 12 | 0.20% | 2 | 6.67% |
Jiasen Lin | 7 | 0.12% | 1 | 3.33% |
Kees Cook | 4 | 0.07% | 1 | 3.33% |
Shyam Sundar S K | 2 | 0.03% | 1 | 3.33% |
Dan Carpenter | 1 | 0.02% | 1 | 3.33% |
Total | 5861 | 30 |
/* * This file is provided under a dual BSD/GPLv2 license. When using or * redistributing this file, you may do so under either license. * * GPL LICENSE SUMMARY * * Copyright (C) 2016 Advanced Micro Devices, Inc. All Rights Reserved. * Copyright (C) 2016 T-Platforms. All Rights Reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * BSD LICENSE * * Copyright (C) 2016 Advanced Micro Devices, Inc. All Rights Reserved. * Copyright (C) 2016 T-Platforms. All Rights Reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copy * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of AMD Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * AMD PCIe NTB Linux driver * * Contact Information: * Xiangliang Yu <Xiangliang.Yu@amd.com> */ #include <linux/debugfs.h> #include <linux/delay.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/module.h> #include <linux/acpi.h> #include <linux/pci.h> #include <linux/random.h> #include <linux/slab.h> #include <linux/ntb.h> #include "ntb_hw_amd.h" #define NTB_NAME "ntb_hw_amd" #define NTB_DESC "AMD(R) PCI-E Non-Transparent Bridge Driver" #define NTB_VER "1.0" MODULE_DESCRIPTION(NTB_DESC); MODULE_VERSION(NTB_VER); MODULE_LICENSE("Dual BSD/GPL"); MODULE_AUTHOR("AMD Inc."); static const struct file_operations amd_ntb_debugfs_info; static struct dentry *debugfs_dir; static int ndev_mw_to_bar(struct amd_ntb_dev *ndev, int idx) { if (idx < 0 || idx > ndev->mw_count) return -EINVAL; return ndev->dev_data->mw_idx << idx; } static int amd_ntb_mw_count(struct ntb_dev *ntb, int pidx) { if (pidx != NTB_DEF_PEER_IDX) return -EINVAL; return ntb_ndev(ntb)->mw_count; } static int amd_ntb_mw_get_align(struct ntb_dev *ntb, int pidx, int idx, resource_size_t *addr_align, resource_size_t *size_align, resource_size_t *size_max) { struct amd_ntb_dev *ndev = ntb_ndev(ntb); int bar; if (pidx != NTB_DEF_PEER_IDX) return -EINVAL; bar = ndev_mw_to_bar(ndev, idx); if (bar < 0) return bar; if (addr_align) *addr_align = SZ_4K; if (size_align) *size_align = 1; if (size_max) *size_max = pci_resource_len(ndev->ntb.pdev, bar); return 0; } static int amd_ntb_mw_set_trans(struct ntb_dev *ntb, int pidx, int idx, dma_addr_t addr, resource_size_t size) { struct amd_ntb_dev *ndev = ntb_ndev(ntb); unsigned long xlat_reg, limit_reg = 0; resource_size_t mw_size; void __iomem *mmio, *peer_mmio; u64 base_addr, limit, reg_val; int bar; if (pidx != NTB_DEF_PEER_IDX) return -EINVAL; bar = ndev_mw_to_bar(ndev, idx); if (bar < 0) return bar; mw_size = pci_resource_len(ntb->pdev, bar); /* make sure the range fits in the usable mw size */ if (size > mw_size) return -EINVAL; mmio = ndev->self_mmio; peer_mmio = ndev->peer_mmio; base_addr = pci_resource_start(ntb->pdev, bar); if (bar != 1) { xlat_reg = AMD_BAR23XLAT_OFFSET + ((bar - 2) << 2); limit_reg = AMD_BAR23LMT_OFFSET + ((bar - 2) << 2); /* Set the limit if supported */ limit = size; /* set and verify setting the translation address */ write64(addr, peer_mmio + xlat_reg); reg_val = read64(peer_mmio + xlat_reg); if (reg_val != addr) { write64(0, peer_mmio + xlat_reg); return -EIO; } /* set and verify setting the limit */ write64(limit, peer_mmio + limit_reg); reg_val = read64(peer_mmio + limit_reg); if (reg_val != limit) { write64(base_addr, mmio + limit_reg); write64(0, peer_mmio + xlat_reg); return -EIO; } } else { xlat_reg = AMD_BAR1XLAT_OFFSET; limit_reg = AMD_BAR1LMT_OFFSET; /* Set the limit if supported */ limit = size; /* set and verify setting the translation address */ write64(addr, peer_mmio + xlat_reg); reg_val = read64(peer_mmio + xlat_reg); if (reg_val != addr) { write64(0, peer_mmio + xlat_reg); return -EIO; } /* set and verify setting the limit */ writel(limit, peer_mmio + limit_reg); reg_val = readl(peer_mmio + limit_reg); if (reg_val != limit) { writel(base_addr, mmio + limit_reg); writel(0, peer_mmio + xlat_reg); return -EIO; } } return 0; } static int amd_ntb_get_link_status(struct amd_ntb_dev *ndev) { struct pci_dev *pdev = NULL; struct pci_dev *pci_swds = NULL; struct pci_dev *pci_swus = NULL; u32 stat; int rc; if (ndev->ntb.topo == NTB_TOPO_SEC) { /* Locate the pointer to Downstream Switch for this device */ pci_swds = pci_upstream_bridge(ndev->ntb.pdev); if (pci_swds) { /* * Locate the pointer to Upstream Switch for * the Downstream Switch. */ pci_swus = pci_upstream_bridge(pci_swds); if (pci_swus) { rc = pcie_capability_read_dword(pci_swus, PCI_EXP_LNKCTL, &stat); if (rc) return 0; } else { return 0; } } else { return 0; } } else if (ndev->ntb.topo == NTB_TOPO_PRI) { /* * For NTB primary, we simply read the Link Status and control * register of the NTB device itself. */ pdev = ndev->ntb.pdev; rc = pcie_capability_read_dword(pdev, PCI_EXP_LNKCTL, &stat); if (rc) return 0; } else { /* Catch all for everything else */ return 0; } ndev->lnk_sta = stat; return 1; } static int amd_link_is_up(struct amd_ntb_dev *ndev) { int ret; /* * We consider the link to be up under two conditions: * * - When a link-up event is received. This is indicated by * AMD_LINK_UP_EVENT set in peer_sta. * - When driver on both sides of the link have been loaded. * This is indicated by bit 1 being set in the peer * SIDEINFO register. * * This function should return 1 when the latter of the above * two conditions is true. * * Now consider the sequence of events - Link-Up event occurs, * then the peer side driver loads. In this case, we would have * received LINK_UP event and bit 1 of peer SIDEINFO is also * set. What happens now if the link goes down? Bit 1 of * peer SIDEINFO remains set, but LINK_DOWN bit is set in * peer_sta. So we should return 0 from this function. Not only * that, we clear bit 1 of peer SIDEINFO to 0, since the peer * side driver did not even get a chance to clear it before * the link went down. This can be the case of surprise link * removal. * * LINK_UP event will always occur before the peer side driver * gets loaded the very first time. So there can be a case when * the LINK_UP event has occurred, but the peer side driver hasn't * yet loaded. We return 0 in that case. * * There is also a special case when the primary side driver is * unloaded and then loaded again. Since there is no change in * the status of NTB secondary in this case, there is no Link-Up * or Link-Down notification received. We recognize this condition * with peer_sta being set to 0. * * If bit 1 of peer SIDEINFO register is not set, then we * simply return 0 irrespective of the link up or down status * set in peer_sta. */ ret = amd_poll_link(ndev); if (ret) { /* * We need to check the below only for NTB primary. For NTB * secondary, simply checking the result of PSIDE_INFO * register will suffice. */ if (ndev->ntb.topo == NTB_TOPO_PRI) { if ((ndev->peer_sta & AMD_LINK_UP_EVENT) || (ndev->peer_sta == 0)) return ret; else if (ndev->peer_sta & AMD_LINK_DOWN_EVENT) { /* Clear peer sideinfo register */ amd_clear_side_info_reg(ndev, true); return 0; } } else { /* NTB_TOPO_SEC */ return ret; } } return 0; } static u64 amd_ntb_link_is_up(struct ntb_dev *ntb, enum ntb_speed *speed, enum ntb_width *width) { struct amd_ntb_dev *ndev = ntb_ndev(ntb); int ret = 0; if (amd_link_is_up(ndev)) { if (speed) *speed = NTB_LNK_STA_SPEED(ndev->lnk_sta); if (width) *width = NTB_LNK_STA_WIDTH(ndev->lnk_sta); dev_dbg(&ntb->pdev->dev, "link is up.\n"); ret = 1; } else { if (speed) *speed = NTB_SPEED_NONE; if (width) *width = NTB_WIDTH_NONE; dev_dbg(&ntb->pdev->dev, "link is down.\n"); } return ret; } static int amd_ntb_link_enable(struct ntb_dev *ntb, enum ntb_speed max_speed, enum ntb_width max_width) { struct amd_ntb_dev *ndev = ntb_ndev(ntb); void __iomem *mmio = ndev->self_mmio; /* Enable event interrupt */ ndev->int_mask &= ~AMD_EVENT_INTMASK; writel(ndev->int_mask, mmio + AMD_INTMASK_OFFSET); if (ndev->ntb.topo == NTB_TOPO_SEC) return -EINVAL; dev_dbg(&ntb->pdev->dev, "Enabling Link.\n"); return 0; } static int amd_ntb_link_disable(struct ntb_dev *ntb) { struct amd_ntb_dev *ndev = ntb_ndev(ntb); void __iomem *mmio = ndev->self_mmio; /* Disable event interrupt */ ndev->int_mask |= AMD_EVENT_INTMASK; writel(ndev->int_mask, mmio + AMD_INTMASK_OFFSET); if (ndev->ntb.topo == NTB_TOPO_SEC) return -EINVAL; dev_dbg(&ntb->pdev->dev, "Enabling Link.\n"); return 0; } static int amd_ntb_peer_mw_count(struct ntb_dev *ntb) { /* The same as for inbound MWs */ return ntb_ndev(ntb)->mw_count; } static int amd_ntb_peer_mw_get_addr(struct ntb_dev *ntb, int idx, phys_addr_t *base, resource_size_t *size) { struct amd_ntb_dev *ndev = ntb_ndev(ntb); int bar; bar = ndev_mw_to_bar(ndev, idx); if (bar < 0) return bar; if (base) *base = pci_resource_start(ndev->ntb.pdev, bar); if (size) *size = pci_resource_len(ndev->ntb.pdev, bar); return 0; } static u64 amd_ntb_db_valid_mask(struct ntb_dev *ntb) { return ntb_ndev(ntb)->db_valid_mask; } static int amd_ntb_db_vector_count(struct ntb_dev *ntb) { return ntb_ndev(ntb)->db_count; } static u64 amd_ntb_db_vector_mask(struct ntb_dev *ntb, int db_vector) { struct amd_ntb_dev *ndev = ntb_ndev(ntb); if (db_vector < 0 || db_vector > ndev->db_count) return 0; return ntb_ndev(ntb)->db_valid_mask & (1ULL << db_vector); } static u64 amd_ntb_db_read(struct ntb_dev *ntb) { struct amd_ntb_dev *ndev = ntb_ndev(ntb); void __iomem *mmio = ndev->self_mmio; return (u64)readw(mmio + AMD_DBSTAT_OFFSET); } static int amd_ntb_db_clear(struct ntb_dev *ntb, u64 db_bits) { struct amd_ntb_dev *ndev = ntb_ndev(ntb); void __iomem *mmio = ndev->self_mmio; writew((u16)db_bits, mmio + AMD_DBSTAT_OFFSET); return 0; } static int amd_ntb_db_set_mask(struct ntb_dev *ntb, u64 db_bits) { struct amd_ntb_dev *ndev = ntb_ndev(ntb); void __iomem *mmio = ndev->self_mmio; unsigned long flags; if (db_bits & ~ndev->db_valid_mask) return -EINVAL; spin_lock_irqsave(&ndev->db_mask_lock, flags); ndev->db_mask |= db_bits; writew((u16)ndev->db_mask, mmio + AMD_DBMASK_OFFSET); spin_unlock_irqrestore(&ndev->db_mask_lock, flags); return 0; } static int amd_ntb_db_clear_mask(struct ntb_dev *ntb, u64 db_bits) { struct amd_ntb_dev *ndev = ntb_ndev(ntb); void __iomem *mmio = ndev->self_mmio; unsigned long flags; if (db_bits & ~ndev->db_valid_mask) return -EINVAL; spin_lock_irqsave(&ndev->db_mask_lock, flags); ndev->db_mask &= ~db_bits; writew((u16)ndev->db_mask, mmio + AMD_DBMASK_OFFSET); spin_unlock_irqrestore(&ndev->db_mask_lock, flags); return 0; } static int amd_ntb_peer_db_set(struct ntb_dev *ntb, u64 db_bits) { struct amd_ntb_dev *ndev = ntb_ndev(ntb); void __iomem *mmio = ndev->self_mmio; writew((u16)db_bits, mmio + AMD_DBREQ_OFFSET); return 0; } static int amd_ntb_spad_count(struct ntb_dev *ntb) { return ntb_ndev(ntb)->spad_count; } static u32 amd_ntb_spad_read(struct ntb_dev *ntb, int idx) { struct amd_ntb_dev *ndev = ntb_ndev(ntb); void __iomem *mmio = ndev->self_mmio; u32 offset; if (idx < 0 || idx >= ndev->spad_count) return 0; offset = ndev->self_spad + (idx << 2); return readl(mmio + AMD_SPAD_OFFSET + offset); } static int amd_ntb_spad_write(struct ntb_dev *ntb, int idx, u32 val) { struct amd_ntb_dev *ndev = ntb_ndev(ntb); void __iomem *mmio = ndev->self_mmio; u32 offset; if (idx < 0 || idx >= ndev->spad_count) return -EINVAL; offset = ndev->self_spad + (idx << 2); writel(val, mmio + AMD_SPAD_OFFSET + offset); return 0; } static u32 amd_ntb_peer_spad_read(struct ntb_dev *ntb, int pidx, int sidx) { struct amd_ntb_dev *ndev = ntb_ndev(ntb); void __iomem *mmio = ndev->self_mmio; u32 offset; if (sidx < 0 || sidx >= ndev->spad_count) return -EINVAL; offset = ndev->peer_spad + (sidx << 2); return readl(mmio + AMD_SPAD_OFFSET + offset); } static int amd_ntb_peer_spad_write(struct ntb_dev *ntb, int pidx, int sidx, u32 val) { struct amd_ntb_dev *ndev = ntb_ndev(ntb); void __iomem *mmio = ndev->self_mmio; u32 offset; if (sidx < 0 || sidx >= ndev->spad_count) return -EINVAL; offset = ndev->peer_spad + (sidx << 2); writel(val, mmio + AMD_SPAD_OFFSET + offset); return 0; } static const struct ntb_dev_ops amd_ntb_ops = { .mw_count = amd_ntb_mw_count, .mw_get_align = amd_ntb_mw_get_align, .mw_set_trans = amd_ntb_mw_set_trans, .peer_mw_count = amd_ntb_peer_mw_count, .peer_mw_get_addr = amd_ntb_peer_mw_get_addr, .link_is_up = amd_ntb_link_is_up, .link_enable = amd_ntb_link_enable, .link_disable = amd_ntb_link_disable, .db_valid_mask = amd_ntb_db_valid_mask, .db_vector_count = amd_ntb_db_vector_count, .db_vector_mask = amd_ntb_db_vector_mask, .db_read = amd_ntb_db_read, .db_clear = amd_ntb_db_clear, .db_set_mask = amd_ntb_db_set_mask, .db_clear_mask = amd_ntb_db_clear_mask, .peer_db_set = amd_ntb_peer_db_set, .spad_count = amd_ntb_spad_count, .spad_read = amd_ntb_spad_read, .spad_write = amd_ntb_spad_write, .peer_spad_read = amd_ntb_peer_spad_read, .peer_spad_write = amd_ntb_peer_spad_write, }; static void amd_ack_smu(struct amd_ntb_dev *ndev, u32 bit) { void __iomem *mmio = ndev->self_mmio; int reg; reg = readl(mmio + AMD_SMUACK_OFFSET); reg |= bit; writel(reg, mmio + AMD_SMUACK_OFFSET); } static void amd_handle_event(struct amd_ntb_dev *ndev, int vec) { void __iomem *mmio = ndev->self_mmio; struct device *dev = &ndev->ntb.pdev->dev; u32 status; status = readl(mmio + AMD_INTSTAT_OFFSET); if (!(status & AMD_EVENT_INTMASK)) return; dev_dbg(dev, "status = 0x%x and vec = %d\n", status, vec); status &= AMD_EVENT_INTMASK; switch (status) { case AMD_PEER_FLUSH_EVENT: ndev->peer_sta |= AMD_PEER_FLUSH_EVENT; dev_info(dev, "Flush is done.\n"); break; case AMD_PEER_RESET_EVENT: case AMD_LINK_DOWN_EVENT: ndev->peer_sta |= status; if (status == AMD_LINK_DOWN_EVENT) ndev->peer_sta &= ~AMD_LINK_UP_EVENT; amd_ack_smu(ndev, status); /* link down first */ ntb_link_event(&ndev->ntb); /* polling peer status */ schedule_delayed_work(&ndev->hb_timer, AMD_LINK_HB_TIMEOUT); break; case AMD_PEER_D3_EVENT: case AMD_PEER_PMETO_EVENT: case AMD_LINK_UP_EVENT: ndev->peer_sta |= status; if (status == AMD_LINK_UP_EVENT) ndev->peer_sta &= ~AMD_LINK_DOWN_EVENT; else if (status == AMD_PEER_D3_EVENT) ndev->peer_sta &= ~AMD_PEER_D0_EVENT; amd_ack_smu(ndev, status); /* link down */ ntb_link_event(&ndev->ntb); break; case AMD_PEER_D0_EVENT: mmio = ndev->peer_mmio; status = readl(mmio + AMD_PMESTAT_OFFSET); /* check if this is WAKEUP event */ if (status & 0x1) dev_info(dev, "Wakeup is done.\n"); ndev->peer_sta |= AMD_PEER_D0_EVENT; ndev->peer_sta &= ~AMD_PEER_D3_EVENT; amd_ack_smu(ndev, AMD_PEER_D0_EVENT); /* start a timer to poll link status */ schedule_delayed_work(&ndev->hb_timer, AMD_LINK_HB_TIMEOUT); break; default: dev_info(dev, "event status = 0x%x.\n", status); break; } /* Clear the interrupt status */ writel(status, mmio + AMD_INTSTAT_OFFSET); } static void amd_handle_db_event(struct amd_ntb_dev *ndev, int vec) { struct device *dev = &ndev->ntb.pdev->dev; u64 status; status = amd_ntb_db_read(&ndev->ntb); dev_dbg(dev, "status = 0x%llx and vec = %d\n", status, vec); /* * Since we had reserved highest order bit of DB for signaling peer of * a special event, this is the only status bit we should be concerned * here now. */ if (status & BIT(ndev->db_last_bit)) { ntb_db_clear(&ndev->ntb, BIT(ndev->db_last_bit)); /* send link down event notification */ ntb_link_event(&ndev->ntb); /* * If we are here, that means the peer has signalled a special * event which notifies that the peer driver has been * un-loaded for some reason. Since there is a chance that the * peer will load its driver again sometime, we schedule link * polling routine. */ schedule_delayed_work(&ndev->hb_timer, AMD_LINK_HB_TIMEOUT); } } static irqreturn_t ndev_interrupt(struct amd_ntb_dev *ndev, int vec) { dev_dbg(&ndev->ntb.pdev->dev, "vec %d\n", vec); if (vec > (AMD_DB_CNT - 1) || (ndev->msix_vec_count == 1)) amd_handle_event(ndev, vec); if (vec < AMD_DB_CNT) { amd_handle_db_event(ndev, vec); ntb_db_event(&ndev->ntb, vec); } return IRQ_HANDLED; } static irqreturn_t ndev_vec_isr(int irq, void *dev) { struct amd_ntb_vec *nvec = dev; return ndev_interrupt(nvec->ndev, nvec->num); } static irqreturn_t ndev_irq_isr(int irq, void *dev) { struct amd_ntb_dev *ndev = dev; return ndev_interrupt(ndev, irq - ndev->ntb.pdev->irq); } static int ndev_init_isr(struct amd_ntb_dev *ndev, int msix_min, int msix_max) { struct pci_dev *pdev; int rc, i, msix_count, node; pdev = ndev->ntb.pdev; node = dev_to_node(&pdev->dev); ndev->db_mask = ndev->db_valid_mask; /* Try to set up msix irq */ ndev->vec = kcalloc_node(msix_max, sizeof(*ndev->vec), GFP_KERNEL, node); if (!ndev->vec) goto err_msix_vec_alloc; ndev->msix = kcalloc_node(msix_max, sizeof(*ndev->msix), GFP_KERNEL, node); if (!ndev->msix) goto err_msix_alloc; for (i = 0; i < msix_max; ++i) ndev->msix[i].entry = i; msix_count = pci_enable_msix_range(pdev, ndev->msix, msix_min, msix_max); if (msix_count < 0) goto err_msix_enable; /* NOTE: Disable MSIX if msix count is less than 16 because of * hardware limitation. */ if (msix_count < msix_min) { pci_disable_msix(pdev); goto err_msix_enable; } for (i = 0; i < msix_count; ++i) { ndev->vec[i].ndev = ndev; ndev->vec[i].num = i; rc = request_irq(ndev->msix[i].vector, ndev_vec_isr, 0, "ndev_vec_isr", &ndev->vec[i]); if (rc) goto err_msix_request; } dev_dbg(&pdev->dev, "Using msix interrupts\n"); ndev->db_count = msix_min; ndev->msix_vec_count = msix_max; return 0; err_msix_request: while (i-- > 0) free_irq(ndev->msix[i].vector, &ndev->vec[i]); pci_disable_msix(pdev); err_msix_enable: kfree(ndev->msix); err_msix_alloc: kfree(ndev->vec); err_msix_vec_alloc: ndev->msix = NULL; ndev->vec = NULL; /* Try to set up msi irq */ rc = pci_enable_msi(pdev); if (rc) goto err_msi_enable; rc = request_irq(pdev->irq, ndev_irq_isr, 0, "ndev_irq_isr", ndev); if (rc) goto err_msi_request; dev_dbg(&pdev->dev, "Using msi interrupts\n"); ndev->db_count = 1; ndev->msix_vec_count = 1; return 0; err_msi_request: pci_disable_msi(pdev); err_msi_enable: /* Try to set up intx irq */ pci_intx(pdev, 1); rc = request_irq(pdev->irq, ndev_irq_isr, IRQF_SHARED, "ndev_irq_isr", ndev); if (rc) goto err_intx_request; dev_dbg(&pdev->dev, "Using intx interrupts\n"); ndev->db_count = 1; ndev->msix_vec_count = 1; return 0; err_intx_request: return rc; } static void ndev_deinit_isr(struct amd_ntb_dev *ndev) { struct pci_dev *pdev; void __iomem *mmio = ndev->self_mmio; int i; pdev = ndev->ntb.pdev; /* Mask all doorbell interrupts */ ndev->db_mask = ndev->db_valid_mask; writel(ndev->db_mask, mmio + AMD_DBMASK_OFFSET); if (ndev->msix) { i = ndev->msix_vec_count; while (i--) free_irq(ndev->msix[i].vector, &ndev->vec[i]); pci_disable_msix(pdev); kfree(ndev->msix); kfree(ndev->vec); } else { free_irq(pdev->irq, ndev); if (pci_dev_msi_enabled(pdev)) pci_disable_msi(pdev); else pci_intx(pdev, 0); } } static ssize_t ndev_debugfs_read(struct file *filp, char __user *ubuf, size_t count, loff_t *offp) { struct amd_ntb_dev *ndev; void __iomem *mmio; char *buf; size_t buf_size; ssize_t ret, off; union { u64 v64; u32 v32; u16 v16; } u; ndev = filp->private_data; mmio = ndev->self_mmio; buf_size = min(count, 0x800ul); buf = kmalloc(buf_size, GFP_KERNEL); if (!buf) return -ENOMEM; off = 0; off += scnprintf(buf + off, buf_size - off, "NTB Device Information:\n"); off += scnprintf(buf + off, buf_size - off, "Connection Topology -\t%s\n", ntb_topo_string(ndev->ntb.topo)); off += scnprintf(buf + off, buf_size - off, "LNK STA -\t\t%#06x\n", ndev->lnk_sta); if (!amd_link_is_up(ndev)) { off += scnprintf(buf + off, buf_size - off, "Link Status -\t\tDown\n"); } else { off += scnprintf(buf + off, buf_size - off, "Link Status -\t\tUp\n"); off += scnprintf(buf + off, buf_size - off, "Link Speed -\t\tPCI-E Gen %u\n", NTB_LNK_STA_SPEED(ndev->lnk_sta)); off += scnprintf(buf + off, buf_size - off, "Link Width -\t\tx%u\n", NTB_LNK_STA_WIDTH(ndev->lnk_sta)); } off += scnprintf(buf + off, buf_size - off, "Memory Window Count -\t%u\n", ndev->mw_count); off += scnprintf(buf + off, buf_size - off, "Scratchpad Count -\t%u\n", ndev->spad_count); off += scnprintf(buf + off, buf_size - off, "Doorbell Count -\t%u\n", ndev->db_count); off += scnprintf(buf + off, buf_size - off, "MSIX Vector Count -\t%u\n", ndev->msix_vec_count); off += scnprintf(buf + off, buf_size - off, "Doorbell Valid Mask -\t%#llx\n", ndev->db_valid_mask); u.v32 = readl(ndev->self_mmio + AMD_DBMASK_OFFSET); off += scnprintf(buf + off, buf_size - off, "Doorbell Mask -\t\t\t%#06x\n", u.v32); u.v32 = readl(mmio + AMD_DBSTAT_OFFSET); off += scnprintf(buf + off, buf_size - off, "Doorbell Bell -\t\t\t%#06x\n", u.v32); off += scnprintf(buf + off, buf_size - off, "\nNTB Incoming XLAT:\n"); u.v64 = read64(mmio + AMD_BAR1XLAT_OFFSET); off += scnprintf(buf + off, buf_size - off, "XLAT1 -\t\t%#018llx\n", u.v64); u.v64 = read64(ndev->self_mmio + AMD_BAR23XLAT_OFFSET); off += scnprintf(buf + off, buf_size - off, "XLAT23 -\t\t%#018llx\n", u.v64); u.v64 = read64(ndev->self_mmio + AMD_BAR45XLAT_OFFSET); off += scnprintf(buf + off, buf_size - off, "XLAT45 -\t\t%#018llx\n", u.v64); u.v32 = readl(mmio + AMD_BAR1LMT_OFFSET); off += scnprintf(buf + off, buf_size - off, "LMT1 -\t\t\t%#06x\n", u.v32); u.v64 = read64(ndev->self_mmio + AMD_BAR23LMT_OFFSET); off += scnprintf(buf + off, buf_size - off, "LMT23 -\t\t\t%#018llx\n", u.v64); u.v64 = read64(ndev->self_mmio + AMD_BAR45LMT_OFFSET); off += scnprintf(buf + off, buf_size - off, "LMT45 -\t\t\t%#018llx\n", u.v64); ret = simple_read_from_buffer(ubuf, count, offp, buf, off); kfree(buf); return ret; } static void ndev_init_debugfs(struct amd_ntb_dev *ndev) { if (!debugfs_dir) { ndev->debugfs_dir = NULL; ndev->debugfs_info = NULL; } else { ndev->debugfs_dir = debugfs_create_dir(pci_name(ndev->ntb.pdev), debugfs_dir); ndev->debugfs_info = debugfs_create_file("info", S_IRUSR, ndev->debugfs_dir, ndev, &amd_ntb_debugfs_info); } } static void ndev_deinit_debugfs(struct amd_ntb_dev *ndev) { debugfs_remove_recursive(ndev->debugfs_dir); } static inline void ndev_init_struct(struct amd_ntb_dev *ndev, struct pci_dev *pdev) { ndev->ntb.pdev = pdev; ndev->ntb.topo = NTB_TOPO_NONE; ndev->ntb.ops = &amd_ntb_ops; ndev->int_mask = AMD_EVENT_INTMASK; spin_lock_init(&ndev->db_mask_lock); } static int amd_poll_link(struct amd_ntb_dev *ndev) { void __iomem *mmio = ndev->peer_mmio; u32 reg; reg = readl(mmio + AMD_SIDEINFO_OFFSET); reg &= AMD_SIDE_READY; dev_dbg(&ndev->ntb.pdev->dev, "%s: reg_val = 0x%x.\n", __func__, reg); ndev->cntl_sta = reg; amd_ntb_get_link_status(ndev); return ndev->cntl_sta; } static void amd_link_hb(struct work_struct *work) { struct amd_ntb_dev *ndev = hb_ndev(work); if (amd_poll_link(ndev)) ntb_link_event(&ndev->ntb); if (!amd_link_is_up(ndev)) schedule_delayed_work(&ndev->hb_timer, AMD_LINK_HB_TIMEOUT); } static int amd_init_isr(struct amd_ntb_dev *ndev) { return ndev_init_isr(ndev, AMD_DB_CNT, AMD_MSIX_VECTOR_CNT); } static void amd_set_side_info_reg(struct amd_ntb_dev *ndev, bool peer) { void __iomem *mmio = NULL; unsigned int reg; if (peer) mmio = ndev->peer_mmio; else mmio = ndev->self_mmio; reg = readl(mmio + AMD_SIDEINFO_OFFSET); if (!(reg & AMD_SIDE_READY)) { reg |= AMD_SIDE_READY; writel(reg, mmio + AMD_SIDEINFO_OFFSET); } } static void amd_clear_side_info_reg(struct amd_ntb_dev *ndev, bool peer) { void __iomem *mmio = NULL; unsigned int reg; if (peer) mmio = ndev->peer_mmio; else mmio = ndev->self_mmio; reg = readl(mmio + AMD_SIDEINFO_OFFSET); if (reg & AMD_SIDE_READY) { reg &= ~AMD_SIDE_READY; writel(reg, mmio + AMD_SIDEINFO_OFFSET); readl(mmio + AMD_SIDEINFO_OFFSET); } } static void amd_init_side_info(struct amd_ntb_dev *ndev) { void __iomem *mmio = ndev->self_mmio; u32 ntb_ctl; amd_set_side_info_reg(ndev, false); ntb_ctl = readl(mmio + AMD_CNTL_OFFSET); ntb_ctl |= (PMM_REG_CTL | SMM_REG_CTL); writel(ntb_ctl, mmio + AMD_CNTL_OFFSET); } static void amd_deinit_side_info(struct amd_ntb_dev *ndev) { void __iomem *mmio = ndev->self_mmio; u32 ntb_ctl; amd_clear_side_info_reg(ndev, false); ntb_ctl = readl(mmio + AMD_CNTL_OFFSET); ntb_ctl &= ~(PMM_REG_CTL | SMM_REG_CTL); writel(ntb_ctl, mmio + AMD_CNTL_OFFSET); } static int amd_init_ntb(struct amd_ntb_dev *ndev) { void __iomem *mmio = ndev->self_mmio; ndev->mw_count = ndev->dev_data->mw_count; ndev->spad_count = AMD_SPADS_CNT; ndev->db_count = AMD_DB_CNT; switch (ndev->ntb.topo) { case NTB_TOPO_PRI: case NTB_TOPO_SEC: ndev->spad_count >>= 1; if (ndev->ntb.topo == NTB_TOPO_PRI) { ndev->self_spad = 0; ndev->peer_spad = 0x20; } else { ndev->self_spad = 0x20; ndev->peer_spad = 0; } INIT_DELAYED_WORK(&ndev->hb_timer, amd_link_hb); schedule_delayed_work(&ndev->hb_timer, AMD_LINK_HB_TIMEOUT); break; default: dev_err(&ndev->ntb.pdev->dev, "AMD NTB does not support B2B mode.\n"); return -EINVAL; } /* Mask event interrupts */ writel(ndev->int_mask, mmio + AMD_INTMASK_OFFSET); return 0; } static enum ntb_topo amd_get_topo(struct amd_ntb_dev *ndev) { void __iomem *mmio = ndev->self_mmio; u32 info; info = readl(mmio + AMD_SIDEINFO_OFFSET); if (info & AMD_SIDE_MASK) return NTB_TOPO_SEC; else return NTB_TOPO_PRI; } static int amd_init_dev(struct amd_ntb_dev *ndev) { void __iomem *mmio = ndev->self_mmio; struct pci_dev *pdev; int rc = 0; pdev = ndev->ntb.pdev; ndev->ntb.topo = amd_get_topo(ndev); dev_dbg(&pdev->dev, "AMD NTB topo is %s\n", ntb_topo_string(ndev->ntb.topo)); rc = amd_init_ntb(ndev); if (rc) return rc; rc = amd_init_isr(ndev); if (rc) { dev_err(&pdev->dev, "fail to init isr.\n"); return rc; } ndev->db_valid_mask = BIT_ULL(ndev->db_count) - 1; /* * We reserve the highest order bit of the DB register which will * be used to notify peer when the driver on this side is being * un-loaded. */ ndev->db_last_bit = find_last_bit((unsigned long *)&ndev->db_valid_mask, hweight64(ndev->db_valid_mask)); writew((u16)~BIT(ndev->db_last_bit), mmio + AMD_DBMASK_OFFSET); /* * Since now there is one less bit to account for, the DB count * and DB mask should be adjusted accordingly. */ ndev->db_count -= 1; ndev->db_valid_mask = BIT_ULL(ndev->db_count) - 1; /* Enable Link-Up and Link-Down event interrupts */ ndev->int_mask &= ~(AMD_LINK_UP_EVENT | AMD_LINK_DOWN_EVENT); writel(ndev->int_mask, mmio + AMD_INTMASK_OFFSET); return 0; } static void amd_deinit_dev(struct amd_ntb_dev *ndev) { cancel_delayed_work_sync(&ndev->hb_timer); ndev_deinit_isr(ndev); } static int amd_ntb_init_pci(struct amd_ntb_dev *ndev, struct pci_dev *pdev) { int rc; pci_set_drvdata(pdev, ndev); rc = pci_enable_device(pdev); if (rc) goto err_pci_enable; rc = pci_request_regions(pdev, NTB_NAME); if (rc) goto err_pci_regions; pci_set_master(pdev); rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); if (rc) { rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); if (rc) goto err_dma_mask; dev_warn(&pdev->dev, "Cannot DMA highmem\n"); } ndev->self_mmio = pci_iomap(pdev, 0, 0); if (!ndev->self_mmio) { rc = -EIO; goto err_dma_mask; } ndev->peer_mmio = ndev->self_mmio + AMD_PEER_OFFSET; return 0; err_dma_mask: pci_release_regions(pdev); err_pci_regions: pci_disable_device(pdev); err_pci_enable: pci_set_drvdata(pdev, NULL); return rc; } static void amd_ntb_deinit_pci(struct amd_ntb_dev *ndev) { struct pci_dev *pdev = ndev->ntb.pdev; pci_iounmap(pdev, ndev->self_mmio); pci_release_regions(pdev); pci_disable_device(pdev); pci_set_drvdata(pdev, NULL); } static int amd_ntb_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id) { struct amd_ntb_dev *ndev; int rc, node; node = dev_to_node(&pdev->dev); ndev = kzalloc_node(sizeof(*ndev), GFP_KERNEL, node); if (!ndev) { rc = -ENOMEM; goto err_ndev; } ndev->dev_data = (struct ntb_dev_data *)id->driver_data; ndev_init_struct(ndev, pdev); rc = amd_ntb_init_pci(ndev, pdev); if (rc) goto err_init_pci; rc = amd_init_dev(ndev); if (rc) goto err_init_dev; /* write side info */ amd_init_side_info(ndev); amd_poll_link(ndev); ndev_init_debugfs(ndev); rc = ntb_register_device(&ndev->ntb); if (rc) goto err_register; dev_info(&pdev->dev, "NTB device registered.\n"); return 0; err_register: ndev_deinit_debugfs(ndev); amd_deinit_dev(ndev); err_init_dev: amd_ntb_deinit_pci(ndev); err_init_pci: kfree(ndev); err_ndev: return rc; } static void amd_ntb_pci_remove(struct pci_dev *pdev) { struct amd_ntb_dev *ndev = pci_get_drvdata(pdev); /* * Clear the READY bit in SIDEINFO register before sending DB event * to the peer. This will make sure that when the peer handles the * DB event, it correctly reads this bit as being 0. */ amd_deinit_side_info(ndev); ntb_peer_db_set(&ndev->ntb, BIT_ULL(ndev->db_last_bit)); ntb_unregister_device(&ndev->ntb); ndev_deinit_debugfs(ndev); amd_deinit_dev(ndev); amd_ntb_deinit_pci(ndev); kfree(ndev); } static void amd_ntb_pci_shutdown(struct pci_dev *pdev) { struct amd_ntb_dev *ndev = pci_get_drvdata(pdev); /* Send link down notification */ ntb_link_event(&ndev->ntb); amd_deinit_side_info(ndev); ntb_peer_db_set(&ndev->ntb, BIT_ULL(ndev->db_last_bit)); ntb_unregister_device(&ndev->ntb); ndev_deinit_debugfs(ndev); amd_deinit_dev(ndev); amd_ntb_deinit_pci(ndev); kfree(ndev); } static const struct file_operations amd_ntb_debugfs_info = { .owner = THIS_MODULE, .open = simple_open, .read = ndev_debugfs_read, }; static const struct ntb_dev_data dev_data[] = { { /* for device 145b */ .mw_count = 3, .mw_idx = 1, }, { /* for device 148b */ .mw_count = 2, .mw_idx = 2, }, }; static const struct pci_device_id amd_ntb_pci_tbl[] = { { PCI_VDEVICE(AMD, 0x145b), (kernel_ulong_t)&dev_data[0] }, { PCI_VDEVICE(AMD, 0x148b), (kernel_ulong_t)&dev_data[1] }, { PCI_VDEVICE(AMD, 0x14c0), (kernel_ulong_t)&dev_data[1] }, { PCI_VDEVICE(AMD, 0x14c3), (kernel_ulong_t)&dev_data[1] }, { PCI_VDEVICE(HYGON, 0x145b), (kernel_ulong_t)&dev_data[0] }, { 0, } }; MODULE_DEVICE_TABLE(pci, amd_ntb_pci_tbl); static struct pci_driver amd_ntb_pci_driver = { .name = KBUILD_MODNAME, .id_table = amd_ntb_pci_tbl, .probe = amd_ntb_pci_probe, .remove = amd_ntb_pci_remove, .shutdown = amd_ntb_pci_shutdown, }; static int __init amd_ntb_pci_driver_init(void) { int ret; pr_info("%s %s\n", NTB_DESC, NTB_VER); if (debugfs_initialized()) debugfs_dir = debugfs_create_dir(KBUILD_MODNAME, NULL); ret = pci_register_driver(&amd_ntb_pci_driver); if (ret) debugfs_remove_recursive(debugfs_dir); return ret; } module_init(amd_ntb_pci_driver_init); static void __exit amd_ntb_pci_driver_exit(void) { pci_unregister_driver(&amd_ntb_pci_driver); debugfs_remove_recursive(debugfs_dir); } module_exit(amd_ntb_pci_driver_exit);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1