Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Freeman Liu | 1663 | 98.81% | 3 | 37.50% |
Tiezhu Yang | 9 | 0.53% | 1 | 12.50% |
Rafał Miłecki | 6 | 0.36% | 1 | 12.50% |
Christophe Jaillet | 2 | 0.12% | 1 | 12.50% |
Baolin Wang | 2 | 0.12% | 1 | 12.50% |
Rob Herring | 1 | 0.06% | 1 | 12.50% |
Total | 1683 | 8 |
// SPDX-License-Identifier: GPL-2.0 // Copyright (C) 2019 Spreadtrum Communications Inc. #include <linux/clk.h> #include <linux/delay.h> #include <linux/hwspinlock.h> #include <linux/io.h> #include <linux/module.h> #include <linux/nvmem-provider.h> #include <linux/of.h> #include <linux/platform_device.h> #define SPRD_EFUSE_ENABLE 0x20 #define SPRD_EFUSE_ERR_FLAG 0x24 #define SPRD_EFUSE_ERR_CLR 0x28 #define SPRD_EFUSE_MAGIC_NUM 0x2c #define SPRD_EFUSE_FW_CFG 0x50 #define SPRD_EFUSE_PW_SWT 0x54 #define SPRD_EFUSE_MEM(val) (0x1000 + ((val) << 2)) #define SPRD_EFUSE_VDD_EN BIT(0) #define SPRD_EFUSE_AUTO_CHECK_EN BIT(1) #define SPRD_EFUSE_DOUBLE_EN BIT(2) #define SPRD_EFUSE_MARGIN_RD_EN BIT(3) #define SPRD_EFUSE_LOCK_WR_EN BIT(4) #define SPRD_EFUSE_ERR_CLR_MASK GENMASK(13, 0) #define SPRD_EFUSE_ENK1_ON BIT(0) #define SPRD_EFUSE_ENK2_ON BIT(1) #define SPRD_EFUSE_PROG_EN BIT(2) #define SPRD_EFUSE_MAGIC_NUMBER 0x8810 /* Block width (bytes) definitions */ #define SPRD_EFUSE_BLOCK_WIDTH 4 /* * The Spreadtrum AP efuse contains 2 parts: normal efuse and secure efuse, * and we can only access the normal efuse in kernel. So define the normal * block offset index and normal block numbers. */ #define SPRD_EFUSE_NORMAL_BLOCK_NUMS 24 #define SPRD_EFUSE_NORMAL_BLOCK_OFFSET 72 /* Timeout (ms) for the trylock of hardware spinlocks */ #define SPRD_EFUSE_HWLOCK_TIMEOUT 5000 /* * Since different Spreadtrum SoC chip can have different normal block numbers * and offset. And some SoC can support block double feature, which means * when reading or writing data to efuse memory, the controller can save double * data in case one data become incorrect after a long period. * * Thus we should save them in the device data structure. */ struct sprd_efuse_variant_data { u32 blk_nums; u32 blk_offset; bool blk_double; }; struct sprd_efuse { struct device *dev; struct clk *clk; struct hwspinlock *hwlock; struct mutex mutex; void __iomem *base; const struct sprd_efuse_variant_data *data; }; static const struct sprd_efuse_variant_data ums312_data = { .blk_nums = SPRD_EFUSE_NORMAL_BLOCK_NUMS, .blk_offset = SPRD_EFUSE_NORMAL_BLOCK_OFFSET, .blk_double = false, }; /* * On Spreadtrum platform, we have multi-subsystems will access the unique * efuse controller, so we need one hardware spinlock to synchronize between * the multiple subsystems. */ static int sprd_efuse_lock(struct sprd_efuse *efuse) { int ret; mutex_lock(&efuse->mutex); ret = hwspin_lock_timeout_raw(efuse->hwlock, SPRD_EFUSE_HWLOCK_TIMEOUT); if (ret) { dev_err(efuse->dev, "timeout get the hwspinlock\n"); mutex_unlock(&efuse->mutex); return ret; } return 0; } static void sprd_efuse_unlock(struct sprd_efuse *efuse) { hwspin_unlock_raw(efuse->hwlock); mutex_unlock(&efuse->mutex); } static void sprd_efuse_set_prog_power(struct sprd_efuse *efuse, bool en) { u32 val = readl(efuse->base + SPRD_EFUSE_PW_SWT); if (en) val &= ~SPRD_EFUSE_ENK2_ON; else val &= ~SPRD_EFUSE_ENK1_ON; writel(val, efuse->base + SPRD_EFUSE_PW_SWT); /* Open or close efuse power need wait 1000us to make power stable. */ usleep_range(1000, 1200); if (en) val |= SPRD_EFUSE_ENK1_ON; else val |= SPRD_EFUSE_ENK2_ON; writel(val, efuse->base + SPRD_EFUSE_PW_SWT); /* Open or close efuse power need wait 1000us to make power stable. */ usleep_range(1000, 1200); } static void sprd_efuse_set_read_power(struct sprd_efuse *efuse, bool en) { u32 val = readl(efuse->base + SPRD_EFUSE_ENABLE); if (en) val |= SPRD_EFUSE_VDD_EN; else val &= ~SPRD_EFUSE_VDD_EN; writel(val, efuse->base + SPRD_EFUSE_ENABLE); /* Open or close efuse power need wait 1000us to make power stable. */ usleep_range(1000, 1200); } static void sprd_efuse_set_prog_lock(struct sprd_efuse *efuse, bool en) { u32 val = readl(efuse->base + SPRD_EFUSE_ENABLE); if (en) val |= SPRD_EFUSE_LOCK_WR_EN; else val &= ~SPRD_EFUSE_LOCK_WR_EN; writel(val, efuse->base + SPRD_EFUSE_ENABLE); } static void sprd_efuse_set_auto_check(struct sprd_efuse *efuse, bool en) { u32 val = readl(efuse->base + SPRD_EFUSE_ENABLE); if (en) val |= SPRD_EFUSE_AUTO_CHECK_EN; else val &= ~SPRD_EFUSE_AUTO_CHECK_EN; writel(val, efuse->base + SPRD_EFUSE_ENABLE); } static void sprd_efuse_set_data_double(struct sprd_efuse *efuse, bool en) { u32 val = readl(efuse->base + SPRD_EFUSE_ENABLE); if (en) val |= SPRD_EFUSE_DOUBLE_EN; else val &= ~SPRD_EFUSE_DOUBLE_EN; writel(val, efuse->base + SPRD_EFUSE_ENABLE); } static void sprd_efuse_set_prog_en(struct sprd_efuse *efuse, bool en) { u32 val = readl(efuse->base + SPRD_EFUSE_PW_SWT); if (en) val |= SPRD_EFUSE_PROG_EN; else val &= ~SPRD_EFUSE_PROG_EN; writel(val, efuse->base + SPRD_EFUSE_PW_SWT); } static int sprd_efuse_raw_prog(struct sprd_efuse *efuse, u32 blk, bool doub, bool lock, u32 *data) { u32 status; int ret = 0; /* * We need set the correct magic number before writing the efuse to * allow programming, and block other programming until we clear the * magic number. */ writel(SPRD_EFUSE_MAGIC_NUMBER, efuse->base + SPRD_EFUSE_MAGIC_NUM); /* * Power on the efuse, enable programme and enable double data * if asked. */ sprd_efuse_set_prog_power(efuse, true); sprd_efuse_set_prog_en(efuse, true); sprd_efuse_set_data_double(efuse, doub); /* * Enable the auto-check function to validate if the programming is * successful. */ if (lock) sprd_efuse_set_auto_check(efuse, true); writel(*data, efuse->base + SPRD_EFUSE_MEM(blk)); /* Disable auto-check and data double after programming */ if (lock) sprd_efuse_set_auto_check(efuse, false); sprd_efuse_set_data_double(efuse, false); /* * Check the efuse error status, if the programming is successful, * we should lock this efuse block to avoid programming again. */ status = readl(efuse->base + SPRD_EFUSE_ERR_FLAG); if (status) { dev_err(efuse->dev, "write error status %u of block %d\n", status, blk); writel(SPRD_EFUSE_ERR_CLR_MASK, efuse->base + SPRD_EFUSE_ERR_CLR); ret = -EBUSY; } else if (lock) { sprd_efuse_set_prog_lock(efuse, lock); writel(0, efuse->base + SPRD_EFUSE_MEM(blk)); sprd_efuse_set_prog_lock(efuse, false); } sprd_efuse_set_prog_power(efuse, false); writel(0, efuse->base + SPRD_EFUSE_MAGIC_NUM); return ret; } static int sprd_efuse_raw_read(struct sprd_efuse *efuse, int blk, u32 *val, bool doub) { u32 status; /* * Need power on the efuse before reading data from efuse, and will * power off the efuse after reading process. */ sprd_efuse_set_read_power(efuse, true); /* Enable double data if asked */ sprd_efuse_set_data_double(efuse, doub); /* Start to read data from efuse block */ *val = readl(efuse->base + SPRD_EFUSE_MEM(blk)); /* Disable double data */ sprd_efuse_set_data_double(efuse, false); /* Power off the efuse */ sprd_efuse_set_read_power(efuse, false); /* * Check the efuse error status and clear them if there are some * errors occurred. */ status = readl(efuse->base + SPRD_EFUSE_ERR_FLAG); if (status) { dev_err(efuse->dev, "read error status %d of block %d\n", status, blk); writel(SPRD_EFUSE_ERR_CLR_MASK, efuse->base + SPRD_EFUSE_ERR_CLR); return -EBUSY; } return 0; } static int sprd_efuse_read(void *context, u32 offset, void *val, size_t bytes) { struct sprd_efuse *efuse = context; bool blk_double = efuse->data->blk_double; u32 index = offset / SPRD_EFUSE_BLOCK_WIDTH + efuse->data->blk_offset; u32 blk_offset = (offset % SPRD_EFUSE_BLOCK_WIDTH) * BITS_PER_BYTE; u32 data; int ret; ret = sprd_efuse_lock(efuse); if (ret) return ret; ret = clk_prepare_enable(efuse->clk); if (ret) goto unlock; ret = sprd_efuse_raw_read(efuse, index, &data, blk_double); if (!ret) { data >>= blk_offset; memcpy(val, &data, bytes); } clk_disable_unprepare(efuse->clk); unlock: sprd_efuse_unlock(efuse); return ret; } static int sprd_efuse_write(void *context, u32 offset, void *val, size_t bytes) { struct sprd_efuse *efuse = context; bool blk_double = efuse->data->blk_double; bool lock; int ret; ret = sprd_efuse_lock(efuse); if (ret) return ret; ret = clk_prepare_enable(efuse->clk); if (ret) goto unlock; /* * If the writing bytes are equal with the block width, which means the * whole block will be programmed. For this case, we should not allow * this block to be programmed again by locking this block. * * If the block was programmed partially, we should allow this block to * be programmed again. */ if (bytes < SPRD_EFUSE_BLOCK_WIDTH) lock = false; else lock = true; ret = sprd_efuse_raw_prog(efuse, offset, blk_double, lock, val); clk_disable_unprepare(efuse->clk); unlock: sprd_efuse_unlock(efuse); return ret; } static int sprd_efuse_probe(struct platform_device *pdev) { struct device_node *np = pdev->dev.of_node; struct nvmem_device *nvmem; struct nvmem_config econfig = { }; struct sprd_efuse *efuse; const struct sprd_efuse_variant_data *pdata; int ret; pdata = of_device_get_match_data(&pdev->dev); if (!pdata) { dev_err(&pdev->dev, "No matching driver data found\n"); return -EINVAL; } efuse = devm_kzalloc(&pdev->dev, sizeof(*efuse), GFP_KERNEL); if (!efuse) return -ENOMEM; efuse->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(efuse->base)) return PTR_ERR(efuse->base); ret = of_hwspin_lock_get_id(np, 0); if (ret < 0) { dev_err(&pdev->dev, "failed to get hwlock id\n"); return ret; } efuse->hwlock = devm_hwspin_lock_request_specific(&pdev->dev, ret); if (!efuse->hwlock) { dev_err(&pdev->dev, "failed to request hwlock\n"); return -ENXIO; } efuse->clk = devm_clk_get(&pdev->dev, "enable"); if (IS_ERR(efuse->clk)) { dev_err(&pdev->dev, "failed to get enable clock\n"); return PTR_ERR(efuse->clk); } mutex_init(&efuse->mutex); efuse->dev = &pdev->dev; efuse->data = pdata; econfig.stride = 1; econfig.word_size = 1; econfig.read_only = false; econfig.name = "sprd-efuse"; econfig.size = efuse->data->blk_nums * SPRD_EFUSE_BLOCK_WIDTH; econfig.add_legacy_fixed_of_cells = true; econfig.reg_read = sprd_efuse_read; econfig.reg_write = sprd_efuse_write; econfig.priv = efuse; econfig.dev = &pdev->dev; nvmem = devm_nvmem_register(&pdev->dev, &econfig); if (IS_ERR(nvmem)) { dev_err(&pdev->dev, "failed to register nvmem\n"); return PTR_ERR(nvmem); } return 0; } static const struct of_device_id sprd_efuse_of_match[] = { { .compatible = "sprd,ums312-efuse", .data = &ums312_data }, { } }; static struct platform_driver sprd_efuse_driver = { .probe = sprd_efuse_probe, .driver = { .name = "sprd-efuse", .of_match_table = sprd_efuse_of_match, }, }; module_platform_driver(sprd_efuse_driver); MODULE_AUTHOR("Freeman Liu <freeman.liu@spreadtrum.com>"); MODULE_DESCRIPTION("Spreadtrum AP efuse driver"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1