Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Ioana Ciornei | 2748 | 97.72% | 2 | 40.00% |
Vladimir Oltean | 61 | 2.17% | 2 | 40.00% |
Thierry Reding | 3 | 0.11% | 1 | 20.00% |
Total | 2812 | 5 |
// SPDX-License-Identifier: GPL-2.0+ /* Copyright (c) 2021-2022 NXP. */ #include <linux/module.h> #include <linux/of.h> #include <linux/phy.h> #include <linux/phy/phy.h> #include <linux/platform_device.h> #include <linux/workqueue.h> #define LYNX_28G_NUM_LANE 8 #define LYNX_28G_NUM_PLL 2 /* General registers per SerDes block */ #define LYNX_28G_PCC8 0x10a0 #define LYNX_28G_PCC8_SGMII 0x1 #define LYNX_28G_PCC8_SGMII_DIS 0x0 #define LYNX_28G_PCCC 0x10b0 #define LYNX_28G_PCCC_10GBASER 0x9 #define LYNX_28G_PCCC_USXGMII 0x1 #define LYNX_28G_PCCC_SXGMII_DIS 0x0 #define LYNX_28G_LNa_PCC_OFFSET(lane) (4 * (LYNX_28G_NUM_LANE - (lane->id) - 1)) /* Per PLL registers */ #define LYNX_28G_PLLnRSTCTL(pll) (0x400 + (pll) * 0x100 + 0x0) #define LYNX_28G_PLLnRSTCTL_DIS(rstctl) (((rstctl) & BIT(24)) >> 24) #define LYNX_28G_PLLnRSTCTL_LOCK(rstctl) (((rstctl) & BIT(23)) >> 23) #define LYNX_28G_PLLnCR0(pll) (0x400 + (pll) * 0x100 + 0x4) #define LYNX_28G_PLLnCR0_REFCLK_SEL(cr0) (((cr0) & GENMASK(20, 16))) #define LYNX_28G_PLLnCR0_REFCLK_SEL_100MHZ 0x0 #define LYNX_28G_PLLnCR0_REFCLK_SEL_125MHZ 0x10000 #define LYNX_28G_PLLnCR0_REFCLK_SEL_156MHZ 0x20000 #define LYNX_28G_PLLnCR0_REFCLK_SEL_150MHZ 0x30000 #define LYNX_28G_PLLnCR0_REFCLK_SEL_161MHZ 0x40000 #define LYNX_28G_PLLnCR1(pll) (0x400 + (pll) * 0x100 + 0x8) #define LYNX_28G_PLLnCR1_FRATE_SEL(cr1) (((cr1) & GENMASK(28, 24))) #define LYNX_28G_PLLnCR1_FRATE_5G_10GVCO 0x0 #define LYNX_28G_PLLnCR1_FRATE_5G_25GVCO 0x10000000 #define LYNX_28G_PLLnCR1_FRATE_10G_20GVCO 0x6000000 /* Per SerDes lane registers */ /* Lane a General Control Register */ #define LYNX_28G_LNaGCR0(lane) (0x800 + (lane) * 0x100 + 0x0) #define LYNX_28G_LNaGCR0_PROTO_SEL_MSK GENMASK(7, 3) #define LYNX_28G_LNaGCR0_PROTO_SEL_SGMII 0x8 #define LYNX_28G_LNaGCR0_PROTO_SEL_XFI 0x50 #define LYNX_28G_LNaGCR0_IF_WIDTH_MSK GENMASK(2, 0) #define LYNX_28G_LNaGCR0_IF_WIDTH_10_BIT 0x0 #define LYNX_28G_LNaGCR0_IF_WIDTH_20_BIT 0x2 /* Lane a Tx Reset Control Register */ #define LYNX_28G_LNaTRSTCTL(lane) (0x800 + (lane) * 0x100 + 0x20) #define LYNX_28G_LNaTRSTCTL_HLT_REQ BIT(27) #define LYNX_28G_LNaTRSTCTL_RST_DONE BIT(30) #define LYNX_28G_LNaTRSTCTL_RST_REQ BIT(31) /* Lane a Tx General Control Register */ #define LYNX_28G_LNaTGCR0(lane) (0x800 + (lane) * 0x100 + 0x24) #define LYNX_28G_LNaTGCR0_USE_PLLF 0x0 #define LYNX_28G_LNaTGCR0_USE_PLLS BIT(28) #define LYNX_28G_LNaTGCR0_USE_PLL_MSK BIT(28) #define LYNX_28G_LNaTGCR0_N_RATE_FULL 0x0 #define LYNX_28G_LNaTGCR0_N_RATE_HALF 0x1000000 #define LYNX_28G_LNaTGCR0_N_RATE_QUARTER 0x2000000 #define LYNX_28G_LNaTGCR0_N_RATE_MSK GENMASK(26, 24) #define LYNX_28G_LNaTECR0(lane) (0x800 + (lane) * 0x100 + 0x30) /* Lane a Rx Reset Control Register */ #define LYNX_28G_LNaRRSTCTL(lane) (0x800 + (lane) * 0x100 + 0x40) #define LYNX_28G_LNaRRSTCTL_HLT_REQ BIT(27) #define LYNX_28G_LNaRRSTCTL_RST_DONE BIT(30) #define LYNX_28G_LNaRRSTCTL_RST_REQ BIT(31) #define LYNX_28G_LNaRRSTCTL_CDR_LOCK BIT(12) /* Lane a Rx General Control Register */ #define LYNX_28G_LNaRGCR0(lane) (0x800 + (lane) * 0x100 + 0x44) #define LYNX_28G_LNaRGCR0_USE_PLLF 0x0 #define LYNX_28G_LNaRGCR0_USE_PLLS BIT(28) #define LYNX_28G_LNaRGCR0_USE_PLL_MSK BIT(28) #define LYNX_28G_LNaRGCR0_N_RATE_MSK GENMASK(26, 24) #define LYNX_28G_LNaRGCR0_N_RATE_FULL 0x0 #define LYNX_28G_LNaRGCR0_N_RATE_HALF 0x1000000 #define LYNX_28G_LNaRGCR0_N_RATE_QUARTER 0x2000000 #define LYNX_28G_LNaRGCR0_N_RATE_MSK GENMASK(26, 24) #define LYNX_28G_LNaRGCR1(lane) (0x800 + (lane) * 0x100 + 0x48) #define LYNX_28G_LNaRECR0(lane) (0x800 + (lane) * 0x100 + 0x50) #define LYNX_28G_LNaRECR1(lane) (0x800 + (lane) * 0x100 + 0x54) #define LYNX_28G_LNaRECR2(lane) (0x800 + (lane) * 0x100 + 0x58) #define LYNX_28G_LNaRSCCR0(lane) (0x800 + (lane) * 0x100 + 0x74) #define LYNX_28G_LNaPSS(lane) (0x1000 + (lane) * 0x4) #define LYNX_28G_LNaPSS_TYPE(pss) (((pss) & GENMASK(30, 24)) >> 24) #define LYNX_28G_LNaPSS_TYPE_SGMII 0x4 #define LYNX_28G_LNaPSS_TYPE_XFI 0x28 #define LYNX_28G_SGMIIaCR1(lane) (0x1804 + (lane) * 0x10) #define LYNX_28G_SGMIIaCR1_SGPCS_EN BIT(11) #define LYNX_28G_SGMIIaCR1_SGPCS_DIS 0x0 #define LYNX_28G_SGMIIaCR1_SGPCS_MSK BIT(11) struct lynx_28g_priv; struct lynx_28g_pll { struct lynx_28g_priv *priv; u32 rstctl, cr0, cr1; int id; DECLARE_PHY_INTERFACE_MASK(supported); }; struct lynx_28g_lane { struct lynx_28g_priv *priv; struct phy *phy; bool powered_up; bool init; unsigned int id; phy_interface_t interface; }; struct lynx_28g_priv { void __iomem *base; struct device *dev; /* Serialize concurrent access to registers shared between lanes, * like PCCn */ spinlock_t pcc_lock; struct lynx_28g_pll pll[LYNX_28G_NUM_PLL]; struct lynx_28g_lane lane[LYNX_28G_NUM_LANE]; struct delayed_work cdr_check; }; static void lynx_28g_rmw(struct lynx_28g_priv *priv, unsigned long off, u32 val, u32 mask) { void __iomem *reg = priv->base + off; u32 orig, tmp; orig = ioread32(reg); tmp = orig & ~mask; tmp |= val; iowrite32(tmp, reg); } #define lynx_28g_lane_rmw(lane, reg, val, mask) \ lynx_28g_rmw((lane)->priv, LYNX_28G_##reg(lane->id), \ LYNX_28G_##reg##_##val, LYNX_28G_##reg##_##mask) #define lynx_28g_lane_read(lane, reg) \ ioread32((lane)->priv->base + LYNX_28G_##reg((lane)->id)) #define lynx_28g_pll_read(pll, reg) \ ioread32((pll)->priv->base + LYNX_28G_##reg((pll)->id)) static bool lynx_28g_supports_interface(struct lynx_28g_priv *priv, int intf) { int i; for (i = 0; i < LYNX_28G_NUM_PLL; i++) { if (LYNX_28G_PLLnRSTCTL_DIS(priv->pll[i].rstctl)) continue; if (test_bit(intf, priv->pll[i].supported)) return true; } return false; } static struct lynx_28g_pll *lynx_28g_pll_get(struct lynx_28g_priv *priv, phy_interface_t intf) { struct lynx_28g_pll *pll; int i; for (i = 0; i < LYNX_28G_NUM_PLL; i++) { pll = &priv->pll[i]; if (LYNX_28G_PLLnRSTCTL_DIS(pll->rstctl)) continue; if (test_bit(intf, pll->supported)) return pll; } return NULL; } static void lynx_28g_lane_set_nrate(struct lynx_28g_lane *lane, struct lynx_28g_pll *pll, phy_interface_t intf) { switch (LYNX_28G_PLLnCR1_FRATE_SEL(pll->cr1)) { case LYNX_28G_PLLnCR1_FRATE_5G_10GVCO: case LYNX_28G_PLLnCR1_FRATE_5G_25GVCO: switch (intf) { case PHY_INTERFACE_MODE_SGMII: case PHY_INTERFACE_MODE_1000BASEX: lynx_28g_lane_rmw(lane, LNaTGCR0, N_RATE_QUARTER, N_RATE_MSK); lynx_28g_lane_rmw(lane, LNaRGCR0, N_RATE_QUARTER, N_RATE_MSK); break; default: break; } break; case LYNX_28G_PLLnCR1_FRATE_10G_20GVCO: switch (intf) { case PHY_INTERFACE_MODE_10GBASER: case PHY_INTERFACE_MODE_USXGMII: lynx_28g_lane_rmw(lane, LNaTGCR0, N_RATE_FULL, N_RATE_MSK); lynx_28g_lane_rmw(lane, LNaRGCR0, N_RATE_FULL, N_RATE_MSK); break; default: break; } break; default: break; } } static void lynx_28g_lane_set_pll(struct lynx_28g_lane *lane, struct lynx_28g_pll *pll) { if (pll->id == 0) { lynx_28g_lane_rmw(lane, LNaTGCR0, USE_PLLF, USE_PLL_MSK); lynx_28g_lane_rmw(lane, LNaRGCR0, USE_PLLF, USE_PLL_MSK); } else { lynx_28g_lane_rmw(lane, LNaTGCR0, USE_PLLS, USE_PLL_MSK); lynx_28g_lane_rmw(lane, LNaRGCR0, USE_PLLS, USE_PLL_MSK); } } static void lynx_28g_cleanup_lane(struct lynx_28g_lane *lane) { u32 lane_offset = LYNX_28G_LNa_PCC_OFFSET(lane); struct lynx_28g_priv *priv = lane->priv; /* Cleanup the protocol configuration registers of the current protocol */ switch (lane->interface) { case PHY_INTERFACE_MODE_10GBASER: lynx_28g_rmw(priv, LYNX_28G_PCCC, LYNX_28G_PCCC_SXGMII_DIS << lane_offset, GENMASK(3, 0) << lane_offset); break; case PHY_INTERFACE_MODE_SGMII: case PHY_INTERFACE_MODE_1000BASEX: lynx_28g_rmw(priv, LYNX_28G_PCC8, LYNX_28G_PCC8_SGMII_DIS << lane_offset, GENMASK(3, 0) << lane_offset); break; default: break; } } static void lynx_28g_lane_set_sgmii(struct lynx_28g_lane *lane) { u32 lane_offset = LYNX_28G_LNa_PCC_OFFSET(lane); struct lynx_28g_priv *priv = lane->priv; struct lynx_28g_pll *pll; lynx_28g_cleanup_lane(lane); /* Setup the lane to run in SGMII */ lynx_28g_rmw(priv, LYNX_28G_PCC8, LYNX_28G_PCC8_SGMII << lane_offset, GENMASK(3, 0) << lane_offset); /* Setup the protocol select and SerDes parallel interface width */ lynx_28g_lane_rmw(lane, LNaGCR0, PROTO_SEL_SGMII, PROTO_SEL_MSK); lynx_28g_lane_rmw(lane, LNaGCR0, IF_WIDTH_10_BIT, IF_WIDTH_MSK); /* Switch to the PLL that works with this interface type */ pll = lynx_28g_pll_get(priv, PHY_INTERFACE_MODE_SGMII); lynx_28g_lane_set_pll(lane, pll); /* Choose the portion of clock net to be used on this lane */ lynx_28g_lane_set_nrate(lane, pll, PHY_INTERFACE_MODE_SGMII); /* Enable the SGMII PCS */ lynx_28g_lane_rmw(lane, SGMIIaCR1, SGPCS_EN, SGPCS_MSK); /* Configure the appropriate equalization parameters for the protocol */ iowrite32(0x00808006, priv->base + LYNX_28G_LNaTECR0(lane->id)); iowrite32(0x04310000, priv->base + LYNX_28G_LNaRGCR1(lane->id)); iowrite32(0x9f800000, priv->base + LYNX_28G_LNaRECR0(lane->id)); iowrite32(0x001f0000, priv->base + LYNX_28G_LNaRECR1(lane->id)); iowrite32(0x00000000, priv->base + LYNX_28G_LNaRECR2(lane->id)); iowrite32(0x00000000, priv->base + LYNX_28G_LNaRSCCR0(lane->id)); } static void lynx_28g_lane_set_10gbaser(struct lynx_28g_lane *lane) { u32 lane_offset = LYNX_28G_LNa_PCC_OFFSET(lane); struct lynx_28g_priv *priv = lane->priv; struct lynx_28g_pll *pll; lynx_28g_cleanup_lane(lane); /* Enable the SXGMII lane */ lynx_28g_rmw(priv, LYNX_28G_PCCC, LYNX_28G_PCCC_10GBASER << lane_offset, GENMASK(3, 0) << lane_offset); /* Setup the protocol select and SerDes parallel interface width */ lynx_28g_lane_rmw(lane, LNaGCR0, PROTO_SEL_XFI, PROTO_SEL_MSK); lynx_28g_lane_rmw(lane, LNaGCR0, IF_WIDTH_20_BIT, IF_WIDTH_MSK); /* Switch to the PLL that works with this interface type */ pll = lynx_28g_pll_get(priv, PHY_INTERFACE_MODE_10GBASER); lynx_28g_lane_set_pll(lane, pll); /* Choose the portion of clock net to be used on this lane */ lynx_28g_lane_set_nrate(lane, pll, PHY_INTERFACE_MODE_10GBASER); /* Disable the SGMII PCS */ lynx_28g_lane_rmw(lane, SGMIIaCR1, SGPCS_DIS, SGPCS_MSK); /* Configure the appropriate equalization parameters for the protocol */ iowrite32(0x10808307, priv->base + LYNX_28G_LNaTECR0(lane->id)); iowrite32(0x10000000, priv->base + LYNX_28G_LNaRGCR1(lane->id)); iowrite32(0x00000000, priv->base + LYNX_28G_LNaRECR0(lane->id)); iowrite32(0x001f0000, priv->base + LYNX_28G_LNaRECR1(lane->id)); iowrite32(0x81000020, priv->base + LYNX_28G_LNaRECR2(lane->id)); iowrite32(0x00002000, priv->base + LYNX_28G_LNaRSCCR0(lane->id)); } static int lynx_28g_power_off(struct phy *phy) { struct lynx_28g_lane *lane = phy_get_drvdata(phy); u32 trstctl, rrstctl; if (!lane->powered_up) return 0; /* Issue a halt request */ lynx_28g_lane_rmw(lane, LNaTRSTCTL, HLT_REQ, HLT_REQ); lynx_28g_lane_rmw(lane, LNaRRSTCTL, HLT_REQ, HLT_REQ); /* Wait until the halting process is complete */ do { trstctl = lynx_28g_lane_read(lane, LNaTRSTCTL); rrstctl = lynx_28g_lane_read(lane, LNaRRSTCTL); } while ((trstctl & LYNX_28G_LNaTRSTCTL_HLT_REQ) || (rrstctl & LYNX_28G_LNaRRSTCTL_HLT_REQ)); lane->powered_up = false; return 0; } static int lynx_28g_power_on(struct phy *phy) { struct lynx_28g_lane *lane = phy_get_drvdata(phy); u32 trstctl, rrstctl; if (lane->powered_up) return 0; /* Issue a reset request on the lane */ lynx_28g_lane_rmw(lane, LNaTRSTCTL, RST_REQ, RST_REQ); lynx_28g_lane_rmw(lane, LNaRRSTCTL, RST_REQ, RST_REQ); /* Wait until the reset sequence is completed */ do { trstctl = lynx_28g_lane_read(lane, LNaTRSTCTL); rrstctl = lynx_28g_lane_read(lane, LNaRRSTCTL); } while (!(trstctl & LYNX_28G_LNaTRSTCTL_RST_DONE) || !(rrstctl & LYNX_28G_LNaRRSTCTL_RST_DONE)); lane->powered_up = true; return 0; } static int lynx_28g_set_mode(struct phy *phy, enum phy_mode mode, int submode) { struct lynx_28g_lane *lane = phy_get_drvdata(phy); struct lynx_28g_priv *priv = lane->priv; int powered_up = lane->powered_up; int err = 0; if (mode != PHY_MODE_ETHERNET) return -EOPNOTSUPP; if (lane->interface == PHY_INTERFACE_MODE_NA) return -EOPNOTSUPP; if (!lynx_28g_supports_interface(priv, submode)) return -EOPNOTSUPP; /* If the lane is powered up, put the lane into the halt state while * the reconfiguration is being done. */ if (powered_up) lynx_28g_power_off(phy); spin_lock(&priv->pcc_lock); switch (submode) { case PHY_INTERFACE_MODE_SGMII: case PHY_INTERFACE_MODE_1000BASEX: lynx_28g_lane_set_sgmii(lane); break; case PHY_INTERFACE_MODE_10GBASER: lynx_28g_lane_set_10gbaser(lane); break; default: err = -EOPNOTSUPP; goto out; } lane->interface = submode; out: spin_unlock(&priv->pcc_lock); /* Power up the lane if necessary */ if (powered_up) lynx_28g_power_on(phy); return err; } static int lynx_28g_validate(struct phy *phy, enum phy_mode mode, int submode, union phy_configure_opts *opts __always_unused) { struct lynx_28g_lane *lane = phy_get_drvdata(phy); struct lynx_28g_priv *priv = lane->priv; if (mode != PHY_MODE_ETHERNET) return -EOPNOTSUPP; if (!lynx_28g_supports_interface(priv, submode)) return -EOPNOTSUPP; return 0; } static int lynx_28g_init(struct phy *phy) { struct lynx_28g_lane *lane = phy_get_drvdata(phy); /* Mark the fact that the lane was init */ lane->init = true; /* SerDes lanes are powered on at boot time. Any lane that is managed * by this driver will get powered down at init time aka at dpaa2-eth * probe time. */ lane->powered_up = true; lynx_28g_power_off(phy); return 0; } static const struct phy_ops lynx_28g_ops = { .init = lynx_28g_init, .power_on = lynx_28g_power_on, .power_off = lynx_28g_power_off, .set_mode = lynx_28g_set_mode, .validate = lynx_28g_validate, .owner = THIS_MODULE, }; static void lynx_28g_pll_read_configuration(struct lynx_28g_priv *priv) { struct lynx_28g_pll *pll; int i; for (i = 0; i < LYNX_28G_NUM_PLL; i++) { pll = &priv->pll[i]; pll->priv = priv; pll->id = i; pll->rstctl = lynx_28g_pll_read(pll, PLLnRSTCTL); pll->cr0 = lynx_28g_pll_read(pll, PLLnCR0); pll->cr1 = lynx_28g_pll_read(pll, PLLnCR1); if (LYNX_28G_PLLnRSTCTL_DIS(pll->rstctl)) continue; switch (LYNX_28G_PLLnCR1_FRATE_SEL(pll->cr1)) { case LYNX_28G_PLLnCR1_FRATE_5G_10GVCO: case LYNX_28G_PLLnCR1_FRATE_5G_25GVCO: /* 5GHz clock net */ __set_bit(PHY_INTERFACE_MODE_1000BASEX, pll->supported); __set_bit(PHY_INTERFACE_MODE_SGMII, pll->supported); break; case LYNX_28G_PLLnCR1_FRATE_10G_20GVCO: /* 10.3125GHz clock net */ __set_bit(PHY_INTERFACE_MODE_10GBASER, pll->supported); break; default: /* 6GHz, 12.890625GHz, 8GHz */ break; } } } #define work_to_lynx(w) container_of((w), struct lynx_28g_priv, cdr_check.work) static void lynx_28g_cdr_lock_check(struct work_struct *work) { struct lynx_28g_priv *priv = work_to_lynx(work); struct lynx_28g_lane *lane; u32 rrstctl; int i; for (i = 0; i < LYNX_28G_NUM_LANE; i++) { lane = &priv->lane[i]; mutex_lock(&lane->phy->mutex); if (!lane->init || !lane->powered_up) { mutex_unlock(&lane->phy->mutex); continue; } rrstctl = lynx_28g_lane_read(lane, LNaRRSTCTL); if (!(rrstctl & LYNX_28G_LNaRRSTCTL_CDR_LOCK)) { lynx_28g_lane_rmw(lane, LNaRRSTCTL, RST_REQ, RST_REQ); do { rrstctl = lynx_28g_lane_read(lane, LNaRRSTCTL); } while (!(rrstctl & LYNX_28G_LNaRRSTCTL_RST_DONE)); } mutex_unlock(&lane->phy->mutex); } queue_delayed_work(system_power_efficient_wq, &priv->cdr_check, msecs_to_jiffies(1000)); } static void lynx_28g_lane_read_configuration(struct lynx_28g_lane *lane) { u32 pss, protocol; pss = lynx_28g_lane_read(lane, LNaPSS); protocol = LYNX_28G_LNaPSS_TYPE(pss); switch (protocol) { case LYNX_28G_LNaPSS_TYPE_SGMII: lane->interface = PHY_INTERFACE_MODE_SGMII; break; case LYNX_28G_LNaPSS_TYPE_XFI: lane->interface = PHY_INTERFACE_MODE_10GBASER; break; default: lane->interface = PHY_INTERFACE_MODE_NA; } } static struct phy *lynx_28g_xlate(struct device *dev, struct of_phandle_args *args) { struct lynx_28g_priv *priv = dev_get_drvdata(dev); int idx = args->args[0]; if (WARN_ON(idx >= LYNX_28G_NUM_LANE)) return ERR_PTR(-EINVAL); return priv->lane[idx].phy; } static int lynx_28g_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct phy_provider *provider; struct lynx_28g_priv *priv; int i; priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->dev = &pdev->dev; priv->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(priv->base)) return PTR_ERR(priv->base); lynx_28g_pll_read_configuration(priv); for (i = 0; i < LYNX_28G_NUM_LANE; i++) { struct lynx_28g_lane *lane = &priv->lane[i]; struct phy *phy; memset(lane, 0, sizeof(*lane)); phy = devm_phy_create(&pdev->dev, NULL, &lynx_28g_ops); if (IS_ERR(phy)) return PTR_ERR(phy); lane->priv = priv; lane->phy = phy; lane->id = i; phy_set_drvdata(phy, lane); lynx_28g_lane_read_configuration(lane); } dev_set_drvdata(dev, priv); spin_lock_init(&priv->pcc_lock); INIT_DELAYED_WORK(&priv->cdr_check, lynx_28g_cdr_lock_check); queue_delayed_work(system_power_efficient_wq, &priv->cdr_check, msecs_to_jiffies(1000)); dev_set_drvdata(&pdev->dev, priv); provider = devm_of_phy_provider_register(&pdev->dev, lynx_28g_xlate); return PTR_ERR_OR_ZERO(provider); } static void lynx_28g_remove(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct lynx_28g_priv *priv = dev_get_drvdata(dev); cancel_delayed_work_sync(&priv->cdr_check); } static const struct of_device_id lynx_28g_of_match_table[] = { { .compatible = "fsl,lynx-28g" }, { }, }; MODULE_DEVICE_TABLE(of, lynx_28g_of_match_table); static struct platform_driver lynx_28g_driver = { .probe = lynx_28g_probe, .remove_new = lynx_28g_remove, .driver = { .name = "lynx-28g", .of_match_table = lynx_28g_of_match_table, }, }; module_platform_driver(lynx_28g_driver); MODULE_AUTHOR("Ioana Ciornei <ioana.ciornei@nxp.com>"); MODULE_DESCRIPTION("Lynx 28G SerDes PHY driver for Layerscape SoCs"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1