Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Manivannan Sadhasivam | 3449 | 100.00% | 5 | 100.00% |
Total | 3449 | 5 |
// SPDX-License-Identifier: GPL-2.0 /* * PCI EPF driver for MHI Endpoint devices * * Copyright (C) 2023 Linaro Ltd. * Author: Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org> */ #include <linux/dmaengine.h> #include <linux/mhi_ep.h> #include <linux/module.h> #include <linux/of_dma.h> #include <linux/platform_device.h> #include <linux/pci-epc.h> #include <linux/pci-epf.h> #define MHI_VERSION_1_0 0x01000000 #define to_epf_mhi(cntrl) container_of(cntrl, struct pci_epf_mhi, cntrl) /* Platform specific flags */ #define MHI_EPF_USE_DMA BIT(0) struct pci_epf_mhi_ep_info { const struct mhi_ep_cntrl_config *config; struct pci_epf_header *epf_header; enum pci_barno bar_num; u32 epf_flags; u32 msi_count; u32 mru; u32 flags; }; #define MHI_EP_CHANNEL_CONFIG(ch_num, ch_name, direction) \ { \ .num = ch_num, \ .name = ch_name, \ .dir = direction, \ } #define MHI_EP_CHANNEL_CONFIG_UL(ch_num, ch_name) \ MHI_EP_CHANNEL_CONFIG(ch_num, ch_name, DMA_TO_DEVICE) #define MHI_EP_CHANNEL_CONFIG_DL(ch_num, ch_name) \ MHI_EP_CHANNEL_CONFIG(ch_num, ch_name, DMA_FROM_DEVICE) static const struct mhi_ep_channel_config mhi_v1_channels[] = { MHI_EP_CHANNEL_CONFIG_UL(0, "LOOPBACK"), MHI_EP_CHANNEL_CONFIG_DL(1, "LOOPBACK"), MHI_EP_CHANNEL_CONFIG_UL(2, "SAHARA"), MHI_EP_CHANNEL_CONFIG_DL(3, "SAHARA"), MHI_EP_CHANNEL_CONFIG_UL(4, "DIAG"), MHI_EP_CHANNEL_CONFIG_DL(5, "DIAG"), MHI_EP_CHANNEL_CONFIG_UL(6, "SSR"), MHI_EP_CHANNEL_CONFIG_DL(7, "SSR"), MHI_EP_CHANNEL_CONFIG_UL(8, "QDSS"), MHI_EP_CHANNEL_CONFIG_DL(9, "QDSS"), MHI_EP_CHANNEL_CONFIG_UL(10, "EFS"), MHI_EP_CHANNEL_CONFIG_DL(11, "EFS"), MHI_EP_CHANNEL_CONFIG_UL(12, "MBIM"), MHI_EP_CHANNEL_CONFIG_DL(13, "MBIM"), MHI_EP_CHANNEL_CONFIG_UL(14, "QMI"), MHI_EP_CHANNEL_CONFIG_DL(15, "QMI"), MHI_EP_CHANNEL_CONFIG_UL(16, "QMI"), MHI_EP_CHANNEL_CONFIG_DL(17, "QMI"), MHI_EP_CHANNEL_CONFIG_UL(18, "IP-CTRL-1"), MHI_EP_CHANNEL_CONFIG_DL(19, "IP-CTRL-1"), MHI_EP_CHANNEL_CONFIG_UL(20, "IPCR"), MHI_EP_CHANNEL_CONFIG_DL(21, "IPCR"), MHI_EP_CHANNEL_CONFIG_UL(32, "DUN"), MHI_EP_CHANNEL_CONFIG_DL(33, "DUN"), MHI_EP_CHANNEL_CONFIG_UL(46, "IP_SW0"), MHI_EP_CHANNEL_CONFIG_DL(47, "IP_SW0"), }; static const struct mhi_ep_cntrl_config mhi_v1_config = { .max_channels = 128, .num_channels = ARRAY_SIZE(mhi_v1_channels), .ch_cfg = mhi_v1_channels, .mhi_version = MHI_VERSION_1_0, }; static struct pci_epf_header sdx55_header = { .vendorid = PCI_VENDOR_ID_QCOM, .deviceid = 0x0306, .baseclass_code = PCI_BASE_CLASS_COMMUNICATION, .subclass_code = PCI_CLASS_COMMUNICATION_MODEM & 0xff, .interrupt_pin = PCI_INTERRUPT_INTA, }; static const struct pci_epf_mhi_ep_info sdx55_info = { .config = &mhi_v1_config, .epf_header = &sdx55_header, .bar_num = BAR_0, .epf_flags = PCI_BASE_ADDRESS_MEM_TYPE_32, .msi_count = 32, .mru = 0x8000, }; static struct pci_epf_header sm8450_header = { .vendorid = PCI_VENDOR_ID_QCOM, .deviceid = 0x0306, .baseclass_code = PCI_CLASS_OTHERS, .interrupt_pin = PCI_INTERRUPT_INTA, }; static const struct pci_epf_mhi_ep_info sm8450_info = { .config = &mhi_v1_config, .epf_header = &sm8450_header, .bar_num = BAR_0, .epf_flags = PCI_BASE_ADDRESS_MEM_TYPE_32, .msi_count = 32, .mru = 0x8000, .flags = MHI_EPF_USE_DMA, }; struct pci_epf_mhi { const struct pci_epc_features *epc_features; const struct pci_epf_mhi_ep_info *info; struct mhi_ep_cntrl mhi_cntrl; struct pci_epf *epf; struct mutex lock; void __iomem *mmio; resource_size_t mmio_phys; struct dma_chan *dma_chan_tx; struct dma_chan *dma_chan_rx; u32 mmio_size; int irq; }; static size_t get_align_offset(struct pci_epf_mhi *epf_mhi, u64 addr) { return addr & (epf_mhi->epc_features->align -1); } static int __pci_epf_mhi_alloc_map(struct mhi_ep_cntrl *mhi_cntrl, u64 pci_addr, phys_addr_t *paddr, void __iomem **vaddr, size_t offset, size_t size) { struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl); struct pci_epf *epf = epf_mhi->epf; struct pci_epc *epc = epf->epc; int ret; *vaddr = pci_epc_mem_alloc_addr(epc, paddr, size + offset); if (!*vaddr) return -ENOMEM; ret = pci_epc_map_addr(epc, epf->func_no, epf->vfunc_no, *paddr, pci_addr - offset, size + offset); if (ret) { pci_epc_mem_free_addr(epc, *paddr, *vaddr, size + offset); return ret; } *paddr = *paddr + offset; *vaddr = *vaddr + offset; return 0; } static int pci_epf_mhi_alloc_map(struct mhi_ep_cntrl *mhi_cntrl, u64 pci_addr, phys_addr_t *paddr, void __iomem **vaddr, size_t size) { struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl); size_t offset = get_align_offset(epf_mhi, pci_addr); return __pci_epf_mhi_alloc_map(mhi_cntrl, pci_addr, paddr, vaddr, offset, size); } static void __pci_epf_mhi_unmap_free(struct mhi_ep_cntrl *mhi_cntrl, u64 pci_addr, phys_addr_t paddr, void __iomem *vaddr, size_t offset, size_t size) { struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl); struct pci_epf *epf = epf_mhi->epf; struct pci_epc *epc = epf->epc; pci_epc_unmap_addr(epc, epf->func_no, epf->vfunc_no, paddr - offset); pci_epc_mem_free_addr(epc, paddr - offset, vaddr - offset, size + offset); } static void pci_epf_mhi_unmap_free(struct mhi_ep_cntrl *mhi_cntrl, u64 pci_addr, phys_addr_t paddr, void __iomem *vaddr, size_t size) { struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl); size_t offset = get_align_offset(epf_mhi, pci_addr); __pci_epf_mhi_unmap_free(mhi_cntrl, pci_addr, paddr, vaddr, offset, size); } static void pci_epf_mhi_raise_irq(struct mhi_ep_cntrl *mhi_cntrl, u32 vector) { struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl); struct pci_epf *epf = epf_mhi->epf; struct pci_epc *epc = epf->epc; /* * MHI supplies 0 based MSI vectors but the API expects the vector * number to start from 1, so we need to increment the vector by 1. */ pci_epc_raise_irq(epc, epf->func_no, epf->vfunc_no, PCI_EPC_IRQ_MSI, vector + 1); } static int pci_epf_mhi_iatu_read(struct mhi_ep_cntrl *mhi_cntrl, u64 from, void *to, size_t size) { struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl); size_t offset = get_align_offset(epf_mhi, from); void __iomem *tre_buf; phys_addr_t tre_phys; int ret; mutex_lock(&epf_mhi->lock); ret = __pci_epf_mhi_alloc_map(mhi_cntrl, from, &tre_phys, &tre_buf, offset, size); if (ret) { mutex_unlock(&epf_mhi->lock); return ret; } memcpy_fromio(to, tre_buf, size); __pci_epf_mhi_unmap_free(mhi_cntrl, from, tre_phys, tre_buf, offset, size); mutex_unlock(&epf_mhi->lock); return 0; } static int pci_epf_mhi_iatu_write(struct mhi_ep_cntrl *mhi_cntrl, void *from, u64 to, size_t size) { struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl); size_t offset = get_align_offset(epf_mhi, to); void __iomem *tre_buf; phys_addr_t tre_phys; int ret; mutex_lock(&epf_mhi->lock); ret = __pci_epf_mhi_alloc_map(mhi_cntrl, to, &tre_phys, &tre_buf, offset, size); if (ret) { mutex_unlock(&epf_mhi->lock); return ret; } memcpy_toio(tre_buf, from, size); __pci_epf_mhi_unmap_free(mhi_cntrl, to, tre_phys, tre_buf, offset, size); mutex_unlock(&epf_mhi->lock); return 0; } static void pci_epf_mhi_dma_callback(void *param) { complete(param); } static int pci_epf_mhi_edma_read(struct mhi_ep_cntrl *mhi_cntrl, u64 from, void *to, size_t size) { struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl); struct device *dma_dev = epf_mhi->epf->epc->dev.parent; struct dma_chan *chan = epf_mhi->dma_chan_rx; struct device *dev = &epf_mhi->epf->dev; DECLARE_COMPLETION_ONSTACK(complete); struct dma_async_tx_descriptor *desc; struct dma_slave_config config = {}; dma_cookie_t cookie; dma_addr_t dst_addr; int ret; if (size < SZ_4K) return pci_epf_mhi_iatu_read(mhi_cntrl, from, to, size); mutex_lock(&epf_mhi->lock); config.direction = DMA_DEV_TO_MEM; config.src_addr = from; ret = dmaengine_slave_config(chan, &config); if (ret) { dev_err(dev, "Failed to configure DMA channel\n"); goto err_unlock; } dst_addr = dma_map_single(dma_dev, to, size, DMA_FROM_DEVICE); ret = dma_mapping_error(dma_dev, dst_addr); if (ret) { dev_err(dev, "Failed to map remote memory\n"); goto err_unlock; } desc = dmaengine_prep_slave_single(chan, dst_addr, size, DMA_DEV_TO_MEM, DMA_CTRL_ACK | DMA_PREP_INTERRUPT); if (!desc) { dev_err(dev, "Failed to prepare DMA\n"); ret = -EIO; goto err_unmap; } desc->callback = pci_epf_mhi_dma_callback; desc->callback_param = &complete; cookie = dmaengine_submit(desc); ret = dma_submit_error(cookie); if (ret) { dev_err(dev, "Failed to do DMA submit\n"); goto err_unmap; } dma_async_issue_pending(chan); ret = wait_for_completion_timeout(&complete, msecs_to_jiffies(1000)); if (!ret) { dev_err(dev, "DMA transfer timeout\n"); dmaengine_terminate_sync(chan); ret = -ETIMEDOUT; } err_unmap: dma_unmap_single(dma_dev, dst_addr, size, DMA_FROM_DEVICE); err_unlock: mutex_unlock(&epf_mhi->lock); return ret; } static int pci_epf_mhi_edma_write(struct mhi_ep_cntrl *mhi_cntrl, void *from, u64 to, size_t size) { struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl); struct device *dma_dev = epf_mhi->epf->epc->dev.parent; struct dma_chan *chan = epf_mhi->dma_chan_tx; struct device *dev = &epf_mhi->epf->dev; DECLARE_COMPLETION_ONSTACK(complete); struct dma_async_tx_descriptor *desc; struct dma_slave_config config = {}; dma_cookie_t cookie; dma_addr_t src_addr; int ret; if (size < SZ_4K) return pci_epf_mhi_iatu_write(mhi_cntrl, from, to, size); mutex_lock(&epf_mhi->lock); config.direction = DMA_MEM_TO_DEV; config.dst_addr = to; ret = dmaengine_slave_config(chan, &config); if (ret) { dev_err(dev, "Failed to configure DMA channel\n"); goto err_unlock; } src_addr = dma_map_single(dma_dev, from, size, DMA_TO_DEVICE); ret = dma_mapping_error(dma_dev, src_addr); if (ret) { dev_err(dev, "Failed to map remote memory\n"); goto err_unlock; } desc = dmaengine_prep_slave_single(chan, src_addr, size, DMA_MEM_TO_DEV, DMA_CTRL_ACK | DMA_PREP_INTERRUPT); if (!desc) { dev_err(dev, "Failed to prepare DMA\n"); ret = -EIO; goto err_unmap; } desc->callback = pci_epf_mhi_dma_callback; desc->callback_param = &complete; cookie = dmaengine_submit(desc); ret = dma_submit_error(cookie); if (ret) { dev_err(dev, "Failed to do DMA submit\n"); goto err_unmap; } dma_async_issue_pending(chan); ret = wait_for_completion_timeout(&complete, msecs_to_jiffies(1000)); if (!ret) { dev_err(dev, "DMA transfer timeout\n"); dmaengine_terminate_sync(chan); ret = -ETIMEDOUT; } err_unmap: dma_unmap_single(dma_dev, src_addr, size, DMA_FROM_DEVICE); err_unlock: mutex_unlock(&epf_mhi->lock); return ret; } struct epf_dma_filter { struct device *dev; u32 dma_mask; }; static bool pci_epf_mhi_filter(struct dma_chan *chan, void *node) { struct epf_dma_filter *filter = node; struct dma_slave_caps caps; memset(&caps, 0, sizeof(caps)); dma_get_slave_caps(chan, &caps); return chan->device->dev == filter->dev && filter->dma_mask & caps.directions; } static int pci_epf_mhi_dma_init(struct pci_epf_mhi *epf_mhi) { struct device *dma_dev = epf_mhi->epf->epc->dev.parent; struct device *dev = &epf_mhi->epf->dev; struct epf_dma_filter filter; dma_cap_mask_t mask; dma_cap_zero(mask); dma_cap_set(DMA_SLAVE, mask); filter.dev = dma_dev; filter.dma_mask = BIT(DMA_MEM_TO_DEV); epf_mhi->dma_chan_tx = dma_request_channel(mask, pci_epf_mhi_filter, &filter); if (IS_ERR_OR_NULL(epf_mhi->dma_chan_tx)) { dev_err(dev, "Failed to request tx channel\n"); return -ENODEV; } filter.dma_mask = BIT(DMA_DEV_TO_MEM); epf_mhi->dma_chan_rx = dma_request_channel(mask, pci_epf_mhi_filter, &filter); if (IS_ERR_OR_NULL(epf_mhi->dma_chan_rx)) { dev_err(dev, "Failed to request rx channel\n"); dma_release_channel(epf_mhi->dma_chan_tx); epf_mhi->dma_chan_tx = NULL; return -ENODEV; } return 0; } static void pci_epf_mhi_dma_deinit(struct pci_epf_mhi *epf_mhi) { dma_release_channel(epf_mhi->dma_chan_tx); dma_release_channel(epf_mhi->dma_chan_rx); epf_mhi->dma_chan_tx = NULL; epf_mhi->dma_chan_rx = NULL; } static int pci_epf_mhi_core_init(struct pci_epf *epf) { struct pci_epf_mhi *epf_mhi = epf_get_drvdata(epf); const struct pci_epf_mhi_ep_info *info = epf_mhi->info; struct pci_epf_bar *epf_bar = &epf->bar[info->bar_num]; struct pci_epc *epc = epf->epc; struct device *dev = &epf->dev; int ret; epf_bar->phys_addr = epf_mhi->mmio_phys; epf_bar->size = epf_mhi->mmio_size; epf_bar->barno = info->bar_num; epf_bar->flags = info->epf_flags; ret = pci_epc_set_bar(epc, epf->func_no, epf->vfunc_no, epf_bar); if (ret) { dev_err(dev, "Failed to set BAR: %d\n", ret); return ret; } ret = pci_epc_set_msi(epc, epf->func_no, epf->vfunc_no, order_base_2(info->msi_count)); if (ret) { dev_err(dev, "Failed to set MSI configuration: %d\n", ret); return ret; } ret = pci_epc_write_header(epc, epf->func_no, epf->vfunc_no, epf->header); if (ret) { dev_err(dev, "Failed to set Configuration header: %d\n", ret); return ret; } epf_mhi->epc_features = pci_epc_get_features(epc, epf->func_no, epf->vfunc_no); if (!epf_mhi->epc_features) return -ENODATA; return 0; } static int pci_epf_mhi_link_up(struct pci_epf *epf) { struct pci_epf_mhi *epf_mhi = epf_get_drvdata(epf); const struct pci_epf_mhi_ep_info *info = epf_mhi->info; struct mhi_ep_cntrl *mhi_cntrl = &epf_mhi->mhi_cntrl; struct pci_epc *epc = epf->epc; struct device *dev = &epf->dev; int ret; if (info->flags & MHI_EPF_USE_DMA) { ret = pci_epf_mhi_dma_init(epf_mhi); if (ret) { dev_err(dev, "Failed to initialize DMA: %d\n", ret); return ret; } } mhi_cntrl->mmio = epf_mhi->mmio; mhi_cntrl->irq = epf_mhi->irq; mhi_cntrl->mru = info->mru; /* Assign the struct dev of PCI EP as MHI controller device */ mhi_cntrl->cntrl_dev = epc->dev.parent; mhi_cntrl->raise_irq = pci_epf_mhi_raise_irq; mhi_cntrl->alloc_map = pci_epf_mhi_alloc_map; mhi_cntrl->unmap_free = pci_epf_mhi_unmap_free; if (info->flags & MHI_EPF_USE_DMA) { mhi_cntrl->read_from_host = pci_epf_mhi_edma_read; mhi_cntrl->write_to_host = pci_epf_mhi_edma_write; } else { mhi_cntrl->read_from_host = pci_epf_mhi_iatu_read; mhi_cntrl->write_to_host = pci_epf_mhi_iatu_write; } /* Register the MHI EP controller */ ret = mhi_ep_register_controller(mhi_cntrl, info->config); if (ret) { dev_err(dev, "Failed to register MHI EP controller: %d\n", ret); if (info->flags & MHI_EPF_USE_DMA) pci_epf_mhi_dma_deinit(epf_mhi); return ret; } return 0; } static int pci_epf_mhi_link_down(struct pci_epf *epf) { struct pci_epf_mhi *epf_mhi = epf_get_drvdata(epf); const struct pci_epf_mhi_ep_info *info = epf_mhi->info; struct mhi_ep_cntrl *mhi_cntrl = &epf_mhi->mhi_cntrl; if (mhi_cntrl->mhi_dev) { mhi_ep_power_down(mhi_cntrl); if (info->flags & MHI_EPF_USE_DMA) pci_epf_mhi_dma_deinit(epf_mhi); mhi_ep_unregister_controller(mhi_cntrl); } return 0; } static int pci_epf_mhi_bme(struct pci_epf *epf) { struct pci_epf_mhi *epf_mhi = epf_get_drvdata(epf); const struct pci_epf_mhi_ep_info *info = epf_mhi->info; struct mhi_ep_cntrl *mhi_cntrl = &epf_mhi->mhi_cntrl; struct device *dev = &epf->dev; int ret; /* * Power up the MHI EP stack if link is up and stack is in power down * state. */ if (!mhi_cntrl->enabled && mhi_cntrl->mhi_dev) { ret = mhi_ep_power_up(mhi_cntrl); if (ret) { dev_err(dev, "Failed to power up MHI EP: %d\n", ret); if (info->flags & MHI_EPF_USE_DMA) pci_epf_mhi_dma_deinit(epf_mhi); mhi_ep_unregister_controller(mhi_cntrl); } } return 0; } static int pci_epf_mhi_bind(struct pci_epf *epf) { struct pci_epf_mhi *epf_mhi = epf_get_drvdata(epf); struct pci_epc *epc = epf->epc; struct platform_device *pdev = to_platform_device(epc->dev.parent); struct resource *res; int ret; /* Get MMIO base address from Endpoint controller */ res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "mmio"); epf_mhi->mmio_phys = res->start; epf_mhi->mmio_size = resource_size(res); epf_mhi->mmio = ioremap(epf_mhi->mmio_phys, epf_mhi->mmio_size); if (!epf_mhi->mmio) return -ENOMEM; ret = platform_get_irq_byname(pdev, "doorbell"); if (ret < 0) { iounmap(epf_mhi->mmio); return ret; } epf_mhi->irq = ret; return 0; } static void pci_epf_mhi_unbind(struct pci_epf *epf) { struct pci_epf_mhi *epf_mhi = epf_get_drvdata(epf); const struct pci_epf_mhi_ep_info *info = epf_mhi->info; struct pci_epf_bar *epf_bar = &epf->bar[info->bar_num]; struct mhi_ep_cntrl *mhi_cntrl = &epf_mhi->mhi_cntrl; struct pci_epc *epc = epf->epc; /* * Forcefully power down the MHI EP stack. Only way to bring the MHI EP * stack back to working state after successive bind is by getting BME * from host. */ if (mhi_cntrl->mhi_dev) { mhi_ep_power_down(mhi_cntrl); if (info->flags & MHI_EPF_USE_DMA) pci_epf_mhi_dma_deinit(epf_mhi); mhi_ep_unregister_controller(mhi_cntrl); } iounmap(epf_mhi->mmio); pci_epc_clear_bar(epc, epf->func_no, epf->vfunc_no, epf_bar); } static struct pci_epc_event_ops pci_epf_mhi_event_ops = { .core_init = pci_epf_mhi_core_init, .link_up = pci_epf_mhi_link_up, .link_down = pci_epf_mhi_link_down, .bme = pci_epf_mhi_bme, }; static int pci_epf_mhi_probe(struct pci_epf *epf, const struct pci_epf_device_id *id) { struct pci_epf_mhi_ep_info *info = (struct pci_epf_mhi_ep_info *)id->driver_data; struct pci_epf_mhi *epf_mhi; struct device *dev = &epf->dev; epf_mhi = devm_kzalloc(dev, sizeof(*epf_mhi), GFP_KERNEL); if (!epf_mhi) return -ENOMEM; epf->header = info->epf_header; epf_mhi->info = info; epf_mhi->epf = epf; epf->event_ops = &pci_epf_mhi_event_ops; mutex_init(&epf_mhi->lock); epf_set_drvdata(epf, epf_mhi); return 0; } static const struct pci_epf_device_id pci_epf_mhi_ids[] = { { .name = "sdx55", .driver_data = (kernel_ulong_t)&sdx55_info }, { .name = "sm8450", .driver_data = (kernel_ulong_t)&sm8450_info }, {}, }; static struct pci_epf_ops pci_epf_mhi_ops = { .unbind = pci_epf_mhi_unbind, .bind = pci_epf_mhi_bind, }; static struct pci_epf_driver pci_epf_mhi_driver = { .driver.name = "pci_epf_mhi", .probe = pci_epf_mhi_probe, .id_table = pci_epf_mhi_ids, .ops = &pci_epf_mhi_ops, .owner = THIS_MODULE, }; static int __init pci_epf_mhi_init(void) { return pci_epf_register_driver(&pci_epf_mhi_driver); } module_init(pci_epf_mhi_init); static void __exit pci_epf_mhi_exit(void) { pci_epf_unregister_driver(&pci_epf_mhi_driver); } module_exit(pci_epf_mhi_exit); MODULE_DESCRIPTION("PCI EPF driver for MHI Endpoint devices"); MODULE_AUTHOR("Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org>"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1